1. (\star) Let X be a normed space which is not complete and let Y be a Banach space. Let $f: X \rightarrow Y$ be a bounded linear map. Use X^{\prime} to denote the completion of X. We can extend f uniquely to a bounded linear map

$$
f^{\prime}: X^{\prime} \longrightarrow Y
$$

such that $\left.f^{\prime}\right|_{X}=f$ and $\left\|f^{\prime}\right\|_{X^{\prime} \rightarrow Y}=\|f\|_{X \rightarrow Y}$. Give such details on how to define X^{\prime}, how to extend f to f^{\prime}, and why $\left.f^{\prime}\right|_{X}=f$ and $\left\|f^{\prime}\right\|_{X^{\prime} \rightarrow Y}=\|f\|_{X \rightarrow Y}$.
2. $(\boldsymbol{\star})$ Let $c_{0}(\mathbb{N})$ be defined as in assignment $\# 1$, equipped with the supremum norm. Let $l^{1}(\mathbb{N})$ be the one defined in class, which is a Banach space equipped with the l^{1} norm. Let $l^{\infty}(\mathbb{N})$ be the Banach space covered in class, equipped with the supremum norm. Prove that both $c_{0}(\mathbb{N})$ and $l^{1}(\mathbb{N})$ are separable. Then prove that $l^{\infty}(\mathbb{N})$ is *not* separable.

Note: Let μ be the Lebesgue measure on $[0,1]$, we know (one of the homework problems last term) that $L^{\infty}([0,1])$ is also ${ }^{*}$ not* separable.
3. $(\star \star)$ Let X be a Banach space and let M be a closed linear subspace of X. Define the quotient space X / M to be

$$
X / M=\{x+M: x \in X\}
$$

where $x+M=y+M$ if $x-y \in M$. For X / M, define the norm as

$$
\|x+M\|=\inf _{m \in M}\|x+m\| .
$$

Prove that X / M is also a Banach space under this above defined norm. This space is called a quotient space.
$3.1(\star)$ In the Banach space $l^{\infty}(\mathbb{N})$, consider $c_{0}(\mathbb{N})$ as defined in assignment $\# 1$. Define a subspace D in $l^{\infty}(\mathbb{N})$ to be the algebraic span of $\left\{e_{i}\right\}_{i=1}^{\infty}$, where e_{i} is the element in l^{∞} whose i-th co-ordinate is

1 and j-th co-ordinate is 0 for all $j \neq i$. Prove that the closure of D is exactly c_{0}.
3.2 (\star) Construct two bounded linear operator P and Q from the Banach space $l^{\infty}(\mathbb{N})$ to \mathbb{C}, such that $P \neq Q$ and P agrees with Q when restricted to the algebraic span of $\left\{e_{i}\right\}_{i=1}^{\infty}$, where e_{i} is defined as above.
4. (\star) For a complex function $f: \Omega \rightarrow \mathbb{C}$, where Ω is a region, and for $z_{0} \in \Omega$, if

$$
\left.\frac{\partial f}{\partial \bar{z}}\right|_{z=z_{0}}=0
$$

does it follow that f is differentiable at $z=z_{0}$? If so, prove it. If not, give a counter example.
Note: $\frac{\partial f}{\partial \bar{z}}$ is defined to be $\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 i} \frac{\partial f}{\partial y}$.
Hint: For $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, what is the difference between the following two statements:
i) g is differentiable at (a, b).
ii) $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ both exists at (a, b).
4.1 (\star) For a complex function $f: \Omega \rightarrow \mathbb{C}$, where Ω is a region, and for $z_{0} \in \Omega$, define

$$
\left.\frac{\partial f}{\partial z}\right|_{z=z_{0}}=\left.\frac{\partial f}{\partial x}\right|_{z=z_{0}}+\left.\frac{1}{2 i} \frac{\partial f}{\partial y}\right|_{z=z_{0}}
$$

If $\left.\frac{\partial f}{\partial z}\right|_{z=z_{0}}$ exists, does it follow that $f^{\prime}\left(z_{0}\right)$ exits? That is, does it follow that f is differentiable at z_{0} (that is, $f^{\prime}\left(z_{0}\right)$ exists)?

On the other hand, if f is differentiable at z_{0}, prove that the derivative $f^{\prime}\left(z_{0}\right)$ equals $\left.\frac{\partial f}{\partial z}\right|_{z=z_{0}}$.
5. (\star) For a complex function $f: \Omega \rightarrow \mathbb{C}$, where Ω is a region. Prove that the following are equivalent:
i) f is holomorphic in Ω.
ii) f is C^{1} in Ω and $\left.\frac{\partial f}{\partial \bar{z}}\right|_{z=z_{0}}=0$ for all $z_{0} \in \Omega$.
6. $(\star \star)$ In \mathbb{C}, consider the region Ω_{1} and Ω_{2} defined as

$$
\Omega_{1}=\left\{x+i y: x, y \in \mathbb{R}, x^{2}+y^{2}<1\right\} \text { and } \Omega_{2}=\left\{x+i y: x, y \in \mathbb{R}, x^{2}+(2 y)^{2}<1\right\} .
$$

It is clear that both Ω_{1}, Ω_{2} and their closures are all inside

$$
E=\{x+i y: \max \{|x|,|y|\}<100\} .
$$

Prove that we cannot find a holomophic map from the open set E to itself (does not need to be one-to-one or onto) such that $f\left(\partial \Omega_{1}\right)=\partial \Omega_{2}$ and $f(0)=0$.

Note: If we consider Ω_{1} and Ω_{2}, according to the Riemann mapping theorem, there does exits conformal/bi-holomorphic mapping between Ω_{1} and Ω_{2}.
$6.5(\star)$ In \mathbb{C}, let Ω_{1} and Ω_{2} be defined the same as above. Prove that there exists a biholomorphic/conformal map

$$
f: \Omega_{1} \longrightarrow \Omega_{2}
$$

such that $f(0)=0$. You can use the Riemann mapping theorem direclty, which states that any simply connected proper open subset of \mathbb{C} is biholomorphic/conformal equivalent to the open unit disk of \mathbb{C}.
6.6 (\star) In the region $\Omega=C \backslash\{0\}$, consider the function

$$
f: \Omega \longrightarrow \mathbb{C}, \quad z \mapsto z+\frac{1}{z}
$$

It is easy to see that f is holomorphic on Ω.
Let $S=\{z \in \Omega:|z|=2\}$. Prove that $f(S)$ is an ellipse.
Hint: It should be easy.

Remark: In the setup of Problem 6, the domain for holomorphic functions are regions without any holes inside. For this Problem 6.6, there is a hole $z=0$ in the domain. That one single hole makes all the differences.
7. (\star) Let D be a non-empty open set in \mathbb{C}. If D is connected, prove that D is path connected.

Hint: For any $a \in D$, use E_{a} to denote $\{x \in D$: There exists a path in D connecting a and $x\}$. First show that each E_{a} is open. Then for any $a, b \in D$, show that we do not have much choice on the relation between the two sets E_{a} and $E_{b} \ldots$

Remark: Based on this result, any region in \mathbb{C}, which can typically be used as the domain for holomorphic functions, must be path-connected.
$7.5(\star)$ Let X be a topological space. We say that X is locally path-connected if there exists a topological basis $\left\{A_{i}\right\}_{i \in \mathcal{A}}$ of this topological space X such that each A_{i} is path-connected.

Prove the following: If the topological space X is connected and locally path-connected, then X is path-connected. That is, for topological spaces that are locally path-connected, "connectedness" and "path-connectedness" are just equivalent.
8. ($\star \star$) Let M be a m-dimentional real differential manifold. We say that the differential manifold M is orientable, or equivalently, M allows an orientation, if there exists a degree m exterior differential form Ω on M, such that Ω avoids zero everywhere in M. By Ω is a degree m exterior form on M, we mean Ω is a continuous section of $\wedge_{i=1}^{m} T^{*} M$, where $T^{*} M$ is the cotangent bundle of M and \wedge is the outer derivative contatenation.

As M is a differential manifold, we can write $M=\bigcup_{i \in \mathcal{A}} D_{i}$, where each D_{i} is diffeomorphic to an open subset in \mathbb{R}^{m}. Use φ_{i} to denote the diffeomorphism from D_{i} to the corresponding open set in \mathbb{R}^{n}. Note that φD_{i} is an open subset in \mathbb{R}^{n}. Thus $\varphi\left(D_{i}\right)$ is orientable (why?).

Prove that M is orientable if and only if there exists a class of m-forms $\left\{\omega_{i}\right\}_{i \in \mathcal{A}}$, such that each ω_{i} is defined locally on $\varphi\left(D_{i}\right), \omega_{i}$ avoids 0 everywhere in $\varphi\left(D_{i}\right)$, and for any $i, j \in \mathcal{A}$ with $D_{i} \bigcap D_{j} \neq \emptyset$, the two forms ω_{i} and ω_{j} are compatible. By "two forms ω_{i} and ω_{j} are compatible", we mean the following: Restricted on $D_{i} \bigcap D_{j}$, if we write $\omega_{i}=f \cdot d x_{1} \wedge \cdots \wedge d x_{n}$ and $\omega_{j}=g \cdot d y_{1} \wedge \cdots \wedge y_{n}$, then

$$
\frac{f}{g} \cdot \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial x_{1}}{\partial y_{1}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}} \\
\cdots & \cdots & \cdots \\
\frac{\partial x_{1}}{\partial y_{1}} & \cdots & \frac{\partial x_{1}}{\partial y_{n}}
\end{array}\right)>0 \text { everywhere in } D_{i} \bigcap D_{j} .
$$

Hint: Partition of the constant function 1, as mentioned in class. This technique is useful for both "gluing up" local properties into properties on the whole manifold and "passing" properties on the whole manifold to local open neighborhoods.
8.1 (\star) Let M be any Riemann surface. That is, M is a one-dimensional complex manifold. It can be regarded as a two dimensional real manifold in the natural way. Besides, as holomorphic maps are automatically C^{∞} maps, it follows that we can regard M as a ${ }^{*}$ smooth* two dimensional real manifold. With the terminology of orientation defined as above, prove that the Riemann surface M, when viewed as a two dimensional real manifold, does allow an orientation.
9. (\star) Let Ω be a region in \mathbb{C}, and let E be a Banach space. Let

$$
f: \Omega \longrightarrow E
$$

be a map. We say that this map f is weakly holomorphic, if for any $L \in E^{*}$, the map

$$
L \circ f: \Omega \longrightarrow \mathbb{C}
$$

is a holomorphic function in the usual sense. We say that the map f is strongly holomorphic, if for any $a \in \Omega, f$ is differentiable at a. By " f is differentiable at a ", we mean there exists $S_{a} \in E$, such that

$$
f(z)-f(a)=S_{a} \cdot(z-a)+o(z-a) \text { as } \quad z \rightarrow a
$$

That is,

$$
\lim _{z \rightarrow a} \frac{\left\|f(z)-f(a)-S_{a} \cdot(z-a)\right\|}{|z-a|}=0 .
$$

In this case, S_{a} is called the derivative of f at a, which is denoted as $f^{\prime}(a)=S_{a}$.
Do the following:

1) Show that if such S_{a} exists, then it is THE derivative of f at a. That is, the derivative of f at a, if exists, must be unique.
2) If $f: \Omega \rightarrow E$ is strongly holomorphic on Ω, prove that f is also weakly holomorphic. Note: This should be kind of straightforward. Show the details.
9.5 ($\star \star \star$) With the same setup as above, prove that if $f: \Omega \rightarrow E$ is weakly holomorphic on Ω, then f is also strongly holomorphic on Ω.

Hint: Just recall how we prove in class that if a function $g: \Omega \rightarrow \mathbb{C}$ is holomorphic, then it is analytic. The main thing in the proof is to write g as certain proper form of the complex integration of a fraction with the numerator being a L^{1} "function" and the denominator being things like $\xi-z$, where ξ is the phony/nominal variable used for the complex integration.

Keywords of some math you might need on the way: Vector-valued Riemann integrations, HahnBanach Theorem, power series with coefficients taken from a Banach space, etc.

