HW # 4

1. Classify all the biholomorphic functions from D to itself, where D is the open unit disk.

2. Prove that $C_c^{\infty}(\mathbb{R})$ is dense in $C_0(\mathbb{R})$, where the norm on $C_0(\mathbb{R})$ is the supreme norm.

3. For $1 , show that <math>L^p(\mathbb{R})$ is not a subset of $L^q(\mathbb{R})$ and also show that $L^q(\mathbb{R})$ is not a subset of $L^p(\mathbb{R})$.

3.5 For any p > 1, according to problem 3, we shall not expect to have $L^1(\mathbb{R}) \supset L^p(\mathbb{R})$, nor shall we expect $L^1(\mathbb{R}) \subset L^p(\mathbb{R})$. Prove that $L^1_{loc}(\mathbb{R}) \supset L^p_{loc}(\mathbb{R})$. Note: This fact kind of explains why we define weak derivatives on $L^1_{loc}(\mathbb{R})$.

4. [The interpolation property] For 0 , and for a measurable function <math>f over a measure space (X, μ) , if $f \in L^p(X, \mu)$ and $f \in L^q(X, \mu)$, prove that f is also in $L^s(X, \mu)$.

5. Construct a function $f \in C_c^{\infty}(\mathbb{R})$, such that $\chi_{[-1,1]} \leq f \leq \chi_{[-2,2]}$.

6. Let X be a set and let \mathcal{M} be a semi-ring of $\mathcal{P}(X)$. Let Y be a set and let \mathcal{N} be a semi-ring of $\mathcal{P}(Y)$. Let $\mathcal{M} \times \mathcal{N} = \{A \times B : A \in \mathcal{M} \text{ and } B \in \mathcal{N}\}$. Prove that $\mathcal{M} \times \mathcal{N}$ is a semi-ring of $\mathcal{P}(X \times Y)$.

7. Given $f: \{x + iy: y \ge 0\} \to \mathbb{C}$ such that i) $f(z) \in \mathbb{R}$ for all $z \in \mathbb{R}$; ii) f is continuous on $\{x + iy: y \ge 0\}$; iii) f is holomorphic in $\{x + iy: y > 0\}$. Define $g: \mathbb{C} \to C$ as g(z) = f(z) for all $z \in \{x + iy: y \ge 0\}$ and $g(z) = \overline{f(\overline{z})}$ for all z with $\operatorname{Im}(z) < 0$. Prove that f is holomorphic.

8. Let X and Y be two topological spaces. Let $f: X \to Y$ be a continuous function. Assume f is a bijection, and also assume that X is compact. Prove that f^{-1} is also continuous. That is, prove that f is a homeomorphism.

9. In the previous problem, if we remove the assumption that X is compact. Show that f^{-1} might not be continuous.

10. For $\{f_n\} \subset C_c^{\infty}(\mathbb{R})$, if $||f_n||_{\infty} \to 0$, does it follow that $||f'_n||_{\infty} \to 0$? Why or why not?

11. Assume $g \in C_c^{\infty}(\mathbb{R})$, g is non-negative and $\int_{\mathbb{R}} g \, dx = 1$. For any $f \in C_0(\mathbb{R})$, prove that $f * g \in C_0^{\infty}(\mathbb{R})$.

12. For $f(x) = \operatorname{sgn}(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$. Prove that the weak derivative of f does not exist. Note:

The following facts, which we proved in class, can be used directly: Fact 1: Let $g \in L^1_{loc}(\mathbb{R})$. The weak

derivative of g, if exists, must be unique. Fact 2: Let $g \in L^1_{loc}(\mathbb{R})$ such that the weak derivative of g exists, which is denoted by $D_w(g)$. If there exists $(a, b) \subset \mathbb{R}$ such that $g|_{(a,b)} = 0$ a.e. then $D_w(g)|_{(a,b)} = 0$ a.e.

13. Find *all* the possible bihomomorphic maps between the upper half open plane in \mathbb{C} and the open unit disk in \mathbb{C} , which maps the point 2i in upper half plane to 0 in the unit disk.

14. Prove that $(l^{\infty})^*$ is not isomorphic to l^1 .

15. For $a, b, c, d \in \mathbb{C}$ with $ad - bc \neq 0$, consider the map

$$\varphi \colon \{z \in \mathbb{C} \colon cz + d \neq 0\} \to \mathbb{C}, \ z \mapsto \frac{az + b}{cz + d}$$

Use CIRCLE to denote straight lines in \mathbb{C} and ordinary circles in \mathbb{C} . Prove that φ maps CIRCLES to CIRCLES.

16. Does holomorphic functions always map convex sets to convex sets? Why or why not?

17. Let $\{X_i\}$ be a sequence of sets and let \mathcal{M}_i be a semi-ring of $\mathcal{P}(X_i)$ for each *i*. Let $\prod_{i=1}^{\infty} \mathcal{M}_i = \{A_1 \times A_2 \times \cdots : A_i \in \mathcal{M}_i \text{ for all } i\}$. Prove that $\prod_{i=1}^{\infty} \mathcal{M}_i$ is *not* a semi-ring of $\mathcal{P}(\prod_{i=1}^{\infty} X_i)$.

18. Let *B* be a Banach space and let $x \in B \setminus \{0\}$. Prove that there exists $\rho \in B^*$ such that $\|\rho\| = 1$ and $|\rho(x)| = \|x\|$. Based on this, prove that for any $y \in B$, y = 0 if and only if $\varphi(y) = 0$ for all $\varphi \in B^*$. Note: You can feel free to use the Hahn-Banach theorem directly.

19. For the Cantor function $f: [0,1] \to [0,1]$, prove that f is continuous and uniform continuous. Then prove that f is not absolutely continuous.

20. Write down the definition of "net" first. Then write down the definition of "net limits" for a topological space X. Besides, in case X is Hausdorff, show "net limit", if exits, must be unique.

21. Let *D* be a non-empty open subset of \mathbb{R}^n , where the topology on \mathbb{R}^n is the "usual" one. Under this setup, prove that *D* is connected if and only if *D* is path-connected.

22. Let φ be a function in $C_c^{\infty}(\mathbb{R})$ such that $\varphi \ge 0$ and $\int_{\mathbb{R}} \varphi \, d\mu = 1$, where μ is the Lebesgue measure on \mathbb{R} . For any $(a, b) \subset \mathbb{R}$, it is clear that $\chi_{(a,b)} \in L^{\infty}(\mathbb{R}, \mu)$. According to what is covered in class, we know that that $\chi_{(a,b)} * \varphi$ is in $C^{\infty}(\mathbb{R})$. Assuming $\operatorname{supp}(\varphi) \subset [-r, r]$ for some r > 0 and $b - a \ge 2r$, show that $\|\chi_{(a,b)} * \varphi - \chi_{(a,b)}\|_{L^{\infty}(\mathbb{R},\mu)} \ge 1/2$.