
HW # 2 Due on May 3rd 2016.

1. (⋆) Let X be a normed space which is not complete and let Y be a Banach space. Let f : X → Y

be a bounded linear map.Use X ′ to denote the completion of X. We can extend f uniquely to a bounded

linear map

f ′ : X ′ −→ Y

such that f ′ |X = f and ∥f ′∥X′→Y = ∥f∥X→Y . Give such details on how to define X ′, how to extend f

to f ′, and why f ′ |X = f and ∥f ′∥X′→Y = ∥f∥X→Y .

2. (⋆) Let c0(N) be defined as in assignment #1, equipped with the supremum norm. Let l1(N)

be the one defined in class, which is a Banach space equipped with the l1 norm. Let l∞(N) be the

Banach space covered in class, equipped with the supremum norm. Prove that both c0(N) and l1(N) are

separable. Then prove that l∞(N) is *not* separable.

Note: Let µ be the Lebesgue measure on [0, 1], we know (one of the homework problems last term)

that L∞([0, 1]) is also *not* separable.

3. (⋆⋆) Let X be a Banach space and let M be a closed linear subspace of X. Define the quotient

space X/M to be

X/M = {x+M : x ∈ X},

where x+M = y +M if x− y ∈ M . For X/M , define the norm as

∥x+M∥ = inf
m∈M

∥x+m∥ .

Prove that X/M is also a Banach space under this above defined norm. This space is called a quotient

space.

3.1 (⋆) In the Banach space l∞(N), consider c0(N) as defined in assignment # 1. Define a subspace

D in l∞(N) to be the algebraic span of {ei}∞i=1, where ei is the element in l∞ whose i-th co-ordinate is

1



1 and j-th co-ordinate is 0 for all j ̸= i. Prove that the closure of D is exactly c0.

3.2 (⋆) Construct two bounded linear operator P and Q from the Banach space l∞(N) to C, such

that P ̸= Q and P agrees with Q when restricted to the algebraic span of {ei}∞i=1, where ei is defined as

above.

4. (⋆) For a complex function f : Ω → C, where Ω is a region, and for z0 ∈ Ω, if

∂f

∂z̄

∣∣∣∣
z=z0

= 0,

does it follow that f is differentiable at z = z0? If so, prove it. If not, give a counter example.

Note: ∂f

∂z̄
is defined to be 1

2

∂f

∂x
− 1

2i

∂f

∂y
.

Hint: For g : R2 → R, what is the difference between the following two statements:

i) g is differentiable at (a, b).

ii) ∂g

∂x
and ∂g

∂y
both exists at (a, b).

4.1 (⋆) For a complex function f : Ω → C, where Ω is a region, and for z0 ∈ Ω, define

∂f

∂z

∣∣∣∣
z=z0

=
∂f

∂x

∣∣∣∣
z=z0

+
1

2i

∂f

∂y

∣∣∣∣
z=z0

.

If ∂f

∂z

∣∣∣∣
z=z0

exists, does it follow that f ′(z0) exits? That is, does it follow that f is differentiable at z0

(that is, f ′(z0) exists)?

On the other hand, if f is differentiable at z0, prove that the derivative f ′(z0) equals
∂f

∂z

∣∣∣∣
z=z0

.

5. (⋆) For a complex function f : Ω → C, where Ω is a region. Prove that the following are

equivalent:

i) f is holomorphic in Ω.

ii) f is C1 in Ω and ∂f

∂z̄

∣∣∣∣
z=z0

= 0 for all z0 ∈ Ω.
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6. (⋆⋆) In C, consider the region Ω1 and Ω2 defined as

Ω1 = {x+ iy : x, y ∈ R, x2 + y2 < 1} and Ω2 = {x+ iy : x, y ∈ R, x2 + (2y)2 < 1}.

It is clear that both Ω1, Ω2 and their closures are all inside

E = {x+ iy : max{|x|, |y|} < 100}.

Prove that we cannot find a holomophic map f from the open set E to itself (does not need to be

one-to-one or onto) such that f(∂Ω1) = ∂Ω2 and f(0) = 0.

Note: If we consider Ω1 and Ω2, according to the Riemann mapping theorem, there does exits

conformal/bi-holomorphic mapping between Ω1 and Ω2.

6.5 (⋆) In C, let Ω1 and Ω2 be defined the same as above. Prove that there exists a biholomor-

phic/conformal map

f : Ω1 −→ Ω2

such that f(0) = 0. You can use the Riemann mapping theorem direclty, which states that any simply

connected proper open subset of C is biholomorphic/conformal equivalent to the open unit disk of C.

6.6 (⋆) In the region Ω = C \ {0}, consider the function

f : Ω −→ C, z 7→ z +
1

z
.

It is easy to see that f is holomorphic on Ω.

Let S = {z ∈ Ω: |z| = 2}. Prove that f(S) is an ellipse.

Hint: It should be easy.

Remark: In the setup of Problem 6, the domain for holomorphic functions are regions without any

holes inside. For this Problem 6.6, there is a hole z = 0 in the domain. That one single hole makes all

the differences.
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7. (⋆) Let D be a non-empty open set in C. If D is connected, prove that D is path connected.

Hint: For any a ∈ D, use Ea to denote {x ∈ D : There exists a path in D connecting a and x}.

First show that each Ea is open. Then for any a, b ∈ D, show that we do not have much choice on the

relation between the two sets Ea and Eb ...

Remark: Based on this result, any region in C, which can typically be used as the domain for

holomorphic functions, must be path-connected.

7.5 (⋆) Let X be a topological space. We say that X is locally path-connected if there exists a

topological basis {Ai}i∈A of this topological space X such that each Ai is path-connected.

Prove the following: If the topological space X is connected and locally path-connected, then X is

path-connected. That is, for topological spaces that are locally path-connected, “connectedness” and

“path-connectedness” are just equivalent.

8. (⋆⋆) Let M be a m-dimentional real differential manifold. We say that the differential manifold

M is orientable, or equivalently, M allows an orientation, if there exists a degree m exterior differential

form Ω on M , such that Ω avoids zero everywhere in M . By Ω is a degree m exterior form on M , we

mean Ω is a continuous section of ∧m
i=1T

∗M , where T ∗M is the cotangent bundle of M and ∧ is the

outer derivative contatenation.

As M is a differential manifold, we can write M =
∪

i∈ADi, where each Di is diffeomorphic to an

open subset in Rm. Use φi to denote the diffeomorphism from Di to the corresponding open set in Rn.

Note that φDi is an open subset in Rn. Thus φ(Di) is orientable (why?).

Prove that M is orientable if and only if there exists a class of m-forms {ωi}i∈A, such that each ωi

is defined locally on φ(Di), ωi avoids 0 everywhere in φ(Di), and for any i, j ∈ A with Di

∩
Dj ̸= ∅, the

two forms ωi and ωj are compatible. By “two forms ωi and ωj are compatible”, we mean the following:

Restricted on Di

∩
Dj, if we write ωi = f · dx1 ∧ · · · ∧ dxn and ωj = g · dy1 ∧ · · · ∧ yn, then

f

g
· det


∂x1

∂y1
· · · ∂x1

∂yn

· · · · · · · · ·
∂x1

∂y1
· · · ∂x1

∂yn

 > 0 everywhere in Di

∩
Dj.
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Hint: Partition of the constant function 1, as mentioned in class. This technique is useful for both

“gluing up” local properties into properties on the whole manifold and “passing” properties on the whole

manifold to local open neighborhoods.

8.1 (⋆) Let M be any Riemann surface. That is, M is a one-dimensional complex manifold. It can

be regarded as a two dimensional real manifold in the natural way. Besides, as holomorphic maps are

automatically C∞ maps, it follows that we can regard M as a *smooth* two dimensional real manifold.

With the terminology of orientation defined as above, prove that the Riemann surface M , when viewed

as a two dimensional real manifold, does allow an orientation.

9. (⋆) Let Ω be a region in C, and let E be a Banach space. Let

f : Ω −→ E

be a map. We say that this map f is weakly holomorphic, if for any L ∈ E∗, the map

L ◦ f : Ω −→ C

is a holomorphic function in the usual sense. We say that the map f is strongly holomorphic, if for any

a ∈ Ω, f is differentiable at a. By “f is differentiable at a”, we mean there exists Sa ∈ E, such that

f(z)− f(a) = Sa · (z − a) + o(z − a) as z → a.

That is,

lim
z→a

∥f(z)− f(a)− Sa · (z − a)∥
|z − a|

= 0.

In this case, Sa is called the derivative of f at a, which is denoted as f ′(a) = Sa.

Do the following:

1) Show that if such Sa exists, then it is THE derivative of f at a. That is, the derivative of f at a,

if exists, must be unique.

2) If f : Ω → E is strongly holomorphic on Ω, prove that f is also weakly holomorphic. Note: This

should be kind of straightforward. Show the details.

5



9.5 (⋆⋆⋆) With the same setup as above, prove that if f : Ω → E is weakly holomorphic on Ω,

then f is also strongly holomorphic on Ω.

Hint: Just recall how we prove in class that if a function g : Ω → C is holomorphic, then it is

analytic. The main thing in the proof is to write g as certain proper form of the complex integration of

a fraction with the numerator being a L1 “function” and the denominator being things like ξ− z, where

ξ is the phony/nominal variable used for the complex integration.

Keywords of some math you might need on the way: Vector-valued Riemann integrations, Hahn-

Banach Theorem, power series with coefficients taken from a Banach space, etc.
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