
Orthogonality, a dimension formula for holomorphic
mappings and their applications in

Cauchy-Riemann geometry

Yun Gao∗, Sui-Chung Ng†

July 29, 2021

Abstract

The first objective of this article is to present a new coordinate-free approach to study
the Cauchy-Riemann (CR) maps between the real hyperquadrics in the complex projective
space. The central theme is based on a notion of orthogonality on the projective space
induced by the Hermitian structure defining the hyperquadrics. There are various kinds
of special linear subspaces associated to this orthogonality which are well respected by
the relevant CR maps. For the purpose of analyzing how these CR maps interact with
linear subspaces, we developed a dimension formula for the local holomorphic mappings
between projective spaces, which gives an explicit dimension estimate for the linear spans
of the images of linear subspaces in each dimension.

Our method allows us to not only generalize many well-known rigidity theorems for the
CR mappings between the hyperquadrics with much simpler arguments, but also give the
first proof for the existence of infinitely many gaps conjectured by Huang-Ji-Yin on the
gap phenomenon for the complex unit balls. In addition, our proof does not distinguish
the unit balls from other generalized balls and thus it simultaneously demonstrates the
same phenomenon for all generalized balls. Finally, a new degree estimate for rational
proper maps between the complex unit balls was obtained as a by-product.

1 Introduction

The study of holomorphic mappings between real hyperquadrics in the complex pro-
jective space is a very classical topic in Several Complex Variables, especially in the
field of CR (Cauchy-Riemann) Geometry. On the one hand, they are the among
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simplest CR-manifolds (e.g. the boundaries of the unit balls) which can serve as
model spaces on which one can formulate or verify various statements or theories. On
the other hand, to CR geometry they play a role like what the Euclidean spaces to
Riemannian Geometry and what the projective spaces to Algebraic Geometry. For
instance, there is the well-known problem about which CR manifolds can be embed-
ded into these hyperquadrics. We refer the reader to [BEH, Da, Fo, HJ, Za1] (and
the references therein) for the related works in this area.

The traditional approach to the study is based on Chern-Moser’s normal form
theory, in which the central theme is that one can choose good coordinates such that
the CR manifolds and the relevant holomorphic maps take certain normal forms. On
the other hand, we observe that when dealing with hyperquadrics, there are a certain
type of orthogonality and a number of related notions, like null spaces, orthogonal
complements, which are well respected under CR maps and one can work on these
objects directly without any reference to coordinates.

Let r, s, t ∈ N and denote by Cr,s,t be the Euclidean space equipped with the
standard (possibly degenerate) Hermitian bilinear form whose eigenvalues are +1,
−1 and 0 with multiplicities r, s and t respectively. Consider its projectivization
Pr,s,t := PCr,s,t. The notions of positive, negative and null points are well defined on
Pr,s,t. Among these, the set of positive points, denoted by Br,s,t ⊂ Pr,s,t, is called a
generalized ball and its boundary ∂Br,s,t, which consists of the set of null points, is a
CR hypersurface in Pr,s,t defined by a real quadratic equation. The name “generalized
balls” comes from the fact that B1,s,0 is just the ordinary s-dimensional complex unit
ball.

Suppose U ⊂ Pr,s,t is a connected open set, U ∩ ∂Br,s,t 6= ∅ and f : U → Pr′,s′,t′

is a holomorphic map such that f(U ∩ ∂Br,s,t) ⊂ ∂Br′,s′,t′ . A classical problem in
CR geometry is under what conditions f is rigid in the sense that it comes from
some “standard” map between the projective spaces, e.g. from a linear map. Our
starting point is the observation that f preserves the orthogonality induced by the
Hermitian bilinear form (Proposition 2.5). (Note that the notion of orthogonality
descends naturally to Pr,s,t.) This leads to the definition of local orthogonal maps
(Definition 2.3). Here we collect our major rigidity results for local orthogonal maps:

Theorem 1.1. Let U ⊂ Pr,s,t be a connected open set such that U ∩ ∂Br,s,t 6= ∅ and
f : U → Pr′,s′,t′ be a local orthogonal map. Then f is either null or quasi-linear if one
of the conditions below is satisfied:

(i) r, s ≥ 2 and min{r′, s′} ≤ min{r, s}; (Theorem 5.5)

(ii) t = 0 and min{r′, s′} ≤ 2 min{r, s} − 2; (Theorem 5.11)

(iii) t = 0 and r′ + s′ ≤ 2 dim(Pr,s)− 1. (Theorem 5.10)

In addition, f is quasi-standard if it maps a positive point to a positive point under
any of the conditions above, or

(iv) r, s ≥ 2, r = r′ and f(U ∩ Br,s,t) ⊂ Br′,s′,t′ . (Theorem 5.9)
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Here, we call f null if f(U) ⊂ ∂Br′,s′,t′ . This is a kind of triviality in the current
setting analogous to constant maps. On the other hand, we call f quasi-standard
(resp. quasi-linear) if it is in some sense a “direct sum” of two parts, of which one
comes from a linear isometry (resp. linear map) from Cr,s,t to Cr′,s′,t′ and one is
null. The more precise definitions will be given in Section 2. From these results,
we can deduce and generalize many well-known rigidity theorems, including those
of Baouendi-Huang [BH] (from (i) and (iv)); Baouendi-Ebenfelt-Huang [BEH] (from
(ii)); Faran [Fa1] (from (iii)); and Xiao-Yuan [XY] (from (iii)).

For the ordinary complex unit balls Bs ∼= B1,s,0 with s ≥ 2, it is well-known
that there is an interesting gap phenomenon, for the holomorphic maps between their
boundaries. Fix an integer n ≥ 2. For each k ∈ N+ such that n > k(k + 1)/2,

define the closed interval Ik := [kn + 1, (k + 1)n− k(k+1)
2
− 1]. The classical theorem

of Faran [Fa1] amounts to saying that when N ∈ I1 = [n + 1, 2n − 2], any local
holomorphic map sending an open piece of ∂Bn to ∂BN actually maps ∂Bn to a linear
section ∂Bn ⊂ ∂BN . In other words, there are no “new” maps when N increases
from n to 2n − 2. Then, it was discovered by Huang-Ji-Xu [HJX] that the same
phenomenon holds for N ∈ I2 = [2n+ 1, 3n− 4] and later by Huang-Ji-Yin [HJY] for
N ∈ I3 = [3n+ 1, 4n−7]. The Gap Conjecture, formulated in [HJY2], states that the
gap phenomenon holds whenever N ∈ Ik. Our method enables us to not only prove
the existence of infinitely many similar gaps at once, but also demonstrate the gap
phenomenon actually holds for all generalized balls.

Theorem 1.2. Let k, n ∈ N+ such that n > k(k+1). For the local proper holomorphic
maps between generalize balls, the gap phenomenon holds over the intervals

Jk := [kn+ k, (k + 1)n− (k2 + 1)].

The theorem above will be reformulated with more detail as Theorem 6.5. Note
that although the interval Jk in our theorem is smaller than the Ik in the original
Gap Conjecture, this is to be expected since our theorem holds for all generalized
balls. As a matter of fact, the lower bound for Jk is sharp in the present context, as
will be demonstrated after Theorem 6.5.

Besides using orthogonality, another important difference between our method
and the traditional normal form method is that we have made heavy use of linear
subspaces. The null spaces and orthogonal complements (which are well defined on
Pr,s,t) are linear subspaces that are well respected by local orthogonal maps. This
allows us to obtain information about how the linear subspaces of certain dimensions
are mapped to the target. Together with the dimension formula below, we are then
able to deduce an explicit dimension estimate for the linear spans of the images of the
subspaces in each dimension. One may say that many of our arguments are interplays
between orthogonality and the dimension formula.

To state our dimension formula, we first bring out the fact that every positive
integer A can be written as certain sums of binomial coefficients. For every n ∈ N+,
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there exist unique positive integers an > an−1 > · · · > aδ, where δ ≥ 1 and aj ≥ j
for every j, such that A =

(
an
n

)
+ · · ·+

(
aδ
δ

)
. This is called the n-th Macaulay’s repre-

sentation of A and its existence and uniqueness can be proved by a greedy algorithm.
These representations originally appeared in Macaulay’s work of homogeneous ideals
in polynomial rings [Ma]. Using the n-th Macaulay representation of A, we define
the operation A−<n> :=

(
an−1
n−1

)
+ · · · +

(
aδ−1
δ−1

)
. In what follows, “span” means the

projective linear span:

Theorem 1.3. Let f : U ⊂ Pn → PM be a local holomorphic map such that
dim(span(f(U)) ≥ N . Then, for a general hyperplane H such that H ∩ U 6= ∅,
dim(span(f(H ∩ U)) ≥ N−<n>.

The equality in the theorem can hold, for example, when f is a rational map
whose components are all the monomials of a fixed degree. Our dimension formula is
obtained from combining Green’s hyperplane restriction theorem (Theorem 3.1) with
a pair of combinatoric identities (especially Lemma 3.2). It holds for any local holo-
morphic maps between projective spaces and we believe that it will find applications
elsewhere.

Finally, in the course of proving Theorem 1.2, we have got a new degree estimate
for rational proper maps between the unit balls as a by-product:

Theorem 1.4. Let f be a rational proper holomorphic map from Bn to BN . If n ≥ 3
and N <

(
n+2

2

)
, then,

deg(f) ≤
(

2N

n+ 3
+ 1

)(
4N

n+ 3
+ 1

)
.

This can be compared with the estimate obtained by D’Angelo-Lebl [DL] which

says that deg(f) ≤ N(N − 1)

2(2n− 3)
when there is no restriction for N .

2 Definitions and basic properties

Let r, s, t ∈ N and n := r+s+ t > 0. Define the (possibly degenerate) indefinite inner
product of signature (r; s; t) on Cn:

〈z, w〉r,s,t = z1w̄1 + · · ·+ zrw̄r − zr+1w̄r+1 − · · · − zr+sw̄r+s,

where z = (z1, . . . , zn) and w = (w1, . . . , wn). We also define the indefinite norm
‖z‖2

r,s,t = 〈z, z〉r,s,t. Then, for any z ∈ Cr,s,t, we call it a positive point if ‖z‖2
r,s,t > 0;

a negative point if ‖z‖2
r,s,t < 0 and a null point if ‖z‖2

r,s,t = 0. If 〈z, w〉r,s,t = 0, we say
that z is orthogonal to w and write z ⊥ w. In addition, the orthogonal complement
of z is defined as

z⊥ = {w ∈ Cr,s,t | 〈z, w〉r,s,t = 0}.
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We denote by Cr,s,t the Cn with the Hermitian inner product defined above and
by Pr,s,t := PCr,s,t its projectivization. We write Cr,s and Pr,s instead of Cr,s,0 and
Pr,s,0. A biholomorphism on Pr,s,t induced by a linear isometry of Cr,s,t is said to be
an automorphism of Pr,s,t.

Although the norm ‖ · ‖2
r,s,t of course does not descend to Pr,s,t, the positivity,

negativity or nullity of a line (1-dimensional subspace) remains well defined and thus
we can talk about positive points, negative points and null points on Pr,s,t. Further-
more, the orthogonality of two points on Pr,s,t and hence the notion of orthogonal
complement also make sense on Pr,s,t.

More generally, let V be a complex vector space equipped with a Hermitian inner
product (possibly degenerate or indefinite) HV of signature (r; s; t), where dim(V ) =
r + s+ t. Let PV be its projectivization. The notion of positivity, negativity, nullity
and orthogonality can be similarly defined on PV . In addition, any linear isometry
F : Cr,s,t → V induces a biholomorphic map F̃ : Pr,s,t → PV preserving all these
notions. Sufficient for our purpose, we can simply identify any such projective space
PV with Pr,s,t through any such biholomorphism and we write PV ∼= Pr,s,t for such
identification.

Now let H be a complex linear subspace in Cr,s,t and the restriction of 〈·, ·〉r,s,t on
H has the signature (a; b; c). Obviously, we have 0 ≤ a ≤ r, 0 ≤ b ≤ s, 0 ≤ c ≤
min{r − a, s − b} + t and a + b + c = dim(H). Then PH ∼= Pa,b,c. We call PH an
(a, b, c)-subspace of Pr,s,t. Usually, we denote an (a, b, c)-subspace by Ha,b,c.

If a = b = 0, PH is called a null space. Similarly, it is called a positive space
(resp. negative space) if b = c = 0 (resp. a = c = 0). We will also use the terms null
k-plane, positive k-plane and negative k-plane when the dim(PH) = k. Obviously,
the maximum dimension of the null spaces in Pr,s,t is min{r, s}+t−1. The null spaces
with the maximal dimension are called the maximal null spaces.

We now recall the definition of type-I irreducible bounded symmetric domain and
with that we can give some useful parametrizations for the positive, negative and null
spaces in Pr,s,t.
Definition 2.1. Let Mr,s be the set of r× s complex matrices. The type-I irreducible
bounded symmetric domain Ωr,s is the domain in Mr,s

∼= Crs defined by Ωr,s = {A ∈
Mr,s : I − AAH > 0}, where AH denotes the Hermitian transpose of A.

In what follows, for a point [z] = [z1, . . . , zn] ∈ Pr,s,t, we split the homogeneous
coordinates as [z] = [z+, z−, z0], where z+ = [z1, · · · , zr], z− = [zr+1, · · · , zr+s], z0 =
[zr+s+1, · · · , zn]. If t = 0, [z] is split as [z] = [z+, z−].

Let A ∈Mr,s and B ∈Mr,t. Consider the (r − 1)-plane defined by

HA,B = {[z+, z−, z0] ∈ Pr,s,t | z− = z+A and z0 = z+B} ∼= Pr−1 ⊂ Pr,s,t.

Using the definition of HA,B, we see that Mr,s×Mr,t can be identified naturally as an
open subset of the Grassmannian G(r − 1,Pr,s,t) which is the set of (r − 1)-planes in
Pr,s,t. (Note that the dimensions of Mr,s ×Mr,t and G(r − 1,Pr,s,t) are the same.)
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The (r − 1)-plane HA,B is a positive subspace if and only if ‖z+‖2 > ‖z−‖2 =
‖z+A‖2 for all z+ ∈ Pr−1, which is in turn equivalent to A ∈ Ωr,s. Similarly, when
r ≤ s, we see that HA,B is a null (r− 1)-plane if and only if AAH = I. We know that
latter equation defines precisely the Shilov boundary of Ωr,s in Mr,s

∼= Crs, denoted
by S(Ωr,s). To summarize, we have the following (cf. [NZ]):

Proposition 2.2. There is an open embedding of Mr,s × Mr,t into G(r − 1,Pr,s,t)
such that its restriction to Ωr,s ×Mr,t gives a parametrization of all positive (r − 1)-
planes in Pr,s,t. In addition, when r ≤ s, the restriction to S(Ωr,s)×Mr,t also gives a
parametrization of the null (r − 1)-planes in Pr,s,t.

Many analyses on the mapping problems between CR manifolds begin with the
fact that the associated Segre varieties are well respected by CR maps. The study of
Segre varieties has a very important role in many problems like reflection principle and
algebracity [Za2]. For real hyperquadrics on complex projective space, we note that
their Segre varieties are just the orthogonal complements (to points) with respect
to the orthogonality described previously. Motivated from this, we thus give the
following definition.

Definition 2.3. Let U ⊂ Pr,s,t be a connected open set containing a null point. We
call a holomorphic map F : U → Pr′,s′,t′ orthogonal if F (p) ⊥ F (q) for any p, q ∈ U
such that p ⊥ q; sign-preserving if F maps positive points to positive points and
negative points to negative points. We also simply call F a local orthogonal map or
local sign-preserving map from Pr,s,t to Pr′,s′,t′ in such cases.

Remark 1. If U doesn’t contain any null point, the orthogonality or sign-preserving
condition may become vacuous. For instance, in such case, it could happen that
p⊥ ∩ U = ∅ for any point p ∈ U .

Remark 2. It follows easily from continuity that a sign preserving map also maps
null points to null points.

Convention. In what follows, if we say that F maps lines to lines (resp. k-planes to
k′-planes), we mean F maps the intersection of any line (resp. k-plane) and U into
a line (resp. k′-plane).

Local orthogonal map preserves null spaces, as demonstrated below.

Proposition 2.4. Let F be a local orthogonal map from Pr,s,t to Pr′,s′,t′. Then F
maps null spaces to null spaces (in particular, null points to null points).

Proof. For any two points α, β in a null space in Pr,s,t, we have 〈α, α〉r,s,t = 〈β, β〉r,s,t =
〈α, β〉r,s,t = 0. Since F is a local orthogonal map, we get

〈F (α), F (α)〉r′,s′,t′ = 〈F (β), F (β)〉r′,s′,t′ = 〈F (α), F (β)〉r′,s′,t′ = 0.

So the linear span of the image of a null space is a null space.
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There are two kinds of null points in Pr,s,t when r, s, t > 0. The first kind of null
points is the null points α satisfying 〈α, β〉r,s,t = 0, for any β ∈ Pr,s,t. We call these
null points special null points and call other null points ordinary null points. It is easy
to see from the defining equations for special and ordinary null points that a general
null point is ordinary and for r, s > 0, whenever an open set contains a null point, it
must contain an ordinary null point.

Both orthogonal maps and sign-preserving maps map null points to null points.
Conversely, the following proposition in particular implies that a sign-preserving map
is locally an orthogonal map.

Proposition 2.5. Let r, s > 0 and F : U ⊂ Pr,s,t → Pr′,s′,t′ be a holomorphic map,
where U is an open set containing a null point. If F maps null points to null points,
then there exists an open set V ⊂ U , such that F : V → Pr′,s′,t′ is an orthogonal map.

Proof. Let n = r+s+t, n′ = r′+s′+t′ and write the homogeneous coordinates of Pr,s,t
and Pr′,s′,t′ as [z1, . . . , zn] and [w1, . . . , wn′ ] respectively. Since r, s > 0, we know that
U must contain an ordinary null point and hence by shrinking U if necessary, we may
assume without loss of generality that U is contained in the open set U1

∼= Cn−1 ⊂ Pr,s,t
defined by z1 6= 0 and F (U) is contained in the open set of U ′1

∼= Cn′−1 ⊂ Pr′,s′,t′ defined
by w1 6= 0. We write the standard inhomogeneous coordinates in U1 as (ζ2, . . . , ζn),
where ζj = zj/z1 and similarly write (η2, . . . , ηn′) for U ′1, where η` = w`/w1. In
terms of these coordinates, the null points in U1 and U ′1 are respectively given by the
equations

1 +
r∑
j=2

|ζj|2 −
r+s∑
j=r+1

|ζj|2 = 0 and 1 +
r′∑
`=2

|η`|2 −
r′+s′∑
`=r′+1

|η`|2 = 0.

(Strictly speaking, these equations are for the cases where r, r′ ≥ 2 but other cases
can be handled in a similar fashion.)

Using the inhomogeneous coordinates above, write F = (F2, · · · , Fn′). If F maps
null points to null points, then there exist a connected open set V ⊂ U containing a
null point, k ∈ N+ and a real analytic function ρ on V such that

1 +
r′∑
`=2

|F`|2 −
r′+s′∑
`=r′+1

|F`|2 =

(
1 +

r∑
j=2

|ζj|2 −
r+s∑
j=r+1

|ζj|2
)k

ρ (1)

holds on V . Hence, by shrinking V if necessary, we can polarize the equation, i.e. for
any ζ, ξ ∈ V , we have

1 +
r′∑
`=2

F`(ζ)F`(ξ)−
r′+s′∑
`=r′+1

F`(ζ)F`(ξ) =

(
1 +

r∑
j=2

ζjξj −
r+s∑
j=r+1

ζjξj

)k

ρ(ζ, ξ̄),

where ζ = (ζ2, . . . , ζn), ξ = (ξ2, . . . , ξn).
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Now, ζ as a point in Pr,s,t has homogeneous coordinates [1, ζ2, . . . , ζn] and thus

ζ⊥ ∩ V consists precisely the points ξ = [1, ξ2, . . . , ξn] ∈ V satisfying 1 +
r∑
j=2

ζjξj −

r+s∑
j=r+1

ζjξj = 0. With a similar consideration for F (ζ)⊥, we conclude from the above

equation that F (ζ⊥) ⊂ (F (ζ))⊥ for ζ ∈ V .

It has been known that for any local proper holomorphic map f between two
generalized balls (excluding the unit balls), there exist k, k′ ∈ N+ such that f maps
k-planes to k′-planes ([Ng1] Proposition 4.1 therein). The following proposition is
a generalization of this result to local orthogonal maps, which is very crucial in our
study.

Proposition 2.6. If F is a local orthogonal map from Pr,s,t to Pr′,s′,t′, then F maps
(min{r, s} − 1)-planes to (min{r′, s′}+ t′ − 1)-planes.

Proof. By symmetry, it suffices to prove the case for r ≤ s and r′ ≤ s′. The case
r = 1 is trivial and so we let r ≥ 2. Recall from Proposition 2.2 that the null
(r− 1)-planes in Pr,s,t can be parametrized by S(Ωr,s)×Mr,t ⊂ G(r− 1,Pr,s,t), where
S(Ωr,s) is the Shilov boundary of the type-I bounded symmetric domain Ωr,s. Now
from Proposition 2.4, the map F maps null spaces to null spaces and thus the image
of every null (r − 1)-plane in Pr,s,t is contained in a maximal null space, which is an
(r′ + t′ − 1)-plane in Pr′,s′,t′ .

Note that for any point p ∈ G(r− 1,Pr,s,t), there exists a set of local holomorphic
functions in a neighborhood U 3 p such that they vanish at a point q ∈ U precisely
when the image under F of the (r−1)-plane given by q is contained in an (r′+ t′−1)-
plane. (For instance, one can consider a set of determinants given by the Taylor
coefficients of F . For more detail, see [NZ], Proof of Theorem 1.1 therein.) From the
previous paragraph, we know that when choose p ∈ S(Ωr,s) ×Mr,t, these functions
vanish at U ∩ (S(Ωr,s)×Mr,t). The Shilov boundary is the distinguished boundary of
Ωr,s and from this we deduce that these functions actually vanish identically on the
open set U (see [Ng2] or [NZ]). Thus, F maps (r−1)-planes to (r′+ t′−1)-planes.

3 Macaulay representation and a dimension for-

mula for holomorphic mappings

Every positive integer A can be written as certain sums of binomial coefficients. For
every n ∈ N+, there exist unique positive integers an > an−1 > · · · > aδ, where
δ ≥ 1 and aj ≥ j for every j, such that A =

(
an
n

)
+ · · · +

(
aδ
δ

)
. This is called the

n-th Macaulay’s representation of A. These representations naturally appeared in the
works of Macaulay [Ma] and Green [Gr] on homogeneous ideals in polynomial rings.
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There are several operations pertaining to the Macaulay’s representations, as follows.
Let A =

(
an
n

)
+ · · ·+

(
aδ
δ

)
be the n-th Macaulay’s representation of A, define

A<n> =

(
an + 1

n+ 1

)
+ · · ·+

(
aδ + 1

δ + 1

)
; A−<n> =

(
an − 1

n− 1

)
+ · · ·+

(
aδ − 1

δ − 1

)
;

A<n> =

(
an − 1

n

)
+ · · ·+

(
aδ − 1

δ

)
; A−<n> =

(
an + 1

n

)
+ · · ·+

(
aδ + 1

δ

)
.

Here, we employ the convention that
(
a
b

)
= 0 whenever a < b or b = 0. The seemingly

peculiar choice of notations between A<n> and A−<n> are due the fact that the
operations A<n> and A<n> were used by Macaulay and Green and the other two are
in some sense the reverse operations. We will need the following Green’s hyperplane
restriction theorem, which has already been used in [GLV] to study CR mappings
between real hyperquadrics.

Theorem 3.1 ([Gr]). Let W be a complex vector subspace of H0(OPn(d)) of codimen-
sion c. Let WH ⊂ H0(OH(d)) be the restriction of W to a general hyperplane H and
cH be its codimension. Then, cH ≤ c<d>.

We begin by stating two combinatoric lemmas related to these operations. The
first one is our key, which connects Green’s hyperplane theorem and our Theorem 3.4.
The second one is much simpler, and has already been discovered in [GLV]. Their
proofs are contained in the Appendix section.

Lemma 3.2. Suppose m, k ≥ 1 and A,B ≥ 0. If A+B =
(
m+k
k

)
− 1, then

A−<m> +B<k> =

(
m+ k − 1

k

)
− 1.

Here, we make the convention that 0−<m> = 0<k> = 0.

Lemma 3.3 ([GLV]). Let n, d,K ∈ N+ such that K ≤
(
n+d
d

)
. Then, the number(

n+ d− 1

d

)
−
((

n+ d

d

)
−K

)
<d>

is independent of d.

We can now prove our dimension formula. In what follows, “span” means the
projective linear span.

Theorem 3.4. Let f : U ⊂ Pn → PM be a local holomorphic map such that
dim(span(f(U)) ≥ N . Then, for a general hyperplane H such that H ∩ U 6= ∅,
dim(span(f(H ∩ U)) ≥ N−<n>.
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Proof. We first prove the theorem for rational maps. Let f : Pn 99K PM be a rational
map such that dim(span(f(Pn)) ≥ N . Let f = [f0, . . . , fM ], where fj ∈ C[z0, . . . , zn],
0 ≤ j ≤M , are homogeneous polynomials of degree d without non-constant common
factors.

Let Hd,n ⊂ C[z0, . . . , zn] be the vector subspace of homogeneous polynomials of
degree d and W ⊂ Hd,n be the subspace spanned by f0, . . . , fM . Thus, we have

N + 1 ≤ dim(W ) ≤ dim(Hd,n) =

(
n+ d

d

)
.

For a general hyperplane H ⊂ Pn, choose a set of homogeneous coordinates on H
and let WH ⊂ Hd,n−1 be the subspace spanned by restrictions of f0, . . . , fM on H. By
Green’s Theorem 3.1, we have

dim(Hd,n−1)− dim(WH) ≤ (dim(Hd,n)− dim(W ))<d> ≤ (dim(Hd,n)−N − 1)<d> ,

in which the last inequality follows from the fact that c<d> ≤ c′<d> if c ≤ c′. Thus,

dim(WH) ≥
(
n+ d− 1

d

)
−
((

n+ d

d

)
−N − 1

)
<d>

(2)

Now choose d′ such that
(
n+d′−1
d′−1

)
< N + 1 ≤

(
n+d′

d′

)
and let A = N −

(
n+d′−1
d′−1

)
,

B =
(
n+d′

d′

)
−N − 1. Then A,B ≥ 0 and

A+B =

(
n+ d′

d′

)
−
(
n+ d′ − 1

d′ − 1

)
− 1 =

(
n+ d′ − 1

d′

)
− 1.

By Lemma 3.3, the right hand side of Eq.(2) is independent of d and thus together
with Lemma 3.2, we have

dim(WH) ≥
(
n+ d′ − 1

d′

)
−
((

n+ d′

d′

)
−N − 1

)
<d′>

=

(
n+ d′ − 1

d′

)
−B<d′>

=

(
n+ d′ − 1

d′

)
−
((

n+ d′ − 2

d′

)
− 1− A−<n−1>

)
=

(
n+ d′ − 2

d′ − 1

)
+

(
N −

(
n+ d′ − 1

d′ − 1

))−<n−1>

+ 1

=

(
n+ d′ − 2

n− 1

)
+

(
N −

(
n+ d′ − 1

n

))−<n−1>

+ 1

Since
(
n+d′−1
d′−1

)
< N+1 ≤

(
n+d′

d′

)
, we have

(
n+d′−1

n

)
≤ N <

(
n+d′

n

)
and it follows that(

n+d′−1
n

)
is the leading term of the n-th Macaulay representation of N . Therefore, by
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writing N =
(
n+d′−1

n

)
+ (N −

(
n+d′−1

n

)
), we see that

N−<n> =

(
n+ d′ − 2

n− 1

)
+

(
N −

(
n+ d′ − 1

n

))−<n−1>

.

Hence, we get that dim(WH) ≥ N−<n> + 1 and thus dim(span(f(H)) ≥ N−<n>. We
have now proved the theorem for rational maps.

For the general case, if f : U ⊂ Pn → PM is a local holomorphic map such that
dim(span(f(U)) ≥ N , then for a sufficiently large k, the k-th order jet of f can be
represented by a rational map f [ : Pn 99K Pm (e.g. a truncated Taylor polynomial of
f at point in U after homogenization) such that dim(span(f [(Pn)) ≥ N . Since the
restriction of f [ to a hyperplane H ⊂ Pn represents the k-th order jet of f |U∩H , we
see from the proven case of rational maps that for a general hyperplane H, we have
dim(span(f(H ∩ U)) ≥ dim(span(f [(H)) ≥ N−<n>.

Remark. The equality in Theorem 3.4 can hold since the equality can hold in Green’s
theorem [Gr]. One can also see directly that the equality holds when F is the rational
map whose components are all the monomials (with unit coefficients) of a fixed degree
in C[z0, . . . , zn].

Sometimes it is convenient to use the following counterpart of Theorem 3.4 and
we will also elaborate a couple of special cases for later use.

Theorem 3.5. Let g : U ⊂ Pm → Pm′ be a local holomorphic map and ` ∈ N+

such that ` ≤ m − 1. If g maps `-planes to `′-planes, then it maps (` + 1)-planes to
((`′ + 1)<`> − 1)-planes. In particular,

(i) if `′ ≤ `− 1, then the image of g is contained in an `′-plane;

(ii) if ` ≤ `′ ≤ 2`− 1, then g maps (`+ k)-planes to (`′ + k)-planes for k ≥ 0;

Proof. Suppose on the contrary the image of a general (` + 1)-plane under g is not
contained in any ((`′+1)<`>−1)-plane. Since ((`′+1)<`>)−<`+1> = `′+1, Theorem 3.4
implies that the image of a general `-plane is not contained in any `′-plane.

If `′ ≤ `−1, then `′+1 =
(
`
`

)
+
(
`−1
`−1

)
+· · ·+

(
δ
δ

)
for some δ ≥ 1, so (`′+1)<`>−1 = `′.

Therefore we deduce inductively that the image of g is contained in an `′-plane.

If ` ≤ `′ ≤ 2` − 1, then `′ + 1 =
(
`+1
`

)
+
(
`−1
`−1

)
+
(
`−2
`−2

)
+ · · · +

(
δ
δ

)
for some δ ≥ 1.

Thus, (`′+1)<`>−1 = `′+1 and so g maps (`+1)-planes to (`′+1)-planes. Moreover,
as ` + 1 ≤ `′ + 1 < 2(` + 1) − 1, we can proceed inductively and the desired result
follows.

Remark. One can apply Theorem 3.5 repeatedly to get the following simple formula.
Under the same hypotheses, if the `-th Macaulay’s representation of `′ + 1 is

(
λ`
`

)
+

· · · +
(
λδ
δ

)
, then for any k ∈ N+, g maps every (` + k)-plane to some linear subspace

of dimension
(
λ`+k
`+k

)
+ · · ·+

(
λδ+k
δ+k

)
− 1.
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Proposition 3.6. Under the hypotheses of Theorem 3.5, if `′ ≤ ` and the image of g
is not contained in an `′-plane, then g extends to a linear rational map.

Proof. If `′ ≤ ` and the image g is not contained in an `′-plane, by considering a
general pair of `-planes such that their intersection is an (`− 1)-plane, we see g maps
(`− 1)-planes to (`′− 1)-planes. Inductively, we deduce that g maps lines to lines (or
lines to points) and hence g is linear. For a proof of the last fact, see [Ng3] (Lemma
4.1 therein).

4 Gap phenomenon for local orthogonal maps

Proposition 4.1. Let f : U ⊂ Pr,s,t → Pr′,s′ be a local orthogonal map. Then, for
every linear subspace E ⊂ Pr,s,t such that E ∩ U 6= ∅ and E⊥ ∩ U 6= ∅,

dim(span(f(E ∩ U)) + dim(span(f(E⊥ ∩ U)) ≤ dim(Pr′,s′)− 1.

Proof. By orthogonality, f(E⊥ ∩U) ⊂ (f(E ∩U))⊥ and since the Hermitian form on
Cr′,s′ is non-degenerate, we have

dim(span(f(E⊥ ∩ U)) + 1 ≤ dim(Cr′,s′)− (dim(span(f(E ∩ U)) + 1),

and the desired result follows.

Let n,N ∈ N such that n + 1 ≤ N <
(
n+2

2

)
=
(
n+2
n

)
. By considering the n-th

Macaulay representation of N , we deduce that N is of the following form:

N = N(n; a, b) :=

(
n+ 1

n

)
+ · · ·+

(
n− a+ 1

n− a

)
+ b

for some integers a, b ≥ 0 such that b ≤ n − a − 1. In fact, the n-th Macaulay’s
representation of N(n; a, b) is

N(n; a, 0) :=

(
n+ 1

n

)
+ · · ·+

(
n− a+ 1

n− a

)
and

N(n; a, b) :=

(
n+ 1

n

)
+ · · ·+

(
n− a+ 1

n− a

)
+

(
n− a− 1

n− a− 1

)
+ · · ·+

(
n− a− b
n− a− b

)
for b ≥ 1.

Lemma 4.2. N(n; a, b)−<n> =


N(n− 1; a, b) if n− a− b ≥ 2;
N(n− 1; a, b− 1) if n− a− b = 1 and b ≥ 1;
N(n− 1; a− 1, 0) if n− a− b = 1 and b = 0;
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Proof. It is an immediate consequence of the n-th Macaulay representation ofN(n; a, b)
described above.

Proposition 4.3. Let a, b, n be non-negative integers such that n − a − b ≥ 2. Let
g : U ⊂ Pn → PN(n;a,b) be a local holomorphic map whose image is not contained in a
proper linear subspace. Let Dm = dim(span(g(M ∩ U))) for a general m-dimensional
linear subspace M intersecting U . Then,

Dm ≥


N(m; a, b) if m ∈ [a+ b+ 1, n− 1]
N(m; a,m− a− 1) if m ∈ [a+ 1, a+ b]
N(m;m− 1, 0) if m ∈ [1, a]

Proof. We will apply Theorem 3.4 and Lemma 4.2 repeatedly and proceed from m =
n− 1 down to m = 1.

As we start with n − a − b ≥ 2, from the first line of Lemma 4.2, we get that
Dm ≥ N(m; a, b) for m = n− 1, n− 2, . . . , a+ b+ 1, When we reach m = a+ b+ 1, we
have N(m; a, b) = N(m; a,m− a− 1). Thus, if b ≥ 1, we deduce from the second line
of Lemma 4.2 that for m = a+ b, . . . , a+ 1, we always have Dm ≥ N(m; a,m−a−1).
In particular, Da+1 ≥ N(a + 1; a, 0), therefore by using the third line of Lemma 4.2,
it follows that for m = a, . . . , 1, we have Dm ≥ N(m;m − 1, 0). If b = 0, the
previous argument is basically the same except the second line of Lemma 4.2 is never
needed.

Theorem 4.4. Let a, n be non-negative integers such that n ≥ a2 +3a+3. Let f be a
local orthogonal map from Pr,s to Pr′,s′, where n = dim(Pr,s) and let n′ := dim(Pr′,s′).
If

(a+ 1)(n+ 1) ≤ n′ ≤ (a+ 2)n− (a2 + 2a+ 2),

then the image of f lies in a hyperplane of Pr′,s′

Proof. We will prove by contradiction. Suppose n′ satisfies the hypotheses and the
image of f is not contained in any hyperplane in Pr′,s′ .

Since

(a+ 1)(n+ 1) =

(
n+ 1

n

)
+ · · ·+

(
n− a+ 1

n− a

)
+

(a+ 1)a

2

and

(a+ 2)n− (a2 + 2a+ 2) =

(
n+ 1

n

)
+ · · ·+

(
n− a+ 1

n− a

)
+

(
n− a2 + 5a+ 6

2

)
,

we see that

n′ =

(
n+ 1

n

)
+ · · ·+

(
n− a+ 1

n− a

)
+ b = N(n; a, b),

for some b satisfying
(a+ 1)a

2
≤ b ≤ n− a2 + 5a+ 6

2
. (3)
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By hypotheses, n ≥ a2 + 3a+ 3, thus if we let n1 :=

[
n− 1

2

]
, then

(a+ 2)(a+ 1)

2
≤ n1 ≤

n− 1

2
≤ n− a2 + 3a+ 4

2
,

which implies
(a+ 1)a

2
≤ n1 − a− 1 ≤ n− a2 + 5a+ 6

2
.

Comparing with Eq.(3), we see that there are two possibilities for b, either

Case I :
(a+ 1)a

2
≤ b ≤ n1 − a− 1; or

Case II : n1 − a ≤ b ≤ n− a2 + 5a+ 6

2
.

Define also n2 =

{
n1 if n is odd;

n1 + 1 if n is even.
Then n1 + n2 + 1 = n and for an n1-

dimensional linear subspace in Pr,s, its orthogonal complement is of dimension n2 and
conversely any n2-dimensional linear subspace is the orthogonal complement of some
n1-dimensional linear subspace. Let Dm be the dimension of the linear span of the
image under f of a general m-dimensional linear subspace intersecting the domain
of definition of f . We are going to use Proposition 4.1 to reach a contradiction by
showing that Dn1 +Dn2 ≥ n′.

In Case I, since n− 1 ≥ n2 ≥ n1 ≥ a+ b+ 1, so by Proposition 4.3 and Eq.(3),

Dn1 +Dn2 ≥ N(n1; a, b) +N(n2; a, b)

= (a+ 1)(n+ 1− a) + 2b

= (a+ 1)(n+ 1− a

2
) + b+

(
b− (a+ 1)a

2

)
≥ (a+ 1)(n+ 1− a

2
) + b

= N(n; a, b) = n′,

which contradicts Proposition 4.1.

In Case II, we have n1 − a ≤ b ≤ 2n1 −
a2 + 5a+ 2

2
, which is equivalent to

b

2
+
a2 + 5a+ 2

4
≤ n1 ≤ a+ b.

In particular, a+ 1 ≤ n1 ≤ a+ b. Now by Proposition 4.3,

Dn1 ≥ N(n1; a;n1 − a− 1) = (a+ 2)n1 −
a2 + a

2
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and

Dn2 ≥
{

N(n2; a; b) if n1 = a+ b and n2 = n1 + 1;
N(n2; a;n2 − a− 1) if n1 < a+ b or n2 = n1.

Therefore,

Dn1+Dn2 ≥
{

(a+ 2)(n1 + n2 + 1)− (a2 + a) + b− n2 − 1 if n1 = a+ b and n2 = n1 + 1;
(a+ 2)(n1 + n2)− (a2 + a) if n1 < a+ b or n2 = n1,

which simplifies to

Dn1 +Dn2 ≥
{

(a+ 2)n− (a2 + 2a+ 2) if n1 = a+ b and n2 = n1 + 1;
(a+ 2)n− (a2 + 2a+ 2) if n1 < a+ b or n2 = n1.

Thus, we always have Dn1 +Dn2 ≥ n′, which again contradicts Proposition 4.1.

5 Rigidity of local orthogonal maps

In order to simplify the presentation, we will give a couple of definitions. In what
follows, when we say that a local holomorphic map F between projective spaces is
linear, we mean F extends to a linear rational map.

Definition 5.1. Let F be a local holomorphic map from Pr,s,t to Pr′,s′,t′. We call F
standard if it is linear and comes from a linear isometry from Cr,s,t into Cr′,s′,t′. We
call F null if its image is contained in a null space in Pr′,s′,t′.

For any non-trivial orthogonal direct sum decomposition Cr,s,t = A⊕B, there are
two canonical projections πA : Pr,s,t 99K PA and πB : Pr,s,t 99K PB (as rational maps).
Using these, we make the following definition.

Definition 5.2. Let F be a local holomorphic map from Pr,s,t to Pr′,s′,t′. We call F
quasi-standard (resp. quasi-linear) if either F is standard (resp. linear) or there
exists a non-trivial orthogonal decomposition Cr′,s′,t′ = A⊕B for some subspaces A,B
such that πA ◦ F is standard (resp. linear) and πB ◦ F is null.

Since the projection from Pr′,s′,t′ to Pr′,s′ is also an orthogonal map (see the lemma
below), therefore a local orthogonal map F from Pr,s,t to Pr′,s′,t′ naturally gives rise to
a local orthogonal map from Pr,s,t to Pr′,s′ (unless the image lies entirely in the space
of special null vectors, which is the set of indeterminacy for the projection). The same
thing happens for local sign-preserving maps. This allows us to reduce the problem to
the case for t′ = 0 in many situations. Moreover, the orthogonality of mappings also
interacts nicely with orthogonal decompositions. The following two lemmas should
be evident to the reader and we omit their proofs.
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Lemma 5.3. The projection π : Pr,s,t 99K Pr,s is standard. In particular, it is sign-
preserving map and orthogonal.

Lemma 5.4. Let F be a local holomorphic map from Pr,s,t to Pr′,s′,t′ and Cr′,s′,t′ =
A⊕ B be an orthogonal decomposition such that the image of F does not lie entirely
in PA or PB. Let πA : Pr′,s′,t′ 99K PA and πB : Pr′,s′,t′ 99K PB be the canonical
projections. If F and πA ◦ F are orthogonal, then so is πB ◦ F .

We are now ready to prove our rigidity theorems for local orthogonal maps.

Theorem 5.5. Let F be a local orthogonal map from Pr,s,t to Pr′,s′,t′, where r, s ≥ 2.
If

min{r′, s′} ≤ min{r, s},
then F is either null or quasi-linear (linear for t′ = 0). If in addition F preserves the
sign of any single positive or negative point, then F is quasi-standard (standard for
t′ = 0).

Proof. We first consider the case t′ = 0. From Proposition 2.6, we know that F maps
(min{r, s} − 1)-planes into (min{r′, s′} − 1)-planes. Suppose F is not linear. Since
r, s ≥ 2 and min{r′, s′} ≤ min{r, s}, by Proposition 3.6, the linear span the image of
F , denoted by S, is of dimension at most (min{r′, s′} − 1).

We claim that S is a null space. If on the contrary S is not null, then S ∼= Pa,b,c for
some a, b, c and the dimension of the maximal null space of Pa,b,c is min{a, b}+ c− 1,
which is strictly less than dim(S). Now F can be regarded as a local orthogonal map
from Pr,s,t into Pa,b,c which is not linear, and thus by Propositions 2.6 and 3.6 again, the
image of F is contained in a linear subspace of dimension min{a, b}+ c− 1 < dim(S),
contradicting to the fact that S is the linear span of the image of F . So S is a null
space and hence F is null. We have thus shown that F is either linear or null. If in
addition F preserves the sign of a positive or negative point, then F cannot be null
and from Lemma 5.6 below, we see that F must be standard.

Since Cr′,s′,t′ = Cr′,s′ ⊕ C0,0,t′ is an orthogonal direct sum, the desired result for
the general case now follows directly from the case t′ = 0 and Definition 5.2.

Lemma 5.6. Let G : Cr,s,t → Cr′,s′,t′ be linear and it maps null vectors to null vectors.
Then, there exists λ ∈ R such that 〈G(u), G(v)〉r′,s′,t′ = λ〈u, v〉r,s,t for any u, v ∈ Cr,s,t.
Moreover, if G preserves the sign of any single positive or negative vector, then r ≤ r′,
s ≤ s′ and λ > 0.

Proof. The proof is just standard linear algebra. For the detail, we refer the reader
to [NZ], Lemma 4.2 therein.

We can say more when min{r′, s′} < min{r, s}:

Theorem 5.7. If min{r′, s′} < min{r, s}, then any local orthogonal map F from Pr,s,t
to Pr′,s′,t′ is null.
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Proof. When min{r, s} = 1, the result is obvious. Now, suppose min{r, s} ≥ 2. We
start from the case t′ = 0. By Proposition 2.6, F maps (min{r, s} − 1)-planes to
(min{r′, s′} − 1)-planes. Then Theorem 3.5(i) says that the linear span of the image
of F , denoted by S is of dimension at most (min{r′, s′} − 1). Exactly the same
argument as in Theorem 5.5 shows that S is a null space and hence F is null.

Now, when t′ > 0, we know that π ◦ F is null, where π is the projection from
Pr′,s′,t′ to Pr′,s′ . Hence, F is also null.

Proposition 5.8. If r′ < r or s′ < s, then there is no local sign-preserving map from
Pr,s,t to Pr′,s′,t′.

Proof. By symmetry, it suffices to prove the statement for r′ < r. The statement
is trivial if r′ = 0. Suppose 1 ≤ r′ < r and F : U ⊂ Pr,s,t → Pr′,s′,t′ is a local
sign-preserving map.

For a null point x ∈ U , we have x ∈ x⊥ ∩ U and so if we take a positive point
p1 ∈ U close enough to x, then p⊥1 ∩U is also non-empty. Note that p⊥1 is an (r−1, s, t)-
subspace Hr−1,s,t and by the sign-preserving property (F (p1))⊥ is an (r′ − 1, s′, t′)-
subspace Hr′−1,s′,t′ . So the restriction of F on U1 := Hr−1,s,t ∩ U is a local sign-
preserving map from Hr−1,s,t to Hr′−1,s′,t′ . By choosing a convex U with respect to
the standard coordinates, we may assume that U1 remains convex and connected.
Now, as r − 1 ≥ 1 and s ≥ 1, we can always choose p1 such that U1 contains both
positive and negative points and hence also null points.

We repeat the same procedures on U1. Inductively, after taking r′ positive points
p1, . . . , pr′ , we get from the restriction of F a local sign-preserving map from Hr−r′,s,t

to H0,s′,t′ . This is a contradiction since Hr−r′,s,t contains positive points but H0,s′,t′

does not.

Theorem 5.9. Let F be a local sign-preserving map from Pr,s,t to Pr′,s′,t′, where
r, s ≥ 2. If r = r′ or s = s′ then F is quasi-standard (standard for t′ = 0).

Proof. By symmetry, it suffices to prove the theorem for r = r′. We begin with the
case t′ = 0. If r ≤ s, then everything follows from Theorem 5.5. Suppose now r > s.

By following the same procedures of taking orthogonal complements as in the
proof of Proposition 5.8, we can pick (r−s) orthogonal positive points in U such that
the restriction of F on their orthogonal complement is a local sign-preserving map
from some (s, s, t)-subspace Hs,s,t ⊂ Pr,s,t to an (s, s′)-subspace Hs,s′ ⊂ Pr′,s′ .

As s ≥ 2, by Theorem 5.5, F |Hs,s,t is standard. In particular, F |Hs,s,t maps the
positive (s − 1)-planes in Hs,s,t to positive (s − 1)-planes in Pr′,s′ . Note that our
argument would give the same conclusion for any other (s, s, t)-subspace H̃s,s,t close
enough to Hs,s,t (as points in the Grassmannian). Since the set of positive (s − 1)-
planes is open in the Grassmannian G(s−1,Pr,s,t), it follows that F maps (s−1)-planes
to (s − 1)-planes. Thus, by Proposition 3.6, F is either linear or the image of F is
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contained in an (s − 1)-plane. The latter is impossible since we already know that
F |Hs,s,t is standard. So F is linear and together with the sign-preserving hypothesis,
we conclude that F is standard by Lemma 5.6.

Finally, if t′ ≥ 1, by considering again the projection from Pr′,s′,t′ to Pr′,s′ as in
Theorem 5.5, we see that F is quasi-standard.

Theorem 5.10. Let F be a local orthogonal map from Pr,s to Pr′,s′,t′. If

r′ + s′ ≤ 2 dim(Pr,s)− 1,

then F is either null or quasi-linear. If in addition F preserves the sign of any single
positive or negative point, then F is quasi-standard.

Proof. The statement is trivial if dim(Pr,s) = 1. We assume dim(Pr,s) ≥ 3 for the
moment and the two dimensional case will be included later in the argument.

Suppose F is not null and r′ + s′ ≤ 2 dim(Pr,s) − 1. Let F1 := π1 ◦ F , where π1 :
Pr′,s′,t′ 99K Pr′,s′ is the standard projection. If F1 is not linear, then by Proposition 3.6,
either image of F1 is contained in a line or the linear span S of the image of a general
line L under F1 is of dimension d ≥ 2. In the latter situation, since dim(L⊥) =
dim(Pr,s)−2 and dim(S⊥) = dim(Pr′,s′)−d−1 (here S⊥ is the orthogonal complement
of S in Pr′,s′) and any (dim(Pr,s)−2)-plane in Pr,s is the orthogonal complement of some
line, we see by orthogonality that F1 maps (dim(Pr,s)−2)-planes to (dim(Pr′,s′)−d−1)-
planes. (This in particular also implies that we must have dim(Pr′,s′) ≥ 3.)

As dim(Pr,s)− 2 ≥ 1 and

dim(Pr′,s′)− d− 1 ≤ r′ + s′ − 4 ≤ 2 dim(Pr,s)− 5 = 2(dim(Pr,s)− 2)− 1,

Theorem 3.5(ii) implies that the linear span H1 of the image of F1 is of dimension at
most

dim(Pr′,s′)− d− 1 + 2 = dim(Pr′,s′)− d+ 1 ≤ dim(Pr′,s′)− 1.

Therefore, we have shown that if F1 is not linear, then the image of F1 lies in a
hyperplane of Pr′,s′ .

If we write H1
∼= Pr′1,s′1,t′1 , then we have r′1 + s′1 ≤ r′ + s′ ≤ 2 dim(Pr,s)− 1. So the

hypotheses of the theorem still hold for the local orthogonal map F1 from Pr,s to H1

and thus by similarly considering the standard projection π2 : H1 99K K1 for some
(r′1, s

′
1)-subspace K1 ⊂ H1 and F2 := π2 ◦ F1, etc., we deduce inductively there exists

some (r′′, s′′)-subspace Φ ⊂ Pr′,s′,t′ with FΦ := πΦ ◦ F , where πΦ : Pr′,s′,t′ 99K Φ is the
associated projection, such that we have two possibilities:

(i) FΦ is orthogonal and linear; or

(ii) FΦ is orthogonal and there is a line L ⊂ Φ containing the image of FΦ.

(We note here that if dim(Pr,s) = 2 (which implies also dim(Pr′,s′) ≤ 2), by
replacing a general line L in the argument above by a general point, we see immediately
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by orthogonality that F1 maps lines to lines and so we still end up with the two
possibilities above (with FΦ being F1).)

We are going to first show that case (ii) will lead to a contradiction. If L ∼= P1,0,1

or P0,1,1, then FΦ must be constant (and hence null) since there is only one null
point in L. However, F is assumed to be not null and FΦ is obtained from F by
composing a number of projections which are standard each time, thus FΦ cannot
be null neither. So we can only have L ∼= P1,1. Consequently, FΦ can be regarded
as a (non-null) local orthogonal map from Pr,s to P1,1 and by Theorem 5.7, we get
that min{r, s} = 1. If max{r, s} ≥ 2, for any point p ∈ Pr,s at which FΦ is defined,
we have dim(p⊥) = max{r, s} − 1 ≥ 1. However, we also have dim(FΦ(p)⊥) = 0
since FΦ(p) ∈ P1,1, so by orthogonality FΦ maps lines to points. Therefore, FΦ is
constant and hence null, contradicting our assumption at the beginning that F is not
null. Therefore, we must have max{r, s} = 1 and hence r = s = 1. This is again a
contradiction since dim(Pr,s) ≥ 2.

For case (i), if the image of F is contained in Φ, then F is just FΦ and is linear.
Otherwise, consider the map FΦ⊥ := πΦ⊥ ◦F , where πΦ⊥ : Pr′,s′,t′ 99K Φ⊥ is the canon-
ical projection. Then, FΦ⊥ is a local orthogonal map from Pr,s to Φ⊥ ∼= Pr′−r′′,s′−s′′,t′

by Lemma 5.4. If FΦ⊥ is null, then F is quasi-linear. If not, we can repeat the entire
argument above on FΦ⊥ and use induction to conclude that F is quasi-linear.

Finally, if F maps some positive (resp. negative) point to a positive (resp. neg-
ative) point, then the linear part of F is standard by Lemma 5.6 and so F is quasi-
standard.

Theorem 5.11. Let F be a local orthogonal map from Pr,s to Pr′,s′,t′. If

min{r′, s′} ≤ 2 min{r, s} − 2,

then F is either null or quasi-linear. If in addition F preserves the sign of any single
positive or negative point, then F is quasi-standard.

Proof. The theorem is trivial if min{r, s} ≤ 1 since it would imply min{r′, s′} = 0.
Suppose min{r, s} ≥ 2. As before, we just need to prove the case t′ = 0. By Propo-
sition 2.6, F maps (min{r, s} − 1)-planes to (min{r′, s′} − 1)-planes. By hypotheses
min{r′, s′}−1 ≤ 2(min{r, s}−1)−1, and since dim(Pr,s) = min{r, s}−1+max{r, s},
we deduce from Theorem 3.5(ii) that the image of F is contained in a linear subspace
Ξ ⊂ Pr′,s′ such that dim(Ξ) ≤ min{r′, s′}− 1 + max{r, s}. If we write Ξ ∼= Pa1,b1,c1 for
some non-negative integers a1, b1, c1, then we can regard F as a local orthogonal map
from Pr,s to Pa1,b1,c1 . Note that

a1 + b1 ≤ dim(Ξ) + 1 ≤ min{r′, s′}+ max{r, s} ≤ 2 min{r, s} − 2 + max{r, s}.

Thus, a1 + b1 < 2(r + s) − 3 = 2 dim(Pr,s) − 1 and now the desired results follows
directly from Theorem 5.10.
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Theorem 5.12. Let F be a local orthogonal map from P1,s to P1,s′,t′. If s′ ≤ 2s− 2,
then F either null or quasi-standard. If in addition if t′ = 0, then F is either constant
or standard.

Proof. As usual, we just need to prove the theorem for t′ = 0. Let F : U ⊂ P1,s → P1,s′

be a non-constant orthogonal map and s′ ≤ 2s − 2. Take a null point x ∈ U . Since
we are in P1,s, it follows that x⊥ is a semi-negative hyperplane and x is the only null
point in x⊥. By orthogonality, F (x⊥ ∩ U) ⊂ (F (x))⊥ and F (x) is also the only null
point in the semi-negative hyerplane F (x)⊥ ⊂ P1,s′ . As F is non-constant, we can
always choose x such that F is not constant on x⊥ ∩ U and hence F preserves the
sign of some negative point on x⊥.

Now since 1 + s′ ≤ 2 dim(P1,s) − 1, from Theorem 5.10 we have that F is quasi-
standard. Finally, as the orthogonal complement of a (1, s)-subspace in P1,s′ is a
(0, s′ − s)-subspace which does not contain any null point, we see from the definition
of quasi-standard maps that F is actually standard.

6 Proper maps between generalized balls

On Pr,s,t, the set of positive points Br,s,t ⊂ Pr,s,t (or Br,s ⊂ Pr,s) has been called a
generalized ball in the literature since B1,s is just the ordinary s-dimensional complex
unit ball Bs embedded in Ps. In additon, the boundary ∂Br,s,t of Br,s,t is simply the
set of null points on Pr,s,t.

A local holomorphic map f : U ⊂ Pr,s,t → Pr′,s′,t′ , defined on a connected open set
U such that U ∩ ∂Br,s,t 6= ∅, is called a local proper holomorphic map from Br,s,t to
Br′,s′,t′ if f(U ∩ Br,s,t) ⊂ Br′,s′,t′ and f(U ∩ ∂Br,s,t) ⊂ ∂Br′,s′,t′ .

The following statement is a direct consequence of Proposition 2.5.

Proposition 6.1. By shrinking the domain of definition if necessary, a local proper
holomorphic map from Br,s,t to Br′,s′,t′ is a local orthogonal map from Pr,s,t to Pr′,s′,t′.

Consequently, our results for local orthogonal maps in the previous sections also
hold for local proper holomorphic maps among generalized balls, from which we can
obtain and generalize many well-known results in the literature.

6.1 Rigidity theorems

Theorem 6.2. When r, s ≥ 2, every local proper holomorphic map from Br,s,t to
Br,s′,t′ is quasi-standard (standard for t′ = 0).
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Proof and remarks. The statement follows from Theorem 5.9. Here we note that
although Theorem 5.9 is for local sign-preserving maps, its proof actually only assumes
that positive points are mapped to positive points.

The case for r ≤ s and t = t′ = 0 has been obtained by Baouendi-Huang [BH]
(Theorem 1.2 therein) while the case for r ≤ s has been obtained by Ng-Zhu [NZ]
(Theorem 1.2 therein).

Theorem 6.3. When r′+ s′ ≤ 2(r+ s)− 3, every local proper holomorphic map from
Br,s to Br′,s′,t′ is quasi-standard (standard for t′ = 0). In particular, every local proper
holomorphic map from Bs to Bs′ is standard if s′ ≤ 2s− 2.

Proof and remarks. It follows from Theorem 5.10. The special case for r+ 1 = r′ = 2
and t′ = 0 has been proven by Xiao-Yuan [XY] (Theorem 3.2 therein). The special
case for the ordinary complex unit balls is a classical theorem by Faran [Fa1].

Theorem 6.4. When r ≤ s and r′ ≤ 2r − 2, every local proper holomorphic map
from Br,s → Br′,s′,t′ is quasi-standard.

Proof and remarks. It is a direct consequence of Theorem 5.11. The case t′ = 0 has
been obtained by Baouendi-Ebenfelt-Huang [BEH] (Theorem 1.1 and Corollary 1.6
therein)

6.2 Gap phenomenon

Let f be a local proper holomorphic map from Br,s to BR,S. If there exists an (r′, s′)-
subspace Hr′,s′ ⊂ PR,S, with canonical projections π : PR,S 99K Hr′,s′ and π⊥ :
PR,S 99K (Hr′,s′)⊥ such that either (i) the image of f is contained in Hr′,s′ ; or (ii)
π ◦ f is a local proper holomorphic map from Br,s to BR,S ∩Hr′,s′ ∼= Br′,s′ and π⊥ ◦ f
is null, then we say that f is a null prolongation of π ◦ f .

Example. If f = [f1, . . . , fr′+s′ ] is a rational proper holomorphic map from Br,s to
Br′,s′ , where each fj ∈ C[z1, . . . , zr+s] is a degree-d homogeneous polynomial, then for
any homogeneous ψ, φ ∈ C[z1, . . . , zr+s] with deg(φ) = deg(ψ) + d, the map

F := [ψf1, . . . , ψfr′ , φ, ψfr′+1, . . . , ψfr′+s′ , φ],

which is locally proper from Br,s to Br′+1,s′+1, is a null prolongation of f . It is also
easy to see that for maps between unit balls, a null prolongation is simply a local
proper holomorphic map whose image lies in a smaller dimensional ball.

Theorem 6.5. Let k, n ∈ N+ such that n ≥ k2 + k + 1. Let f be a local proper
holomorphic map from Br,s to BR,S, where n = dim(Br,s) and N := dim(BR,S). If

kn+ k ≤ N ≤ (k + 1)n− (k2 + 1),

then there exists an (r′, s′)-subspace Hr′,s′ ⊂ PR,S, with dim(Hr′,s′) = kn + k − 1,
such that f is a null prolongation of some local proper holomorphic map from Br,s to
BR,S ∩Hr′,s′ ∼= Br′,s′.
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Proof and remarks. In Theorem 4.4, by substituting k := a+ 1, we see that whenever
the hypotheses are satisfied, the image of f is contained in a hyperplane H ⊂ Pr,s.
Write H ∼= Pr1,s1,t1 . Let Hr1,s1 ⊂ H be any (r1, s1)-subspace and π : H 99K Hr1,s1 be
the canonical projection. Then, it follows that f is a null prolongation of f1 := π ◦ f
from Br,s to BR,S ∩ Hr1,s1 ∼= Br1,s1 . The desired result then follows if we repeat the
argument for a finite number of times. (Note that if f1 is a null prolongation of
another local proper holomorphic map f2 from Br,s to Br1,s1 ∩Hr2,s2 ∼= Br2,s2 for some
(r2, s2)-subspace Hr2,s2 , then f is also a null prolongation of f2.)

For proper holomorphic maps from B1,n ∼= Bn to B1,N ∼= BN , Faran’s result [Fa1]
is essentially the statement that the conclusion of the theorem holds for n+ 1 ≤ N ≤
2n−2. Moreover, the same conclusion has been shown by Huang-Ji-Xu [HJX] to hold
for 2n+ 1 ≤ N ≤ 3n− 4 and by Huang-Ji-Yin [HJY] for 3n+ 1 ≤ N ≤ 4n− 7.

The lower bound kn+k of our gap is actually optimal. This can be seen by consid-

ering the expansion of
(∑k

j=1 |zj|2 −
∑n+1

j=k+1 |zj|2
)(∑k

j=1 |zj|4
)

. The expansion is a

sum of (plus or minus) norm squares of kn+k linearly independent cubic monomials.
Using these monomials as components we get a rational proper map from Bk,n+1−k to
Bk2,kn+k−k2 whose image does not lie in any hyperplane. Note that dim(Bk,n+1−k) = n
and dim(Bk2,kn+k−k2) = kn+ k − 1.

6.3 Degree estimate

Recall from Section 4 that if n,N ∈ N+ are such that n + 1 ≤ N <
(
n+2

2

)
, then

by using the n-th Macaulay’s representation of N we can write N = N(n; a, b) :=(
n+1
n

)
+ · · ·+

(
n−a+1
n−a

)
+ b for some a, b ≥ 0 such that b ≤ n− a− 1.

Lemma 6.6. N(n; a, b)−N(n; a, b)−<n> =

{
a+ 2 if n− a− b = 1;
a+ 1 if n− a− b ≥ 2.

Proof. For b = 0, since N(n; a, 0) :=
(
n+1
n

)
+ · · ·+

(
n−a+1
n−a

)
, it follows immediately that

N(n; a, 0)−<n> = N(n; a, 0)− (a+ 2) if n− a = 1; and N(n; a, 0)−<n> = N(n; a, 0)−
(a+ 1) if n− a ≥ 2. The case for b ≥ 1 is similar.

Theorem 6.7. Suppose n ≥ 3 and f is a rational proper holomorphic map from Bn
to BN(n;a,b). Then, deg(f) ≤ (a+ 2)(2a+ 3).

Proof. We first assume that the image of f is not contained in a hyperplane. Let m ∈
{1, . . . , n} and Dm = dim(span(f(M))), where M ⊂ Bn is a general m-dimensional
linear subspace. By applying Lemma 6.6 twice (c.f. Lemma 4.2), we have Dn−2 ≥
N − 2(a+ 2). Then, by the orthogonality of f (Proposition 4.1),

D1 ≤ N −Dn−2 − 1 ≤ 2a+ 3.

That is, f maps lines to (2a+ 3)-planes.
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Meylan ([Me], Theorem 4.1 therein) has shown that if a rational proper holomor-

phic map g from B2 to Bm maps lines to `-planes, then deg(g) ≤ `(`+ 1)

2
. Since the

restriction of f to a general 2-plane has the same degree as f itself, we thus deduce
that

deg(f) ≤ (2a+ 3)(2a+ 4)

2
= (a+ 2)(2a+ 3).

Now if the image of f is contained in a hyperplane, then f simply maps into a
lower dimensional ball BN ′ . If N ′ ≤ 2n−2, we know that deg(f) = 1 by Theorem 6.3.
Otherwise we have N ′ = N(n; a′, b′) for some a′, b′. Since the lexicographic ordering
of the Macaulay’s representation is the same as the usual ordering of integers, we see
from n-th Macaulay’s representation of N(n; a, b) that a′ ≤ a and hence in all cases
we always have deg(f) ≤ (a+ 2)(2a+ 3).

Corollary 6.8. Let f be a rational proper holomorphic map from Bn to BN . If n ≥ 3
and N <

(
n+2

2

)
, then,

deg(f) ≤
(

2N

n+ 3
+ 1

)(
4N

n+ 3
+ 1

)
.

Proof. We just need to prove the estimate for N = N(n; a, b) since deg(f) = 1 when
N ≤ 2n− 2. Note that as n− a− 1 ≥ 0, we have

N(n; a, b) =
(
n+ 1− a

2

)
(a+ 1) + b ≥

(
n+ 1− n− 1

2

)
(a+ 1) =

(n+ 3)(a+ 1)

2
.

We then get that
2N(n; a, b)

n+ 3
≥ a+ 1. Therefore, if n ≥ 3 and N <

(
n+2

2

)
, the desired

degree estimate then follows from Theorem 6.7.

7 Appendix

Proof of Lemma 3.2. We will prove by induction and first show that the lemma is
true for m = 1 or k = 1. Suppose k = 1 and A + B =

(
m+1

1

)
− 1 = m. If A = 0 and

B = m, then A−<m> + B<1> = 0 + (m− 1) = m− 1 =
(
m
1

)
− 1. If 1 ≤ A ≤ m, then

A =
(
m
m

)
+
(
m−1
m−1

)
+ · · · +

(
m−A+1
m−A+1

)
. Hence, A−<m> + B<1> = A + B − 1 =

(
m
1

)
− 1.

Suppose m = 1 and A + B =
(

1+k
k

)
− 1. Then B ≤ k and hence B<k> = 0. Thus,

A−<1> +B<k> = 0 + 0 =
(
k
k

)
− 1.

Suppose A+B =
(
m+k
k

)
−1 =

(
m+k
m

)
−1 =

(
m+k−1
m

)
+
(
m+k−1

k

)
−1. Then, either A ≥(

m+k−1
m

)
or B ≥

(
m+k−1

k

)
(otherwise we would have A+B ≤

(
m+k−1
m

)
−1+

(
m+k−1

k

)
−1).

If A ≥
(
m+k−1
m

)
, then the m-th Macaulay’s representation of A is of the form

A =
(
m+k−1
m

)
+
(
am−1

m−1

)
+ · · · +

(
aδ
δ

)
. Since (A −

(
m+k−1
m

)
) + B =

(
m+k−1

k

)
− 1, by the
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induction hypothesis we get(
A−

(
m+ k − 1

m

))−<m−1>
+B<k> =

(
m+ k − 2

k

)
− 1

⇒
(
am−1 − 1

m− 2

)
+ · · ·+

(
aδ − 1

δ − 1

)
+B<k> =

(
m+ k − 2

k

)
− 1

⇒
(
m+ k − 2

m− 1

)
+

(
am−1 − 1

m− 2

)
+ · · ·+

(
aδ − 1

δ − 1

)
+B<k> =

(
m+ k − 2

m− 1

)
+

(
m+ k − 2

k

)
− 1

⇒ A−<m> +B<k> =

(
m+ k − 1

k

)
− 1

If B ≥
(
m+k−1

k

)
, then the k-th Macaulay’s representation of B is of the form

B =
(
m+k−1

k

)
+
(
bk−1

k−1

)
+ · · · +

(
bε
ε

)
. Since A + (B −

(
m+k−1

k

)
) =

(
m+k−1
k−1

)
− 1, by the

induction hypothesis we get

A−<m> +

(
B −

(
m+ k − 1

k

))
<k−1>

=

(
m+ k − 2

k − 1

)
− 1

⇒ A−<m> +

(
bk−1 − 1

k − 1

)
+ · · ·+

(
bε − 1

ε

)
=

(
m+ k − 2

k − 1

)
− 1

⇒
(
m+ k − 2

k

)
+A−<m> +

(
bk−1 − 1

k − 1

)
+ · · ·+

(
bε − 1

ε

)
=

(
m+ k − 2

k

)
+

(
m+ k − 2

k − 1

)
− 1

⇒ A−<m> +B<k> =

(
m+ k − 1

k

)
− 1

Proof of Lemma 3.3. It suffices to prove that(
n+ d− 1

d

)
−
((

n+ d

d

)
−K

)
<d>

=

(
n+ d

d+ 1

)
−
((

n+ d+ 1

d+ 1

)
−K

)
<d+1>

.

Since
(
n+d+1
d+1

)
−K =

(
n+d
d+1

)
+
(
n+d
d

)
−K and 0 ≤

(
n+d
d

)
−K <

(
n+d
d

)
, we have((

n+ d+ 1

d+ 1

)
−K

)
<d+1>

=

(
n+ d− 1

d+ 1

)
+

((
n+ d

d

)
−K

)
<d>

,

which is equivalent to the previous equation.
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[Fo] Forstnerič, F.: Proper holomorphic maps between balls, Duke Math. J. 53
(1986) 427440.

[Gr] Green, M.: Restrictions of linear series to hyperplanes, and some results of
Macaulay and Gotzmann. Algebraic Curves and Projective Geometry (1988),
Trento Lecture Notes in Math., Vol. 1389, Springer, pp. 76-86

[GLV] Grundmeier, D., Lebl, J., Vivas, L.: Bounding the rank of Hermitian forms and
rigidity for CR mappings of hyperquadrics. Math. Ann. 358 (2014), 1059-1089.

[HJ] Huang, X., Ji, S.: Mapping Bn into B2n−1. Invent. Math. 145 (2001), 219-250.

[HJX] Huang, X., Ji, S., Xu, D.: A new gap phenomenon for proper holomorphic
mappings from Bn into BN . Math. Res. Lett. 13(4) (2006), 515-529.

[HJY] Huang, X., Ji, S., Yin, W.: On the third gap for proper holomorphic maps
between balls. Math. Ann. 358 (2014), 115-142.

[HJY2] Huang, X., Ji, S., Yin, W.: Recent Progress on Two Problems in Several
Complex Variables. ICCM. Vol.I, (2007) 563-575.

[Ma] Macaulay, F. S.:: Some properties of enumeration in the theory of modular
systems, Proc. London Math. Soc. 26 (1927), 531555.

[Me] Meylan, F.: Degree of a holomorphic map between unit balls from C2 to Cn.
Proc. Amer. Math. Soc. 134(4) (2006), 1023-1030.

[Ng1] Ng, S.-C.: Proper holomorphic mappings on flag domains of SU(p, q)-type on
projective spaces . Michigan Math. J. 62 (2013), 769-777.

25



[Ng2] Ng, S.-C.: Cycle spaces of flag domains on Grassmannians and rigidity of holo-
morphic mappings. Math. Res. Lett. 19(6) (2012), 1219-1236.

[Ng3] Ng, S.-C.: Holomorphic double fibration and the mapping problems of classical
domains. Int. Math. Res. Not. 215 Issue 2, (2015), 291-324.

[NZ] Ng, S.-C., Zhu, Y.: Rigidity of proper holomorphic maps among generalized
balls with Levi-degenerate boundaries. http://arxiv.org/abs/2104.06318

[XY] Xiao, M., Yuan, Y.: Holomorphic maps from the complex unit ball to Type IV
classical domains. J. Math. Pures Appl. 133 (2020), 139-166.

[Za1] Zaitsev, D.: Obstructions to embeddability into hyperquadrics and explicit
examples. Math. Ann., 342(3) (2008), 695-726.

[Za2] Zaitsev, D.: Algebraicity of local holomorphisms between real-algebraic sub-
manifolds of complex spaces. Acta. Math. 183 (1999), 273-305.

26


