
HW # 3 Due by June 23 2016.

1. (⋆) As in the class, we use (f,D) to denote a holomorphic function f that is holomorphic on

the open disk D (radius of D does not need to be 1). For two pairs of such (f,D) and (f ′, D′), we say

(f,D) ∼ (f ′, D′) if D ∩D′ ̸= ∅ and f |D∩D′ = f ′ |D∩D′ .

Construct (f0, D0), (f1, D1) and (f2, D2), such that D0 ∩ D1 ̸= ∅, D0 ∩ D2 ̸= ∅, D1 ∩ D2 ̸= ∅,

(f0, D0) ∼ (f1, D1), (f0, D0) ∼ (f2, D2) but (f1, D1) ≁ (f2, D2).

Note: To find such pairs, you need to make sure that D1 ∩D2 ∩D3 = ∅. Else, according to what is

covered in class, such ∼ relation is guaranteed to be transitive in this case.

2. (⋆) In class, we demonstrated in sketch that there exists a continuous function f : U −→ C such

that f(U) = ∂U , where U is the open unit disk, and U is the closure of it.

Do the following.

1) Give detailed construction of a continuous function f : U → C such that f(U) = ∂U .

2) For any continuous function f over U such that f(U) = ∂U , prove that f(∂U) = ∂U .

Note: Thanks to one of the students for pointing out the error here. One quick example for f(U) = ∂U

but f(∂U) ( ∂U can be done like this: Consider U as the closed unit disk in x-y plane of R3. We can find

a homeomorphism between this U and C = {t · (cos θ, sin θ, 0) + (1− t) · (0, 0, 1) : t ∈ [0, 1], θ ∈ [0, 2π)},

where C can be regarded as the surface of a cone, and the base of the cone is exactly U . Do the projection

of C to the z-axis, we get a segment [0, 1] in z-axis. Connect the two ends of this segment to get a circle,

which is homeomorphic to ∂U .

2) Find a continuous function f over U , such that f(U) = U but f(∂U) is a single point (thus surely

we do not have f(∂U) = ∂U).

Hint: Just read the note above, and recall things like the Peano curve.

3) For any continuous function g : U → U with g(∂U) = ∂U , this g is not “path connected” to the

identity map

id : U −→ U, z 7→ z.
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By “g is path connected to the identity map id”, we mean there exits a continuous map

H : U × [0, 1] −→ U

such that H(∗, 0) = id, H(∗, 1) = g and H(∗, λ)(∂U) = ∂U for all λ ∈ [0, 1].

Remark: In 3), if we remove the requirement that “H(λ, ∗)(∂U) = ∂U for all λ ∈ [0, 1]”, then such

a H always exits. Why?

2.1 (⋆) In R2, consider

A = {(0, 0)} ∪ {(x, y) ∈ R2 : x2 + y2 = 1} and B = {(2, 0)} ∪ {(x, y) ∈ R2 : x2 + y2 = 1}.

Let the topology on R2 be the usual one, and let the topology πA and πB be the restricted topology

from R2 to A and B correspondingly.

1) Prove that (A, π) and (B, πB) are homeomorphic to each other. That is, there is a map f : A → B,

such that f is injective and onto, and both f and f−1 are continuous.

2) Let f be one of such homeomorphisms as above. Prove that we cannot find a continuous map

H : A× [0, 1] → R2

such that for all λ ∈ [0, 1], H(∗, λ) is a homeomorphism from A to H(∗, λ)(A), H(∗, 0) = idA and

H(∗, 1) = f , where idA is the identity map on A. In short, we cannot find “a continuous path of

homeomorphisms” that connects idA and a homeomorphism from A to B.

3) In R3, let

A′ = {(x, y, 0) ∈ R3 : (x, y) ∈ A} and B′ = {(x, y, 0) ∈ R3 : (x, y) ∈ B}.

Let the topology of A′ be the topology restrected from R3 to A′, and let the topology of B′ be the

topology restrected from R3 to B′, where the topology on R3 is the usual one.

Similar to 1), we can show that, under the above mentioned topologies, A′ is homeomorphic to B′.
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Find a continuous map

H : A′ × [0, 1] → R3

such that for all λ ∈ [0, 1], H(∗, λ) is a homeomorphism between A′ and H(∗, λ)(A′), H(∗, 0) = idA′

and H(∗, 1)(A′) = B′, where idA′ is the identity map on A′. In short, find “a continuous path of

homeomorphisms” that connects idA′ and a homeomorphism from A′ to B′.

3. (⋆) Give an example of a holomorphic function f defined on a simply connected open set Ω such

that f(Ω) is not simply connected.

3.1 (⋆) Let A be a convex set in C. From the definition of convexity, for any a, b ∈ A, the segment

connecting a and b also lies in A. Then a convex set in C is always path-connected, thus connected.

1) Let Ω be a non-empty bounded convex set in C. Prove that Ω is simply connected.

2) Give an example of a bi-holomorphic function f defined on a convex open set Ω, such that f(Ω)

is not convex.

3) Give an example of a holomorphic function f defined on a convex open set Ω, such that f(Ω) is

not simply connected.

4) For the example you found in 3), is it bi-holomorphic? Can you find a bi-holomorphic map that

maps a simply connected open set to a simply connected open set? Why or why not?

3.5 (⋆) Let X and Y be two Riemann surfaces, and assume that the Riemann surface X is compact.

Let f : X → Y be a holomorphic/analytic function such that f(X) = Y (i.e, f is surjective). Prove that

for any open set D in X, its image f(D) is also open in Y .

4. (⋆) Assume that Ω is a region in C. In class, we mentioned that for an f : Ω → C such that

both the real part u(x, y) and the imaginary part v(x, y) are C1 functions, “at every (x0, y0) ∈ Ω, if

det

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


∣∣∣∣∣∣∣
(x0,y0)

̸= 0, then f map an open neighborhood of (x0, y0) to an open set” is not enough to

ensure that this f is holomorphic. A typical example is f(z) = z̄. For this f , even the metric structure
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of C is preserved. However, it is clear that this f is not holomorphic as ∂f

∂z̄
= 1 ̸= 0. In this case, note

that f does not preserve the angle. In fact, this f reverses the angle.

In contrast, as also mentioned in class, “f preserves the angle” kind of ensures that f is holomorphic.

Do the following:

Let Ω be a region in C. Let f : Ω → C be a complex funciton. We write it as

f(z) = f(x+ iy) = u(x, y) + iv(x, y).

That is, we use u and v to denote the real part of imaginary part of f .

Assume that f ∈ C1(Ω). That is, both u and v are in C1(Ω). For simplicity, we also assume that

for any (x0, y0) ∈ Ω (we abuse the notation a bit and just pretend that Ω is in R2), we have

det

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


∣∣∣∣∣∣∣
(x0,y0)

̸= 0.

If “f preserves the angle” everywhere in Ω, prove that f is holomorphic in Ω.

Note: As for the meaning of “f preserves the angle” at a point, check your class notes weeks ago.

Hint: Just note that (why?) df =
∂f

∂z
· dz + ∂f

∂z̄
· dz̄, which implies that (why?)

f(z)− f(z0) =
∂f

∂z
(z0) · (z − z0) +

∂f

∂z̄
(z0) · z − z0 + o(z − z0).

In case ∂f
∂z
(z0) ̸= 0, the map from z − z0 to ∂f

∂z
(z0) · (z − z0) is a multiplication of a non-zero complex

constant, which “preserves the angle”. In case ∂f
∂z̄
(z0) ̸= 0, the map from z − z0 to ∂f

∂z̄
(z0) · z − z0 is the

composition of the complex conjugacy map and the “multiply by non-zeoro complex constant ∂f
∂z̄

(z0)”

map. As the complex conjugacy map “reverses the angle” and the “multipliy by non-zero complex

constant” map “preserves the angle”, their composition just “reverses the angle”. As for o(z − z0), it is

the relatively small term which has no contribution to the final result of angles (why?). Then ...

5. (⋆) Let U be the unit open disk of C. Let f : U → C be a holomorphic function such that

|f(z)| = |z| for all z ∈ U . Prove that f(z) = eiθz for all z in U , where θ is a constant value in R.
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5.5 (⋆⋆) Let U be the unit open disk of C. Let f : U → C be a function (not surely holomorphic)

such that |f(z1) − f(z2)| = |z1 − z2| and f(0) = f(0) for all z1, z2 ∈ U (that is, f preserves the metric

structure and maps 0 to 0). Prove that either f(z) = eiθz for all z ∈ U or f(z) = eiθz̄ for all z ∈ U ,

where θ is a constant value in R.

6. (⋆) Let f : [0, 1] → [0, 1] be the Cantor funtion as defined in class. We already proved last term

that f is continuous. As [0, 1] is a bounded closed subset of R, it follows that this f is uniformly

continuous. Prove that this f is *not* absolutely continuous.

Remark: Continuity is a local property, while uniform continuity is not. Besides, absolute conitnuity

is not a local property either.

6.1 (⋆⋆) For the above defined f , prove that it is *not* weakly differentiable. That is, show that

the weak derivative of the Cantor function does not exist.

Hint: According to the Lemma we proved in class, it is not hard to show that if the weak derivative

of f exists (say, g), then g = 0 in L1(0, 1). That is, we have

∫
(0,1)

0 · h dx = −
∫
(0,1)

f · h′ dx ∀h ∈ C∞
c (0, 1).

In other words, we have ∫
(0,1)

f · h′ dx = 0 ∀h ∈ C∞
c (0, 1).

Observe that this is equivalent to (why?)

∫
(0,1)

f · h dx = 0 ∀h ∈ C∞
c (0, 1) with

∫
(0,1)

h dx = 0.

Let C =
∫
(0,1)

f dx and let f̃ = f − C. If we can show that f̃ = 0, then we are done, as we know that

the Cantor function f is not a constant function at all. In order to get f̃ = 0, we just need to show that

∫
(0,1)

f̃ · g dx = 0 for all g ∈ C0(0, 1).
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According to the lectures in class, C∞
c (0, 1) is dense, with respect to the supreme norm, in C0(0, 1).

Thus we just need to show ∫
(0,1)

f̃ · g dx = 0 for all g ∈ C0(0, 1).

Check the following:

i) ∫
(0,1)

f̃ · h dx = 0 ∀h ∈ C∞
c (0, 1) with

∫
(0,1)

h dx = 0.

ii) ∫
(0,1)

f̃ · 1 dx =

∫
(0,1)

f dx− C = 0.

The hint ends here with still some decent work left to be finished.

6.5 (⋆) With the Cantor function f defined as above, define

g : R → R, x 7→

 f(x), x ∈ [0, 1]

0, else.

It is easy to check that g is positive, measurable and g ∈ L1(R, µ), where µ is the Lebesgue measure on

R. Use v to denote the positive measure on R induced by g and µ as

v(E) =

∫
R
χE · g dµ.

One can check that v is a bounded measure with v(R) = ∥f∥L1(R,µ). Do the following:

1) Find a Lebesgue measurable subset E of R, such that g(E) is also Lebesgue measurable, µ(E) = 0,

and µ(g(E)) > 0.

2) Prove that this measure v is absolutely continuous with respect to µ. That is, prove that v ≪ µ

does hold.

Remark: Let (R, µ) be the standard Lebesgue measure space and let h ∈ L1(R, µ). Then we

can derive a bounded measure v satisfying v(E) =
∫
χE · h dµ for any µ-measurablet subet E. This

construction of v is also denoted as dv = hdµ. This v is also called the integral measure over µ with

respect to f . From the definition of v, it is straightforward to check that µ(E) = 0 implies v(E) = 0.
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Thus v ≪ µ. Under this setup, by Radon-Nykodym Theorem, the measure v is differentiable with

respect to the orginal measure µ, and dv

dµ
= h (this h is also called the Radon-Nykodym derivative).

Besides, in case we have another measure v′ on R such that every Lebesgue measurable subset is also

v′-measurable and v′ ≪ µ, it follows that the integral of the Radon-Nykodym derivative of v′ (with

respect to µ) is exactly µ. For details on differentiation of measures, see Rudin book.

Remark: Let X be the standard Cantor set in [0, 1], which is constructed by consecutively taking

off the “middle one-thirds”. For any separable (i.e, second countable) compact metric space Y , it is

a well-known result (the standard proof of this result is quite understandable, if you are interested)

that there exists (not surely uniquely though, in fact, “almost” always not unique) a continuous map

f : X → Y such that f(X) = Y . In the language of category theory, this result just says that the Cantor

set is an initial object in the catogory of separable compact metric spaces with Hom(A,B) being all

the continuous surjective maps from A to B, where both A and B are separable compact metric spaces.

This is also called the universal property of the Cantor set.

Furthur Question: Based on the definition of absolute continuity for functions, and the definition

of absolute continuity for measures, noting Problem 6 and 6.5, when restricted to R, can you make

a guess on the relation between the absolute continuity of functions and the aboslute continuity of

measures. For example, a guess like the following.

“
Let µ be the Lebesgue meausre on R, and let v be another positve measure on R such that every

Lebesgue measurable set is also v measurable, v(R) < ∞ and blablah...(you can fill in what you need

or what you think is appropriate).

Define

g : R −→ R, t 7→
∫
R
χ(−∞,t) dv.

Then v is absolutely continuous with respect to the Lebesgue measure µ if and only if the function g is

absolutely continuous on R. ”
Prove or disprove your guess.

Note: This is not required as for homework. If you really want to crack this question, read the stuff

related to differentiation of measures in Rudin book, which should give you enough information to solve

this question.
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7. (⋆) This is about some basic properties/facts of the test function C∞
c (R) that you have seen

in class. During the class, test functions are used to define weak derivatives, and they also serve as

mollifying functions (a.k.a. mollifiers), etc.

1) Prove that C∞
c (R) = C∞(R)

∩
Cc(R).

2) Prove that C∞
c (R) is an algebra. That is, for any f, g ∈ C∞

c (R), and for any λ ∈ R, f + g, λ · f

and f · g are all in C∞
c (R).

3) In C∞
c (R), define a the pointwise convergence as fn → f if and only if fn(x) → f(x) as n → ∞

for any x ∈ R. Given this convergence, we can define clousure of a subset in C∞
c (R). For A ⊂ C∞

c (R),

we say that A is closed if the closure of A under the above defined pointwise covergence is A itself.

Then we say that E ⊂ C∞
c (R) is open if and only if Ec is closed as in the sense above. Now, we can get

a topology on C∞
c (R) if we can verify that i) ∅ is an open set; ii) C∞

c (R) is an open set; and iii) the

unions (might be uncountably many) of open sets is still an open set.

Your job: Verify i), ii) and iii).

Remark: With the above defined topology, one can immedaitely check that C∞
c (R) is a topological

vector space. That is, under this topology, additions (of two functions) and scalar multiplications are

all continuous.

4) In C∞
c (R), construct {fn}∞n=1 and f , such that for each x ∈ R, we have fn(x) → f(x) while n → ∞

but
∞∪
n=1

supp(fn) = R.

Recall that for a continuous function g : X → R, supp(g) is defined to be the closure of {x ∈ X : g(x) ̸=

0}.

5) Find f ∈ C∞(R) such that f is not the constant function 0 and f(0) = f ′(0) = f (2)(0) = f (3)(0) =

· · · = 0. Roughly speaking, find a function that is smooth everywhere but not analytic at 0. By a

function f is analytic at a, we mean there exists δ > 0, such that, when restricted to (a− δ, a + δ), we

have

f(x) = f(a) + f ′(a)x+
f ′′(a)

2!
x2 +

f (3)(a)

3!
x3 + · · · .

Remark: If f : C → C is holomorphic and f(0) = f ′(0) = f (2)(0) = f (3)(0) = · · · = 0, using
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knowledge of complex analysis we already covered in class (to be more precise, being holomorphic is

equivalent to being analytic), it is easy to show that f ≡ 0. This demonstarte how different real anlaysis

and complex analysis are.

6) For any f ∈ C∞(R) and for any [a, b] ⊂ R, prove that we can find g ∈ C∞
c (R) such that

f
∣∣
[a,b] = g

∣∣
[a,b] .

7) For any f ∈ C∞[a, b] and for any [c, d] ⊂ [a, b] with a < c and d < b, prove that we can find

g ∈ C∞
c ((a, b)) such that ∥g∥C∞[a,b] ≤ ∥f∥C∞[a,b] and f

∣∣
[a,b] = g

∣∣
[a,b] .

8) Give an example of f ∈ C∞
c (R) with sup{

∥∥f (n)
∥∥
∞}∞n=0 = ∞, where f (0) is just f itself and ∥·∥∞

is the supremum norm for continuous functions.

9) For a set of continuous functions {fi ∈ C(R)}i∈A, we say that they are equi-continuous, if for

any ϵ > 0, there exists δ > 0, such that for any x, y ∈ R with |x − y| < δ and for any i ∈ A, we have

|fi(x)− fi(y)| < ϵ. Find a sequence of functions gn ∈ C∞
c (R) such that gn → 0 pointwise for all x ∈ R,

where the 0 denotes a constant function whose value is always 0, but {gn} is not equi-continuous.

10) In C∞(0, 1), let

BC∞(0, 1) = {f ∈ C∞(0, 1) : sup
i∈N≥0

∥∥f (i)
∥∥
∞ < ∞},

where ∥·∥∞ is the supremum norm of continuous functions on (0, 1).

For any f ∈ BC∞(0, 1), it is easy to check that f ′ is also in BC∞(0, 1). Besides, it is also easy to

check that the map (derivative operator)

Der : BC∞(0, 1) −→ BC∞(0, 1), f 7→ f ′

is linear.

For any f ∈ BC∞(0, 1), we define

∥f∥BC∞(0,1) = sup
i∈N≥0

∥∥f (i)
∥∥
∞ .

Recall that C∞
c (0, 1) is a set of all the functions g such that g ∈ C∞(0, 1) and supp(g) is a compact

9



subset of (0, 1). According to 8) of this problem, for g ∈ C∞
c (0, 1), supi∈N≥0

∥∥g(i)∥∥∞ might be ∞. Let

BC∞
c (0, 1) = {g ∈ C∞

c (0, 1) : sup
i∈N≥0

∥∥g(i)∥∥∞ < ∞},

For any g ∈ BC∞
c (0, 1), we define, noting thatBC∞

c (0, 1) ⊂ BC∞(0, 1), ∥g∥BC∞
c (0,1) to be ∥g∥BC∞(0,1).

Define the integration operator

Int : BC∞
c (0, 1) −→ BC∞(0, 1), g 7→ h, where h(t) =

∫ t

0

g(x) dx.

Easy to check that Int is well-defined. In other words, for any g ∈ BC∞
c (0, 1), the integral function h

above is in BC∞(0, 1).

i) Check that this above defined ∥·∥BC∞(0,1) is really a norm on BC∞(0, 1).

ii) Prove that this linear operator Der (derivative operator) from (BC∞(0, 1), ∥·∥BC∞(0,1)) to itself

is bounded.

iii) Regarding the linear operator Int (integral operator) as

Int : (BC∞
c (0, 1), ∥·∥BC∞

c (0,1)) −→ (BC∞(0, 1), ∥·∥BC∞(0,1)),

prove that this operator is bounded.

8. (⋆) Let µ be the Lebesgue measure on Rn, and let p ∈ [1,+∞). Let f ∈ Lp(Rn, µ). Let

g ∈ C∞
c (Rn) such that g ≥ 0 and

∫
Rn g dµ = M < ∞. Prove that

∥f ∗ g∥Lp(Rn,µ) ≤ M · ∥f∥Lp(Rn,µ)

Hint: Check that f ∗ g = (M · f) ∗ g
M
. Then apply the result we proved in class, which is about the

case M = 1.

9. (⋆) Let φ be a function in C∞
c (R) such that φ ≥ 0 and

∫
R φ dµ = 1, where µ is the Lebesgue

measure on R. For any (a, b) ⊂ R, it is clear that χ(a,b) ∈ L∞(R, µ). According to what is covered in
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class, we know that that χ(a,b) ∗ φ is in C∞(R).

1) Show that χ(a,b) ∗ φ ∈ C∞
c (R).

2) Assuming supp(φ) ⊂ [−r, r] for some r > 0 and b− a ≥ 2r, show that

∥∥χ(a,b) ∗ φ− χ(a,b)

∥∥
L∞(R,µ) ≥ 1/2.

10. (⋆) Let µ be the Lebesgue measure on R. We can construct a product measure on R×R via µ.

Use µ2 to denote this product measure on R2. According to lectures in class, we start with a semiring

R which is made up of all such elements as X × Y , where both X and Y are µ-measurable, and assume

µ2(X × Y ) = µ(X)× µ(Y ). Then we applied the Caratheodory Extension Theorem to get the product

measure. For ease of use, we complete the measure in the end. In other words, we assume that µ2 is a

complete measure.

For a subset E ⊂ R2 such that E is µ2-measurable, it is easy (following the construction of µ2 and

using the translation invariance property of the Lebesgue measure µ) to check that for any (a, b) ∈

R2, E + (a, b) is also µ2-measurable and its measure is the same as µ2(E). Here E + (a, b) denotes

{(x, y) + (a, b) : (x, y) ∈ E}.

Your job: For any two by two real matrix A with det(A) ̸= 0, and for any µ2-measurable subset E

in R2, show that A · E is also µ2-measurable and

µ2(A · E) = |det(A)| · µ2(E),

where A · E denotes {A · e : e ∈ E}.

Hint: As µ2 is a σ-finite measure (why?), without loss of generality, we can assume that µ2(E) < ∞.

As µ2 is outer regular (follows from Caratheodory Extension Theorem, why?), we can find a Borel set

Eb such that E ⊂ Eb and µ2(E) = µ2(Eb). As we already assumed µ2(E) < ∞, here we can, starting

from µ2(E) = µ2(Eb), get µ2(Eb − E) = 0. Then, you just need to show things like the following: i)

In R2, multiplying by A maps Borel sets to Borel sets. ii) For any Borel set B in R2 with µ2(B) < ∞,

µ2(A · B) = |det(A)| · µ2(B). iii) Multiplying by A maps measurable zero sets to measure zero sets. In
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fact, as each measure zero set can be covered by a Borel set with measure arbitrarily small, and using

the result achieved in ii), and note that |det(A)| < ∞, the result needed for iii) follows easily. The hint

ends here to ensure that you still have something left for discover or adventure.

Remark: Assuming that we have already proved the measurability of A · E, the following proof of

µ2(A · E) = |det(A)| · µ2(E) is *not* acceptable.

“
As µ2 is a σ-finite measure, without loss of generality, we can assume that µ2(E) < ∞. That is

χE ∈ L1(R2, µ2).

Assume A =

a11 a12

a21 a22

. For x, y ∈ R, we define x′, y′ as

x′

y′

 =

a11 a12

a21 a22

 ·

x

y

 .

That is,

x′

y′

 = A ·

x

y

. Then, noting that (x′, y′) ∈ A · E if and only if (x, y) ∈ E, we have

µ2(A · E) =

∫ ∞

−∞

∫ ∞

−∞
χA·E((x

′, y′)) dx′dy′ [Fubini’s Theorem]

=

∫ ∞

−∞

∫ ∞

−∞
χE(x, y) dx′dy′

=

∫ ∞

−∞

∫ ∞

−∞
χE(x, y) · | det(A)| dxdy

= | det(A)| ·
∫ ∞

−∞

∫ ∞

−∞
χE(x, y) dxdy

= | det(A)| · µ2(E).

”
The reason is simple: the proof above relies heavily on “dx′dy′ = | det(A)| dxdy”, which is not yet

proved for Lebesgue integration of the Lebesgue measures. Indeed, this Problem 10 is exactly about the

proof of this fact (why?).
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10.5 (⋆) Based on the result in Problem 10, do the following:

Let µ be the Lebesgue measure on R2 and let f : R2 → R be a function in L1(R2, µ). For any

A ∈ M2(R) with det(A) ̸= 0, we can regard A as a linear map from R2 to itself. Use f ◦ A to denote

the function from R2 to R with (f ◦ A)(x) = f(Ax) for all x ∈ R2.

1) Prove that f ◦ A is also a measurable function.

2) Prove that f ◦ A ∈ L1(R2, µ) and

∥f ◦ A∥L1 =
∥f∥L1

| det(A)| .

Remark: I just give the statement for R2, surely similar things hold for Rn with any n ∈ N≥1.

Hint: Approximate the function f above by simple functions.

10.6 (⋆) Let µ be the Lebesgue measure on R2 and let f : R2 → R be a positive measurable function

on (R2, µ). Note that
∫
R2 f dµ always exists, which is either a finite non-negative value or +∞. For any

A ∈ M2(R) with det(A) ̸= 0, we can regard A as a linear map from R2 to itself. Use f ◦A to denote the

function from R2 to R with (f ◦A)(x) = f(Ax) for all x ∈ R2. Similar to 1) fo the previous problem, we

can show that f ◦A is also measurable. Thus we have f ◦A is positive and measurable. It then follows

that
∫
R2 f ◦ A dµ always exits, which is a either a finite non-negative value or +∞.

Prove that we always have ∫
R2

f ◦ A dµ =

∫
R2 f dµ

| det(A)| .

Note that both sides above might be +∞.

Hint: In case
∫
R2 f dµ ∈ [0,∞), it is already covered by the result of the previous problem. So what

really remains to be proved is just the following: “If
∫
R2 f dµ = ∞, then

∫
R2 f ◦ A dµ = ∞”, which is

not so hard to prove if you check against definitions of Lebesgue integrations.

11. (⋆) Let f1, · · · , fn be measurable functions in (X,µ) such that fi ∈ Lpi(X,µ) for 1 ≤ i ≤ n,

where each pi > 0. Let
1

r
=

n∑
i=1

1

pi
.
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Prove that ∥∥∥∥∥
n∏

i=1

fi

∥∥∥∥∥
Lr

≤
n∏

i=1

∥fi∥Lpi

Hint: In case n = 2, the result is already proved in class (or assigned as some pleasant exercise),

which was then called the generalized Hölder inequality. The gap between the case of n > 2 and n = 2

is nothing but some induction work.
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