HW # 2 <u>Due on Oct. 23rd 2015.</u>

1. Let (X, π_X) be a topological space. Let $Y = X \sqcup \{\infty\}$ for some abstract point ∞ . Define π_Y to be

 $\pi_Y = \pi_X \sqcup \{ (X \setminus K) \sqcup \{ \infty \} \colon K \subset X, K \text{ is both compact and closed in } X \}.$

- a) Show that π_Y is really a topology on Y.
- b) In (Y, π_Y) , prove that X is dense. In other words, prove that $\overline{X} = Y$.
- c) Prove that the topological space (Y, π_Y) is compact.

2. Consider \mathbb{R} with the usual topology. Use \mathbb{R}^+ to denote the one point compactification of \mathbb{R} . Let S^1 be the unit circle in \mathbb{R}^2 , with the restricted topology, where the topology on \mathbb{R}^2 is the usual one. Prove that \mathbb{R}^+ is homeomorphic to S^1 .

3. Let X and Y be two non-compact topological spaces. If X is homeomorphic to Y, prove that X^+ is homeomorphic to Y^+ , where X^+ and Y^+ are the one point compactifications of X and Y correspondingly.

4. Let (X, π_X) be a topological space and let $Y \subset X$. Let π_Y be the restricted topology (of X on Y). Then we know that (Y, π_Y) is also a topological space. Prove that the following are equivalent:

1) Y is a compact subset of the topological space (X, π_X) .

2) The topological space (Y, π_Y) is compact.

5. In the topological space \mathbb{R} with the usual topology, for any subset X of \mathbb{R} , we have the restricted topology on X, which makes X a topological space.

1) Assume X is connected and contains two distinct points a, b (without loss of generality, we assume that a < b). Prove that for any $x \in (a, b)$, we have $x \in X$. *Hint: Just recall how we prove that* \mathbb{Q} *is not connected in the class.*

2) If a subset X of \mathbb{R} is connected, prove that it is also path connected.

3) Prove that [0,1] is connected. Warning: The following approach is not considered to be acceptable. "In order to show that [0,1] is connected, we can prove, using the definition directly, that [0,1] is path connected. As any path connected space must be connected, it follows that [0,1] is connected." The reason is as follows. During the class, we did prove such theorem that "any path connected space must be connected". However, in our proof, we implicitly used the well-known fact that [0,1] is connected. Here in 3), you are asked explicitly to prove this well-known fact that [0,1] is connected. Hint: You can feel free to use all the properties on the topological space \mathbb{R} that you have learned.

4) Prove the following: Let X be a subset of \mathbb{R} equipped with the usual topology. Then X is connected if and only if X is path connected. *Remark: If we change* \mathbb{R} to \mathbb{R}^2 in the statement, then it is no longer true.

5) Let $[0,1]^2 = [0,1] \times [0,1]$ be a subset of \mathbb{R}^2 , where the topology on \mathbb{R}^2 is the usual one. Prove that $[0,1]^2$ is connected under the restricted topology from \mathbb{R}^2 .

6. Prove that the one point compactification of [0, 1) is homemorphic to [0, 1], where the topologies on [0, 1) and [0, 1] are the restricted topology from \mathbb{R} (with the usual topology).

7. Let $\{0,1\}$ be a space with the discrete topology. Use $\{0,1\}_B^{\infty}$ to denote the product space $\prod_{1}^{\infty} \{0,1\}$ equipped with the box topology.

1) Prove that $\{0, 1\}$ is compact.

2) Prove that $\{0,1\}_B^\infty$ is not compact.

8. For the space [0, 1] with the usual topology, consider the product $\prod_{1}^{\infty}[0, 1]$ equipped with the box topology, which will be denoted by $[0, 1]_B^{\infty}$. Define

$$f: [0,1] \longrightarrow [0,1]_B^{\infty}, t \mapsto (t,t,\cdots).$$

Is this map f continuous or not? Prove your conjecture.

9. Let S^1 be the circle with the usual topology, and let \mathbb{R} be the real number line with the usual topology. Prove that we can not find a continuous map f from S^1 to \mathbb{R} , such that f is both continuous and one-to-one (we do not require f to be onto though).

10. Prove that \mathbb{R} is not homeomorphic to \mathbb{R}^2 .

11. In the class, while defining a ring of sets, instead of requiring that it is closed under taking <u>unions</u> and intersections, we require that this ring is closed under taking <u>symmetric differences</u> and intersections.

1) For any two sets A and B, express the set A - B using A, B and finite many steps of symmetric

differences and intersections.

2) Construct two sets A and B, such that, starting from A and B, and via finitely many rounds of unions and intersections, we can never arrive at the set A - B. A proof is needed. **Hint:** It is not difficult.

12. For the topological space \mathbb{R} with the usual topology, find a subset X of \mathbb{R} such that X is not in the σ -algebra generated by all the open sets of \mathbb{R} . Note: You need to prove that the X you constructed really satisfies such property.

13. Does there exist an infinite σ -algebra that has only countably many members? That is, in formal mathematical language, let Σ be a subset of the power set of some set X such that Σ is a σ -algebra. Is it possible that $|\Sigma| = |\mathbb{N}|$? If so, give an example. If not, give a proof.

14. Define

$$\mu \colon \{[a,b) \colon a, b \in \mathbb{R}, a \le b\} \longrightarrow [0,\infty], \ [a,b) \mapsto b-a$$

Let $\lambda \colon \mathcal{P}(\mathbb{R}) \to [0,\infty]$ be the outer measured induced by μ , where $\mathcal{P}(\mathbb{R})$ denotes the power set of \mathbb{R} .

1) Suppose that $[0,1] \subset \bigcup_{i=1}^{\infty} (a_i, b_i)$. Prove that $\sum_{i=1}^{\infty} (b_i - a_i) \ge 1$.

2) Suppose that $[0,1] - \mathbb{Q} \subset \bigcup_{i=1}^{\infty} (a_i, b_i)$. Prove that $\sum_{i=1}^{\infty} (b_i - a_i) \ge 1$.

3) Without using such heavy machinery as the Caratheodory Extension Theorem, following the definition of outer measures, prove that $\lambda([0,1] - \mathbb{Q}) = 1$.