
RESUME OF MY RESEARCH

XI-NAN MA

My main interests lie in partial differential equations and its geometrical applications.
We divide four parts in our research description: the geometry of solutions of elliptic PDE;
the Christoffel-Minkowski problem; Weingarten curvature equations and mass transport
problem. The common feature is that the convexity appears in all four parts.

1. the geometry of solutions

The papers [Ma1]-[Ma4] present the works on the geometry properties of the solutions
of elliptic equations.

The papers [Ma1] - [Ma3] concern the P-function in elliptic partial differential equa-
tions and its applications.

In partial differential equations the finding of auxiliary functions is one of the most
important techniques, in applications it always connects to the maximum principle. From
which we can get the existence, regularity of solutions and other interesting estimates.

In 1900’s S. Bernstein found that the gradient module of the harmonic function u in
the bounded domain in Rn attains its maximum on the boundary of domain. Now this is
called Bernstein estimates for its great importance in partial differential equations.

In 1948, C.Miranda [32] considered the bi-harmonic equations in R2 and from his the-
orem we know for the following torsional rigidity equation

∆u = −2, in Ω ⊂ R2,(1.1)

the function P = |∇u|2 + 2u attains its maximum on ∂Ω. Then in 1979, Payne-Philippin
[35] generalized this to the constant mean curvature equation

2∑

i=1

Di(
ui√

1 + |Du|2 ) = 2H, in Ω ⊂ R2,(1.2)

where H is a positive constant, they proved that the function P = 2−2(1+|Du|2)− 1
2−2Hu

attains its maximum on ∂Ω. These technique of finding an optimal auxiliary functions
had become an expanding theory and it have many applications in geometrical analysis,
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for example the estimates of first eigenvalue of Laplace operator and the sharp estimates
of the geometrical shape of solution surfaces.

In application this ask us the generalization of the P -function to the Monge-Ampère
equations, and we hope know where the auxiliary functions found by Mirand [32] and
Payne-Philippin [35] attain its minimums.

In the paper [Ma1], we obtained the similar P - function for the Monge-Ampère equation

det(uij) = 1, in Ω ⊂ R2,(1.3)

i.e., the function P = |Du|2 − 2u attains its maximum on ∂Ω. Then we gave some
applications to the boundary value problems. These results has been generalized to higher
dimensions and more general equation by Soufi and Philippin in [36]. and Urbas in [42].

In the papers [Ma2]-[Ma3], we proved that if Ω is a bounded convex domain in R2

and suitable boundary value then the auxiliary function found by Miranda and Payne-
Philippin attains its minimum on ∂Ω. As applications, we got the sharp size and shape
estimates for capillary free surfaces without gravity, for example the following results were
proved in [Ma3].

In [Ma3], we consider the influence of boundary geometry and the contact angle θo

(0 ≤ θo < π
2 ) on the size and shape for the capillary free surface without gravity. Precisely,

let Ω be a bounded convex domain in R2 with smooth boundary ∂Ω. Give a positive
constant H, consider the following equations:

2∑

i=1

Di(
ui√

1 + |Du|2 ) = 2H in Ω(1.4)

un√
1 + |Du|2 = cos θo on ∂Ω.(1.5)

Where ui, i = 1, 2 are partial derivatives of u, n denotes the unit outer normal to ∂Ω, un

denotes the direction derivative of u along n, and θo (0 ≤ θo < π
2 ) is the constant with

2H|Ω| = cos θo|∂Ω| ( |Ω| is the area of Ω and |∂Ω| is the length of ∂Ω). The graph of
solution u to (1.4)- (1.5) describes a capillary free surface without gravity over the cross
section Ω.

Let A ∈ ∂Ω be a point corresponding to a minimum boundary value of u, B ∈ ∂Ω be a
point corresponding to a maximum boundary value of u , C ∈ Ω be the unique minimal
(critical) point of u and k(x) be the curvature of ∂Ω at x ∈ ∂Ω. Then we have the following
estimates:
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Theorem 1. Let u ∈ C3(Ω̄) be a solution to (1.4)-(1.5), then the following inequalities
hold

u(A)− u(C) ≤ 1− sin θo

H
,(1.6)

k(A) ≤ H

cos θo
,(1.7)

and

u(B)− u(C) ≥ 1− sin θo

H
,(1.8)

k(B) ≥ H

cos θo
.(1.9)

If one of the equality signs in above formulas holds then Ω is a disk of radius
cos θo

H
and

u(x)− u(C) ≡ 1− sin θo

H
on ∂Ω,(1.10)

k(x) ≡ H

cos θo
on ∂Ω.(1.11)

Conversely (1.10)- (1.11) holds on ∂Ω if Ω is a disk of radius
cos θo

H
.

The proof of above theorem is based on Hopf maximum principle and the following
minimum principle.

Theorem 2. Let u ∈ C3(Ω̄) be a solution to (1.4)-(1.5), then the function

P (x) = 2− 2(1 + |Du|2)− 1
2 − 2Hu

attains its minimum on the boundary ∂Ω, unless P (x) is a constant on Ω̄.

Let’s notice in [35], Payne and Philippin proved a similar maximum principle for the
above function P (x) that under the same condition it also attains its maximum on ∂Ω
unless P (x) is a constant in Ω.

The paper of [Ma4] concern the convexity of solutions of elliptic partial differential
equations on domain in Rn.

The issue of convexity is fundamental in the theory of partial differential equations.
Gabriel [20] obtained the strict convexity of level set for the Green function in thee di-
mension convex bounded domain in R3. Makar-Limanov [31] studied equation (1.1) in
bounded plane convex domain Ω under the homogeneous Dirichlet problem. He consid-
ered the auxiliary function

2u(u11u22 − u2
12) + 2u1u2u12 − u2

1u22 − u2
2u11,
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where ui = ∂u
∂xi

, uij = ∂2u
∂xi∂xj

. He proved that
√

u is concave using the maximum
principle. His method has great impact on the later development related to the topic of
convexity.

Brascamp-Lieb [7] used the heat equation technique to prove that log u is a concave,
where u is the first eigenfunction of homogeneous Dirichlet problem:

∆u + λ1u = 0 in Ω,(1.12)

u = 0 on ∂Ω,

where Ω is bounded and convex in Rn. In the case of dimension two, another proof of
Brascamp-Lieb’s result was given in Acker-Payne-Philippin [2]. It was observed that the
function v = log u satisfies the following equation,

∆v = −(λ1 + |Dv|2) in Ω,(1.13)

v −→ −∞ on Ω.

If we instead let w =
√

u in (1.1) and consider the homogeneous Dirichlet boundary value
problem, then w satisfies equation

w∆w = −(1 + |Dw|2) in Ω,(1.14)

w = 0 on ∂Ω.

In the paper [Ma4] we consider the convexity (or concavity) for the solutions of a class
elliptic equation in two dimensions. We generalize the technique of [31] and [2] to a suitable
large class equations. From which we can show the negative Gauss curvature set of the
solution surface always extend to the boundary, unless it is empty. In the torsional rigidity
equation (1.1) we can obtain a sharp lower bound estimates of the Gauss curvature for
the graph of

√
u with the curvature of the ∂Ω, if the domain is strictly convex and u is

homogeneous on the ∂Ω. Up to now the methods in [2] and [Ma4] are restricted to two
dimensions.

The more detail story on convexity described in the book of Kawohl [24]. Recently, a
new approach to the convexity problem was found by Alvarez-Lasry-Lions [5] and they
treated a large class fully nonlinear elliptic equations.

In a fundamental work of Singer-Wong-Yau-Yau [38] and Caffarelli-Friedman [11], they
devised a new technique to deal with the convexity issue via homotopy method of defor-
mation. Caffarelli-Friedman [11] establish the strictly convexity of level sets of solution of
the following equation in two dimension:

∆u(x) = f(u(x)), x ∈ Ω,(1.15)

u = 0 on ∂Ω.
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Their result was generalized by Korevaar-Lewis [26] to higher dimensions. This deforma-
tion approach (see also [25] for the earlier contribution of Yau related to this development)
is very powerful, it is the main inspiration for our discussion on the convexity problem of
some nonlinear elliptic equations in classical differential geometry in the next sections.

2. Christoffel-Minkowski problem

The papers [GM1] - [GM2], [HMS], [GMZ] and [GMTZ] represent my works on the
Christoffel-Minkowski problem, the related topics about the PDE on Sn and the geometry
of convex body. Moreover we obtain a general convexity principle of solutions for a class
fully nonlinear elliptic equations in [CGM]. There were worked with Luis Caffarelli, Pengfei
Guan, Changqing Hu, Chunli Shen, N.Trudinger, Fang ZHOU and Xiaohua Zhu.

The Minkowski problem is a problem of finding a convex hypersurface with the pre-
scribed Gauss curvature on its outer normals. The general problem of finding a convex
hypersurface with kth symmetric function of principal radii prescribed on its outer normals
is often called Christoffel-Minkowski problem. It corresponds to finding convex solutions
of the nonlinear elliptic Hessian equation:

Sk({uij + uδij}) = ϕ on Sn,(2.1)

where we have let {e1, e2, ..., en} be a orthonormal frame on Sn, Sk is the k-th elementary
symmetric function (see Definition 1).

It is known that for (2.1) to be solvable, the function ϕ(x) has to satisfy∫

Sn

xiϕ(x) dx = 0, i = 1, ..., n + 1.(2.2)

At one end k = n, this is the Minkowski problem. (2.2) is also sufficient in this case.
But it is not sufficient for the cases 1 ≤ k < n. The natural solution class for this of type
equations is in general (for k < n) consisting of functions not necessary convex. Hence
the major issue is to find conditions for the existence of convex solution of (2.1). At the
other end k = 1, equation (2.1) is linear and it corresponds to the Christoffel problem.
The necessary and sufficient conditions for the existence of a convex solution can be read
off from the Green function [19]. For the intermediate cases (2 ≤ k ≤ n − 1), (2.1) is a
fully nonlinear equation. The first existence theorem was obtained by Pogorelov in [37]
under certain restrictive condition on ϕ (see Remark 5.5 in [GM1]). In [GM1], we deal
with the problem using continuity method as a deformation process together with strong
minimum principle to force the convexity. We recall some definitions.

Definition 1. For λ = (λ1, · · · , λn) ∈ Rn, Sk(λ) is defined as

Sk(λ) =
∑

λi1 ...λik ,
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where the sum is taking over for all increasing sequences i1, ..., ik of the indices chosen
from the set {1, ..., n}. The definition can be extended to symmetric matrices A by taking
Sk(A) = Sk(λ(A)), where λ(A) the eigenvalues of A. For 1 ≤ k ≤ n, define

Γk = {λ ∈ Rn : S1(λ) > 0, ..., Sk(λ) > 0}.
A function u ∈ C2(Sn) is called k-convex if the eigenvalues of W (x) = {uij(x) + u(x)δij}
is in Γk for each x ∈ Sn. u is called an admissible solution of (2.1) if it is k-convex. u is
simply called convex if u is n-convex.

Definition 2. Let f be a positive C1,1 function on Sn satisfies (2.2), ∀s ∈ R, we say f is
in Cs if (fs

ij + δijf
s) is semi-positive definite almost everywhere in Sn.

The following full rank theorem was proved in [GM1].

Theorem 3. Suppose u is an admissible solution of equation (2.1) with semi-positive
definite spherical hessian W = {uij +uδij} on Sn. If ϕ ∈ C− 1

k
, then W is positive definite

on Sn.

As a consequence, an existence result can be established for the Christoffel-Minkowski
problem.

Theorem 4. Let ϕ(x) ∈ C1,1(Sn) be a positive function, suppose ϕ ∈ C− 1
k

and ϕ is
connected to 1 in C− 1

k
then Christoffel-Minkowski problem ( 2.1) has a unique convex

solution up to translations. More precisely, there exists a C3,α (∀0 < α < 1) closed strictly
convex hypersurface M in Rn+1 whose kth elementary symmetric function of principal
radii on the outer normals is ϕ(x). M is unique up to translations. Furthermore, if
ϕ(x) ∈ C l,γ(Sn) (l ≥ 2, γ > 0), then M is C2+l,γ.

The proof of Theorem 3 relies on a deformation lemma for Hessian equation (2.1). This
approach was motivated by works of Caffarelli-Friedman [11] and Korevaar-Lewis [26].
This type of deformation lemma enables us to apply the strong maximum principle to
enforce the constant rank of (uij + uδij) on Sn. The proof of such deformation lemma in
[GM1] is delicate, since equation (2.1) is fully nonlinear.

In [GMZ], Theorem 3 was generalized to Hessian quotient equation. Moreover we estab-
lish the existence of admissible solutions for equation (2.1) and Hessian quotient equations.
We use the compactness to get the C0-estimates, the existence theorem from the degree
theory.

In [CGM], we establish Theorem 3 for a general class of fully nonlinear elliptic equations.
This general phenomenon follows from the ellipticity of F (W ) = −S−

1
k (W ) and concavity

of the fully nonlinear operators G(W ) = −F (W−1). Here we state a sample of this type
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of results for the equation in the domains of Rn. There is also a corresponding version for
equations of spherical hessian on Sn.

Theorem 5. Let f be a C2 symmetric function defined on a symmetric domain Ψ ⊂ Γ1

in Rn. Let Ψ̃ = {A ∈ Sym(n) : λ(A) ∈ Ψ}, and define F : Ψ̃ → R by F (A) = f(λ(A)). If
F̃ (A) = −F (A−1) is concave functions on the positive definitive matrices, fλi = ∂f

∂λi
> 0.

Then if u is a C4 convex solution of the following equation in a domain Ω in Rn

F ({uij}) = g(x)(2.3)

and g(x) is concave function in Ω. Then the Hessian uij is constant rank in Ω.

Remark 1. To our knowledge, the conditions in Theorem 5 was introduced by Alvarez-
Lasry-Lions in [5]. Theorem 3 and Theorem 5 provide a positive lower bound on the
eigenvalues of the corresponding hessians on Sn. In particular, Theorem 3 implies that
there is a priori upper bound of principal curvatures of the convex hypersurface M satis-
fying (2.1).

In 1962, Firey [18] generalized the Minkowski combination to p-sums from p = 1 to
p ≥ 1. Later, Lutwak [27, 28] showed that Firey’s p-sum also leads to a Brunn-Minkowski
theory for each p > 1. This theory has found many geometry applications, see for example,
[30] and its references. It was also shown in [27] that the classical surface area measures
could be extended to the p-sum case. So it is natural to consider a generalization of
the classical Christoffel-Minkowski problem for each p > 1. The generalized Minkowski
problem has been treated in [27, 29, 23, 15].

In [HMS], we get a corresponding existence of Christoffel-Minkowski type problem for
the Firey’s p-sum.

In [GMTZ], we derive a form of the Alexandrov-Fenchel inequality for appropriate
class of k-convex function on Sn, this delete the convexity assumption in the classical
Alexandrov-Fenchel inequality. We also prove an uniqueness theorem for Hessian equa-
tions, which generalizes the classical Alexandrov-Fenchel-Jessen theorem.

In [GM2], we review some history of convexity of solutions in elliptic partial differential
equations and state some applications to classical differential geometry and convex bodies.
In fact this is a conference report in ”Workshop in Geometry Evolution Equations” in 2002,
in NCTS, Taiwan.

3. Weingarten curvature equations

The Christoffel-Minkowski problem was deduced to a convexity problem of a spherical
hessian equation on Sn in the last section. It can also be considered as a curvature equation
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on the hypersurface via inverse Gauss map. In this section, we concern some curvature
equations related to problems in the classical differential geometry. We will indicate how
the techniques in convexity estimates for fully nonlinear equations may help us for this
type of problems.

For a compact hypersurface M in Rn+1, the kth Weingarten curvature at x ∈ M is
defined as

Wk(x) = Sk(κ1(x), κ2(x), · · · , κn(x))

where κ = (κ1, κ2, ..., κn) the principal curvatures of M . In particular, W1 is the mean
curvature, W2 is the scalar curvature, and Wn is the Gauss-Kronecker curvature. If the
surface is starshaped about the origin, it follows that the surface can be parameterized as
a graph over Sn:

X = ρ(x)x, x ∈ Sn,(3.1)

where ρ is the radial function. In this correspondence, the Weingarten curvature can be
considered as a function on Sn or in Rn+1. The problem of prescribing curvature functions
has attracted much attention. For example, given a positive function F in Rn+1 \ {0},
one would like to find a starshaped hypersurface M about the origin such that its kth
Weingarten curvature is F . The problem is equivalent to solve the following equation

Sk(κ1, κ2, ..., κn)(X) = F (X) for any X ∈ M.(3.2)

The uniqueness question of starshaped hypersurfaces with prescribed curvature was stud-
ied by Alexandrov [4] and Aeppli [1]. The prescribing Weingarten curvature problem and
similar problems have been studied by various authors, we refer to [6, 40, 34, 12, 14, 43, 21]
and references there for related works.

We will use notions of admissible solutions as in last section

Definition 3. A C2 surface M is called k-admissible if at every point X ∈ M , κ ∈ Γk.

Under some barrier conditions and monotonicity condition of the prescribed func-
tion F (X), an existence result of equation (3.2) was obtained by Bakelman-Kantor [6],
Treibergs-Wei [40] for k = 1, by Oliker [34] for k = n, and by Caffarelli-Nirenberg-Spruck
in [12] for general 1 ≤ k ≤ n. The solution of the problem [12] in general is not convex
if k < n. The question of convexity of solution in [12] was treated by Chou [14] (see also
[43]) for the mean curvature case under concavity assumption on F , and by Gerhardt [21]
for general Weingarten curvature case under concavity assumption on log F .

The following is a general principle for the convexity proved in [GLM1].

Theorem 6. Suppose M is a k-admissible surface of equation (3.2) in Rn+1 with semi-
positive definite second fundamental form W = {hij} and F (X) : Rn+1 \ {0} → R+ is a
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given smooth positive function. If F (X)−
1
k is a convex function in a neighborhood of M ,

then {hij} is constant rank, so M is strictly convex.

As a consequence, we deduce the existence of convex hypersurface with prescribed
Weingarten curvature in (3.2) in [GLM1]: if in addition to the barrier condition in [12],
F (X)−

1
k is a convex function in the region r1 < |X| < r2, then the k-admissible solution

in Theorem [12] is strictly convex.

In the literature, the homogeneous Weingarten curvature problem

Sk(k1, k2, ..., kn)(X) = γf(
X

|X|)|X|
−k, ∀X ∈ M,(3.3)

also draws some attention. If M is a starshaped hypersurface about the origin in Rn+1, by
dilation property of the curvature function, the kth Weingarten curvature can be consid-
ered as a function of homogeneous degree −k in Rn+1 \{0}. If F is of homogeneous degree
−k, then the barrier condition in [12] can not be valid unless the function is constant.
Therefore equation (3.3) needs a different treatment. In fact, this problem is a nonlinear
eigenvalue problem for the curvature equation. When k = n, then equation (3.3) can
be expressed as a Monge-Ampère equation of radial function ρ on Sn, the problem was
studied by Delanoë [16]. The other special case k = 1 was considered by Treibergs in [39].
The difficulty for equation (3.3) is the lack of gradient estimate, such kind of estimate does
not hold in general (see [39], [GLM1]). Therefore, some conditions have to be in place for
f in (3.3). In [GLM1], a uniform treatment for 1 ≤ k ≤ n was given, and together with
some discussion on the existence of convex solutions.

Theorem 7. Suppose n ≥ 2, 1 ≤ k ≤ n and f is a positive smooth function on Sn. If
k < n, assume further that f satisfies

(3.4) sup
Sn

|∇f |
f

< 2k,

Then there exist a unique constant γ > 0 with

Ck
n

maxSn f
≤ γ ≤ Ck

n

minSn f
(3.5)

and a smooth k-admissible hypersurface M satisfying (3.3) and solution is unique up to
homothetic dilations. Furthermore, for 1 ≤ k < n, if in addition |X|f( X

|X|)
− 1

k is convex in
Rn+1 \ {0}, then M is strictly convex.

Remark 2. Condition (3.4) in Theorem 7 can be weakened, we refer to [GLM1] for the
precise statement. When k = n, the above result was proved by Delanoë [16]. In this
case, the solution is convex automatically. The treatment in [GLM1] is different from [16].
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When k = 1, the existence part of Theorem 7 was proved in [39], along with a sufficient
condition (which is quite complicated) for convexity.

We now switch to a similar curvature equation arising from the problem of prescribing
curvature measures in the theory of convex bodies. For a bounded convex body Ω in Rn+1

with C2 boundary M , the corresponding curvature measures of Ω can be defined according
to some geometric quantities of M . The k-th curvature measure of Ω is defined as

Ck(Ω, β) :=
∫

β∩M
Wn−kdFn,

for every Borel measurable set β in Rn+1, where dFn is the volume element of the induced
metric of Rn+1 on M . Since M is convex, M is star-shaped about some point. We may
assume that the origin is inside of Ω. Since M and Sn is diffemorphism through radial
correspondence RM . Then the k-th curvature measure can also be defined as a measure
on each Borel set β in Sn:

Ck(M, β) =
∫

RM (β)
Wn−kdFn.

Note that Ck(M,Sn) is the k-th quermassintegral of Ω.
The problem of prescribing curvature measures is dual to the Christoffel- Minkowski

problem in the previous section. The case k = 0 is named as the Alexandrov problem,
which can be considered as a counterpart to Minkowski problem. The existence, uniqueness
and the regularity of the Alexandrov problem in elliptic case was proved by Alexandrov,
Pogorelov and Oliker [33]( see its more references). Yet, very little is known for the
existence problem of prescribing curvature measures Cn−k for k < n.

The problem is equivalent to solve the following curvature equation

Sk(κ1, κ2, ..., κn) =
f(x)
g(x)

, 1 ≤ k ≤ n on Sn(3.6)

where f is the given function on Sn and g(x) is a function involves the gradient of solution.
The major difficulty around equation (3.6) is the lack of C2 a priori estimates for admissible
solutions. Though equation (3.6) is similar to the equation of prescribing Weingarten
curvature equation (3.2), the function g (depending on the gradient of solution) makes
the matter very delicate. Equation (3.6) was studied in an unpublished notes by Yanyan
Li and Pengfei Guan. The uniqueness and C1 estimates were established for admissible
solutions in their notes. In [GLM2], we make use of some ideas in the convexity estimate
for curvature equations to overcome the difficulty on C2 estimate.
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Theorem 8. Suppose f(x) ∈ C2(Sn), f > 0, n ≥ 2, 1 ≤ k ≤ n − 1. If f satisfies the
condition

|X|n+1
k f(

X

|X|)
− 1

k is a strictly convex function in Rn+1 \ {0},(3.7)

then there exists a unique strictly convex hypersurface M ∈ C3,α, α ∈ (0, 1) such that it
satisfies (3.6).

When k = 1 or 2, the strict convex condition (3.7) can be weakened.

Theorem 9. Suppose k = 1, or 2 and k < n, and suppose f(x) ∈ C2(Sn) is a positive
function. If f satisfies

|X|n+1
k f(

X

|X|)
− 1

k is a convex function in Rn+1 \ {0},(3.8)

then there exists unique strictly convex hypersurface M ∈ C3,α, α ∈ (0, 1) such that it
satisfies equation (3.6).

Theorem 9 yields solutions to two other important measures, the mean curvature mea-
sure and scalar curvature measure under convex condition (3.8). For the existence of
convex solutions, some condition on f is necessary. In the proof of Theorem 8, the novel
feature is the C2 estimates. Instead of obtaining an upper bound of the principal curva-
tures, we look for a lower bound of the principal curvatures (the upper bound of principal
radii) by transforming (3.6) to a new equation of support function on Sn through Gauss
map. For the proof of Theorem 9, the key part is the C2 estimates for the case k = 2, which
we make use of some special structure of S2. We also establish a deformation lemma as in
Theorem 3 and Theorem 6 to ensure the convexity of solutions in the process of applying
the method of continuity.

4. Optimal transportation problem

The optimal transportation problem, as proposed by Monge in 1781, is to find an
optimal mapping from one mass distribution to another such that a cost functional is
minimized among all measure preserving mappings. It was proved [8, 22] that the op-
timal mapping can be determined by the potential functions, namely the maximizers of
Kantorovich’s dual functional.

The potential function satisfies a fully nonlinear equation of Monge-Ampère type,
subject to a second boundary condition. When the cost function c(x, y) = x · y or
c(x, y) = |x − y|2, the equation can be reduced to the standard Monge-Ampère equa-
tion

detD2u = h,(4.1)
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and the regularity of solutions has been obtained in [9, 10, 41], and [17] in dimension 2.
In [MTW], we study the regularity of potential functions for general cost functions.

We will establish an a priori interior second order derivative estimate for solutions to
the corresponding Monge-Ampère equation when the cost function satisfies an additional
structural condition. To apply the a priori estimate to the potential functions we will
introduce the notion of generalized solutions and prove that a potential function is indeed
a generalized solution. The regularity of potential functions then follows as a generalized
solution can be approximated by smooth ones.

References

[1] A. Aeppli, On the uniqueness of compact solutions for certain elliptic differential equations, Proc.
Amer. Math. Soc. 11, (1960), 832-836.

[2] A. Acker, L.E. Payne and G. Philippin, On the convexity of level lines of the fundamental mode in the
clamped membrane problem, and the existence of convex solutions in a related free boundary problem,
Z. Angew. math. Phys. 32, (1981), 683-694.

[3] A.D. Alexandrov, Zur Theorie der gemischten Volumina von konvexen korpern, III. Die Erweiterung
zweeier Lehrsatze Minkowskis uber die konvexen polyeder auf beliebige konvexe Flachen ( in Russian),
Mat. Sbornik N.S. 3, (1938), 27-46.

[4] A.D. Alexandrov, Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ. 11 (1956),
5-17 = Amer. Soc. Trans. Ser.2 21, (1962), 341-354.

[5] O.Alvarez, J.M. Lasry and P.-L. Lions, Convexity viscosity solutions and state constraints, J. Math.
Pures Appl. 76, (1997), 265-288.

[6] I. Bakelman and B. Kantor, Existence of spherically homeomorphic hypersurfaces in Euclidean space
with prescribed mean curvature, Geometry and Topology, Leningrad, 1, (1974), 3-10.

[7] H.J. Brascamp and E.H. Lieb, On extensions of the Bruun-Minkowski and Prekopa-Leindler theorems,
including inequalities for log-concave functions, with an application to the diffusion equation, J. Funct.
Anal., 22, (1976), 366-389.

[8] L. Caffarelli, Allocation maps with general cost functions, Partial Differential Equations and Appli-
cations, (P. Marcellini, G. Talenti, and E. Vesintini eds), Lecture Notes in Pure and Appl. Math.,
177,(1996), pp. 29-35.

[9] L. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc., 5, (1992),
99-104.

[10] L. Caffarelli, Boundary regularity of maps with convex potentials II. Ann. of Math. 144, (1996), no.
3, 453–496.

[11] L.A. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations, Duke
Math. J. 52, (1985), 431-455.

[12] L.A. Caffarelli, L. Nirenberg and J. Spruck, Nonlinear second order elliptic equations IV: Star-
shaped compact Weingarten hypersurfaces, Current topics in partial differential equations, Y.Ohya,
K.Kasahara and N.Shimakura (eds), Kinokunize, Tokyo, (1985), 1-26.

[13] S.Y. Cheng and S.T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem
Comm. Pure Appl. Math. 29, (1976), 495-516.

[14] K.S. Chou(Tso), On the existence of convex hypersurfaces with prescribed mean curvature, Ann. Scuola
Norm. Sup. Pisa Cl. Sci.(4) 16, (1989), 225-243.

[15] K.S.Chou and X.J.Wang, The Lp-Minkowski problem and the Minkowski problem in centroaffine ge-
ometry, preprint.
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