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Abstract
A central vertex of a graph is a vertex whose eccentricity equals the radius. The center
of a graph is the set of all central vertices. The central ratio of a graph is the ratio of
the cardinality of its center to its order. In 1982, Buckley proved that every positive
rational number not exceeding one is the central ratio of some graph. In this paper, we
obtain more detailed information by determining which cardinalities are possible for
the center of a graph with given order and radius. There are unexpected phenomena
in the results. For example, there exists a graph of order 14 and radius 6 whose center
has cardinality s if and only if s ∈ {1, 2, 3, 4, 9, 10, 11, 12, 14}. The turning value
(3n+2)/8 for the radius seems mysterious. We also prove a related uniqueness result.
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1 Introduction

We consider finite simple graphs. The order of a graph is its number of vertices. We
denote by V (G) and E(G) the vertex set and edge set of a graph G, respectively.
Denote by dG(u, v) the distance between two vertices u and v in G. If the graph
G is clear from the context, we simply write d(u, v). The eccentricity, denoted by
e(v), of a vertex v in a graph G is the distance to a vertex farthest from v. Thus,
e(v) = max{d(v, u)|u ∈ V (G)}. If e(v) = d(v, x), then the vertex x is called
an eccentric vertex of v. The radius of a graph G, denoted rad(G), is the minimum
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eccentricity of all the vertices in V (G),whereas the diameter ofG, denoted diam(G),

is the maximum eccentricity. A vertex v is a central vertex of G if e(v) = rad(G).

The center of a graph G, denoted C(G), is the set of all central vertices of G. A
vertex u is a peripheral vertex of G if e(u) = diam(G). A graph with a finite radius or
diameter is necessarily connected. If rad(G) = diam(G), then the graph G is called
self-centered. Thus, a self-centered graph is a graph in which every vertex is a central
vertex. A graph is called trivial if it is of order 1; otherwise, it is nontrivial.

The central ratio of a graph G is the ratio of the cardinality of its center to its order,
i.e., |C(G)|/|V (G)|. In 1982, Buckley [1] proved the following result.

Theorem 1 (Buckley [1]) If c is a rational number with 0 < c ≤ 1, then there exists
a graph whose central ratio is equal to c.

In this paper, we obtain more detailed information by determining which cardinal-
ities are possible for the center of a graph with given order and radius, from which
Theorem 1 follows immediately. There are unexpected phenomena in the results. We
also prove a related uniqueness result.

2 Main Results

First, recall the basic fact that if n and r are the order and radius of a graph, respectively,
then r ≤ n/2. This can be seen by considering a spanning tree of the graph. It is well
known (e.g., [4]) that there exists a graph of radius r and diameter d if and only if
r ≤ d ≤ 2r .

We will need the following two lemmas due to other authors.

Lemma 2 (Erdős, Saks and Sós [[2], Theorem 2.2]) Every connected graph of radius
r has an induced path of order 2r − 1.

AcycleC in a graph H is called ageodesic cycle if for any twovertices x, y ∈ V (C),

dC (x, y) = dH (x, y). Thus, a geodesic cycle is necessarily induced, i.e., it has no
chord.

Lemma 3 (Haviar, Hrnčiar and Monoszová [[3], Theorem 2.6]) Let G be a graph of
order n, radius r and diameter d. If n ≤ 3r − 2 and d ≤ 2r − 2, then G contains a
geodesic cycle of length 2r or 2r + 1.

Notation 1 For a positive integer n, 〈n〉 = {1, 2, . . . , n}, the set of the first n positive
integers.

Kt ,Ct and Pt will denote the complete graph of order t, the cycle of order t and the
path of order t , respectively. Recall that the join of graphs G and H , denoted G ∨ H ,

is the graph obtained from the disjoint union G + H by adding the edges xy with
x ∈ V (G) and y ∈ V (H). G denotes the complement of a graph G. A leaf in a graph
is a vertex of degree 1.

Notation 2 A lollipop is the union of a cycle and a path having exactly one common
vertex which is an end-vertex of the path. We denote by L(n, k) the lollipop of order
n whose cycle has length k. A broom is a tree obtained by subdividing one edge of
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Fig. 1 Examples of lollipop and broom

a star an arbitrary number of times. We denote by B(n, k) the broom of order n and
diameter k. If k ≤ n − 2, the broom B(n, k) has a unique vertex of degree at least
3, which we call the joint of the broom. The joint of the path B(n, n − 1) = Pn is
defined to be the neighbor of one of the two end-vertices.

Two examples are depicted in Fig. 1.
Now we are ready to state and prove the main results.

Theorem 4 Given positive integers n and r with r ≤ n/2, let �(n, r) denote the set
of those integers k such that there exists a graph of order n and radius r whose center
has cardinality k. If n ≥ 3, then

�(n, r) =

⎧
⎪⎨

⎪⎩

〈n〉 \ {n − 1} if r ≤ (3n + 2)/8;
{1, 2, ..., n − 2r + 2} ∪ {6r − 2n + 1, ..., n − 2, n} if (3n + 2)/8 < r < n/2;
{2, n} if r = n/2.

Proof We first show that every value s in the expression of �(n, r) can be attained.
Note that the condition (3n + 2)/8 < r means (n − 2r + 2) + 1 < 6r − 2n + 1, i.e.,
there is an integer gap between n − 2r + 2 and 6r − 2n + 1.

For this part, there is no need to distinguish the case r ≤ (3n + 2)/8 and the case
(3n + 2)/8 < r < n/2. The constructions below give two graphs attaining some
values of s in the former case.

Suppose r = 1. For any s ∈ 〈n〉 \ {n − 1}, the graph Ks ∨ Kn−s has order n and
radius 1, and its center has cardinality s.

Now suppose 2 ≤ r < n/2. We distinguish six cases.
Case 1 s = 1. The broom B(n, 2r) has order n and radius r , and its center has

cardinality 1.
Case 2 2 ≤ s ≤ n − 2r + 2. Let G1(n, r , s) be the graph obtained from the broom

B(n − s + 2, 2r − 1) by adding s − 2 additional vertices and joining each of them to
the two central vertices of B(n − s + 2, 2r − 1). Then, G1(n, r , s) has order n and
radius r , and its center has cardinality s. The graph G1(14, 4, 5) is depicted in Fig. 2.

Case 3 6r − 2n + 1 ≤ s ≤ 2r − 1 and s is odd. Then, s = 2r − 2k + 1 for some
k with 1 ≤ k ≤ n − 2r . If n = 2r + k, define the graph G2(n, r , s) to be the lollipop
L(n, 2r). If n > 2r + k, G2(n, r , s) is obtained by identifying the joint of the broom
B(n − 2r + 1, k + 1) with one vertex of the cycle C2r . Then, G2(n, r , s) has order
n and radius r , and its center has cardinality s. The graph G2(15, 4, 3) is depicted in
Fig. 3.
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Fig. 2 G1(14, 4, 5)

Fig. 3 G2(15, 4, 3)

Fig. 4 G3(15, 4, 2)

Case 4 6r −2n+1 ≤ s ≤ 2r −1 and s is even. Then, s = 2r −2k for some k with
1 ≤ k ≤ n − 2r − 1. If n = 2r + k + 1, we identify the eccentric vertex of the unique
leaf of the lollipop L(2r + 1, 2r) with one end-vertex of the path Pk+1 to obtain the
graph G3(n, r , s). If n > 2r + k + 1, we identify the eccentric vertex of the unique
leaf of the lollipop L(2r + 1, 2r) with the joint of the broom B(n − 2r , k + 1) to
obtain the graph G3(n, r , s). Then G3(n, r , s) has order n and radius r , and its center
has cardinality s. The graph G3(15, 4, 2) is depicted in Fig. 4.

Case 5 2r ≤ s ≤ n−2. Then, s = 2r + k−1 for some k with 1 ≤ k ≤ n−2r −1.
Define the graph G4(n, r , s) as follows. Let C : x1, x2, . . . , x2r be a cycle of length
2r . Add n − 2r − k new vertices to C and join each of them to the vertex x1 to obtain
a graph D. Add k new vertices to D and join each of them to the two vertices x2 and
x2r to obtain the graph G4(n, r , s), which has order n and radius r , and whose center
has cardinality s. The graph G4(15, 4, 11) is depicted in Fig. 5.

Case 6 s = n. We obtain a graph G5(n, r) by adding n − 2r new vertices to the
cycle C : x1, x2, . . . , x2r of length 2r and joining each of them to the two vertices x2
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Fig. 5 G4(15, 4, 11)

Fig. 6 G5(12, 4)

and x2r . Then, G5(n, r) is a self-centered graph of order n and radius r . The graph
G5(12, 4) is depicted in Fig. 6.

Finally, suppose r = n/2. We have n = 2r . The center of the path P2r has cardi-
nality 2 and the center of the cycle C2r has cardinality n.

Conversely, we prove that the integers appearing in the expression of �(n, r) are
the only possible elements of the set �(n, r).

First, note that any nontrivial graph has at least two peripheral vertices. Indeed,
suppose v is a peripheral vertex and u is an eccentric vertex of v. Then, both v and u
are peripheral vertices. Thus, we always have n − 1 /∈ �(n, r).

We then treat the easier case r = n/2. Let H be a graph of order n and radius r
with r = n/2. By Lemma 2, H has an induced path P of order 2r − 1 = n − 1. Thus,
there is only one vertex y outside P. Since P is an induced path of radius r −1 and H
has radius r , the two end-vertices of P are the only possible neighbors of y. Hence,
H is either a path or a cycle of the even order n. Consequently, the center of H has
cardinality 2 or n.

Now we consider the case (3n + 2)/8 < r < n/2. Let G be a graph of order n and
radius r whose center has cardinality t . We will show that either t ≤ n − 2r + 2 or
t ≥ 6r − 2n + 1. Note that the condition (3n + 2)/8 < r implies that n ≤ 3r − 2.
Denote by d the diameter of G. We distinguish two cases.

Case 1 d ≥ 2r − 1. Let Q be a diametral path of G, i.e., a path of length d whose
end-vertices are at distance d. There are two possible values of d. If d = 2r , then
there are at least 2r non-central vertices of G on Q. Hence, t ≤ n−2r . If d = 2r −1,
then there are at least 2r − 2 non-central vertices of G on Q. Hence, t ≤ n − 2r + 2.
In both cases, we have t ≤ n − 2r + 2.

Case 2 d ≤ 2r − 2. As remarked above, we also have n ≤ 3r − 2. By Lemma 3,
G has a cycle C of length 2r or 2r + 1. We distinguish two subcases.
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Subcase 2.1 C has length 2r . Since 2r < n, G has vertices outside C . Suppose
u1v1 is a non-cut-edge of G with u1 ∈ V (C) and v1 /∈ V (C). Recall that an edge
is a cut-edge if and only if it belongs to no cycle ([5], p. 23). Thus, there is a cycle
containing u1v1. In this cycle, we choose an edge e such that e 	= u1v1 and e /∈ E(C).

Delete e to obtain a new graph. If u1v1 is still a non-cut-edge of this new graph, delete
an edge f in a cycle containing u1v1 such that f 	= u1v1 and f /∈ E(C).After finitely
many such edge deletion steps, we obtain a graph G1 containing C in which u1v1 is
a cut-edge.

If G1 contains a non-cut-edge u2v2 with exactly one endpoint in C, by repeating
the above edge deletion procedure, we obtain a graph G2 containing C in which u2v2
is a cut-edge. Continuing this process, after finitely many steps we obtain a graph
R containing C in which every edge with exactly one endpoint in C is a cut-edge
of R. Suppose uivi , i = 1, 2, . . . , p are all such cut-edges of R with ui ∈ V (C).

The vertices v1, . . . , vp are pairwise distinct, but it is possible that ui = u j for some
pairs i 	= j . Since deleting edges cannot decrease the radius of a graph, we have
r = rad(G) ≤ rad(R). Denote by Fi the component of R − uivi containing vi . Then,
F1, . . . , Fp are pairwise vertex-disjoint.

Denote ai = max{dR(ui , x)|x ∈ V (Fi )}, i = 1, . . . , p. Since C contains 2r
vertices and F1, . . . , Fp are pairwise vertex-disjoint, we have a1 + a2 + · · · + ap ≤
n−2r . Since the order n of R satisfies n ≤ 3r−2,we deduce that ai ≤ n−2r ≤ r−2
for each i . It follows that C contains at most 2r − (2(r − ai ) + 1) = 2ai − 1 vertices
y such that there exists a vertex z ∈ V (Fi ) with dR(y, z) > r . In R, altogether C
contains at most

p∑

i=1

(2ai − 1) = 2

( p∑

i=1

ai

)

− p ≤ 2(n − 2r) − 1 = 2n − 4r − 1 (1)

vertices with eccentricity larger than r .Hence,C contains at least 2r−(2n−4r−1) =
6r − 2n + 1 vertices with eccentricity not exceeding r in R. Since 6r − 2n + 1 ≥
6r −2(3r −2)+1 = 5,we have rad(R) ≤ r .Combining this conclusion with the fact
that rad(R) ≥ r , we obtain rad(R) = r , i.e., R and G have the same radius. Since R
is obtained from G by deleting edges, every central vertex of R is also a central vertex
of G. We deduce that R and hence G contain at least 6r − 2n + 1 central vertices.

Subcase 2.2C has length 2r+1.Theproof is similar to that for Subcase 2.1, but there
are some differences in details. Continue using the above notations.C contains at most
2

∑p
i=1 ai vertices with eccentricity larger than r .We have 2

∑p
i=1 ai ≤ 2(n−2r−1).

Hence, C contains at least

(2r + 1) − 2(n − 2r − 1) = 6r − 2n + 3 ≥ 6r − 2(3r − 2) + 3 = 7

vertices of eccentricity r . Thus, G has at least 6r − 2n + 3 central vertices.
Combining subcases 2.1 and 2.2, we conclude that t ≥ 6r −2n+1. This completes

the proof. 
�
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Theorem 5 Let n and r be positive integers with (3n + 2)/8 ≤ r < n/2. Then,
the lollipop L(n, 2r) is the unique graph of order n and radius r whose center has
cardinality 6r − 2n + 1.

Proof First, note that the condition (3n + 2)/8 ≤ r < n/2 implies that n ≥ 7,
n ≤ 3r − 2 and n − 2r + 2 < 6r − 2n + 1.

We observe that the lollipop L(n, 2r) has order n and radius r , and its center has
cardinality 6r − 2n + 1.

Next suppose G is a graph of order n and radius r whose center has cardinality
6r − 2n + 1. Denote by d the diameter of G. We assert that d ≤ 2r − 2, since in
the proof of Theorem 4 we have shown that if d ≥ 2r − 1, then the center of G has
cardinality at most n − 2r + 2, which contradicts the fact that the center of G has
cardinality 6r − 2n + 1.

By Lemma 3, G contains a geodesic cycle C of length 2r or 2r + 1. In the
proof of Theorem 4, we have shown that if C has length 2r + 1, then the cen-
ter of G has cardinality at least 6r − 2n + 3, which contradicts our assumption.
Hence, C has length 2r . Since C is geodesic, it is an induced cycle. Continue
using the notations in the proof of Theorem 4. Since the center of G has cardi-
nality 6r − 2n + 1, equality must hold in (1), which implies that p = 1 and∑p

i=1 ai = n − 2r . Thus, in R, the component F1 is a path of order n − 2r ,
implying that R is the lollipop L(n, 2r). Note that the center of L(n, 2r) has car-
dinality 6r − 2n + 1. If in G there is an edge other than u1v1 joining a vertex of
C and a vertex of F1, then the cardinality of the center of G would be larger than
6r − 2n + 1, a contradiction. It follows that G = R = L(n, 2r) and the proof is
complete. 
�

For example, Theorem 5 asserts that the lollipop L(14, 12) is the unique graph of
order 14 and radius 6 whose center has cardinality 9.

Finally, we show that Buckley’s Theorem 1 follows from Theorem 4.

Proof of Theorem 1. Any self-centered graph, say, a cycle, has central ratio 1. Now
let c = a/b with a < b. First, suppose a 	= b − 1. Choose any positive integer r
with r ≤ (3b + 2)/8. By Theorem 4, there exists a graph G of order b and radius
r whose center has cardinality a. Then, G has central ratio a/b. Next suppose a =
b − 1. We have 2a 	= 2b − 1. Reasoning as above, there exists a graph H of order
2b whose center has cardinality 2a. Clearly H has central ratio (2a)/(2b) = c.
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