
HW # 6 Due on Jan. 6th 2016.

1. Let (X,M, µ) be a measure space. For p ∈ [1,+∞], assume {fn} is a sequence of functions in

Lp(X,M, µ) and f is a measurable function such that fn
µ−→ f . This is the set-up shared by all the

questions below.

i) In case p = +∞, does it follow that f is in L∞(X)? If so, prove it. If not, give a counter example.

ii) Assume in extra that µ(X) < ∞, do i).

iii) For a given p ∈ [1,+∞), does it follow that f is in Lp(X)? Does your answer depend on this

p ∈ [1,+∞)? Why? A proof or counter example is needed.

iv) Assume in extra that µ(X) < ∞, do iii).

v) With no such requirements as µ(X) < ∞, for p ∈ [1,+∞), if there exists g ∈ Lp(X), such that

|fn| ≤ |g| for all n ∈ N≥1, does it follow that f ∈ Lp(X)? If so, prove it. If not, give a counter example.

2. Let (X,M, µ) be a measure space. Let p ∈ (1,+∞). If there are functions {fn}n∈N and f in

Lp(X), such that ∥fn − f∥p → 0 as n → ∞, prove that fn
µ−→ f as n → ∞.

2.5 Let [0, 1] be equipped with the Lebesgue measure µ. Let p ∈ (1,+∞). Construct a sequence of

measurable functions fn, such that ∥fn − 0∥p → 0, but we do not have fn → 0 pointwise a.e. on [0, 1].

Note: Recall the stuff covered in class, this result also implies that there is a subsequence of {fn} that

converges pointwise a.e. to a measurable function.

2.6 Let [0, 1] be equipped with the Lebesgue measure µ. Fix p ∈ (1,+∞). Construct a measurable

function f and a sequence of measurable functions fn, such that fn → f pointwise, but we do not have

∥fn − f∥p → 0 as n → ∞.

2.7 Let [0, 1] be equipped with the Lebesgue measure µ. Fix p ∈ (1,+∞). Construct a measurable

function f and a sequence of measurable functions fn, such that fn
µ→ f , but we do not have ∥fn − f∥p →

0 as n → ∞.

3. Let H be a Hilbert space. Prove/check/verify/whatever the parallelogram law. That is, for any
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x, y ∈ H, we have

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

4. Let H be a complex Hilbert space. Prove the polarization identify. That is, for any x, y ∈ H, we

have

⟨x, y⟩ = 1

4

4∑
j=1

(
√
−1)j

∥∥∥x+
√
−1

j
y
∥∥∥2 .

5. Let M be a normed space. Use D to denote {x ∈ M : ∥x∥ ≤ 1}. Prove that D is a convex set.

Note: Combined with the “unit disk” we described for Lp-spaces in class, this explains why Lp(X) might

not be a normed space when p ∈ (0, 1).

6. In the first assignment, we proved that R2 cannot be covered by countably many straight lines.

Now, use the Baire Category Theorem to prove this result again.

Remark 1: In the first assignment/homework, you are supposed to give a rudimentary proof of

the fact that “R2 cannot be covered by countably many straightly lines”. Mathematically speaking,

that rudimentary proof is based on two facts: Fact 1, every real quadratic function has at most two

real solutions. Fact 2, a circle in R2 contains uncountably many points. None of these two facts needs

the Axiom of Choice. Thus that rudimentary proof does not rely on the Axiom of Choice. The Baire

Category Theorem we covered in class (for complete metric spaces), however, does assume the Axiom

of Choice (or certain weaker form: the Axiom of Dependent Choice) in the proof. So a proof to this

problem 6 using that Baire Category Theorem is different from the above mentioned rudimentary proof

in the sense that the proof here (the one using the Baire Category Theorem covered in class) need to

assume certain version of choice axioms, while the rudimentary proof you have done in the first assgiment

does not.

Remark 2: If you really want to prove the fact in problem 6 using the Baire Category Theorem but

not assuming any choice axioms (that is, your proof is based on ZF model only), that is doable. The

fact is, the Baire Category Theorem for R (not for general complete metric spaces now) can be proved

without using any choice axioms. The main thing here is that R is separable. The proof is not so hard
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if you have some understanding of choice axioms, but it is way beyond this course and we will stop here.

7. As is mentioned in class, while considering R with the usual topology, Q is not a Gδ set. Prove

this fact. Also, show that R−Q is a Gδ set (this should be much easier).

Note: If you worked out this problem, you had also shown that R−Q is not a Fσ subset in R. Why?

Hint: The Baire Category Theorem and its consequences.

7.5 This is related to one of the homework problems in Rudin’s book. The original problem is like

this: Does there exists a sequence of continuous function {fn} on R (equipped with the usual topology),

such that fn(x) → +∞ if and only if x ∈ Q? Does there exists a sequence of continuous function {fn}

on R (equipped with the usual topology), such that fn(x) → +∞ if and only if x ∈ R−Q?

We start with relatively simple cases. We first assume that {fn} is an increasing sequence of

continuous functions on R.

1) Prove the following: Given a sequence of continuous functions {gn} on R, and given x ∈ R,

“gn(x) → +∞” does not happen if and only if there exists certain N ∈ N, and certain subsequence

{nk : k ∈ N} such that

x ∈
∞∩
k=1

{t ∈ R : gnk
(t) ≤ N} .

2) Based on the result in 1), prove the following: Given an increasing sequence of continuous

functions {fn} on R, and given x ∈ R, “fn(x) → +∞” does not happen if and only if there exists certain

N ∈ N such that

x ∈
∞∩
n=1

{t ∈ R : fn(t) ≤ N} .

3) Assume {fn} is an increasing sequence of continuous functions on R. Prove that the subset

formed by all those x satisfying limn→∞ fn(x) = +∞ is a Gδ set.

4) Prove that we can not find an increasing sequence of continuous functions {fn} on R, such that

fn(x) → +∞ if and only if x ∈ Q.

We consider the case that {fn} is just a sequence of continuous functions on R, not surely an

increasing sequence. We assume that there exists function f (not necessarily continuous) on R, such
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that limn→ fn(x) = f(x) for all x ∈ R.

5) Let {fn} be a sequence of continuous functions on R. Assume that there exists f : R → [−∞,+∞]

such that limn→ fn(x) = f(x) for all x ∈ R. In other words, for each x ∈ R, limn→∞ fn(x) always exists.

Prove that for any r ∈ R, we have

{x : f(x) < r} =
∞∪

K=1

∞∪
N=1

∞∩
n=N+1

{
x : fn(x) ≤ r − 1

K

}
.

Remark: Following the proof of 5), for a sequence of continuous functions {fn} on R such that

limn→∞ fn(x) always exists for all x ∈ R, we can show that {x : f(x) < +∞} is a Fσ set in R. In fact,

we just need to note that

{x : f(x) < +∞} =
∞∪

K=1

∞∪
N=1

∞∩
n=N+1

{x : fn(x) ≤ K} .

As we already know that R−Q is not Fσ, we can claim immediately:

“ For a sequence of continuous functions {fn} on R such that limn→∞ fn(x) always exists for all

x ∈ R, it is impossible that fn(x) → +∞ if and only if x is a rational number. ”

Now, we consider the original case in Rudin book. That is, {fn} is just a sequence of continuous

functions on R, not surely an increasing sequence or a decreasing sequence of functions, and we do not

know anything about the existence of limn→∞ fn(x) for x ∈ R.

6) Prove the following: Let {fn} be a sequence of continuous functions on R. Then

{x : fn(x) → +∞} =
∞∩

M=1

∞∪
N=1

∞∩
n=N+1

{t : fn(t) ≥ M}.

Remark: As each fn is continuous,
∩∞

n=N+1{t : fn(t) ≥ M} is always closed. Thus {x : fn(x) →

+∞} is a countable intersection of Fσ sets. Use Fσδ to denote the set of all the sets that can be written

as a countable intersection of Fσ sets. Under this notation, we can say that {x : fn(x) → +∞} is a Fσδ

set. Given a sequence of continuous function fn, 6) says that
∩∞

n=N+1{t : fn(t) ≥ M} is always Fσδ.

A known result is: In R with the usual topology, if a subset D is Fσδ, then there exists a sequence of

continuous functions fn on R, such that
∩∞

n=N+1{t : fn(t) ≥ M} = D. With this in mind, note that
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both Q and R−Q are Fσδ, it follows immediately that there exists one sequence of continuous functions

fn and another sequence of continuous functions gn, such that fn(x) → +∞ if and only if x is rational,

and gn(x) → +∞ if and only if x is irrational.

8. In real analysis, the example of a function on R (or [a, b]) that is continuous but nowhere

differentiable is quite classical. You can find concrete constructions in most of the textbooks. Now, we

just consider the space of continuous functions on [0, 1]. The standard fact is: “most” of the functions

in C[0, 1] are nowhere differentiable. By “most”, we mean a subset of second category.

In C[0, 1], define the metric/distance to be

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

It is a well-known fact that (C[0, 1], d) is a complete metric space (why?). Thus (C[0, 1], d) is of second

category.

In this complete metric space, use Fn to denote all those functions f ∈ C[a, b], such that there exists

one point (say, x) in [0, 1], satisfying ∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ n

for all y ∈ [0, 1]− {x} with |y − x| < 1/n.

Prove the following:

1) For a function f ∈ C[0, 1], if f is differentiable at at least one point, then f ∈
∪∞

n=1 Fn.

2) Each Fn is a closed subset in the metric space (C[0, 1], d).

3) Each Fn has empty interior.

4) In (C[0, 1], d), the subset formed by those function g that is nowhere differentiable is of second

category. Note: In fact, as each g in (
∪∞

n=1 Fn)
c is nowhere differentiable, one just need to show that

(
∪∞

n=1 Fn)
c is of second category.

Note: The following problems (9, 9.5, 10, 10.5, 10.6 and 10.7) might help you to better understand

some differences between the geometries on metric spaces and the geometries on norm spaces.

9. Let (X, d) be a metric space.

5



1) For any r > 0 and for any a ∈ X, prove that

{x : d(x, a) < r} ⊂ {x : d(x, a) ≤ r}.

2) In general, with the same setup as above, we shall not expect to have

{x : d(x, a) < r} = {x : d(x, a) ≤ r}.

Construct a metric space to show this phenomenon.

Hint: Consider the case the metric space is discrete.

9.5 Let (M, ∥·∥) be a normed space. For any a ∈ M and r > 0, prove that

{x : ∥x− a∥ < r} = {x : ∥x− a∥ ≤ r}.

Note: You just need to prove for the case a = 0.

10. In a normed space (M, ∥·∥), use Bx(r) to denote the open ball {y ∈ X : d(y, x) < r}, where

d(x, y) is defined to be ∥x− y∥ for x, y ∈ M . If there exist x1, x2 ∈ M and r1, r2 ∈ R>0 such that

Bx1(r1) ⊂ Bx2(r2),

does it follow that r1 ≤ r2? If so, prove it. If not, find a counter example.

10.5 Construct a metric space (X, d), such that we can find x1, x2 ∈ X and r1, r2 ∈ R>0, such that

Bx1(r1) ⊂ Bx2(r2)

but r1 > r2, where Bxi
(ri) is defined to be {y ∈ X : d(y, xi) < ri} for i = 1, 2.

10.6 Construct a metric space (X, d), such that we can find x1, x2 ∈ X and r1, r2 ∈ R>0, such that

Bx1(r1) ( Bx2(r2)
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but r1 > r2, where Bxi
(ri) is defined to be {y ∈ X : d(y, xi) < ri} for i = 1, 2.

Hint for 10.5 and 10.6: The statement in problem 10.7 and 10.8, which you are supposed to

prove. It might help.

10.7 Let (X, d) be a metric space. For any x1, x2 ∈ X and r1, r2 ∈ R>0, assume that

Bx1(r1) ⊂ Bx2(r2),

where Bxi
(ri) is defined to be {y ∈ X : d(y, xi) < ri} for i = 1, 2. Prove that

Bx1(r1) ⊂ Bx1(2r2).

Remark: In a metric space (X, d), if Bx(r1) ⊂ Bx(r2), in general, there is nothing we can say about

the relationship between r1 and r2. For example, consider the case X is made up of one point x. Then

for any r1 > 0 and any r2 > 0, we have Bx(r1) ⊂ Bx(r2).

Note: This form of problem 10.8 owes credit to one of the students’ suggestions during the office

hour.

10.8 Let (X, d) be a metric space. For any x1, x2 ∈ X and r1, r2 ∈ R>0, assume that

Bx1(r1) ( Bx2(r2),

where Bxi
(ri) is defined to be {y ∈ X : d(y, xi) < ri} for i = 1, 2. Prove that

r1 ≤ 2r2.

Hint: If we just have Bx1(r1) ⊂ Bx2(r2) instead of Bx1(r1) ( Bx2(r2), according to the Remark

above, we shall not always expect to get r1 ≤ 2r2 (in fact, there is almost nothing we can say about the

relation between r1 and r2 in general). So, it should not be so surprising that your proof should start

with something like “Choose y ∈ Bx2(r2)−Bx1(r1)”.

11. A metric space (X, d) is separable if it has a countable dense subset.

1) For the metric space (X, d), and for x ∈ X and r > 0, use Bx(r) to denote the open ball
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{y ∈ X : d(y, x) < r}. Assume that we can find an uncountable subset {xi}i∈A in X, and {ri}i∈A ∈ R>0,

such that for any pair of distinct i, j ∈ A, the open balls Bxi
(ri) and Bxj

(rj) are disjoint. Prove that

(X, d) is not separable.

2) For the metric space (X, d), if we can find an uncountable subset {xi}i∈A in X, such that for any

index i, j ∈ A,

d(xi, xj) =

 1 i ̸= j

0 i = j
,

prove that (X, d) is not separable.

3) Let N be equipped with the counting measure µ. Prove that L∞(N, µ) is not separable.

4) Let [0, 1] be equipped with the Lebesgue measure µ. Prove that L∞([0, 1], µ) is not separable.

12. This is about Gδ and Fσ sets, about sets of first category and sets of second category, and how

the Baire Category Theorem can come into play.

1) Consider R with the usual topology. First prove that [0, 1) is a Gδ set. Then prove that [0, 1) is

also a Fσ set. Note: This is a non-trivial (not ∅, not R) example of a set which is both Gδ and Fσ.

Note: For R with the usual topology, do you have examples of a set that is Gδ but not Fσ? Fσ but

not Gδ? I think it is already covered in class or homework assignments.

2) Consider R with the usual topology. Surely there are sets that is neither Gδ nor Fσ. For example,

as Gδ sets and Fσ sets are all Borel sets, and all Borel sets are Lebesgue measurable, it immediately

follows that all the non-measurable sets are neither Gδ nor Fσ. According to problem 10 of homework

3, we have sets that is Lebesgue measurable but not Borel. That is, we have those sets that is Lebesgue

measurable but is neither Gδ nor Fσ (because they are not Borel). Now, we keep pushing forward.

Consider R with the usual topology, can you construct a Borel subset in R, such that it is neither Gδ

nor Fσ? (This is an optional problem. It is totally OK if you cannot figure it out.)

Hint: As for R with the usual topology, you already know examples of a set A which is Gδ but not

Fσ, and you also know examples of a set B that is Fσ but not Gδ. Can you “combine”/“mix” these two

sets A and B together to get a set which is a Borel set, but neither Gδ nor Fσ?

3) Let (X, d) be a metric space (not necessarily complete). Let D be a Fσ subset of X. Prove/show
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that D is either of first category or has non-empty interior (that is, there exists x ∈ X and r > 0, such

that {y ∈ X : d(y, x) < r} ⊂ D).

4) Let X be a topological space. Note that subsets of first category and subsets of second category

can still be defined on this topological space X. Just that we can not apply the Baire Categor Theorem

and claim that X is of second category. Let E ⊂ X be a subset of first category. Prove that every

subset of E is also of first category. Let F ⊂ X be a subset of X, prove that every superset of F (that

is, every set containing F as a subset) is also of second category.

5) For a topological space (X, π), we say that it is completely metrizable if there exists a metric space

(Y, d), such that the metric space (Y, d) is complete and the topological space (X, π) is homeomorphic to

the topological space (Y, πd), where πd is the topology on Y induced by the metric d. As you have already

seen in homework 5, (0, 1) with usual topology is completely metrizable because (0, 1) is homeomorphic

to R with the topology derived from the usual distance/metric structure d in R, and it is a well known

fact that the metric space (R, d) is complete. Given those background above, consider Q with the usual

topology πQ, which is restricted from the usual topology on R. If we consider the usual metric/distance

structure d0 on Q defined as d0(x, y) = |x − y| for all x, y ∈ Q, it is clear that the topology derived

from the metric d0 is exactly πQ and the metric space (Q, d0) is not complete. Prove that there is no

metric structure d on Q such that the topology derived from this metric d is exactly πQ and the metric

space (Q, d) is complete. In other words, prove that the topological space (Q, πQ) is not completely

metrizable.

Hint: Assume the opposite, and apply the Baire Category Theorem.

*13. The Riesz Representation Theorem as an exercise. This is an optional long exercise, not

difficult to figure out the outline of the proof (assuming you have a good understanding of how the

Caratheodory Extension Theorem works, especially about the part on how to derive a measure from

an outer measure). It does require some work, but the outline is clear and just follows that of the

Caratheodory Extension Theorem. Some sketches and remarks will be given. If interested, you can

follow those sketches/remarks, connect the dots, and get the complete picture of the proof for the Riesz

Representation Theorem, which, from certain point of view, is about deriving measure structures from

certain topological structures (via a bounded positive linear functional).
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Remark: The purpose of this problem/reading stuff is to show that the Riesz Representation

Theorem you have seen in the Rudin book is nothing but a form of the standard Caratheodory Measure

Extension approach. Although the approach to the Riesz Representation Theorem in Rudin book

might look different from the Caratheodory Extention approach at first glance, they are just equivalent

mathematically.

Theorem (Riesz Representation Theorem) Let X be a locally compact Hausdorff space. Let

L : Cc(X) → R be a positive linear functional on Cc(X) which is bounded on all the subspaces Cc(X)K ,

where K is a compact subset of X and Cc(X)K is defined as {h : h ∈ C(X), supp(h) ⊂ K}. By “L is

positive”, we mean L(f) ≥ 0 for any positive function f ∈ Cc(X). Then there exists a unique measure

µ on X, such that µ is complete, both inner regular (when restricted to compact subsets) and outer

regular for all measurable sets (see Rudin book for detailed definitions), and for any g ∈ Cc(X), we have

L(g) =
∫
X
g dµ.

We will just focus on the main thing of the Riesz Representation Theorem, that is, how to derive

such a measure. The hints/comments we give here does not closely follow the approach in Rudin book.

Instead, it follows the line of the lectures in our class, that is, the process related to Caratheodory

Extension Theorem.

Step 0:

The requirement that “L is bounded on all the subspaces Cc(X)K” is redundant. In fact, we will

show that any positive linear functional on Cc(X) is automatically bounded on those Cc(X)K , where K

is a compact subset.

To achieve this, as X is locally compact and Hausdorff, noting that for any compact set K of X,

according to the result in problem 13 of homework 5, which is also a key result used to show the

Urysohn’s Lemma, we can find an open set U containing K, such that its closure U is also compact. In

that case, we have (note that U is also compact)

K ⊂ U ⊂ U ⊂ X.

With this in mind, by Urysohn’s Lemma, we can construct a continuous positive function f such that
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f |U = 1. For any h ∈ Cc(X)K , we then have supx∈K |h(x)| < +∞. It is obvious that h+ ≤ supx∈K |h(x)|

and h− ≤ supx∈K |h(x)|. As K ⊂ U ⊂ U , one can check that

0 ≤ h+ ≤ sup
x∈K

|h(x)| · f and 0 ≤ h− ≤ sup
x∈K

|h(x)| · f.

Note that the functional L is positive. Then we have (why?)

0 ≤ L(h+) ≤ sup
x∈K

|h(x)| · L(f) and 0 ≤ L(h−) ≤ sup
x∈K

|h(x)| · L(f).

As L(f) ∈ R, it must be finite. So far, we have proved that

|L(h)| = |L(h+ − h−)| = |L(h+)− L(h−)| ≤ |L(h+)|+ |L(h−)| ≤ 2 · sup
x∈K

|h(x)| · L(f)

for all h ∈ Cc(X)K .

Step 1: We start with constructing a pre-measure µ0 on certain “simple” subsets of X, just like

defining the pre-measure of [a, b) to be b−a while deriving the Lebesgue measure using the Caratheodory

Extension Theorem. In our case, we try to define µ0 on all the open sets of X. To be precise, for any

open set D, we define µ0(D) to be

µ0(D) = sup{L(f) : f : X → [0, 1], ∃ certain compact subset K in D, such that f |X−K = 0 }.

For this µ0, easy to check that µ0(∅) = 0 and µ0(A) ≤ µ0(B) if A ⊂ B.

Step 2: Just like how the outer measure on R is defined in the constructure of the Lebesgue measure

on R, for any subset E of X, we define the outer meaure λ of E to be (different from the one in Rudin

book, but can be proved later that these two definitions are the same)

λ(E) = inf
{

∞∑
i=1

µ0(Di) : each Di is open and E ⊂
∞∪
i=1

Di

}
.

As is already covered in class, this λ is automatically an outer measure. So far, we are not yet

sure that λ = µ0 when restricted to the set of open subsets in X, and that is where the Caratheodory

Extension Theorem will come into play.
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Step 2.1

If you check the approach in Rudin book, you will realize a slight “difference” in the definition of

the outer measure λ. In Rudin book, for any subset E of X, the outer measure, denoted here as λ′, is

defined as:

λ′(E) = inf {µ0(D) : D is open and E ⊂ D} .

These two definitions of outer measures are equivalent here. That is, for any subset E, we have

λ(E) = λ′(E). To show this, we just need to proof the following claim.

Claim: With the setup as above, for any open subset D and a sequence of open subsets Di, such that

D ⊂
∪∞

i=1Di, we have

µ0(D) ≤
∞∑
i=1

µ0(Di).

Sketchy proof: To prove this claim, we just need to following the definitions. To achieve µ0(D),

just consider a continuous functions f : X → [0, 1] such that supp(f) is a subset of certain comapct

set K, with K ⊂ D and with L(f) “close” to µ0(f). As f is supported on a compact subset K,

K ⊂ D ⊂
∪∞

i=1 Di, we can find a finite subcovering of K, say K ⊂
∪∞

i=K Di. As X is locally compact

and Hausdorff, we can (check Rudin book for details) write f as the sum of fi for 1 ≤ i ≤ K, where

each fi is continuous and is supported inside Di. With this in mind, you should be able to finish the

rest of the work and show that µ0(D) ≤
∑∞

i=1 µ0(Di).

Step 2.5

For the µ0 defined above, show that it is finitely additive. That is, if there are two open sets U and

V with U ∩ V = ∅, show that µ0(U ⊔ V ) = µ0(U) + µ0(V ). If this holds true, then we can get finite

additivity on µ0 simply by induction. It is mostly plain verifications, according to the definition of µ0.

You might want to use the facts like this, “If a compact subset K is in U ⊔ V , where both U and V are

open sets, then both K ∩ U and K ∩ V are compact”.

Step 2.6

For the µ0 above, show that it is countably monotonic. If this can be done, combing this with

the results we got in Step 2.5, we have proved that µ really extends µ0. According to the result in

Caratheodory Extension Theorem, we just need to show that µ0 is finitely additive and countably

monotone.
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As for finite additiveness, for any finite disjoint open sets D1, · · · , Dn, we need to show that

µ0

(
n⊔

i=1

Di

)
=

n∑
i=1

µ0(Di).

It is trivial to show that
∑n

i=1 µ0(Di) ≤ µ0 (
⊔n

i=1Di) using definitions (why?). It just remains to show

µ0

(
n⊔

i=1

Di

)
≤

n∑
i=1

µ0(Di),

which is mainly about checking against definitions. That is, according to the definition of µ0, µ0 (
⊔n

i=1Di)

equals .... . Some math you might want to use is 1) every open covering of a compact set contains a finite

subcovering, and 2) on a locally compact Hausdorff space X (which implies that X is paracompact), a

continuous function f which is defined/supported on a finite union of open sets, say,
∪n

i=1 Ui, can be

written as the sum of functions fi, such that each fi is supported on the corresponding Ui only.

Step 3:

As like the standard process we had done in class, this above defined λ might not be a measure on

P(X), but it will be a measure when restricted to a subset M of P(X). Here we have E ⊂ M if

λ(A) = λ(A ∩ E) + λ(A ∩ Ec) for all A ⊂ X.

As is covered in the Caratheodory Extension Theorem, when restriected on M, the λ is really a

measure. We use µ to denote this measure. That is,

µ = λ |M .

Now, it remains to show some important properties of this measure (µ,M).

Step 4:

Check that each Borel set is measurable. That is, for any Borel set D, we have

λ(A) = λ(A ∩D) + λ(A ∩Dc)
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for all subset A of R.

In fact, recalling that those measurable sets (in the sense above) form a σ-algebra (check your notes

on Caratheodory Extension Theorem related stuff for details), we just need to show that every open set

is measurable. That is, for any open set E and for any subset A of R, we have

λ(A) = λ(A ∩ E) + λ(A ∩ Ec).

We can prove the following claim first.

Claim: For any set A and any ϵ > 0, there exists an open set U such that U ⊃ A, and |λ(A ∩ B)−

λ(U ∩B)| < ϵ for all the subsets B.

Sketch of the proof: We can use the definition of λ to find an open set U such that A ⊂ U and

|λ(A) − λ(U)| < ϵ. Note that the outer measure λ is subadditive, and we can check that this U is the

desired one.

With that claim in mind, we just need to show that for any given open set E and any open set U of

R, we have

λ(U) = λ(U ∩ E) + λ(U ∩ Ec).

If that is true, with the claim above, we can show that λ(A) = λ(A∩E) + λ(A∩Ec) for any subset

A. Thus any open set U is measurable.

In fact, as the outer measure µ is subadditive, we just need to check that

λ(U ∩ E) + λ(U ∩ Ec) ≤ λ(U).

This is relatively easy to check. Just note that U ∩ E is also open, and we can find, for any given

ϵ > 0, a compact subset K in U ∩ E, such that there exists a continuous function f : X → [0, 1] such

that the support of f is inside K, and

λ(U ∩ E)− ϵ ≤ L(f) ≤ µ0(U ∩ E) = λ(U ∩ E).

As X is Hausdorff, the compact subset K is also closed. Thus Kc is open. As U ∩Kc is open and

U ∩Kc ⊃ U ∩ Ec, according to the definition of λ(U ∩ Ec), we can find a compact subset F in U ∩Kc

and a continuous function g : X → [0, 1] such that the support of g is inside F and
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λ(U ∩ Ec)− ϵ ≤ L(g) ≤ µ0(U ∩ Ec) = λ(U ∩ Ec).

Now, it should be easy to show that λ(U ∩ E) + λ(U ∩ Ec) ≤ λ(U).

Step 5:

For each compact subset K, show that µ(K) < +∞. We can borrow the proof of the same fact from

Rudin book, and it will work without problem. That is because the proof only needs the fact that as L

is a positive linear functional, it is automatically bounded on the set of continuous functions with any

given compact support. A sketchy proof of this fact can be found in Step 0.

Also, following the sketchy proof in Step 0, we can directly deduce the that µ(K) < +∞ for any

compact subset D, without having to borrowing anything from the proof on Riesz Representation

Theorem in Rudin book.

Note that we can use µ(K) as we can now safely claim that every compact set K is measurable in

the above sense as in Step 3. This is because that in this Hausdorff space X, every compact space is

closed, thus lies in the σ-algebra generated by the open sets.

Step 6:

In the proof of the Riesz Representation Theorem in Rudin book, the set of measurable subsets of

X is definely “differently” compared with the definition here of M in Step 3. This difference is not

essential. These two definitions of “measurability” are equivalent, as we will show in this step.

For simplicity, we just assume the total space X is compact. If not, with slightly more work, parallel

arguments will get the job done.

First, if a subset D is measurable in the sense as the part of Riesz Representation Theorem of Rudin

book, we have

λ(D) = λ(D),

where

λ(D) = sup{λ(K) : K is compact and K ⊂ D}

and

λ(D) = inf{λ(U) : U is open and U ⊃ D}.

Note that this λ is the same as the λ we defined above. We use this notation λ to better indicate its
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relation with λ.

Now, assume a subset D is measurable in the sense of Rudin book, we will show that it is also

measurable in the sense of our defintion above. That is, for any subset A, we have

λ(A) = λ(A ∩D) + λ(A ∩Dc).

As λ is an outer measure, we just need to show

λ(A ∩D) + λ(A ∩Dc) ≤ λ(A).

Note that, in general, we shall not expect any of the following three equations to hold true: λ(A∩D) =

λ(A ∩D), λ(A ∩Dc) = λ(A ∩Dc) and λ(A) = λ(A).

As D is measurable in the sense of Rudin book, and as X is compact, it follows (why?) immediately

that Dc is also measurable in the sense of Rudin book. Also, it is proved in Rudin book that every open

set is measurable in the sense of Rudin book. That is, for every open set E in X, we have λ(E) = λ(E).

Besides, if two subsets are measurable in the sense of Rudin book, it is proved in Rudin book that their

intersection is also measurable in the sense of the Rudin book.

Now, back to what we need to do: prove that λ(A ∩D) + λ(A ∩Dc) ≤ λ(A).

Key step: Following the observation in Step 4, we just need to prove λ(A∩D)+λ(A∩Dc) ≤ λ(A)

in case A is an open subset.

Note that A, D and Dc are all measurable in the sense of Rudin book, thus so is A, A ∩ D and

A ∩Dc. Then we have

λ(A ∩D) + λ(A ∩Dc) ≤ λ(A) ⇐⇒ λ(A ∩D) + λ(A ∩Dc) ≤ λ(A)

Note that (A∩D)
∩
(A∩Dc) = ∅ and (A∩D)

∪
(A∩Dc) = A, from the definition of λ, it follows (why?)

that

λ(A ∩D) + λ(A ∩Dc) ≤ λ(A),

for every open set A (thus eventually for every subset A. See Step 4 for details).

So far, we have shown that if a subset is measurable in the sense of the Rudin book, then it is

measurable in the sense of our Caratheodory Extension Theorem approach here, as stated in Step 3.
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Now, we will show that if a subset D is measurable in the sense of our Caratheodory Extension

Theorem approach as in Step 3, then it is measurable in the sense of the Rudin book (i.e, λ(D) = λ(D)).

From the definition of λ and λ, we have the following claim, whose proof is just checking against

definitions.

Claim: For *any* subset H of X, we have λ(H) + λ(Hc) = λ(X).

Now, the proof. Assume that E is measurable in the sense of Step 3. Will show that λ(D) = λ(D).

As E is measurable in the sense of Step 3, we have

λ(X) ≥ λ(D) + λ(Dc).

As X is assumed to be compact, we can prove (why?) that

λ(X) = λ(X) = λ(X).

To show that λ(D) = λ(D), we just need to show λ(X) ≤ λ(D) + λ(Dc). In fact, if so, then

λ(X) ≥ λ(D) + λ(Dc)

≥ λ(D) + λ(Dc)

≥ λ(X)

= λ(X).

Thus it follows that λ(D) = λ(D), which finishes the proof. In fact, the reasoning above also indicates

that λ(Dc) = λ(Dc).

It only remains to show that λ(X) ≤ λ(D) + λ(Dc). A stupid proof is like this: According to the

assumption, we have λ(X) ≥ λ(D) + λ(Dc). According to the definition of λ, for any ϵ > 0, we can find

open sets E1 and E2, such that E1 ⊃ D, E2 ⊃ Dc, and λ(E1) + λ(E2) ≤ λ(X) + ϵ. As X is compact,

we know that Ec
1 and Ec

2 are compact subsets in X. Besides, Ec
1 ⊂ Dc and Ec

2 ⊂ D. According to the
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Claim above, we have

λ(Ec
1) + λ(Ec

2) = λ(X)− λ(E1) + λ(X)− λ(E2)

= λ(X) +
(
λ(X)− λ(E1)− λ(E2)

)
≥ λ(X)− ϵ

= λ(X)− ϵ.

Let ϵ → 0, and we are done.

Note: A smarter proof can be done as follows: As λ(X) ≥ λ(D) + λ(Dc), according to the Claim

above, we have

λ(X)− λ(∅) ≤ (λ(X)− λ(Dc)) + (λ(X)− λ(D)).

Thus

λ(D) + λ(Dc) ≤ λ(X) = λ(X).
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