Crossed product C^* -algebras from minimal dynamical systems.

Wei Sun

University of Nottingham

Special Week on Operator algebra at ECNU, 20/06/2011

Conjugacy and flip conjugacy
Weakly approximate conjugacy
Asymptotic morphisms
Approximate K-conjugacy
C*-strongly approximate flip conjugacy

Definition

Let X, Y be two compact Hausdorff spaces. Let (X,α) and (Y,β) be two dynamical systems. They are conjugate if there exists $\sigma \in \operatorname{Homeo}(X,Y)$ such that $\sigma \circ \alpha = \beta \circ \sigma$.

Let X, Y be two compact Hausdorff spaces. Let (X, α) and (Y, β) be two dynamical systems. They are conjugate if there exists $\sigma \in \mathsf{Homeo}(X, Y)$ such that $\sigma \circ \alpha = \beta \circ \sigma$.

Definition

Let X, Y be two compact Hausdorff spaces. Let (X,α) and (Y,β) be two dynamical systems. They are flip conjugate if (X,α) is conjugate to either (Y,β) or (Y,β^{-1}) .

Let X, Y be two compact Hausdorff spaces. Let (X, α) and (Y, β) be two dynamical systems. They are weakly approximately conjugate if there exist $\{\sigma_n \in Homeo(X, Y)\}$ and $\{\tau_n \in Homeo(Y, X)\}$, such that $\operatorname{dist}(g \circ \beta, g \circ \tau_n^{-1} \circ \alpha \circ \tau_n) \to 0$ and $\operatorname{dist}(f \circ \alpha, f \circ \sigma_n^{-1} \circ \beta \circ \sigma_n) \to 0$ for all $f \in C(X)$ and $g \in C(Y)$.

Let X, Y be two compact Hausdorff spaces. Let (X, α) and (Y, β) be two dynamical systems. They are weakly approximately conjugate if there exist $\{\sigma_n \in Homeo(X, Y)\}$ and $\{\tau_n \in Homeo(Y, X)\}$, such that $\operatorname{dist}(g \circ \beta, g \circ \tau_n^{-1} \circ \alpha \circ \tau_n) \to 0$ and $\operatorname{dist}(f \circ \alpha, f \circ \sigma_n^{-1} \circ \beta \circ \sigma_n) \to 0$ for all $f \in C(X)$ and $g \in C(Y)$.

Roughly speaking, the diagrams above "approximately" commute.

Let $\{\varphi_n : A \to B\}$ be a sequence of positive linear maps. We say that $\{\varphi_n\}$ is an asymptotic morphism if $\|\varphi_n(ab) - \varphi_n(a)\varphi_n(b)\| \to 0$ for all $a, b \in A$.

Let $\{\varphi_n : A \to B\}$ be a sequence of positive linear maps. We say that $\{\varphi_n\}$ is an asymptotic morphism if $\|\varphi_n(ab) - \varphi_n(a)\varphi_n(b)\| \to 0$ for all $a, b \in A$.

Example: Let X and Y be two compact Hausdorff spaces. Suppose that (X,α) and (Y,β) are approximately conjugate. Then we can find $\psi_n: C^*(\mathbb{Z},Y,\beta) \to C^*(\mathbb{Z},X,\alpha)$ such that $\{\psi_n\}$ is an asymptotic morphism induced by σ_n .

Definition (Lin)

Let X and Y be two compact Hausdorff spaces. Let (X,α) and (Y,β) be two minimal dynamical systems. Assume that $C^*(\mathbb{Z},X,\alpha)$ and $C^*(\mathbb{Z},Y,\beta)$ both have tracial rank zero. We say that (X,α) and (Y,β) are approximately K-conjugate if there exist homeomorphisms $\sigma_n:X\to Y,\ \tau_n:Y\to X$ and unital order isomorphisms $\rho:K_*(C^*(\mathbb{Z},Y,\beta))\to K_*(C^*(\mathbb{Z},X,\alpha))$, such that

$$\sigma_n \circ \alpha \circ \sigma_n^{-1} \to \beta, \ \tau_n \circ \beta \circ \tau_n^{-1} \to \alpha$$

and the associated asymptotic morphisms $\psi_n: C^*(\mathbb{Z}, Y, \beta) \to C^*(\mathbb{Z}, X, \alpha)$ and $\varphi_n: C^*(\mathbb{Z}, X, \alpha) \to C^*(\mathbb{Z}, X, \beta)$ induce the isomorphisms ρ and ρ^{-1} .

Definition (Lin)

Let (X,α) and (X,β) be two minimal dynamical systems such that $\mathrm{TR}(C^*(\mathbb{Z},X,\alpha))=\mathrm{TR}(C^*(\mathbb{Z},X,\beta))=0$, we say that (X,α) and (X,β) are C^* -strongly approximately flip conjugate if there exists a sequence of isomorphisms

$$\varphi_n \colon C^*(\mathbb{Z}, X, \alpha) \to C^*(\mathbb{Z}, X, \beta), \ \psi_n \colon C^*(\mathbb{Z}, X, \beta) \to C^*(\mathbb{Z}, X, \alpha)$$

and a sequence of isomorphisms $\chi_n, \lambda_n \colon C(X) \to C(X)$ such that

1)
$$[\varphi_n] = [\varphi_m] = [\psi_n^{-1}]$$
 in $KL(C^*(\mathbb{Z}, X, \alpha), C^*(\mathbb{Z}, X, \alpha))$ for all $m, n \in \mathbb{N}$,

2)
$$\lim_{n\to\infty} \|\varphi_n \circ j_\alpha(f) - j_\beta \circ \chi_n(f)\| = 0$$
 and

 $\lim_{n\to\infty} \|\psi_n \circ j_\beta(f) - j_\alpha \circ \lambda_n(f)\| = 0 \text{ for all } f \in C(X), \text{ with } j_\alpha, j_\beta \text{ being the injections from } C(X) \text{ into } C^*(\mathbb{Z}, X, \alpha) \text{ and } C^*(\mathbb{Z}, X, \beta).$

Definitions Introduction Examples Results Questions

Result of Giodano, Putnam and Skau Result of Lin, Matui The base space is not a Cantor set Rigidity when base space is $X \times \mathbb{T} \times \mathbb{T}$.

Let (X,α) and (Y,β) be two minimal Cantor dynamical sytsems. We say that they are orbit equivalent if there exists a homeomorphism $F\colon X\to Y$ such that $F(\operatorname{orbit}_{\alpha}(x))=\operatorname{orbit}_{\beta}(F(x))$ for all $x\in X$. The map F is called an orbit map.

Let (X,α) and (Y,β) be two minimal Cantor dynamical sytsems. We say that they are orbit equivalent if there exists a homeomorphism $F\colon X\to Y$ such that $F(\operatorname{orbit}_{\alpha}(x))=\operatorname{orbit}_{\beta}(F(x))$ for all $x\in X$. The map F is called an orbit map.

Definition

Let (X,α) and (Y,β) be two minimal Cantor dynamical sytsems that are orbit equivalent. Two integer-valued functions $m,n\colon X\to \mathbb{Z}$ are called orbit cocyles associated to the orbit map F if $F\circ\alpha(x)=\beta^{n(x)}\circ F(x)$ and $F\circ\alpha^{m(x)}(x)=\beta\circ F(x)$ for all $x\in X$. We say that (X,α) and (Y,β) are strongly orbit equivalent if they are orbit equivalent and the orbit cocycles have at most one point of discontinuity.

Theorem (Giordano, Putnam, Skau)

For minimal Cantor dynamical systems (X, α) and (Y, β) , $C^*(\mathbb{Z}, X, \alpha)$ and $C^*(\mathbb{Z}, Y, \beta)$ are isomorphic if and only if (X, α) and (Y, β) are strongly orbit equivalent.

Theorem (Giordano, Putnam, Skau)

For minimal Cantor dynamical systems (X, α) and (Y, β) , $C^*(\mathbb{Z}, X, \alpha)$ and $C^*(\mathbb{Z}, Y, \beta)$ are isomorphic if and only if (X, α) and (Y, β) are strongly orbit equivalent.

Remark 1: (X, α) and (Y, β) being strongly orbit equivalent is stronger than that they are weakly approximately conjugate.

Theorem (Giordano, Putnam, Skau)

For minimal Cantor dynamical systems (X, α) and (Y, β) , $C^*(\mathbb{Z}, X, \alpha)$ and $C^*(\mathbb{Z}, Y, \beta)$ are isomorphic if and only if (X, α) and (Y, β) are strongly orbit equivalent.

Remark 1: (X, α) and (Y, β) being strongly orbit equivalent is stronger than that they are weakly approximately conjugate.

Remark 2: For Cantor minimal dynamical systems, strongly orbit equivalent is an equivalence relationship.

Theorem (Lin, Matui)

For minimal Cantor dynamical systems (X, α) and (Y, β) , $C^*(\mathbb{Z}, X, \alpha)$ and $C^*(\mathbb{Z}, Y, \beta)$ are isomorphic if and only if (X, α) and (Y, β) are approximately K-conjugate.

Theorem (Lin, Matui)

For minimal Cantor dynamical systems (X, α) and (Y, β) , $C^*(\mathbb{Z}, X, \alpha)$ and $C^*(\mathbb{Z}, Y, \beta)$ are isomorphic if and only if (X, α) and (Y, β) are approximately K-conjugate.

Corollary

For two Cantor minimal dynamical systems (X, α) and (Y, β) , they are approximately K-conjugacy if and only if they are strongly orbit equivalent.

Minimal dynamical systems of the kind $(X \times \mathbb{T}, \alpha \times \varphi)$ had been studied. $(\varphi : X \to \mathsf{Homeo}(\mathbb{T}))$

Minimal dynamical systems of the kind $(X \times \mathbb{T}, \alpha \times \varphi)$ had been studied. $(\varphi : X \to \mathsf{Homeo}(\mathbb{T}))$

Definition

The minimal dynamical system $(X \times \mathbb{T}, \alpha \times \varphi)$ is rigid if the following map is one-to-one:

$$M_{\alpha \times \varphi} \to M_{\alpha}$$
,

$$\tau \mapsto \widetilde{\tau}$$
. $\widetilde{\tau}(D) = \tau(D \times \mathbb{T})$ for all Borel subset $D \subset X$.

Minimal dynamical systems of the kind $(X \times \mathbb{T}, \alpha \times \varphi)$ had been studied. $(\varphi : X \to \mathsf{Homeo}(\mathbb{T}))$

Definition

The minimal dynamical system $(X \times \mathbb{T}, \alpha \times \varphi)$ is rigid if the following map is one-to-one:

$$M_{\alpha\times\varphi}\to M_{\alpha}$$
,

$$\tau \mapsto \widetilde{\tau}.\ \widetilde{\tau}(D) = \tau(D \times \mathbb{T}) \text{ for all Borel subset } D \subset X.$$

Theorem (Lin, Phillips)

If the minimal dynamical system $(X \times \mathbb{T}, \alpha \times \varphi)$ is rigid, then the tracial rank of $C^*(\mathbb{Z}, X \times \mathbb{T}, \alpha \times \varphi)$ is zero. Furthermore, if the tracial rank of A is zero, then the dynamical system $(X \times \mathbb{T}, \alpha \times \varphi)$ if is rigid.

The minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$ is rigid if the following map is one-to-one:

$$M_{\alpha \times R_{\xi} \times R_{\eta}} \to M_{\alpha}$$
,

$$\tau \mapsto \widetilde{\tau}$$
. $\widetilde{\tau}(D) = \tau(D \times \mathbb{T} \times \mathbb{T})$ for all Borel set $D \subset X$.

The minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$ is rigid if the following map is one-to-one:

$$M_{\alpha \times R_{\xi} \times R_{\eta}} \to M_{\alpha}$$
,

$$\tau \mapsto \widetilde{\tau}$$
. $\widetilde{\tau}(D) = \tau(D \times \mathbb{T} \times \mathbb{T})$ for all Borel set $D \subset X$.

Remark: Under this definition, if minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$ is rigid, then the crossed product C^* -algebra has tracial rank zero.

Do we have lots of minimal dynamical system of type $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\varepsilon} \times \mathsf{R}_{n})$?

Do we have lots of minimal dynamical system of type $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$?

Lemma

Given any minimal dynamical system $(X \times \mathbb{T}, \alpha \times R_{\xi})$, there exist uncountably many $\theta \in [0,1]$ such that if we use θ to denote the constant function in $C(X,\mathbb{T})$ defined by $\theta(x) = \theta$ for all $x \in X$ (identifying \mathbb{T} with \mathbb{R}/\mathbb{Z}), then the dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\theta})$ is still minimal.

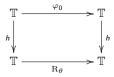
Do we have examples of rigid minimal dynamical system of type $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$?

Do we have examples of rigid minimal dynamical system of type $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\varepsilon} \times R_{\eta})$?

Let $\varphi_0 \colon \mathbb{T} \to \mathbb{T}$ be the Denjoy homeomorphism, and let h be the non-invertible continuous map as in Poincare Classification Theorem.

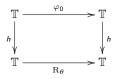
Do we have examples of rigid minimal dynamical system of type $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\varepsilon} \times \mathsf{R}_{n})$?

Let $\varphi_0 \colon \mathbb{T} \to \mathbb{T}$ be the Denjoy homeomorphism, and let h be the non-invertible continuous map as in Poincare Classification Theorem.



Do we have examples of rigid minimal dynamical system of type $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\varepsilon} \times \mathsf{R}_{n})$?

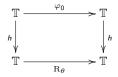
Let $\varphi_0 \colon \mathbb{T} \to \mathbb{T}$ be the Denjoy homeomorphism, and let h be the non-invertible continuous map as in Poincare Classification Theorem.



Let $\varphi = \varphi_0 \mid_X$.

Do we have examples of rigid minimal dynamical system of type $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\varepsilon} \times \mathsf{R}_{n})$?

Let $\varphi_0 \colon \mathbb{T} \to \mathbb{T}$ be the Denjoy homeomorphism, and let h be the non-invertible continuous map as in Poincare Classification Theorem.



Let $\varphi = \varphi_0 \mid_X$.

$$\begin{array}{ccc} X & \xrightarrow{\varphi} & X \\ \downarrow^{h|_X} & & \downarrow^{h|_X} \\ \mathbb{T} & \xrightarrow{\operatorname{R}_{\theta}} & \mathbb{T} \end{array}$$

Consider
$$\gamma \colon \mathbb{T}^3 \to \mathbb{T}^3, (s, t_1, t_2) \mapsto (s + \theta, t_1 + \xi(s), t_2 + \eta(s)).$$

Consider $\gamma \colon \mathbb{T}^3 \to \mathbb{T}^3, (s, t_1, t_2) \mapsto (s + \theta, t_1 + \xi(s), t_2 + \eta(s)).$

$$\begin{array}{c} X \times \mathbb{T} \times \mathbb{T} & \xrightarrow{\alpha \times \mathbf{R}_{\xi \circ h} \times \mathbf{R}_{\eta \circ h}} X \times \mathbb{T} \times \mathbb{T} \\ h|_X \times id_{\mathbb{T}} \times id_{\mathbb{T}} & & \downarrow h|_X \times id_{\mathbb{T}} \times id_{\mathbb{T}} \\ \mathbb{T} \times \mathbb{T} \times \mathbb{T} & \xrightarrow{\gamma} \mathbb{T} \times \mathbb{T} \times \mathbb{T} \end{array}.$$

Consider
$$\gamma \colon \mathbb{T}^3 \to \mathbb{T}^3, (s, t_1, t_2) \mapsto (s + \theta, t_1 + \xi(s), t_2 + \eta(s)).$$

$$\begin{array}{c} X \times \mathbb{T} \times \mathbb{T} \xrightarrow{\alpha \times \mathbf{R}_{\xi \circ h} \times \mathbf{R}_{\eta \circ h}} X \times \mathbb{T} \times \mathbb{T} \\ \downarrow h|_{X} \times id_{\mathbb{T}} \times id_{\mathbb{T}} & & \downarrow h|_{X} \times id_{\mathbb{T}} \times id_{\mathbb{T}} \\ \mathbb{T} \times \mathbb{T} \times \mathbb{T} \xrightarrow{\gamma} & \mathbb{T} \times \mathbb{T} \times \mathbb{T} \end{array}.$$

Proposition

For the minimal dynamical systems as in diagram above, if $(\mathbb{T} \times \mathbb{T} \times \mathbb{T}, \gamma)$ is a minimal dynamical system, then $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi \circ h} \times R_{\eta \circ h})$ is also a minimal dynamical system. Also, there is a one-to-one correspondence between γ -invariant probability measures on \mathbb{T}^3 and $\alpha \times R_{\xi \circ h} \times R_{\eta \circ h}$ -invariant probability measures on $X \times \mathbb{T} \times \mathbb{T}$.

Theorem (S)

Let X, Y be Cantor sets and let $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi_1} \times R_{\eta_1})$, $(Y \times \mathbb{T} \times \mathbb{T}, \beta \times R_{\xi_2} \times R_{\eta_2})$ be two minimal rigid dynamical systems. Use A and B to denote the corresponding crossed product C^* -algebra, and use j_A, j_B to denote the canonical embedding of $C(X \times \mathbb{T} \times \mathbb{T})$ into A and B. Then the following are equivalent:

- a) $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi_1} \times R_{\eta_1})$ and $(Y \times \mathbb{T} \times \mathbb{T}, \beta \times R_{\xi_2} \times R_{\eta_2})$ are approximately K-conjugate.
- b) There exists a unital order isomorphism ρ such that $\rho(K_i(j_B(C(X \times \mathbb{T} \times \mathbb{T})))) = K_i(j_A(C(Y \times \mathbb{T} \times \mathbb{T})))$ for i = 0, 1.

Theorem (S)

Let X, Y be Cantor sets and let $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi_1} \times R_{\eta_1})$, $(Y \times \mathbb{T} \times \mathbb{T}, \beta \times R_{\xi_2} \times R_{\eta_2})$ be two minimal rigid dynamical systems. Use A and B to denote the corresponding crossed product C^* -algebra, and use j_A, j_B to denote the canonical embedding of $C(X \times \mathbb{T} \times \mathbb{T})$ into A and B. Then the following are equivalent:

- a) $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi_1} \times R_{\eta_1})$ and $(Y \times \mathbb{T} \times \mathbb{T}, \beta \times R_{\xi_2} \times R_{\eta_2})$ are approximately K-conjugate.
- b) There exists a unital order isomorphism ρ such that $\rho(K_i(j_B(C(X \times \mathbb{T} \times \mathbb{T})))) = K_i(j_A(C(Y \times \mathbb{T} \times \mathbb{T})))$ for i = 0, 1.

$$K_i(B) \xrightarrow{\rho} K_i(A)$$

$$\uparrow_{(j_B)_*} \qquad \qquad \uparrow_{(j_A)_*}$$

$$K_i(C(X \times \mathbb{T} \times \mathbb{T})) \qquad \qquad K_i(C(Y \times \mathbb{T} \times \mathbb{T}))$$

In general case (the minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$ might not be rigid), , What about the crossed-product C^* -algebra?

In general case (the minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$ might not be rigid), , What about the crossed-product C^* -algebra?

Definition

Use A to denote the crossed prouduct C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$. Define A_x to be the sub-algebra generated by $C(X \times \mathbb{T} \times \mathbb{T})$ and $uC_0((X \setminus \{x\}) \times \mathbb{T} \times \mathbb{T})$.

In general case (the minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$ might not be rigid), , What about the crossed-product C^* -algebra?

Definition

Use A to denote the crossed prouduct C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$. Define A_x to be the sub-algebra generated by $C(X \times \mathbb{T} \times \mathbb{T})$ and $uC_0((X \setminus \{x\}) \times \mathbb{T} \times \mathbb{T})$.

Remark: As we cutting off one fiber $x \times \mathbb{T} \times \mathbb{T}$ instead of one single ponit, we shall no longer expect to have $K_i(A_x) \cong K_i(A)$.

In general case (the minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$ might not be rigid), , What about the crossed-product C^* -algebra?

Definition

Use A to denote the crossed prouduct C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T} \times \mathbb{T}, \alpha \times \mathsf{R}_{\xi} \times \mathsf{R}_{\eta})$. Define A_x to be the sub-algebra generated by $C(X \times \mathbb{T} \times \mathbb{T})$ and $uC_0((X \setminus \{x\}) \times \mathbb{T} \times \mathbb{T})$.

Remark: As we cutting off one fiber $x \times \mathbb{T} \times \mathbb{T}$ instead of one single ponit, we shall no longer expect to have $K_i(A_x) \cong K_i(A)$.

Lemma

For the A_x defined above, $TR(A_x) \leq 1$.

Let j be the inclusion of A_x in A, then $(j_*)_i : K_i(A_x) \to K_i(A)$ is injective for i = 0, 1.

Let j be the inclusion of A_x in A, then $(j_*)_i : K_i(A_x) \to K_i(A)$ is injective for i = 0, 1.

Theorem (S)

Let X be the Cantor set and let $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ be a minimal dynamical system. Then the tracial rank of the crossed product C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ is no more than one.

Let j be the inclusion of A_x in A, then $(j_*)_i : K_i(A_x) \to K_i(A)$ is injective for i = 0, 1.

Theorem (S)

Let X be the Cantor set and let $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ be a minimal dynamical system. Then the tracial rank of the crossed product C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ is no more than one.

Do we have examples of minimal dynamical system ($X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta}$) that is not rigid?

Let j be the inclusion of A_x in A, then $(j_*)_i : K_i(A_x) \to K_i(A)$ is injective for i = 0, 1.

Theorem (S)

Let X be the Cantor set and let $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ be a minimal dynamical system. Then the tracial rank of the crossed product C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ is no more than one.

Do we have examples of minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ that is not rigid?

Yes, we do.

Let j be the inclusion of A_x in A, then $(j_*)_i : K_i(A_x) \to K_i(A)$ is injective for i = 0, 1.

Theorem (S)

Let X be the Cantor set and let $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ be a minimal dynamical system. Then the tracial rank of the crossed product C^* -algebra $C^*(\mathbb{Z}, X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ is no more than one.

Do we have examples of minimal dynamical system ($X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta}$) that is not rigid?

Yes, we do. There are examples of minimal dynamical system $(X \times \mathbb{T} \times \mathbb{T}, \alpha \times R_{\xi} \times R_{\eta})$ such that it is not rigid, and in the corresponding crossed product C^* -algebra, the projection does not separate traces (and the crossed product C^* -algebra has tracial rank one).

What if the cocyles are Furstenberg transformations?

What if the cocyles are Furstenberg transformations?

Definition

A map $F \colon \mathbb{T}^2 \to \mathbb{T}^2$ is called a Furstenberg transformation of degree d if there exist $\theta \in \mathbb{T}$ and continuous function $f \colon \mathbb{R} \to \mathbb{R}$ satisfying f(x+1) - f(x) = d for all $x \in \mathbb{R}$ such that (identifying \mathbb{T} with \mathbb{R}/\mathbb{Z})

$$F(t_1, t_2) = (t_1 + \theta, t_2 + f(t_1)).$$

For the F above, d is called the degree of Furstenberg transform F, and is denoted by $\deg(F)$. The number d is also called the degree of f, and denoted by $\deg(f)$.

Proposition

For the minimal dynamical system $(X \times \mathbb{T}^2, \alpha \times \varphi)$ with cocycles being Furstenberg transformations, use A to denote the crossed product C^* -algebra of this dynamical system and use $K^0(X,\alpha)$ to denote $C(X,\mathbb{Z})/\{f-f\circ\alpha\colon f\in C(X,\mathbb{Z})\}.$

Proposition

For the minimal dynamical system $(X \times \mathbb{T}^2, \alpha \times \varphi)$ with cocycles being Furstenberg transformations, use A to denote the crossed product C*-algebra of this dynamical system and use $K^0(X,\alpha)$ to denote

$$C(X,\mathbb{Z})/\{f-f\circ\alpha\colon f\in C(X,\mathbb{Z})\}.$$

1) If
$$[\deg(\varphi(x))] \neq 0$$
 in $K^0(X, \alpha)$, then

$$K_0(A) \cong C(X,\mathbb{Z}^2)/\{f - f \circ \alpha \colon f \in C(X,\mathbb{Z}^2)\} \oplus \mathbb{Z}$$

and $K_1(A)$ is isomorphic to

$$C(X,\mathbb{Z}^2)/\{(f,g)-(f,g)\circ\alpha-(\deg(\varphi)\cdot(g\circ\alpha),0)\colon f,g\in C(X,\mathbb{Z})\}\oplus\mathbb{Z}^2.$$

Proposition

For the minimal dynamical system $(X \times \mathbb{T}^2, \alpha \times \varphi)$ with cocycles being Furstenberg transformations, use A to denote the crossed product C^* -algebra of this dynamical system and use $K^0(X,\alpha)$ to denote $C(X,\mathbb{T}) \setminus \{f \in G(X,\mathbb{T})\}$

$$C(X,\mathbb{Z})/\{f-f\circ\alpha\colon f\in C(X,\mathbb{Z})\}.$$

1) If
$$[\deg(\varphi(x))] \neq 0$$
 in $K^0(X, \alpha)$, then

$$K_0(A) \cong C(X,\mathbb{Z}^2)/\{f-f\circ\alpha\colon f\in C(X,\mathbb{Z}^2)\}\oplus\mathbb{Z}$$

and $K_1(A)$ is isomorphic to

$$C(X,\mathbb{Z}^2)/\{(f,g)-(f,g)\circ\alpha-(\deg(\varphi)\cdot(g\circ\alpha),0)\colon f,g\in C(X,\mathbb{Z})\}\oplus\mathbb{Z}^2.$$

2) If
$$[\deg(\varphi(x))] = 0$$
 in $K^0(X, \alpha)$, then

$$K_0(A) \cong C(X, \mathbb{Z}^2)/\{f - f \circ \alpha \colon f \in C(X, \mathbb{Z}^2)\} \oplus \mathbb{Z}^2$$

and $K_1(A)$ is isomorphic to

$$C(X,\mathbb{Z}^2)/\{(f,g)-(f,g)\circ\alpha-(\deg(\varphi)\cdot(g\circ\alpha),0)\colon f,g\in C(X,\mathbb{Z})\}\oplus\mathbb{Z}^2.$$

Question 1: How can we extend of the results to more general topological base space?

Question 2: When the crossed product C^* -algebra has tracial rank one (say, for the non-rigid cases), what is the relationship between approximately K-conjugacy and isomorphism of the crossed-product C^* -algebras?