Review Problems for "Applied Functional Analysis"

1. Let M be an inner product space, on which the norm is derived from inner products via

$$
\|x\|=\sqrt{\langle x, x\rangle} .
$$

Prove that for any $x, y \in M$, we have the following Parallelogram identify:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

2. On \mathbb{C}^{2}, define two norms as

$$
\|(x, y)\|_{1}=\sqrt{|x|^{2}+|y|^{2}} \text { and }\|(x, y)\|_{2}=|x|+|y| .
$$

Prove that these two norms are equivalent. In other words, prove that there exist $0<C_{1}<$ C_{2}, such that for all $(x, y) \in \mathbb{C}^{2}$,

$$
C_{1}\|(x, y)\|_{2} \leq\|(x, y)\|_{1} \leq C_{2}\|(x, y)\|_{2} .
$$

3. Prove that $l^{1}=\left\{\left(x_{1}, x_{2}, \cdots\right): \sum_{i=1}^{\infty}\left|x_{i}\right|<\infty\right\}$ is not an inner product space. In other words, show that the norm on l^{1}, which is defined as

$$
\|x\|=\sum_{i=1}^{\infty}\left|x_{i}\right|
$$

is not a norm derived from certain inner product.
4. On \mathbb{C}^{2}, for any $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, define $\rho(x, y)=\left|x_{1}-y_{1}\right|^{2}+\left|x_{2}-y_{2}\right|^{2}$. Prove that ρ is not a metric on \mathbb{C}^{2} (thus it cannot be a norm on \mathbb{C}^{2}).
5. Define

$$
C^{b}(\mathbb{R})=\left\{f \in C(\mathbb{R}): \sup _{x \in \mathbb{R}}|f(x)|<\infty\right\}
$$

For any $\left.f \in \mathbb{C}^{(} \mathbb{R}\right)$, define its norm to be

$$
\|f\|=\sup _{x \in \mathbb{R}} f(x) .
$$

Prove that $\left(C^{b}(\mathbb{R}),\| \|\right)$ is a normed space, but NOT an inner product space.
6. On \mathbb{C}^{2}, define the norm of $\binom{x}{y} \in \mathbb{C}^{2}$ to be $\|(x, y)\|=\sqrt{|x|^{2}+|y|^{2}}$. For a 2×2 matrix, regard it as an linear operator on \mathbb{C}^{2} defined as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x}{y}=\binom{a x+b y}{c x+d y} .
$$

Prove that this linear operator $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a bounded linear operator, and the operator norm satisfies

$$
\left\|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\| \leq|a|+|b|+|c|+|d| .
$$

7. This is about finding a basis for finite dimensional Hilbert spaces, and about the properties of such basis.

On \mathbb{R}^{2}, define the inner product as

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}, \forall x, y \in \mathbb{R}^{2}, \text { with } x=\left(x_{1}, x_{2}\right) \text { and } y=\left(y_{1}, y_{2}\right) .
$$

It is easy to check that \mathbb{R}^{2} is a Hilbert space under this inner product. Assume we have $e_{1}=\left(\frac{3}{5}, \frac{4}{5}\right)$. Easy to check that $\left\|e_{1}\right\|=1$.
a) Find $e_{2} \in \mathbb{R}^{2}$ such that

$$
\left\|e_{2}\right\|=1 \text { and }\left\langle e_{1}, e_{2}\right\rangle=0
$$

b) For the e_{1}, e_{2} we have so far, prove that for any $x \in \mathbb{R}^{2}$,

$$
\|x\|^{2}=\langle x, x\rangle=\left\langle x, e_{1}\right\rangle^{2}+\left\langle x, e_{2}\right\rangle^{2} .
$$

