HW \# 1 Due on Oct. 9th 2015.

1. Let $f: X \rightarrow Y$ be a map and let π_{X} be a topology on X. Prove that π_{Y}, the push-out/pushforward topology on Y defined via f and π_{X}, is really a topology. Also prove that the map f from the topological space $\left(X, \pi_{X}\right)$ to the topological space $\left(Y, \pi_{Y}\right)$ is continuous.
2. Prove that \mathbb{R} equipped with the usual topology, which is derived from the distance function $d(x, y)=|x-y| \quad \forall x, y \in \mathbb{R}$, is second countable.
3. In a topological space X, let $K \subset X$ be a compact subset. If $D \subset K$ and D is closed, prove that D is also compact. Note that we do not need X to be Hausdorff.
4. In \mathbb{R}^{2}, let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. Prove that we can not find $X, Y \subset \mathbb{R}$, such that $X \times Y=D$.
5. In a topological space X, for any subset A in X. Prove that \bar{A} is always closed, and $\operatorname{int}(A)$ is always open. If A is open, prove that $\partial A=\bar{A} \backslash A$. If A is closed, prove that $\partial A=A \backslash \operatorname{int}(A)$.
6. Construct a set X and two topologies π_{1} and π_{2} on X, such that $\pi_{1} \not \subset \pi_{2}$ and $\pi_{2} \not \subset \pi_{1}$.
7. On \mathbb{R}, let π_{1} be the topology generated by the distance function $d(x, y)=|x-y| \quad \forall x, y \in \mathbb{R}$. Let π_{2} be the topology generated by the following topological basis

$$
\pi_{2}^{(0)}=\left\{(x-r, x+2 r): x \in \mathbb{R}, r \in \mathbb{R}_{>0}\right\}
$$

Prove that $\pi_{1}=\pi_{2}$.
8. Let $X=\{a, b\}$ and let $\pi_{X}=\{\emptyset,\{a\},\{a, b\}\}$. First prove that π_{X} is a topology on X. Then prove that this topology π_{X} is not metrizable.
9. In \mathbb{R}^{2}, let $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.
a) For any straight line $L \subset \mathbb{R}^{2}$, prove that $L \cap S$ contains at most two points. (This should be junior high school math).
b) Prove that we can not find countably many straight lines L_{1}, L_{2}, \cdots in \mathbb{R}^{2}, such that

$$
\bigcup_{i=1}^{\infty} L_{i}=\mathbb{R}^{2}
$$

10. For \mathbb{R}, let $\pi_{\mathbb{R}}$ be the usual topology derived from the distance function $d(x, y)=|x-y| \forall x, y \in \mathbb{R}$. As for \mathbb{Q}, the set of all rational numbers, which is a subset of \mathbb{R}, let $\pi_{\mathbb{Q}}$ be the topology on \mathbb{Q} derived from $\pi_{\mathbb{R}}$ via restriction (i.e, the restricted topology). Prove the following:
1) $\left(\mathbb{R}, \pi_{\mathbb{R}}\right)$ is locally compact. Note: You can use the following fact directly without proof: In \mathbb{R}, for any $a, b \in \mathbb{R}$ with $a<b,[a, b]$ is compact with respect to the topology $\pi_{\mathbb{R}}$.
2) $\left(\mathbb{Q}, \pi_{\mathbb{Q}}\right)$ is not locally compact.
3) $\left(\mathbb{Q}, \pi_{\mathbb{Q}}\right)$ is σ-compact.
