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Background on the classification program of simple separable amenable C∗-algebras

Definition (C∗-algebra)

A C∗-algebra A is a Banach algebra over C, with an anti-isomorphism
∗ : A → A [ that is, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a and
(λa)∗ = λa∗ for all λ ∈ C and a, b ∈ A ] , satisfying ∥aa∗∥ = ∥a∥2.

Definition (Simpleness of C∗-algebra)

A C∗-algebra A is simple if there is no proper two sided ideal of A that is norm
closed.

Examples:

C. Trivial case.

C0(X ), where X is a locally compact Hausdorff space, with the norm of any
f ∈ C0(X ) being ∥f ∥ = supx∈X |f (x)|. All the abelian cases.

Mn(C) with the operator norm ∥a∥ = supx∈Cn,∥x∥=1 ∥ax∥. All the simple and
finitely dimensional cases.⊕M

k=1 Mnk (C) with the operator norm. All the finitely dimensional cases.

Tensor products. C(X )⊗Mn(C) ∼= C(X ,Mn(C)), etc.

Direct limits. M2∞ = limM2n . K = limMn. lim
⊕Dn

k=1 Msn,k (C) (AF algebras).

lim
⊕Dn

k=1 Msn,k (Xn) (AH algebras)



Examples continued

B(H), B(H)/K, where H is a separable infinite dimensional Hilbert space.

A = limAn, where each An is a subalgebra of certain Mkn (Xn). ASH algebras
(approximate sub-homogeneous algebras)

The Jiang-Su algebra Z is an ASH algebra, while it is not an AH algebra.

Some crossed product C∗-algebras C(X )oα Z are ASH algebras.

Definition (finite and stably finite)

A unital C∗-algebra A is finite, if xx∗ = 1A implies that x∗x = 1A. A unital
C∗-algebra A is stably finite, if Mn(A) is finite for all n ∈ N≥1.

AH algebras and ASH algebras are all stably finite, that is because each matrix
algebra is finite. In fact, if A is finite/stably finite, then so is any subalgebra B
with 1B = 1A. If A is finite/stably finite, then so is C(X ,A) for any compact
Hausdorff space X .

We will focus on stably finite C∗-algebras in this talk.



Current classsification program is mainly on simple, separable amenable unital
C∗-algebras. The goal is to give complete invariants (the Elliott Invariant),
which is relatively easy to handle, that classifies those C∗-algebras.

Definition (The Elliott Invariant)

The Elliott Invariant of a unital C∗-algebra A consisists of ordered K0, K1, the
tracial space T (A), and the pairing between K0(A) and T (A). That is

Ell(A) = (K0(A),K0(A)+, [1A],K1(A),T (A), rA),

where rA : T (A) → S(K0(A),K0(A)+, [1A]) [ linear, order preserving, maps [1A]
to 1 ]

Remark: K0(A) is generated by projections in M∞(A) ( where M∞(A) is the
algebraic limit of A → M2(A) → M3(A) → · · · ).

Remark: In case A is abelian, i.e, A = C(X ), the K0(A) just corresponds to
the topological K -theory of X .

Remark: rA is always onto when A is exact (tensoring with A preserves short
exact sequences).

Remark: rA is injective if A has real rank zero (invertible elements are dense in
As.a, which is {a ∈ A : a = a∗}).



Examples:

For A = Mn(C),
(K0(A),K0(A)+, [1A]) = (Z,Z≥0, n).

For A = C(T),
(K0(A),K0(A)+, [1A]) = (Z,Z≥0, 1).

For A = C(T2),

(K0(A),K0(A)+, [1A]) =
(
Z2,
{
(m, n) ∈ Z2 : m > 0} ∪ {(0, 0)

}
, (1, 0)

)
.

For A = C(X ), where X is the Cantor set,

(K0(A),K0(A)+, [1A]) = (C(X ,Z),C(X ,Z)≥0, 1X ) .

For A = M2∞(C),

(K0(A),K0(A)+, [1A]) =

(
Z
[
1

2

]
,Z
[
1

2

]
≥0

, 1

)
,

where

Z
[
1

2

]
=

{
n∑

i=1

ki
2i

: n ∈ N≥1, ki ∈ Z

}
.



It is important to choose the right invariants/descriptions during classification.

While dealing with separable AF algebras, from the naive defintion,
M2∞ = limM2n . Given A = limAn, where each An is finitely dimensional (finite
direct sum of matrices), how can we determine whether A is isomorphic to
M2∞ or not?

The Elliott invariant turns out to suit the purpose (classifying unital separable
AF-algebras) perfectly, even in case the AF-algebras are not simple.

Definition (nuclear/amenable C∗-algebras)

A C∗-algebra A is nuclear, if for any ϵ > 0 and any finite subse F of A, there
exists completely contractive positive maps φ : A → Mn(C) and
ψ : Mn(C) → A, such that

(ψ ◦ φ)(x) ≈ϵ x , ∀ x ∈ F .

In other words, the following diagram approximately commutes on F .

A
id //

φ
""E

EE
EE

EE
E A

Mn(C)
ψ

<<yyyyyyyy



The general strategy for classification program of C∗-algebras: the existence
theorem and the uniqueness theorem.

The Existence Theorem

Given a homomorphism ρ : Ell(A) → Ell(B), lift ρ to a homomorphism (or
completely positive contractive) map φ : A → B, such that φ will induce ρ.

The Uniqueness Theorem

Given two homomorphism (or completely positive contractive) maps
φi : A → B, i = 1, 2, such that the induced homomorphisms
(φi )∗ : Ell(A) → Ell(B) are the same, prove that φ1 is unitarily equivalent to
(or “approximatley” unitarily equivalent to) φ2.

If these two above mentioned theorems can be established for certain
C∗-algebras, just combine them together, and we can get the classification
program for those C∗-algebras.

Remark: In actual cases, oftentimes, it is not easy to lift an homomorphism of
Elliott invariants to homomorphisms or c.p.c maps from A to B. Typically, we
use the local structures of A and B. That is, assume A = limAn and
B = limBn, where An and Bn has relateive simple structure and the lifting
among “local” algebras is easier to find. This will lead to the intertwining
technique/argument.



A sketch of how typical intertwining argument works together with existence
theorem and uniqueness theorem

A1
//

φ1   A
AA

AA
AA

A A2
// A3

// A4

φ4

((PP
PPP

PPP
PPP

PPP
P // A5

// A6
// · · · A

φ

��
B1

// B2
//
ψ2

66nnnnnnnnnnnnnnn
B3

// B4
// B5

// B6

ψ6

>>}}}}}}}}
// · · · B

ψ

OO

1. Starting from the isomorphism maps between Ell(A) and Ell(B), try to lift
to (existence theorem) homomorphisms or c.p.c maps between Ans and Bns.

2. Generally speaking, those triangles above might not commute. By adjoining
with unitary elements, we make them commutes (or “approximately”
commutes). This uses the uniqueness theorem.

3. As those triangles commutes or almost commutes (can let the error terms
be controlled by ϵ/2n), standard argument will yield ψ and φ which are inverse
of each other.

Remark: Typically, the uniqueness theorem is harder to achieve.



As for the classification purpose of C∗-algebras of C∗-algebras using the above
defined Elliott invariants, we focus on unital, simple, separable, amenable
C∗-algebras.

Why simple? In short, to make the goal obtainable. Else, just think about
C(X ).

Remark: For certain non-simple C∗-algebras whose ideal structure can be
somewhat recovered from the Elliott invariants, the Elliott conjecture might
still hold. For example, all the separable AF-algebras can be classified using the
Elliott invariants.

Why separable? There exists separable AF algebra A and non separable AF
algebra B whose K∗ are isomorphic (but they are not). Furthermore, there is a
set-theoretic argument that ensures that Elliott invariant is not enough while
dealing with non-separable C∗-algebras.

Why amenable? A requirement to ensure the uniqueness theorem in
classification.

Fact: For any minimal homemorphism α on the separable compact Hausdorff
space X , the crossed product C∗-algebra C(X )oα Z is unital, simple, separable
and amenable.



Main classification results along the line.

Theorem (Elliott)

Let A and B be two unital separable AF algebras, then A ∼= B if and only if

(K0(A),K0(A)+, [1A]) ∼= (K0(B),K0(B)+, [1B ]).

Remark: The main tools for classification such as the “uniqueness theorem +
existence theorem” approach and the intertwining technique are used in the
proof of this result.

Theorem (Elliott)

Let A and B be two unital simple AT algebras of real rank zero, then A ∼= B if
and only if

(K0(A),K0(A)+, [1A],K1(A)) ∼= (K0(B),K0(B)+, [1B ],K1(A)).

Remark: For these two results, we do not need such information as the tracial
space T (A) and the pairing between K0(A) and T (A), because they are about
real rank zero case, in which those information can be recovered from
(K0(A),K0(A)+, [1A]).



Theorem (Elliott-Gong-Li)

The Elliott conjecture (two unital simple separable amenable C∗-algebras are
isomorphic if and only if they have the same Elliott invariant) holds for
AH-algebras of no dimension growth (there is a global bound on the dimension
of the base space Xi s).

Remark: If we do not assume “no dimension growth” condition on
AH-algebras, the Elliott conjecture will fail.

Theorem (Lin)

The Elliott conjecture holds for all unital simple nuclear C∗-algbras that has
tracial rank no more than one and satisfies the UCT.

It is known that for all those unital simple nuclear C∗-algbras that has tracial
rank no more than one and satisfies the UCT, they are exactly those simple
AH-algebras with no dimension growth. Lin’s result, however, make the
classification result independent of the local structure of AH-algebras
(A = limAn). It is generally easier to check the tracial approximation structure
than to write the C∗-algebra as direct limit of certain “building blocks”.



Definition (tracial rank)

For a unital separable simple C∗-algebra A, we say that A has tracial rank no
more than k, denoted as TR(A) ≤ k, if for any finite subset F of A, any
c ∈ A+ \ {0}, and any ϵ > 0, there exists a unital subalgebra D such that D is
isomorphic to finite direct sum of Mni (Xi ), such that

1) ∥x1B − 1Bx∥ < ϵ

2) dist(1Bx1B ,B) < ϵ

3) 1− 1B is murry von-Neumann equivalent to a projection in Her(c).

Tracial rank zero C∗-algebra can be tracially approximated by finite
dimensional C∗-algebras.

Tracial rank one C∗-algebra can be tracially approximated by interval algebras.

Fact: Any simple C∗-algebra of finite tracial rank has property (SP). That is,
there exists non trivial projections in any non-degenerate hereditary subalgebras.

How to classify C∗-algebras without so many projections (not having property
SP)?

Can we expect the Elliott conjecture to hold for more than those above
mentioned AH-algebras?



There are unital separable simple amenable C∗-algebras A and B, with
Ell(A) ∼= Ell(B), but A is not isomorphic to B. (Rordam, Toms)

Theorem (Toms)

There are stably finite, unital, separable, simple amenable C∗-algebras A and
B, with F (A) ∼= F (B), but A is not isomorphic to B, where F contains 1) All
the homotopy invariant functors that commutes with inductive limits. 2) real
rank. 3) The Elliott invariants.

Two options.

Option 1, to use finer invariants that is not homotopy invariant. For example,
the Cuntz semigroup Cu(A). (This option had been tried.)

Option 2, to add some regularity requirements for the C∗-algebras.

Theorem (Toms, Winter)

All the previous classification results on stably finite, unital, simple, separable
amenable C∗-algebras are for those that absorbs the Jiang-Su algebra Z.

As for option 2, just to deal with stably finite, unital, simple, separable
amenable C∗-algebras that is Z-absorbing.



Definition (dimension drop C∗-algebras)

A dimension drop C∗-algebra is of the form

I [m0,m,m1] = {f ∈ C([0, 1],Mm) : f (0) ∈ Mm0 ⊗ 1m/m0
, f (1) ∈ Mm1 ⊗ 1m/m1

}.

Definition
The Jiang-Su algebra is *the* direct limit of dimension drop C∗-algebras that
is unital, simple, amenable and has the same Elliott invariant as C.

Definition (rational tracial rank)

For a unital simple separable C∗-algebra A, we say that the rational tracial rank
of A is no more than one, if TR(A⊗Q) ≤ 1, where Q is limMn!(C), with the
connecting maps being the diagonal embeddings.

Example: The Jiang-Su algebra Z has finite rational tracial rank (Z ⊗Q ∼= Q),
but it does not have finite tracial rank (as it allows no proper projections).

Theorem (Winter, Lin, Niu)

The Elliott conjecture holds for unital simple separable amenable C∗-algebras
that has rational tracial rank no more than one, satisfies the UCT and absorbs
the Jiang-Su algebra Z.



The result above expanded our chart of classifiable C∗-algebras significantly.
For example, it makes the Jiang-Su algebra Z classifiable.

However, the Elliott invariants of all those above (stably finite, simple unital
separable amenable C∗-algebras that has finite rational tracial rank, satisfies
the UCT and absorbs Z) cannot exhaust the Elliott invariant of all those stably
finite, simple unital separable amenable C∗-algebras that absorbs Z.

Theorem (Gong, Lin, Niu)

The Elliott conjecture holds for a class N1 of stably finite, simple, unital,
separable, amenable C∗-algebras that absorbs Z. Moreover, the Elliott
invariant of N1 exhausts the Elliott invariant of stably finite, simple, unital,
separable, amenable C∗-algebras that absorbs Z.

As for stably finite, simple, unital, separable, amenable C∗-algebras that absorbs
Z, you shall not expect the Elliott conjecture to hold for a class larger than N1.



Applications of the classificatoin program (results, methods, etc)

AF embeddings.

Can we embed a classifiable simple C∗-algebra A into a given AF-algebra B?
Just check whether there is a map (preserving the structure) from Ell(A) to
Ell(B). If that is doable, check whether we have the suitable existence theorem
that can lead to a homomorphism from A to B. If so, we are done as A is
simple.

Structure of irrational rotation algebra Aθ (generated by two untiaries u and v
with uv = e2πiθvu).

We can show first that they have tracial rank no more than one and satisfies
the UCT, thus they are classifiable. By checking that their Elliott invariants
can be realized by AT-algebras, and note that AT-algebras are classifiable, we
proved that Aθ is an AT-algebra without bothering to write A = limAn, where
each An is a finite sum of Mki (C(T)).

When are Aθ1 and Aθ2 isomorphic?

When are C(X )oα Z and C(X )oβ Z isomorphic?
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