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Abstract. The classical Alexander’s Theorem states that every proper holomorphic
self-mapping of a complex unit ball of dimension at least 2 is an automorphism. Since
then, the study of proper holomorphic mappings has become an important topic in
Several Complex Variables. Bounded symmetric domains, which include the complex
unit balls, are among the most important domains in complex Euclidean spaces,
due to the fact that they possess a lot of symmetries and are the universal covering
spaces of various important mathematical objects. Henkin and Novikov proved that
the analogue of Alexander’s Theorem is also true for irreducible bounded symmetric
domains of higher rank. These rigidity results for proper holomorphic mappings
among bounded symmetric domains have been, by the efforts of a lot of people,
extended to the cases with positive co-dimension or rank difference. The purpose of
this article is to give a survey for these developments. In addition, we also include
a section discussing some generalizations to the Hartogs domains over irreducible
bounded symmetric domains

Key words: Automorphisms, bounded symmetric domains, Hartogs domains, proper
holomorphic mappings, rigidity

2010 Mathematics Subject Classification: Primary 32H35, 32M15

1 Introduction

A continuous mapping F : X → Y of topological spaces is called proper if

F−1(K) is a compact subset of X whenever K is a compact subset of Y . If X and Y

are complex spaces and F : X → Y is a proper holomorphic mapping, then F−1(y)

is a compact subvariety of X for all points y in Y . Therefore, when the complex

space X is Stein, F−1(y) is finite for all points y in Y . A special class of proper

holomorphic mappings are the biholomorphic mappings.

Remmert’s Proper Mapping Theorem [Re1, Re2] asserts that if F is a proper

holomorphic mapping between the complex spaces X and Y , then the image B :=

F (A) is an analytic subset of Y for any analytic subset A of X. Moreover, when

X is Stein, there exists a nowhere dense analytic subset E ⊂ B such that B \ E
and A \F−1(E) are complex manifolds and the restriction F : A \F−1(E)→ B \E
∗Corresponding author.
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is a finitely sheeted holomorphic covering projection. Therefore, the existence of a

non-trivial proper map from one complex space X to another Y often places strong

restrictions on these spaces. Furthermore, even when proper maps exist, they tend

to be rigid and rather few in number. For instance, if n ≥ 2, a proper holomorphic

map of the unit ball in Cn into itself is an analytic automorphism. Therefore, the

study of proper holomorphic maps between complex spaces is of great importance.

The subject of bounded symmetric domains plays an important role in com-

plex differential geometry. Various rigidity phenomena have been obtained for their

quotient spaces. For instance, the strong rigidity of Siu [Siu1, Siu2], the Hermi-

tian metric rigidity of Mok [Mok1, Mok2] and the super rigidity hence obtained

(c.f. [Mok]). In this article, we will give a survey for the rigidity of proper holo-

morphic mappings among bounded symmetric domains, starting from the classical

Alexander’s Theorem for complex unit balls of dimension at least two.

2 Proper holomorphic mappings between unit balls

In this section, we will focus on the rigidity of proper holomorphic maps between

bounded symmetric domains of rank one, i.e. the complex unit balls.

Write Bn for the unit ball in the complex space Cn. The study of proper holo-

morphic maps between balls in complex Euclidean spaces can date back to the pio-

neering work of Poincaré [Po], who discovered that any biholomorphic map between

two connected open pieces of the unit sphere in C2 is the restriction of a certain

automorphism of B2. In his famous paper [Alx], Alexander proved that Poincaré’s

result also holds for complex unit balls in higher dimensions.

Theorem 2.1 (Alexander) Any proper holomorphic self-map of Bn with n > 1 is

an automorphism.

Webster, in [W], first considered the geometric structure of proper holomorphic

maps between balls in complex spaces of different dimensions. By the combining

efforts of Cima-Suffridge [CS1] , Faran [Fa2] and Forstneric [Fo1] etc., we know

that any proper holomorphic map from Bn into BN with N < 2n − 1, that is

CN−n+1-regular up to the boundary, is a totally geodesic embedding with respect

to the Bergman metrics. Recall that two proper holomorphic maps f, g from Bn
into BN are said to be equivalent if there are σ ∈ Aut(Bn) and τ ∈ Aut(BN ) such

that g = τ ◦ f ◦ σ. A proper holomorphic map from Bn into BN is said to be

linear or totally geodesic if it is equivalent to the standard big circle embedding

L(z) : z → (z, 0). It is conjectured that the rigidity property still holds true for

maps C2-regular up to the boundary. By applying a very different method from the

previous works, Huang [Hu1] gave an affirmative answer to this conjecture:

Theorem 2.2 (Huang) Any proper holomorphic map from Bn into BN with N <

2n− 1, that is C2-regular up to the boundary, is a totally geodesic embedding.

Write I1 = [n+1, 2n−2]. The theorem of Huang says that there is no new proper

holomorphic map added when the target dimension N ∈ I1. We call I1 the first

gap interval for proper holomorphic mappings between balls. We mention that the

discovery of inner functions can be used to show that there is a proper holomorphic
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map from Bn into Bn+1, which can not be C2-smooth at any boundary point. (See

[HS], [Low], [Fo2], [Ste], etc).

The structure of proper holomorphic maps gets more complicated when N ≥
2n−1. In [Fa1], Faran classified proper holomorphic maps from B2 into B3, which are

C3-smooth up to the boundary. He obtained the following four different inequivalent

proper holomorphic maps

(z, w, 0), (z, zw,w2), (z2,
√
zw,w2), (z3, 3

√
zw,w3).

However, the only embeddings are linear maps.

In [HJ], Huang-Ji showed that any proper holomorphic map from Bn into B2n−1

with n ≥ 3, which is C2-smooth up to the boundary, is either linear or equivalent

to the Whitney map

W : z = (z1, · · · , zn) = (z′, zn)→ (z1, · · · , zn−1, znz) = (z′, znz). (1)

Since the Whitney map is not an immersion, together with the aforementioned work

of Faran [Fa1], this shows that any proper holomorphic embedding from Bn into BN
with N = 2n−1, which is twice continuously differentiable up to the boundary, must

be a linear map. Earlier, D’Angelo constructed the following family Fθ of mutually

inequivalent proper quadratic monomial maps from Bn into B2n (See [DA]):

Fθ(z
′, zn) = (z′, (cos θ)zn, (sin θ)z1zn, · · · , (sin θ)zn−1zn, (sin θ)z

2
n), 0 < θ ≤ π/2.

(2)

Notice that by adding N − 2n zero components to the D’Angelo map Fθ, we get a

proper monomial embedding from Bn into BN for any N ≥ 2n. The combining effort

in [Fa2] and [HJ] gives a complete description to the linearity problem for proper

holomorphic embeddings from Bn into BN , which are C2-smooth up to the boundary.

However, in applications, one still hopes to get the linearity for mappings with a

rich geometric structure. For instance, the following difficult problem initiated from

the work of Siu [Siu3] and others is still open: (See Cao-Mok [CMk] for the work

when N ≤ 2n− 1.)

Conjecture 2.3 : Let f be a proper holomorphic mapping from Bn into BN with

1 < n < N . Write M = f(Bn). Suppose that there is a subgroup Γ of Aut(BN )

such that (1) for any σ ∈ Γ, σ(M) = M ; (2) M/Γ is compact. Then f is a linear

embedding.

In [Hu2], Huang obtained a complete description of the partial linearity for proper

holomorphic maps between balls for N < n(n+1)
2 , based on a very subtle analysis of

the moving point trick and the larger symmetry property of the ball, as first used

in [Hu1]. This result has found many immediate applications, which, in particular,

shows that any proper holomorphic map from Bn into BN with N ≤ n(n + 1)/2,

that is C3-smooth up to the boundary, must be rational ([HJX2]).

In a recent paper of Hamada [Ha1], based on a careful analysis on the Chern-

Moser normal form method (see [CM]) as developed in [Hu1] and [HJ], Hamada

classified all proper rational maps from Bn into B2n with n ≥ 4. After the work of

Hamada, Huang-Ji-Xu in [HJX1] proved that
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Theorem 2.4 (Huang-Ji-Xu) Any proper holomorphic map from Bn into BN
with 4 ≤ n ≤ N ≤ 3n − 4, that is C3-smooth up to the boundary, is equivalent

to either the map (W, 0′) or (Fθ, 0
′) with θ ∈ [0, π/2).

An immediate consequence of the work in [HJX1] is that there is no new map

added when N ∈ I2 with I2 := [2n + 1, 3n − 4]. Since there are proper monomial

maps from Bn into BN for 3n − 3 ≤ N ≤ 3n or 2n − 1 ≤ N ≤ 2n, that are not

equivalent to maps of the form (G, 0′), we call I2 the second gap interval for proper

holomorphic maps between balls.

By [HJY1], for any N with 3n − 3 ≤ N ≤ 3n or 4n − 6 ≤ N ≤ 4n, there are

many proper monomial maps from Bn into BN , that are not equivalent to maps of

the form (G, 0′). Subsequently, Huang-Ji-Yin in [HJY] provides a third gap interval

I3 := [3n+ 1, 4n− 7] for proper holomorphic maps between balls:

Theorem 2.5 (Huang-Ji-Yin) Let F be a proper holomorphic map from Bn into

BN with n > 7 and 3n + 1 ≤ N ≤ 4n − 7. Assume that F is C3-regular up to the

boundary. Then F is equivalent to a map of the form (G, 0′), where G is a proper

rational map from Bn into B3n.

More generally, for any n ≥ 3, write K(n) for the largest positive integer m such

that m(m + 1)/2 < n. For each 1 ≤ k ≤ K(n), define Ik := [kn + 1, (k + 1)n −
k(k+1)

2 −1]. Then Ik is a closed interval containing positive integers if n ≥ 2+ k(k+1)
2 .

Apparently, Ik ∩ Ik′ = ∅ for k 6= k′; and Ik for k = 1, 2, 3 are exactly the same

intervals defined above. Write I = ∪K(n)
k=1 Ik. Then, for

max
N∈I

N = (K(n)+1)n−K(n)(K(n) + 1)

2
−1 ≈ −1 +

√
1 + 8n

2
n−n−1 ≈

√
2n

3
2−n−1.

For any N 6∈ I (which certainly is the case when N ≥ 1.42n
3
2 ), by not a complicated

construction, the authors obtained in [HJY1] many monomial proper holomorphic

maps from Bn into BN , that can not be equivalent to maps of the form (G, 0′).

Earlier in [DL], for N ≥ n2 − 2n + 2, D’Angelo and Lebl, by a different method,

constructed a proper monomial map from Bn into BN , that is not equivalent to

a map of the form (G, 0′). However, we have not been able to find a map, not

equivalent to a map of the form (G, 0′), for N ∈ I. Indeed, the first, the second and

the third gap intervals mentioned above suggest the following conjecture:

Conjecture 2.6 (Huang-Ji-Yin [HJY]) Let n ≥ 3 be a positive integer, and let

Ik (1 ≤ k ≤ K(n)) be defined above. Then any proper holomorphic rational map F

from Bn into BN is equivalent to a map of the form (G, 0′) if and only if N ∈ Ik for

some 1 ≤ k ≤ K(n).

As mentioned above, the necessary part follows from Theorem 2.8 of [HJY]; also

the conjecture holds for k = 1, 2, 3. An affirmative solution to this gap conjecture

would tells exactly for what pair (n,N) there are no new proper rational maps

added.

Next, we describe briefly the idea for the proof of Theorem 2.5, and hope that

it may motivate the general study of Conjecture 2.6. The proofs for the first and

the second gaps are immediate applications of the much more precise classification
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results. When N ∈ I3, making a precise classification for all maps seems to be hard,

the only known case is the classification of proper holomorphic maps from Bn to

B3n−3 (See [AHJY]).

Consider the setting in the Heisenberg hypersurface case. Let F be a holomorphic

map defined near 0 with F (0) = 0 into CN . Then the Taylor formula says that

F (z) =
∑

α
DαF
α! (0)zα. Hence the image of F stays in the linear subspace spanned

by {DαF (0)}α. If spann{DαF (0)}α 6= CN , we get a gap from F . The crucial

point in our argument is to find, for our map, a basis of spann{DαF (0)}α. The

way to achieve is to get a good normal form for F . However, this is a highly

non-linear normalization problem, for the maps need to satisfy the fundamental

non-linear equation. While it is easy to get linear independent set from the first and

the second jets (even for the most general case), finding more linearly independent

elements to form a basis from the higher order jets is very involved. The basic tool

at our disposal for this approach is the following lemma achieved by Huang [Hu1]:

Lemma 2.7 (Huang) Let {ϕj}kj=1 and {ψj}kj=1 be holomorphic functions in z ∈
Cn near the origin. Assume that ϕj(0) = ψj(0) = 0 and k < n. Let H(z, z) be a

real analytic function for z near 0 such that

k∑
j=1

ϕj(z)ψj(z) = |z|2H(z, z). (3)

Then H(z, z) ≡ 0.

While analyzing the basic Chern-Moser equation, one finds that the assumption

N ∈ I3 is exactly what we need, in several induction steps, for applying Lemma 2.7.

For higher gap interval case, the equations derived from the Chern-Moser equation

take the form (3) with k ≥ n, and Lemma 2.7 is no longer applicable. One possible

way to solve the general case is to transform these equations to the settings in Lemma

2.7, and use this lemma to determine all linearly independent elements, which can

form a basis of spann{DαF (0)}α. See also [Eb] for a quite different method handling

the gap phenomenon.

For other related problems, we refer the reader to [AHJY, HY1, HY2, HY3, HY4,

Yin1] and references therein.

3 Proper holomorphic mappings among bounded sym-
metric domains of rank ≥ 2

Due to the big difference in boundary structures, the study of proper holomorphic

mappings among bounded symmetric domains of rank at least 2 differs vastly from

that of the complex unit balls. Let Ω be a bounded symmetric domain of rank at

least 2 and rank(Ω) = r. On one hand, the boundary ∂Ω of Ω is not smooth and

consists of a number of strata. This causes the usual Cauchy-Riemann geometric

methods on the unit sphere inapplicable. On the other hand, the smooth part (i.e.

the stratum of the highest dimension) of ∂Ω is foliated by complex submanifolds

that are themselves isomorphic to some other bounded symmetric domains of rank

r − 1 (Readers can see Wolf [Wo] for the fine structure theory on the boundary
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of bounded symmetric domains). These boundary complex submanifolds and their

counterparts in the interior of Ω turn out to be an important source of rigidity for

proper holomorphic mappings.

The first result related to the rigidity of proper holomorphic maps among bound-

ed symmetric domains of rank at least 2 is the following theorem given by Henkin-

Tumanov [HT].

Theorem 3.1 (Henkin-Tumanov) Let Ω b Cn be an irreducible bounded sym-

metric domain of rank at least 2. Denote by Sh(Ω) ⊂ ∂Ω the Shilov boundary of Ω.

Suppose b ∈ Sh(Ω). Let Ub ⊂ Cn be a connected open neighborhood of b in Cn, and

f : Ub → Cn be an open holomorphic embedding such that f(Ub∩Ω) = f(Ub)∩Ω and

f(Ub ∩ Sh(Ω)) = f(Ub) ∩ Sh(Ω). Then, there exists an automorphism F : Ω → Ω

such that F |Ub∩Ω ≡ f |Ub∩Ω.

The statement of Henkin-Tumanov by itself, a priori, does not imply that every

proper holomorphic self-map of Ω must be an automorphism. If the map is assumed

to extend locally across a point on the Shilov boundary, then one can show that

such a map will respect the Shilov boundary and hence is an automorphism. This

argument can be found in Mok-Ng [MN]. In the same article, the following theorem

has also been obtained using the geometric structure defined by minimal rational

curves on the compact dual of Ω. (For the general theory developed by Hwang-Mok

for this geometric structure, one may consult the review articles [Hw, Mok3] and

the references therein.)

Theorem 3.2 (Mok-Ng) Let Ω b Cn be an irreducible bounded symmetric domain

of rank at least 2. Suppose b is a smooth point on ∂Ω. Let Ub ⊂ Cn be a connected

open neighborhood of b in Cn and f : Ub → Cn be an open holomorphic embedding

such that f(Ub∩Ω) ⊂ Ω and f(Ub∩∂Ω) ⊂ ∂Ω. Then, there exists an automorphism

F : Ω→ Ω such that F |Ub∩Ω ≡ f |Ub∩Ω.

For global proper holomorphic maps without assuming any boundary regularity,

Henkin and Novikov [HN] obtained the following analogue of Alexander’s Theorem.

Theorem 3.3 (Henkin-Novikov) Let Ω be an irreducible bounded symmetric do-

main of rank at least 2. Then every proper holomorphic self-map of Ω is an auto-

morphism.

The next step after proper holomorphic self-maps is the equi-dimensional case,

which is obtained by Tu [Tu].

Theorem 3.4 (Tu) Let Ω,Ω′ be irreducible bounded symmetric domains of rank at

least 2 and of the same dimension. Then every proper holomorphic map from Ω to

Ω′ is a biholomorphism.

Furthermore, Mok, Ng and Tu [MNT] obtained the following rigidity result

concerning proper holomorphic mappings from bounded symmetric domains onto

bounded convex domains.
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Theorem 3.5 (Mok-Ng-Tu) Let Ω be an irreducible bounded symmetric domain

of rank ≥ 2 which is not isomorphic to a Type-IV classical symmetric domain of

dimension at least 3. Let F : Ω → D be a proper holomorphic map onto a bounded

convex domain D. Then, F : Ω → D is a biholomorphism and D is, up to an

affine-linear transformation, the Harish-Chandra realization of Ω.

3.1 Equal-rank case

In contrast to the complex unit balls, it happens that in the study of prop-

er holomorphic maps among bounded symmetric domains of rank at least 2, the

difficulty is not very much due to the codimension but the rank difference. Mo-

tivated by problems for locally Hermitian symmetric spaces of non-compact type,

Mok conjectured that when Ω, Ω′ are irreducible bounded symmetric domains with

rank(Ω)=rank(Ω′) ≥ 2, every proper holomorphic map from Ω to Ω′ must be stan-

dard, i.e. totally geodesic with respect to the Bergman metrics. The conjecture has

been proved by Tsai [Tsai].

Theorem 3.6 (Tsai) Let f : Ω → Ω′ be a proper holomorphic map, where Ω, Ω′

are irreducible bounded symmetric domains and rank(Ω) = r, rank(Ω′) = r′ are at

least 2. If r ≥ r′, then f is standard and r = r′.

Thus, the above statement also implies that f exists only if r ≤ r′.
The first important step towards to the proof of Tsai’s Theorem is to show that

f preserves a certain class of geodesic subspaces, called maximal characteristic sym-

metric subspaces. Although not mentioned explicitly, such property of f has already

been proved in the earlier work of Mok-Tsai [MT]. The maximal characteristic sym-

metric subspaces are isomorphic to the boundary complex submanifolds mentioned

at the beginning of this section and the latter could be regarded as the limits when

the charateristic symmetric subspaces are pushed towards the boundary using au-

tomorphisms. Roughly speaking, the properness of f implies that f (after taking

certain radial limits) preserves such boundary complex submanifolds and by us-

ing Cauchy integral-type arguments, one concludes that the maximal characteristic

symmetric subspaces are also preserved by f .

Maximal characteristic symmetric subspaces of a bounded symmetric domain Ω

in fact belong to a more general class of geodesic subspaces of Ω, called invariantly

geodesic subspaces, whose definition is as follows. From the general theory of Hermi-

tian symmetric spaces, we know that there exists a compact Hermitian symmetric

space M (also called the compact dual of Ω) such that Ω can be embedded as an open

submanifold of M . A subspace D ⊂ Ω is said to be invariantly geodesic if for every

g ∈ Aut(M), we have g(D) ∩ Ω totally geodesic in Ω (with respect to the Bergman

metric of Ω) whenever the intersection is non-empty. In next section we will give

a more detailed discussion on these subspaces specialized to Type-I domains. The

original proof for Tsai’s Theorem involves the classification for invariantly geodesic

subspaces for all bounded symmetric domains. Very recently, Ng [Ng] has bypassed

this classification and obtained a much shorter proof for Tsai’s theorem.
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3.2 Unequal-rank case for Type-I domains

By Tsai’s Theorem, if f : Ω → Ω′ is a proper holomorphic map, Ω being

irreducible, and rank(Ω), rank(Ω′) ≥ 2, then f can be non-standard only when

rank(Ω′) > rank(Ω). Indeed, one can construct simple non-standard examples by

just considering Type-I bounded symmetric domains. Here we recall that there are

altogether four infinite families of irreducible bounded symmetric domains and two

exceptional domains. Among them, Type-I domains are parametrized by two posi-

tive integers p, q, and are defined as Ωp,q = {Z ∈ M(p, q;C) : I − ZZ̄t > 0}, where

M(p, q;C) is the set of p-by-q complex matrices and “> 0” stands for the positive-

definiteness for Hermitian matrices. Thus, Type-I domains are generalizations of the

complex unit balls. In what follows, we will restrict ourselves to Type-I domains as

they already furnish a good platform for investigating many important properties of

the proper holomorphic maps among bounded symmetric domains of higher rank.

Let Z ∈ Ωp,q. Then the map Z 7→
[
Z 0
0 g(Z)

]
gives a simple example of non-

standard maps from Ωp,q to Ωp′,q′ , where p < p′, q < q′ and g : Ωp,q → Ωp′−p,q′−q
is a generic non-constant holomorphic map. We will in what follows call such maps

and those equivalent (by composing with automorphisms) to them diagonal-type.

Starting from this simple example, the following important question is naturally

raised: (*) Are all proper holomorphic maps among Type-I domains diagonal-type?

In particular, does there exist any proper holomorphic map if p ≤ p′ and q ≤ q′ are

not satisfied? For the latter question, Tu [Tu1] and Mok [Mok4] have proved the

non-existence for certain special cases and the general case is still open. Back to

Question (*), there had been quite a long time that the general belief was towards

the affirmative side and evidence was provided by the works of Tu [Tu1], Ng [Ng1]

and Kim-Zaitsev [KZ], which include the following results.

Theorem 3.7 (Tu for p + 1 = q = p′, Ng for other cases) Let q ≥ p ≥ 2. If

p′ ≤ min(2p−1, q), then every proper holomorphic map f : Ωp,q → Ωp′,q is standard.

Theorem 3.8 (Kim-Zaitsev) Let q ≥ p ≥ 2 and f : Ωp,q → Ωp′,q′ be a proper

holomorphic map which extends smoothly to a neighborhood of a smooth boundary

point of Ωp,q. Assume that q′ < 2q − 1 and p′ < q. Then p′ ≥ p, q′ ≥ q, and f is

diagonal-type.

On the other hand, Ng very recently has found examples that are not diagonal-

type and Seo [Seo] has generalized these examples based on the construction by

Ng. From these examples, it is now evident that even for Type-I domains the

moduli space of proper holomorphic maps is far from being non-trivial and thus

one would aim for some classifications. Seo [Seo] has made a preliminary trial on

the classification for some very special cases. We mention at this point that the

discovery of these examples and the works of Ng [Ng1], Seo [Seo] are based on

the investigation of certain geodesic subspaces of Type-I domains. The rest of this

section will be devoted to this approach to the study of proper holomorphic maps.
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3.2.1 Maximal invariantly geodesic subspace and generalized ball

As mentioned earlier, maximal characteristic symmetric subspaces play an im-

portant role in the study of proper holomorphic maps. For a Type-I domain Ωp,q,

they are precisely the subspaces equivalent under automorphisms to the subspace

consisting of all Z ∈ Ωp,q whose entries on the last row and the last column are

zero. Thus, the maximal characteristic symmetric subspaces of Ωp,q are isomorphic

to Ωp−1,q−1. Now for every pair of positive integers (r, s) such that r ≤ p and

s ≤ q, one can similarly consider the subspaces equivalent under automorphisms to

the subspace consisting of all Z ∈ Ωp,q whose entries on the last (p − r) rows and

last (q − s) columns are zero. These subspaces, which are isomorphic to Ωr,s, are

precisely the aforementioned invariantly geodesic subspaces of Ωp,q. (See [Tsai].)

In [Ng1], it has been discovered that maximal invariantly geodesic subspaces are

also important for the study of proper holomorphic maps. We first of all note that

maps of diagonal-type preserve not only maximal characteristic symmetric subspaces

but also maximal invariantly geodesic subspaces. In addition, it has been shown

in [Ng1] that for Ωp,q, the moduli space of the maximal invariantly geodesic subspaces

that are isomorphic to Ωp−1,q (resp. Ωp,q−1) is the generalized ball Dp,q (resp. Dq,p).

Here we recall that the generalized ball is defined as

Dp,q =

[z1, . . . , zp+q] ∈ Pp+q−1 :

p∑
i=1

|zi|2 >
p+q∑
j=p+1

|zj |2
 .

In turn, Ωp,q parametrizes the maximal projective linear subspaces in Dp,q. The

relation to proper holomorphic maps of these statements is described in the following

proposition, which is also the basis for the works in [Ng1, Seo].

Proposition 3.9 Let f : Ωp,q → Ωp′,q′ be a proper holomorphic map. If the image

of a general maximal invariantly geodesic subspace under f is contained in a unique

maximal invariantly geodesic subspace in the target domain, then f induces a rational

proper map f̃ : Dp,q → Dp′,q′. Conversely, if g : Dp,q → Dp′,q′ is a rational proper

map such that the image of a general maximal linear subspace is contained in a

unique maximal linear subspace, then g also induces a proper holomorphic map g̃ :

Ωp,q → Ωp′,q′.

We here remark that proper holomorphic maps among generalized balls must

preserve the maximal linear subspaces inside the generalized balls [Ng2]. There-

fore we see from this proposition that the proper holomorphic maps among Type-I

domains are deeply related to those among generalized balls. As generalized balls

have much simpler boundary structures, their proper holomorphic maps are a lot

easier to construct and investigate. (See [BH, BEH, Ng2, Ng3] for related works.)

Although at this point the exact correspondence between these two sets of proper

maps are not completely known, the classification of proper maps among generalized

balls will certainly give a lot of information regarding those among Type-I domains.

Along this direction, Gao and Ng [GN] has recently classified all rational proper

holomorphic maps of degree 2 from D2,2 to D3,3 and thereby found a new type of

examples for Type-I domains that were completely out of reach by previous method-

s. Finally, we state the following conjecture, which is true for all known examples so
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far and its confirmation should be a ground-breaking point for the study for proper

holomorphic maps among irreducible bounded symmetric domains of higher rank.

The conjecture has been confirmed in some cases by Ng [Ng1].

Conjecture 3.10 Let Ω, Ω′ be irreducible bounded symmetric domains of rank at

least 2 and f : Ω → Ω′ be a proper holomorphic map. Then f maps maximal

invariantly geodesic subspaces of Ω into maximal invariantly geodesic subspaces of

Ω′.

4 Proper holomorphic mappings between Hartogs do-
mains over bounded symmetric domain

Hua domains, named after Chinese mathematician Loo-Keng Hua, are domains

in Cn fibered over irreducible bounded symmetric domains with fibers being gener-

alized complex ellipsoids. Hua domains are bounded pseudoconvex domains and are

in general nonhomogeneous and without smooth boundaries. This section is devoted

to the rigidity results on proper holomorphic mappings between two equidimensional

Hua domains.

A generalized complex ellipsoid (also called generalized pseudoellipsoid) is a do-

main of the form

Σ(n; p) =

{
(ζ1, · · · , ζr) ∈ Cn1 × · · · × Cnr :

r∑
k=1

‖ζk‖2pk < 1

}
,

where n = (n1, · · · , nr) ∈ Nr, p = (p1, · · · , pr) ∈ (R+)r, and ‖ · ‖ is the standard

Hermitian norm.

In the special case where all the pk = 1, the generalized complex ellipsoid Σ(n; p)

reduces to the unit ball in Cn1+···+nr . Also, it is known that a generalized complex

ellipsoid Σ(n; p) is homogeneous if and only if pk = 1 for all 1 ≤ k ≤ r. In general, a

generalized complex ellipsoid is not strongly pseudoconvex and its boundary is not

smooth. By relabelling the coordinates, we can always assume that p2 6= 1, · · · , pr 6=
1, that is, there is at most one 1 in p1, · · · , pr.

For the biholomorphic mappings between two equidimensional generalized com-

plex ellipsoids, in 1968, Naruki [Nar] proved the following result.

Theorem 4.1 (Naruki) Let Σ(n; p) and Σ(m; q) be two equidimensional general-

ized complex ellipsoids with n, m ∈ Nr and p, q ∈ (R+)r (where pk 6= 1, qk 6= 1 for

2 ≤ k ≤ r). Then Σ(n; p) is biholomorphic to Σ(m; q) if and only if there exists a

permutation σ ∈ Sr (where Sr is the permutation group of the r numbers {1, · · · , r}
) such that nσ(j) = mj , pσ(j) = qj for 1 ≤ j ≤ r.

The holomorphic automorphism group Aut(Σ(n; p)) of Σ(n; p) has been studied

by Dini-Primicerio [DP2], Kodama [Kod] and Kodama-Krantz-Ma [KKM]. In 2013,

Kodama [Kod] obtained the following result.

Theorem 4.2 (Kodama) (i) If 1 does not appear in p1, · · · , pr, then any auto-

morphism ϕ ∈ Aut(Σ(n; p)) is of the form

ϕ(ζ1, · · · , ζr) =
(
γ1(ζσ(1)), · · · , γr(ζσ(r))

)
, (4)
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where σ ∈ Sr is a permutation of the r numbers {1, · · · , r} such that nσ(i) =

ni, pσ(i) = pi (1 ≤ i ≤ r) and γ1, · · · , γr are unitary transformations of Cn1(nσ(1) =

n1), · · · ,Cnr(nσ(r) = nr) respectively.

(ii) If 1 appears in p1, · · · , pr, we can assume, without loss of generality, that

p1 = 1, p2 6= 1, · · · , pr 6= 1, then Aut(Σ(n; p)) is generated by elements of the form

(4) and automorphisms of the form

ϕa(ζ1, ζ2, · · · , ζr) =
(
Ta(ζ1), ζ2(ψa(ζ1))

1
2p2 , · · · , ζr(ψa(ζ1))

1
2pr

)
,

where Ta is an automorphism of the ball Bn1 in Cn1, which brings a point a ∈ Bn1

in the origin and

ψa(ζ1) =
1− ‖a‖2

(1− 〈ζ1, a〉)2
.

Let Ω be an irreducible bounded symmetric domain in Cd of genus g in its

Harish-Chandra realization. Let{
1/
√
V (Ω), h1(z), h2(z), · · ·

}
be an orthonormal basis of the Hilbert space A2(Ω) of square-integrable holomorphic

functions on Ω. Define the Bergman kernel KΩ(z, ξ̄) of Ω by

KΩ(z, ξ̄) := 1/V (Ω) +
∞∑
i=1

hi(z)hi(ξ)

for all z, ξ ∈ Ω. Obviously, 1 ≤ V (Ω)KΩ(z, z̄) < +∞. The generic norm of Ω is

defined by

NΩ(z, ξ̄) :=
(
V (Ω)KΩ(z, ξ̄)

)− 1
g (z, ξ ∈ Ω).

Thus 0 < NΩ(z, z̄) ≤ 1 for all z ∈ Ω and NΩ(z, z̄) = 0 on the boundary of Ω.

For an irreducible bounded symmetric domain Ω ⊂ Cd in its Harish-Chandra

realization, a positive integer r and n = (n1, · · · , nr) ∈ Nr, p = (p1, · · · , pr) ∈ (R+)r,

the Hua domain HΩ(n; p) is defined by

HΩ(n; p) = HΩ(n1, · · · , nr; p1, · · · , pr)

:=

(z, w(1), · · · , w(r)) ∈ Ω× Cn1 × · · · × Cnr :
r∑
j=1

‖w(j)‖2pj < NΩ(z, z̄)

 ,

where ‖ · ‖ is the standard Hermitian norm. Note that Ω × {0} ⊂ HΩ(n; p) and

bΩ × {0} ⊂ bHΩ(n; p) (where bD denotes the boundary of a domain D). Let the

family Γ(HΩ(n; p)) be exactly the set of all mappings Φ:

Φ(z, w(1), · · · , w(r))

:=

(
ϕ(z), U1(w(1))

(NΩ(z0, z0))
1

2p1

(NΩ(z, z0))
1
p1

, · · · , Ur(w(r))
(NΩ(z0, z0))

1
2pr

(NΩ(z, z0))
1
pr

)
(5)

for (z, w(1), · · · , w(r)) ∈ HΩ(n; p), where ϕ ∈ Aut(Ω), Uj is a unitary transformation

of Cnj for 1 ≤ j ≤ r, and z0 = ϕ−1(0). Then Γ(HΩ(n; p)) is a subgroup of the
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holomorphic automorphism group Aut(HΩ(n; p)) of HΩ(n; p) (see Yin-Wang-Zhao-

Zhao-Guan [YWZ]). Obviously, every element of Γ(HΩ(n; p)) preserves the set

Ω × {0}(⊂ HΩ(n; p)) and Γ(HΩ(n; p)) is transitive on Ω × {0}(⊂ HΩ(n; p)). For

the general reference of Hua domains, see Yin-Wang-Zhao-Zhao-Guan [YWZ] and

references therein. When r = 1, the Hua domain HΩ(n1; p1) is also called the

Cartan-Hartogs domain and is also denoted by ΩBn1 (p1). For the reference of the

Cartan-Hartogs domains, see Ahn-Byun-Park [ABP], Feng-Tu [FT1], Loi-Zedda [LZ]

and Wang-Yin-Zhang-Roos [WYZ] and the references therein.

In 2012, Ahn-Byun-Park [ABP] determined the automorphism group of the

Cartan-Hartogs domain HΩ(n1; p1) by case-by-case checking only for four types of

classical domains Ω. In 2014, by using a different technique from that in Ahn-Byun-

Park [ABP], Tu-Wang [TW2] obtained the following result.

Theorem 4.3 (Tu-Wang) Suppose that

f : HΩ1(n; p)→ HΩ2(m; q)

is a biholomorphism between two equidimensional Hua domains HΩ1(n; p) and HΩ2(m; q)

in their standard forms, where Ω1 ⊂ Cd1 and Ω2 ⊂ Cd2 are two irreducible bounded

symmetric domains in the Harish-Chandra realization, and n,m ∈ Nr, p,q ∈ (R+)r.

Then there exists an automorphism Φ ∈ Γ(HΩ2(m; q)) (see (5) here) and a permu-

tation σ ∈ Sr with nσ(i) = mi, pσ(i) = qi for 1 ≤ i ≤ r such that

Φ ◦ f(z, w(1), · · · , w(r)) = (z, w(σ(1)), · · · , w(σ(r)))


A

U1

. . .

Ur

 ,

where A is a complex linear isomorphism of Cd (d := d1 = d2) with A(Ω1) = Ω2,

and Ui is a unitary transformation of Cmi (mi = nσ(i)) for 1 ≤ i ≤ r.

As a special case of the above theorem, Tu-Wang [TW2] completely described

the automorphism group of the Hua domains HΩ(n; p) for all irreducible bounded

symmetric domains Ω as follows.

Corollary 4.4 (Tu-Wang) Let HΩ(n; p) be a Hua domain in its standard form

and Γ(HΩ(n; p)) is generated by the mappings of the form (5), where Ω ⊂ Cd is an

irreducible bounded symmetric domain in the Harish-Chandra realization, and n ∈
Nr, p ∈ (R+)r. Then, for every f ∈ Aut(HΩ(n; p)), there exist a Φ ∈ Γ(HΩ(n; p))

and a permutation σ ∈ Sr with nσ(i) = ni, pσ(i) = pi for 1 ≤ i ≤ r such that

f(z, w(1), · · · , w(r)) = Φ(z, w(σ(1)), · · · , w(σ(r))).

Also, there are many results (e.g., Dini-Primicerio [DP1, DP2], Hamada [Ha]

and Landucci [L]) concerning proper holomorphic mappings between two generalized

complex ellipsoids. For the case of p,q ∈ (Z+)r, in 1997, Dini-Primicerio ([DP2],

Th. 4.6) proved the following result.
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Theorem 4.5 (Dini-Primicerio) Let Σ(n; p) and Σ(m; q) be two equidimension-

al generalized complex ellipsoids with n,m ∈ Nr and p,q ∈ (Z+)r (where pk 6=
1, qk 6= 1 for 2 ≤ k ≤ r) such that nk ≥ 2 whenever pk ≥ 2 and mk ≥ 2 when-

ever qk ≥ 2 for 1 ≤ k ≤ r. Then there exists a proper holomorphic mapping

f : Σ(n; p) → Σ(m; q) if and only if there exists a permutation σ ∈ Sr such that

nσ(j) = mj , pσ(j) = qj for 1 ≤ j ≤ r.

Remark on Theorem 4.5. When p,q ∈ (Z+)r, Σ(n; p) and Σ(m; q) are pseu-

doconvex domains with real analytic boundaries. The conditions “ni ≥ 2 whenever

pi ≥ 2 and mi ≥ 2 whenever qi ≥ 2 for 1 ≤ i ≤ r” are indispensable in proving this

theorem.

For the Hua domain HΩ(n; p) = HΩ(n1, · · · , nr; p1, · · · , pr) in its standard form,

the boundary bHΩ(n; p) of HΩ(n; p) is comprised of

bHΩ(n; p) = b0HΩ(n; p) ∪ b1HΩ(n; p) ∪ (bΩ× {0}), (6)

where

b0HΩ(n; p) :=
{

(z, w(1), · · · , w(r)) ∈ Ω× Cn1 × · · · × Cnr :

r∑
i=1

‖w(i)‖2pi = NΩ(z, z), ‖w(j)‖2 6= 0, 1 + δ ≤ j ≤ r
}
,

b1HΩ(n; p) :=
r⋃

j=1+δ

{
(z, w(1), · · · , w(r)) ∈ Ω× Cn1 × · · · × Cnr :

r∑
i=1

‖w(i)‖2pi = NΩ(z, z), ‖w(j)‖2 = 0
}
,

in which

δ =

{
1 if p1 = 1,

0 if p1 6= 1.

Then, (a) b0HΩ(n; p) is a real analytic hypersurface in Cd+|n| and HΩ(n; p) is

strongly pseudoconvex at all points of b0HΩ(n; p); (b) If HΩ(n; p) isn’t a ball, then

HΩ(n; p) is not strongly pseudoconvex at any point of b1HΩ(n; p) ∪ (bΩ × {0}).
Obviously, b1HΩ(n; p) ∪ (bΩ × {0}) is contained in a complex analytic subset in

Cd+|n| of complex codimension equal to min{n1+δ, · · · , nr, n1 + · · · + nr} (note

min{n1+δ, · · · , nr, n1+· · ·+nr} = n1 for r = 1 and min{n1+δ, · · · , nr, n1+· · ·+nr} =

min{n1+δ, · · · , nr} for r ≥ 2). Tu-Wang [TW2] proved the rigidity of proper holo-

morphic mappings between two equidimensional Hua domains as follows.

Theorem 4.6 (Tu-Wang) Suppose that

f : HΩ1(n1; p1)→ HΩ2(n2; p2)

is a proper holomorphic mapping between two equidimensional Hua domains HΩ1(n1; p1)

and HΩ2(n2; p2) in their standard forms, where Ω1 ⊂ Cd1 and Ω2 ⊂ Cd2 are t-

wo irreducible bounded symmetric domains in the Harish-Chandra realization, and
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n1,n2 ∈ Nr, p1,p2 ∈ (R+)r. Assume that b1HΩi(ni; pi) ∪ (bΩi × {0}) (i = 1, 2)

is contained in some complex analytic set of complex codimension at least 2. Then

f : HΩ1(n1; p1)→ HΩ2(n2; p2) is a biholomorphism.

Remarks on Theorem 4.6. (i) In Theorem 4.6, we do not assume dim Ω1 =

dim Ω2. (ii) In Theorem 4.6, the assumption “b1HΩ(n; p) ∪ (bΩ× {0}) is contained

in some complex analytic set of complex codimension at least 2” is equivalent to

that HΩ(n; p) (in its standard form) satisfies

min{n1+δ, · · · , nr, n1 + · · ·+ nr} ≥ 2,

that is, HΩ(n; p) (in its standard form) satisfies the following assumptions: (a) If

Ω = Bd is the unit ball, then min{n1, · · · , nr} ≥ 2; (b) If rank(Ω) ≥ 2 and p1 6= 1,

then min{n1, · · · , nr} ≥ 2; (c) If rank(Ω) ≥ 2 and p1 = 1, then min{n2, · · · , nr, n1 +

n2 + · · ·+nr} ≥ 2. (iii) In Theorem 4.6, the assumption “ b1HΩi(ni; pi)∪ (bΩi×{0})
(i = 1, 2) is contained in some complex analytic set of complex codimension at least

2” cannot be removed.

Combining the above results, Tu-Wang [TW2] immediately obtained the follow-

ing result.

Corollary 4.7 (Tu-Wang) Suppose that f is a proper holomorphic self-mapping

on the Hua domain HΩ(n; p) in its standard form, where Ω ⊂ Cd is an irreducible

bounded symmetric domain in the Harish-Chandra realization, and n ∈ Nr, p ∈
(R+)r with min{n1+δ, · · · , nr, n1 +n2 + · · ·+nr} ≥ 2. Then f is an automorphism of

the Hua domain HΩ(n; p), that is, there exist a Φ ∈ Γ(HΩ(n; p)) and a permutation

σ ∈ Sr with nσ(i) = ni, pσ(i) = pi for 1 ≤ i ≤ r such that

f(z, w(1), · · · , w(r)) = Φ(z, w(σ(1)), · · · , w(σ(r))).

For other related research, we refer the reader to Ahn-Park [AP], Feng-Tu [FT2],

Kim-Ninh-Yamamori [KNY], Kosiński [Ko], Su-Tu-Wang [STW], Tu-Wang [TW1],

Yin [Yin2] and the references therein.
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