1. Classify all the biholomorphic functions from D to itself, where D is the open unit disk.
2. Prove that $C_{c}^{\infty}(\mathbb{R})$ is dense in $C_{0}(\mathbb{R})$, where the norm on $C_{0}(\mathbb{R})$ is the supreme norm.
3. For $1<p<q<\infty$, show that $L^{p}(\mathbb{R})$ is not a subset of $L^{q}(\mathbb{R})$ and also show that $L^{q}(\mathbb{R})$ is not a subset of $L^{p}(\mathbb{R})$.
3.5 For any $p>1$, according to problem 3, we shall not expect to have $L^{1}(\mathbb{R}) \supset L^{p}(\mathbb{R})$, nor shall we expect $L^{1}(\mathbb{R}) \subset L^{p}(\mathbb{R})$. Prove that $L_{l o c}^{1}(\mathbb{R}) \supset L_{l o c}^{p}(\mathbb{R})$. Note: This fact kind of explains why we define weak derivatives on $L_{l o c}^{1}(\mathbb{R})$.
4. [The interpolation property] For $0<p<s<q$, and for a measurable function f over a measure space (X, μ), if $f \in L^{p}(X, \mu)$ and $f \in L^{q}(X, \mu)$, prove that f is also in $L^{s}(X, \mu)$.
5. Construct a function $f \in C_{c}^{\infty}(\mathbb{R})$, such that $\chi_{[-1,1]} \leq f \leq \chi_{[-2,2]}$.
6. Let X be a set and let \mathcal{M} be a semi-ring of $\mathcal{P}(X)$. Let Y be a set and let \mathcal{N} be a semi-ring of $\mathcal{P}(Y)$. Let $\mathcal{M} \times \mathcal{N}=\{A \times B: A \in \mathcal{M}$ and $B \in \mathcal{N}\}$. Prove that $\mathcal{M} \times \mathcal{N}$ is a semi-ring of $\mathcal{P}(X \times Y)$.
7. Given $f:\{x+i y: y \geq 0\} \rightarrow \mathbb{C}$ such that i) $f(z) \in \mathbb{R}$ for all $z \in \mathbb{R}$; ii) f is continuous on $\{x+i y: y \geq 0\}$; iii) f is holomorphic in $\{x+i y: y>0\}$. Define $g: \mathbb{C} \rightarrow C$ as $g(z)=f(z)$ for all $z \in\{x+i y: y \geq 0\}$ and $g(z)=\overline{f(\bar{z})}$ for all z with $\operatorname{Im}(z)<0$. Prove that f is holomorphic.
8. Let X and Y be two topological spaces. Let $f: X \rightarrow Y$ be a continuous function. Assume f is a bijection, and also assume that X is compact. Prove that f^{-1} is also continuous. That is, prove that f is a homeomorphism.
9. In the previous problem, if we remove the assumption that X is compact. Show that f^{-1} might not be continuous.
10. For $\left\{f_{n}\right\} \subset C_{c}^{\infty}(\mathbb{R})$, if $\left\|f_{n}\right\|_{\infty} \rightarrow 0$, does it follow that $\left\|f_{n}^{\prime}\right\|_{\infty} \rightarrow 0$? Why or why not?
11. Assume $g \in C_{c}^{\infty}(\mathbb{R}), g$ is non-negative and $\int_{\mathbb{R}} g \mathrm{~d} x=1$. For any $f \in C_{0}(\mathbb{R})$, prove that $f * g \in C_{0}^{\infty}(\mathbb{R})$.
12. For $f(x)=\operatorname{sgn}(x)=\left\{\begin{array}{ll}1 & x \geq 0 \\ 0 & x<0\end{array}\right.$. Prove that the weak derivative of f does not exist. Note: The following facts, which we proved in class, can be used directly: Fact 1: Let $g \in L_{\text {loc }}^{1}(\mathbb{R})$. The weak
derivative of g, if exists, must be unique. Fact 2: Let $g \in L_{l o c}^{1}(\mathbb{R})$ such that the weak derivative of g exists, which is denoted by $D_{w}(g)$. If there exists $(a, b) \subset \mathbb{R}$ such that $\left.g\right|_{(a, b)}=0$ a.e, then $\left.D_{w}(g)\right|_{(a, b)}=0$ a.e.
13. Find ${ }^{*}$ all ${ }^{*}$ the possible bihomomorphic maps between the upper half open plane in \mathbb{C} and the open unit disk in \mathbb{C}, which maps the point $2 i$ in upper half plane to 0 in the unit disk.
14. Prove that $\left(l^{\infty}\right)^{*}$ is not isomorphic to l^{1}.
15. For $a, b, c, d \in \mathbb{C}$ with $a d-b c \neq 0$, consider the map

$$
\varphi:\{z \in \mathbb{C}: c z+d \neq 0\} \rightarrow \mathbb{C}, z \mapsto \frac{a z+b}{c z+d}
$$

Use CIRCLE to denote straight lines in \mathbb{C} and ordinary circles in \mathbb{C}. Prove that φ maps CIRCLES to CIRCLES.
16. Does holomorphic functions always map convex sets to convex sets? Why or why not?
17. Let $\left\{X_{i}\right\}$ be a sequence of sets and let \mathcal{M}_{\rangle}be a semi-ring of $\mathcal{P}\left(X_{i}\right)$ for each i. Let $\prod_{i=1}^{\infty} \mathcal{M}_{i}=$ $\left\{A_{1} \times A_{2} \times \cdots: A_{i} \in \mathcal{M}_{i}\right.$ for all $\left.i\right\}$. Prove that $\prod_{i=1}^{\infty} \mathcal{M}_{i}$ is ${ }^{\text {not }}$ * a semi-ring of $\mathcal{P}\left(\prod_{i=1}^{\infty} X_{i}\right)$.
18. Let B be a Banach space and let $x \in B \backslash\{0\}$. Prove that there exists $\rho \in B^{*}$ such that $\|\rho\|=1$ and $|\rho(x)|=\|x\|$. Based on this, prove that for any $y \in B, y=0$ if and only if $\varphi(y)=0$ for all $\varphi \in B^{*}$. Note: You can feel free to use the Hahn-Banach theorem directly.
19. For the Cantor function $f:[0,1] \rightarrow[0,1]$, prove that f is continuous and uniform continuous. Then prove that f is not absolutely continuous.
20. Write down the definition of "net" first. Then write down the definition of "net limits" for a topological space X. Besides, in case X is Hausdorff, show "net limit", if exits, must be unique.
21. Let D be a non-empty open subset of \mathbb{R}^{n}, where the topology on \mathbb{R}^{n} is the "usual" one. Under this setup, prove that D is connected if and only if D is path-connected.
22. Let φ be a function in $C_{c}^{\infty}(\mathbb{R})$ such that $\varphi \geq 0$ and $\int_{\mathbb{R}} \varphi \mathrm{d} \mu=1$, where μ is the Lebesgue measure on \mathbb{R}. For any $(a, b) \subset \mathbb{R}$, it is clear that $\chi_{(a, b)} \in L^{\infty}(\mathbb{R}, \mu)$. According to what is covered in class, we know that that $\chi_{(a, b)} * \varphi$ is in $C^{\infty}(\mathbb{R})$. Assuming $\operatorname{supp}(\varphi) \subset[-r, r]$ for some $r>0$ and $b-a \geq 2 r$, show that $\left\|\chi_{(a, b)} * \varphi-\chi_{(a, b)}\right\|_{L^{\infty}(\mathbb{R}, \mu)} \geq 1 / 2$.

