HW # 4 Due on Dec. 9th 2015.

1. Let X be a metric space.

(1) let A_1 and A_2 be two disjoint closed subset of X, and let f_i (i = 1, 2) be continuous functions from X_i to \mathbb{R} , where the topologies on X_i are just the restricted topology from X to X_i . We define

$$f_1 \bigsqcup f_2 \colon A_1 \sqcup A_2 \to \mathbb{R}, \ x \mapsto \ f_i(x) \text{ if } x \in A_i.$$

Prove that $f_1 \bigsqcup f_2$ is continuous, where the topology on $A_1 \bigsqcup A_2$ is the one restricted from X. Note: You can easily extend this result to the case of finitely many A_i s.

(2) Let A_1, A_2, \cdots be a sequence of disjoint subsets of X and let $f_i \colon A_i \to Y$ be continuous for all $i \in \mathbb{N}_{\geq 1}$, where each A_i is equipped with the restricted topology from X. Define $\bigsqcup_{i=1}^{\infty} f_i$ as

$$\bigsqcup_{i=1}^{\infty} f_i \colon \bigsqcup_{i=1}^{\infty} A_i \to Y, \ x \mapsto f_i(x) \text{ if } x \in A_i,$$

with the topology on $\sqcup_{i=1}^{\infty} A_i$ being the restricted topology of X onto the subset $\sqcup_{i=1}^{\infty} A_i$.

Give such an example of those X_i s and f_i s as above, such that although each f_i is continuous, but $\bigsqcup_{i=1}^{\infty} f_i \text{ is not continuous.}$

2. Let $f \in C[0,1]$. That is, f is a continuous function on [0,1]. Let u^* be the Lebesgue measure on [0,1]. Prove that

$$\int_0^1 f(x) \, \mathrm{d}x = \int_{[0,1]} f \, \mathrm{d}\mu^*,$$

where the left hand side is the Riemann integration and the right hand side is the Lebesgue integration.

Hint: For a continuous funciton, just recall that the Riemann integration equals the infimum of Darboux upper sums, and it also equals the supremum of the Darboux lower sums.

3. If $f: [0,1] \to \mathbb{R}$ is a function which is Riemann integrable, prove that f is also Lebesgue integrable (in the sense of upper sum equals lower sum) with respect to the Lebesgue measure.

4. Let (X, \mathcal{M}, μ) be a measure space and let f be a bounded function from X to \mathbb{R} . Assume that f

is Lebesgue integrable in the sense that $U(f,\mu)=L(f,\mu),$ where

$$U(f,\mu) = \inf\left\{\int_X s \,\mathrm{d}\mu \colon s \text{ is simple and } s \ge f\right\}$$

and

$$L(f,\mu) = \sup\left\{\int_X s \,\mathrm{d}\mu \colon s \text{ is simple and } s \leq f\right\}.$$

Prove that f = g a.e. (with respect to μ), where g is a measurable function. In extra, if the measure μ is complete, further prove that f must be a measurable function. Note: This result, combined with the result of problem 5.5, shows that, for bounded functions on a complete measure space, being Lebesgue measurable is just what is needed for being Lebesgue integrable in the sense of upper sum equals lower sum.

Hint: Just recall the definition of being Lebesgue measurable, and note the following facts: i) A simple function is measurable. ii) The inf, sup, lim inf, and lim sup of a sequence of measurable functions are still measurable. iii) Assume f and g are measurable and $f \ge h \ge g$. If f = g a.e., then h equals a measurable function a.e. (why? You will need to prove it)

5. In the class, we learned that on a measure space X with $\mu(X) < \infty$, if f is a bounded measurable function, then f is Lebesgue integrable. f being bounded is not necessary though. Let $f: (0, 1] \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} 0 & x \text{ is irrational} \\ q & x = \frac{p}{q}, \ p \text{ and } q \text{ are coprime.} \end{cases}$$

And assume the measure on (0, 1] is the standard Lebesgue measure μ .

Use the definiton to prove that this f, although being unbounded, is integrable. Besides, show that $\int_{(0,1]} f \, d\mu = 0.$

Note: The f above is not bounded on (0,1], but it is bounded a.e. on (0,1].

5.5 Let f and g be two functions on the measure space (X, \mathcal{M}, μ) , such that f = g a.e. with respect to μ . Note that the measure μ need not be complete. Prove that f is Lebesgue integrable on X with respect to μ if and only if g is. Besides, if both (or equivalently, one) are Lebesgue integrable, then $\int_X f d\mu = \int_X g d\mu$. 6. For the function

$$f: [0,1] \to \mathbb{R}, x \mapsto \begin{cases} 1 & x \in \mathbb{Q} \cap [0,1] \\ 0 & \text{else.} \end{cases}$$

Prove that f is Lebesgue integrable but not Riemann integrable.

7. In Egorov's Theorem, we require the measure space (X, π, μ) to have finite measure. In fact, X being of finite measure is really necessary for Ergorov's Theorem to hold. To be more precise, even X being σ -finite cannot ensure the correctness of Ergorov's Theorem. Construct such an example. That is, find a measure space (X, π, μ) which is σ -finite, and find $\{f_n\}_{n=1}^{\infty}$ such that $f_n \to f$ pointwise on X, but there exists $\epsilon > 0$ such that for any measurable set D of X with $\mu(D) < \epsilon$, we do *not* have that f_n converges to f uniformly on $X \setminus D$.

8. This one is from Rudin's book. Guess the value of the following integration first, then prove your conjecture:

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n e^{x/2} \, \mathrm{d}x.$$

9. This is about how to approximate measurable functions with simple functions.

(1) Let X be a measure space and let $f: X \to \mathbb{R}$ be a bounded measurable function. Prove that there exist a sequence of simple functions $\{f_n\}_{n=1}^{\infty}$ such that f_n converges to f uniformly.

(2) Construct a measurable function $f: X \to \mathbb{R}$ on a measure space X such that no sequence of simple functions on X can converge to f uniformly. Note that you need to prove the non-existence of such simple functions.

(3) Let (X, \mathcal{M}, μ) be a measure space, and let f be a measurable function. Prove that f can be written as the uniform convergence limit of simple functions if and only if f is bounded.

Note: In this case, assume f_n converges to f uniformly. If we further assume that X is of finite measure, then $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$.

(4) Let X be a measure space and let $f: X \to \mathbb{R}$ be a measurable function (not necessarily bounded). Prove that there always exists a sequence of simple functions $\{f_n\}_{n=1}^{\infty}$ such that f_n converges to f pointwise on X. That is, $f_n(x)$ converges to f(x) as $n \to \infty$ for all $x \in X$.

Note: As is covered in class, if measurable functions f_n converge pointwise to a function f, then f

is also measurable. Combined with the result in (4), we know that a function f is measurable if and only if it is the pointwise limit of simple functions (that is, there exist simples functions s_n such that s_n converge to f pointwise).

10. This is a classical exercise problem for integration. Let f be a bounded measurable function on [0,1]. Let μ be the Lebesgue measure on [0,1]. We then know that f is Lebesgue integrable on [0,1] with respect to the measure μ (why?). For any $n \in \mathbb{Z}$, consider $\sin(nx)$, which is bounded and continuous. It then follows that $f(x) \cdot \sin(nx)$ is measurable (why?) and bounded. Thus $f(x) \cdot \sin(nx)$ is integrable for all $n \in \mathbb{Z}$. Now, your turn. Prove that

$$\lim_{n \to \infty} \int_{[0,1]} f(x) \cdot \sin(nx) \,\mathrm{d}\mu = 0 \;.$$

Hint: You can start with simple cases first. For example, the case when f is a constant. I believe you all know how to do this case. Then consider the case f is a simple function. In this case, when restricted on certain measurable set, f is still a constant. You might argue that measurable set is not as friendly as [0, 1] or [a, b]. True, but just recall (from somewhere in HW # 3) that as for measurable sets on \mathbb{R} , we do have certain descriptions of them. I will stop here and leave the rest of adventures to you.

10.5 Let f be a bounded measurable function on [0,1]. Let g be a periodic bounded measurable function on \mathbb{R} with L being the period of g. Let μ be the Lebesgue measure on \mathbb{R} .

(1) For any $x \in \mathbb{R}$, prove that

$$\int_{\mathbb{R}} \chi_{[0,L]} \cdot g \, \mathrm{d}\mu = \int_{\mathbb{R}} \chi_{[x,x+L]} \cdot g \, \mathrm{d}\mu,$$

where $\chi_{[0,L]}$ and $\chi_{[x,x+L]}$ are the characteristic functions on [0,L] and [x,x+L] respectively.

(2) If we further assume that $\int_{[0,L]} g \, d\mu = 0$, prove that

$$\lim_{n \to \infty} \int_{[0,1]} f(x) \cdot g(nx) \,\mathrm{d}\mu = 0,$$

where we abuse the notation and also use μ to denote the restriction of the Lebesgue measure μ on [0, 1].

11. This is another classical exercise problem. Let f be a continuous function on [a, b] and let μ be

the Lebesgue measure on [a, b].

(1) If $\int_{[a,b]} |f| d\mu = 0$, prove that f = 0 everywhere on [a,b].

(2) Find another measure μ^* on [a, b] with $\mu^*([a, b]) = 1$, such that there exists a continuous function f on [a, b] with $\int_{[a,b]} |f| d\mu^* = 0$ but f is not always zero on [a, b].

12. Let (X, \mathcal{M}, μ) be a measure space, and let $\{f_n\}_{n \in \mathbb{N}_{\geq 1}}$ be a sequence of measurable functions. For two measurable functions g and h, if $f_n \xrightarrow{\mu} g$ and $f_n \xrightarrow{\mu} h$, prove that g = h a.e. with respect to μ . Note: This problem is about the uniqueness of limit of functions in the sense of convergence by measure.

13. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Let f and $\{f_n\}_{n \in \mathbb{N}_{\geq 1}}$ be measurable functions. If $f_n \to f$ pointwise a.e., prove that $f_n \xrightarrow{\mu} f$.