
HW # 4 Due on Dec. 9th 2015.

1. Let X be a metric space.

(1) let A1 and A2 be two disjoint closed subset of X, and let fi (i = 1, 2) be continuous functions

from Xi to R, where the topologies on Xi are just the restricted topology from X to Xi. We define

f1
⊔

f2 : A1 ⊔ A2 → R, x 7→ fi(x) if x ∈ Ai.

Prove that f1
⊔

f2 is continuous, where the topology on A1 ⊔ A2 is the one restricted from X. Note:

You can easily extend this result to the case of finitely many Ais.

(2) Let A1, A2, · · · be a sequence of disjoint subsets of X and let fi : Ai → Y be continuous for all

i ∈ N≥1, where each Ai is equipped with the restricted topology from X. Define
⊔∞

i=1 fi as

∞⊔
i=1

fi : ⊔∞
i=1 Ai → Y, x 7→ fi(x) if x ∈ Ai,

with the topology on ⊔∞
i=1Ai being the restricted topology of X onto the subset ⊔∞

i=1Ai.

Give such an example of those Xis and fis as above, such that although each fi is continuous, but⊔∞
i=1 fi is not continuous.

2. Let f ∈ C[0, 1]. That is, f is a continuous function on [0, 1]. Let u∗ be the Lebesgue measure on

[0, 1]. Prove that ∫ 1

0

f(x) dx =

∫
[0,1]

f dµ∗,

where the left hand side is the Riemann integration and the right hand side is the Lebesgue integration.

Hint: For a continuous funciton, just recall that the Riemann integration equals the infimum of

Darboux upper sums, and it also equals the supremum of the Darboux lower sums.

3. If f : [0, 1] → R is a function which is Riemann integrable, prove that f is also Lebesgue integrable

(in the sense of upper sum equals lower sum) with respect to the Lebesgue measure.

4. Let (X,M, µ) be a measure space and let f be a bounded function from X to R. Assume that f
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is Lebesgue integrable in the sense that U(f, µ) = L(f, µ), where

U(f, µ) = inf
{∫

X

s dµ : s is simple and s ≥ f

}

and

L(f, µ) = sup
{∫

X

s dµ : s is simple and s ≤ f

}
.

Prove that f = g a.e. (with respect to µ), where g is a measurable function. In extra, if the measure µ

is complete, further prove that f must be a measurable function. Note: This result, combined with the

result of problem 5.5, shows that, for bounded functions on a complete measure space, being Lebesgue

measurable is just what is needed for being Lebesgue integrable in the sense of upper sum equals lower

sum.

Hint: Just recall the definition of being Lebesgue measurable, and note the following facts: i) A

simple function is measurable. ii) The inf, sup, lim inf, and lim sup of a sequence of measurable functions

are still measurable. iii) Assume f and g are measurable and f ≥ h ≥ g. If f = g a.e., then h equals a

measurable function a.e. (why? You will need to prove it)

5. In the class, we learned that on a measure space X with µ(X) < ∞, if f is a bounded measurable

function, then f is Lebesgue integrable. f being bounded is not necessary though. Let f : (0, 1] → R be

defined as

f(x) =

 0 x is irrational

q x = p
q
, p and q are coprime.

And assume the measure on (0, 1] is the standard Lebesgue measure µ.

Use the definiton to prove that this f , although being unbounded, is integrable. Besides, show that∫
(0,1]

f dµ = 0.

Note: The f above is not bounded on (0, 1], but it is bounded a.e. on (0, 1].

5.5 Let f and g be two functions on the measure space (X,M, µ), such that f = g a.e. with respect

to µ. Note that the measure µ need not be complete. Prove that f is Lebesgue integrable on X with

respect to µ if and only if g is. Besides, if both (or equivalently, one) are Lebesgue integrable, then∫
X
f dµ =

∫
X
g dµ.
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6. For the function

f : [0, 1] → R, x 7→

 1 x ∈ Q ∩ [0, 1]

0 else.

Prove that f is Lebesgue integrable but not Riemann integrable.

7. In Egorov’s Theorem, we require the measure space (X, π, µ) to have finite measure. In fact, X

being of finite measure is really necessary for Ergorov’s Theorem to hold. To be more precise, even X

being σ-finite cannot ensure the correctness of Ergorov’s Theorem. Construct such an example. That

is, find a measure space (X, π, µ) which is σ-finite, and find {fn}∞n=1 such that fn → f pointwise on X,

but there exists ϵ > 0 such that for any measurable set D of X with µ(D) < ϵ, we do *not* have that

fn converges to f uniformly on X \D.

8. This one is from Rudin’s book. Guess the value of the following integration first, then prove your

conjecture:

lim
n→∞

∫ n

0

(
1− x

n

)n

ex/2 dx.

9. This is about how to approximate measurable functions with simple functions.

(1) Let X be a measure space and let f : X → R be a bounded measurable function. Prove that

there exist a sequence of simple functions {fn}∞n=1 such that fn converges to f uniformly.

(2) Construct a measurable function f : X → R on a measure space X such that no sequence of

simple functions on X can converge to f uniformly. Note that you need to prove the non-existence of

such simple functions.

(3) Let (X,M, µ) be a measure space, and let f be a measurable function. Prove that f can be

written as the uniform convergence limit of simple functions if and only if f is bounded.

Note: In this case, assume fn converges to f uniformly. If we furthur assume that X is of finite

measure, then limn→∞
∫
fn dµ =

∫
f dµ.

(4) Let X be a measure space and let f : X → R be a measurable function (not necessarily bounded).

Prove that there always exists a sequence of simple functions {fn}∞n=1 such that fn converges to f

pointwise on X. That is, fn(x) converges to f(x) as n → ∞ for all x ∈ X.

Note: As is covered in class, if measurable functions fn converge pointwise to a function f , then f
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is also measurable. Combined with the result in (4), we know that a function f is measurable if and

only if it is the pointwise limit of simple functions (that is, there exist simples functions sn such that sn

converge to f pointwise).

10. This is a classical exercise problem for integration. Let f be a bounded measurable function

on [0, 1]. Let µ be the Lebesgue measure on [0, 1]. We then know that f is Lebesgue integrable on

[0, 1] with respect to the measure µ (why?). For any n ∈ Z, consider sin(nx), which is bounded and

continuous. It then follows that f(x) · sin(nx) is measurable (why?) and bounded. Thus f(x) · sin(nx)

is integrable for all n ∈ Z. Now, your turn. Prove that

lim
n→∞

∫
[0,1]

f(x) · sin(nx) dµ = 0 .

Hint: You can start with simple cases first. For example, the case when f is a constant. I believe

you all know how to do this case. Then consider the case f is a simple function. In this case, when

restricted on certain measurable set, f is still a constant. You might argue that measurable set is not as

friendly as [0, 1] or [a, b]. True, but just recall (from somewhere in HW # 3) that as for measurable sets

on R, we do have certain descriptions of them. I will stop here and leave the rest of adventures to you.

10.5 Let f be a bounded measurable function on [0, 1]. Let g be a periodic bounded measurable

function on R with L being the period of g. Let µ be the Lebesgue measure on R.

(1) For any x ∈ R, prove that

∫
R
χ[0,L] · g dµ =

∫
R
χ[x,x+L] · g dµ,

where χ[0,L] and χ[x,x+L] are the characteristic functions on [0, L] and [x, x+ L] respectively.

(2) If we furthur assume that
∫
[0,L]

g dµ = 0, prove that

lim
n→∞

∫
[0,1]

f(x) · g(nx) dµ = 0,

where we abuse the notation and also use µ to denote the restriction of the Lebesgue measure µ on [0, 1].

11. This is another classical exercise problem. Let f be a continuous function on [a, b] and let µ be
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the Lebesgue measure on [a, b].

(1) If
∫
[a,b]

|f | dµ = 0, prove that f = 0 everywhere on [a, b].

(2) Find another measure µ∗ on [a, b] with µ∗([a, b]) = 1, such that there exists a continuous function

f on [a, b] with
∫
[a,b]

|f | dµ∗ = 0 but f is not always zero on [a, b].

12. Let (X,M, µ) be a measure space, and let {fn}n∈N≥1
be a sequence of measurable functions.

For two measurable funcitons g and h, if fn
µ→ g and fn

µ→ h, prove that g = h a.e. with respect to µ.

Note: This problem is about the uniqueness of limit of functions in the sense of convergence by measure.

13. Let (X,M, µ) be a measure space with µ(X) < ∞. Let f and {fn}n∈N≥1
be measurable

functions. If fn → f pointwise a.e., prove that fn
µ→ f .

5


