Factorizations of a \(d\)-cycle and multi-noded rooted trees

by Rosena R.X. Du

East China Normal University

August 22th, 2010

This is joint work with Fu Liu.
Outline

- Factorizations: Definitions and Backgrounds
- Multi-noded Rooted Trees
- Bijections Between Factorizations and Multi-noded Rooted Trees
- Future work
PART I:

Factorizations: Definitions and Backgrounds
Factorizations of a d-cycle

Factorizations of a d-cycle
Definition 1. Assume $d, r \geq 1, e_1, \ldots, e_{r-1} \geq 2$ are integers satisfying $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Fix a d-cycle $\tau \in S_d$. We say $(\sigma_1, \ldots, \sigma_{r-1})$ is a factorization of τ of type (e_1, \ldots, e_{r-1}) if the followings are satisfied:

1. For each i, σ_i is an e_i-cycle in S_d.

2. $\sigma_1 \cdot \cdot \sigma_{r-1} = \tau$.

Definition 1. Assume $d, r \geq 1, e_1, \ldots, e_{r-1} \geq 2$ are integers satisfying $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Fix a d-cycle $\tau \in S_d$. We say $(\sigma_1, \ldots, \sigma_{r-1})$ is a factorization of τ of type (e_1, \ldots, e_{r-1}) if the followings are satisfied:

1. For each i, σ_i is an e_i-cycle in S_d.
2. $\sigma_1 \cdots \sigma_{r-1} = \tau$.

Example 2. Let $d = 5$, $r = 4$, $(e_1, e_2, e_3) = (2, 2, 3)$, $\tau = (1 2 3 4 5)$, $\sigma_1 = (2 3)$, $\sigma_2 = (4 5)$, $\sigma_3 = (1 3 5)$. It is easy to check that $(\sigma_1, \sigma_2, \sigma_3)$ is a factorization of τ of type $(2, 2, 3)$:

$$(2 3)(4 5)(1 3 5) = (1 2 3 4 5).$$
Definition 1. Assume $d, r \geq 1, e_1, \ldots, e_{r-1} \geq 2$ are integers satisfying $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Fix a d-cycle $\tau \in S_d$. We say $(\sigma_1, \ldots, \sigma_{r-1})$ is a factorization of τ of type (e_1, \ldots, e_{r-1}) if the followings are satisfied:

1. For each i, σ_i is an e_i-cycle in S_d.
2. $\sigma_1 \cdots \sigma_{r-1} = \tau$.

Example 2. Let $d = 5, r = 4, (e_1, e_2, e_3) = (2, 2, 3), \tau = (1 \ 2 \ 3 \ 4 \ 5), \sigma_1 = (2 \ 3), \sigma_2 = (4 \ 5), \sigma_3 = (1 \ 3 \ 5)$. It is easy to check that $(\sigma_1, \sigma_2, \sigma_3)$ is a factorization of τ of type $(2, 2, 3)$:

$$(2 \ 3)(4 \ 5)(1 \ 3 \ 5) = (1 \ 2 \ 3 \ 4 \ 5).$$

Question 3. Given a d-cycle τ and integers $e_1, \ldots, e_{r-1} \geq 2$, how many factorizations are there of τ of type (e_1, \ldots, e_{r-1})?
Main Result

Theorem 4. Suppose $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Then the number of factorizations of a d-cycle of type (e_1, \ldots, e_{r-1}) is

$$\text{fac}(d, r; e_1, \ldots, e_{r-1}) = d^{r-2}.$$
Main Result

Theorem 4. Suppose $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$. Then the number of factorizations of a d-cycle of type (e_1, \ldots, e_{r-1}) is

$$\text{fac}(d, r; e_1, \ldots, e_{r-1}) = d^{r-2}.$$

Example 5. There are $3 = 3^1$ factorizations of $(1\ 2\ 3)$ of type $(2, 2)$:

$$(12)(23) \quad (23)(13) \quad (13)(12)$$
Main Result

Theorem 4. Suppose \(\sum_{i=1}^{r-1} (e_i - 1) = d - 1 \). Then the number of factorizations of a \(d \)-cycle of type \((e_1, \ldots, e_{r-1})\) is

\[
\text{fac}(d, r; e_1, \ldots, e_{r-1}) = d^{r-2}.
\]

Example 5. There are \(3 = 3^1\) factorizations of \((1 2 3)\) of type \((2, 2)\):

\[(12)(23) \quad (23)(13) \quad (13)(12)\]

Example 6. There are \(25 = 5^2\) factorizations of \((1 2 3 4 5)\) of type \((2, 2, 3)\):

\[
(12)(23)(345) \quad (23)(34)(451) \quad (34)(45)(512) \quad (45)(51)(123) \quad (51)(12)(234) \\
(23)(13)(345) \quad (34)(24)(451) \quad (45)(35)(512) \quad (51)(41)(123) \quad (12)(52)(234) \\
(13)(12)(345) \quad (24)(23)(451) \quad (35)(34)(512) \quad (41)(45)(123) \quad (52)(51)(234) \\
(12)(34)(245) \quad (23)(45)(351) \quad (34)(51)(412) \quad (45)(12)(523) \quad (51)(23)(134) \\
(34)(12)(245) \quad (45)(23)(351) \quad (51)(34)(412) \quad (12)(45)(523) \quad (23)(51)(134)
\]
Hurwitz Factorizations

This question arises from algebraic geometry. A more general question is to find the Hurwitz number:
This question arises from algebraic geometry. A more general question is to find the *Hurwitz number*:

Given $d \geq 1$, $g \geq 0$, $r \geq 0$, and $\lambda^1, \ldots, \lambda^r$ partitions of d, the *Hurwitz number* $h(d, r, g; \lambda^1, \ldots, \lambda^r)$ counts the number of degree-d-and-genus-g covers of the projective line with r branch points where the monodromy over the ith branch point has cycle type λ^i.
This question arises from algebraic geometry. A more general question is to find the Hurwitz number:

Given \(d \geq 1, g \geq 0, r \geq 0 \), and \(\lambda^1, \ldots, \lambda^r \) partitions of \(d \), the Hurwitz number \(h(d, r, g; \lambda^1, \ldots, \lambda^r) \) counts the number of degree-\(d \)-and-genus-\(g \) covers of the projective line with \(r \) branch points where the monodromy over the \(i \)th branch point has cycle type \(\lambda^i \).

Definition 7. Let \(\iota(\lambda) = \sum_i (\lambda_i - 1) \) and assume

\[
\sum_{i=1}^{r} \iota(\lambda^i) = 2d - 2 + 2g.
\]

A Hurwitz factorization of type \((d, r, g; \lambda^1, \ldots, \lambda^r)\) is a tuple \((\sigma_1, \ldots, \sigma_r)\) satisfying:

1. \(\sigma_i \in S_d \) has cycle type \(\lambda^i \);
2. \(\sigma_1 \cdots \sigma_r = 1 \);
3. the \(\sigma_i \)'s generate a transitive subgroup of \(S_d \).
When $e_1 = \cdots = e_{r-1} = 2$, from $\sum_{i=1}^{r-1} (e_i - 1) = d - 1$ we have $d = r$. Then Theorem 4 gives the following well-known result:

Corollary 8. The number of factorizations of a d-cycle into $d - 1$ transpositions are d^{d-2}.
When \(e_1 = \cdots = e_{r-1} = 2 \), from \(\sum_{i=1}^{r-1} (e_i - 1) = d - 1 \) we have \(d = r \). Then Theorem 4 gives the following well-known result:

Corollary 8. The number of factorizations of a \(d \)-cycle into \(d - 1 \) transpositions are \(d^{d-2} \).

Note that \(d^{d-2} \) is also the number of trees on \(d \) vertices. Different bijective proofs of this result were given by Dénes (1959), Moszkowski (1989), Goulden-Pepper (1993) and Goulden-Yong (2002).
Special Case

When \(e_1 = \cdots = e_{r-1} = 2\), from \(\sum_{i=1}^{r-1}(e_i - 1) = d - 1\) we have \(d = r\). Then Theorem 4 gives the following well-known result:

Corollary 8. *The number of factorizations of a \(d\)-cycle into \(d - 1\) transpositions are \(d^{d-2}\).*

Note that \(d^{d-2}\) is also the number of trees on \(d\) vertices. Different bijective proofs of this result were given by Dénes (1959), Moszkowski (1989), Goulden-Pepper (1993) and Goulden-Yong (2002).

Main Idea to prove Theorem 4: Construct a class of combinatorial objects that are counted by \(d^{r-2}\), and then find a bijection between factorizations and them.
PART II:

Multi-noded Rooted Trees
Definition 9. Suppose f_0, f_1, \ldots, f_n are positive integers. We say $G = (T, \beta)$ is a multi-noded rooted tree on $S \cup \{0\}$ of vertex data (f_0, f_1, \ldots, f_n) if $T = (S \cup \{0\}, E)$ is a rooted tree in \mathcal{R}_S and $\beta : E \rightarrow \mathbb{N}$ is a function satisfying that for any edge $e \in E$, if s_i is the parent of e, then $\beta(e) \in \{1, 2, \ldots, f_i\}$. We denote by $\mathcal{M} \mathcal{R}_S(f_0, f_1, \ldots, f_n)$ the set of multi-noded rooted trees.
Definition of Multi-noded Rooted Trees

Definition 9. Suppose f_0, f_1, \ldots, f_n are positive integers. We say $G = (T, \beta)$ is a multi-noded rooted tree on $S \cup \{0\}$ of vertex data (f_0, f_1, \ldots, f_n) if $T = (S \cup \{0\}, E)$ is a rooted tree in \mathcal{R}_S and $\beta : E \to \mathbb{N}$ is a function satisfying that for any edge $e \in E$, if s_i is the parent of e, then $\beta(e) \in \{1, 2, \ldots, f_i\}$. We denote by $\mathcal{M}_{\mathcal{R}_S}(f_0, f_1, \ldots, f_n)$ the set of multi-noded rooted trees.

Example 10. A multi-noded rooted tree of vertex data $(1, 1, 2, 1, 2, 2, 3, 3, 1, 4)$ and $\beta(\{0, s_3\}) = 1, \beta(\{0, s_5\}) = 1, \beta(\{s_3, s_8\}) = 1, \beta(\{s_3, s_2\}) = 1, \beta(\{s_5, s_9\}) = 1, \beta(\{s_2, s_6\}) = 2, \beta(\{s_9, s_4\}) = 1, \beta(\{s_9, s_1\}) = 3, \beta(\{s_9, s_7\}) = 3$.
Definition of Multi-noded Rooted Trees

Definition 9. Suppose f_0, f_1, \ldots, f_n are positive integers. We say $G = (T, \beta)$ is a multi-noded rooted tree on $S \cup \{0\}$ of vertex data (f_0, f_1, \ldots, f_n) if $T = (S \cup \{0\}, E)$ is a rooted tree in R_S and $\beta : E \to \mathbb{N}$ is a function satisfying that for any edge $e \in E$, if s_i is the parent of e, then $\beta(e) \in \{1, 2, \ldots, f_i\}$. We denote by $MR_S(f_0, f_1, \ldots, f_n)$ the set of multi-noded rooted trees.

Example 10. A multi-noded rooted tree of vertex data $(1, 1, 2, 1, 2, 2, 3, 3, 1, 4)$ and $\beta(\{0, s_3\}) = 1, \beta(\{0, s_5\}) = 1, \beta(\{s_3, s_8\}) = 1, \beta(\{s_3, s_2\}) = 1, \beta(\{s_5, s_9\}) = 1, \beta(\{s_2, s_6\}) = 2, \beta(\{s_9, s_4\}) = 1, \beta(\{s_9, s_1\}) = 3, \beta(\{s_9, s_7\}) = 3:
Counting Multi-noded Rooted Trees

Theorem 11. $|MR_S(f_0, f_1, \ldots, f_n)| = f_0 \left(\sum_{i=0}^{n} f_i \right)^{n-1}$.
Theorem 11. $|\mathcal{MR}_S(f_0, f_1, \ldots, f_n)| = f_0 \left(\sum_{i=0}^{n} f_i \right)^{n-1}.$

Corollary 12. Suppose $\sum_{j=1}^{r-1} (e_j - 1) = d - 1.$ Then

$$|\mathcal{MR}_S(1, e_1 - 1, \ldots, e_{r-1} - 1)| = d^{r-2}.$$
Theorem 11. \(|\mathcal{MR}_S(f_0, f_1, \ldots, f_n)| = f_0 \left(\sum_{i=0}^{n} f_i\right)^{n-1}\).

Corollary 12. Suppose \(\sum_{j=1}^{r-1} (e_j - 1) = d - 1\). Then

\[|\mathcal{MR}_S(1, e_1 - 1, \ldots, e_{r-1} - 1)| = d^{r-2}.\]
Theorem 11. \(|MR_S(f_0, f_1, \ldots, f_n)| = f_0 (\sum_{i=0}^{n} f_i)^{n-1}\).

Corollary 12. Suppose \(\sum_{j=1}^{r-1} (e_j - 1) = d - 1\). Then
\[
|MR_S(1, e_1 - 1, \ldots, e_{r-1} - 1)| = d^{r-2}.
\]
Theorem 11. \(|\mathcal{MRS}(f_0, f_1, \ldots, f_n)| = f_0 (\sum_{i=0}^{n} f_i)^{n-1}\).

Corollary 12. Suppose \(\sum_{j=1}^{r-1} (e_j - 1) = d - 1\). Then

\(|\mathcal{MRS}(1, e_1 - 1, \ldots, e_{r-1} - 1)| = d^{r-2}\).

\[
\begin{pmatrix}
s_3 & s_9 \\
1 & 3
\end{pmatrix}
\]
Counting Multi-noded Rooted Trees

Theorem 11. \(|\mathcal{M}_RS(f_0, f_1, \ldots, f_n)| = f_0 \left(\sum_{i=0}^{n} f_i \right)^{n-1}.\)

Corollary 12. Suppose \(\sum_{j=1}^{r-1} (e_j - 1) = d - 1.\) Then

\[|\mathcal{M}_RS(1, e_1 - 1, \ldots, e_{r-1} - 1)| = d^{r-2}.\]
Theorem 11. \(|\mathcal{M}_{RS}(f_0, f_1, \ldots, f_n)| = f_0 (\sum_{i=0}^{n} f_i)^{n-1} \).

Corollary 12. Suppose \(\sum_{j=1}^{r-1} (e_j - 1) = d - 1\). Then
\(|\mathcal{M}_{RS}(1, e_1 - 1, \ldots, e_{r-1} - 1)| = d^{r-2} \).

\[
\begin{pmatrix}
 s_3 & s_9 & s_2 & s_9 \\
 1 & 3 & 2 & 1
\end{pmatrix}
\]
Counting Multi-noded Rooted Trees

Theorem 11. \(|MR_S(f_0, f_1, \ldots, f_n) | = f_0 \left(\sum_{i=0}^{n} f_i \right)^{n-1}. \)

Corollary 12. Suppose \(\sum_{j=1}^{r-1} (e_j - 1) = d - 1. \) Then

\[
|MR_S(1, e_1 - 1, \ldots, e_{r-1} - 1) | = d^{r-2}.
\]
PART III:

Bijection between Factorizations and Multi-noded Rooted Trees
Factorizations of a d-cycle and multi-noded rooted trees

Rosena R. X. Du

Factorizations Graphs
A factorization of $\tau = (1 \ 2 \ \cdots \ 20)$:

$$(10 \ 11)(14 \ 15 \ 19)(1 \ 19)(3 \ 4 \ 5)(1 \ 2 \ 13)(15 \ 16 \ 17 \ 18)(7 \ 8 \ 9 \ 11)(19 \ 20)(2 \ 5 \ 6 \ 11 \ 12)$$
A factorization of \(\tau = (1 \ 2 \ \cdots \ 20) \):

\[
(10 \ 11)(14 \ 15 \ 19)(1 \ 19)(3 \ 4 \ 5)(1 \ 2 \ 13)(15 \ 16 \ 17 \ 18)(7 \ 8 \ 9 \ 11)(19 \ 20)(2 \ 5 \ 6 \ 11 \ 12)
\]
Characterization of factorization graphs

Proposition 13. Suppose $G \in \mathcal{G}_S(d, r; e_1, \ldots, e_{r-1})$.

Then $\sum_{j=1}^{r-1}(e_j - 1) = d - 1$ and $G \in \mathcal{G}_S^*(d, r, \tau; e_1, \ldots, e_{r-1})$ if and only if G satisfies the following conditions:

1. G is a tree.

2. For each S-vertex s of G, if we remove s and all its incident edges from G, the set of $[d]$-vertices of the subtrees we obtain partition the circle τ into consecutive pieces.

3. For each $[d]$-vertex ν of G, suppose we get t subtrees after removing ν and all its incident edges, then

 (a) The $[d]$-vertices of the t subtrees partition $[d] \setminus \{\nu\}$ into consecutive pieces.

 (b) If we order the pieces in counterclockwise order on τ starting from ν, then the m-th piece is exactly the subtree that contains vertex s_{jm} for any $1 \leq m \leq t$.
Factorization Graphs to Labeled Multi-noded Rooted Trees

A factorization of $\tau = (1 \ 2 \ \cdots \ 20)$:

$$(10 \ 11)(14 \ 15 \ 19)(1 \ 19)(3 \ 4 \ 5)(1 \ 2 \ 13)(15 \ 16 \ 17 \ 18)(7 \ 8 \ 9 \ 11)(19 \ 20)(2 \ 5 \ 6 \ 11 \ 12)$$
A factorization of $\tau = (1 \ 2 \ \cdots \ 20)$:

$$(10 \ 11)(14 \ 15 \ 19)(1 \ 19)(3 \ 4 \ 5)(1 \ 2 \ 13)(15 \ 16 \ 17 \ 18)(7 \ 8 \ 9 \ 11)(19 \ 20)(2 \ 5 \ 6 \ 11 \ 12)$$
A factorization of $\tau = (1 \ 2 \ \cdots \ 20)$:

$$(10 \ 11)(14 \ 15 \ 19)(1 \ 19)(3 \ 4 \ 5)(1 \ 2 \ 13)(15 \ 16 \ 17 \ 18)(7 \ 8 \ 9 \ 11)(19 \ 20)(2 \ 5 \ 6 \ 11 \ 12)$$
PART IV:

Future Work?
Hurwitz factorizations of other types?
Factorizations of a d-cycle and multi-noded rooted trees

Hurwitz factorizations of other types?

Other related results on Hurwitz factorizations:
Hurwitz factorizations of other types?

Other related results on Hurwitz factorizations:

Hurwitz (1891) and Goulden-Jackson (1997) showed that if $\lambda^1 = \cdots = \lambda^{r-1} = (2, 1, \ldots, 1)$ and $\lambda^r = (\tau_1, \ldots, \tau_n)$, then

$$h(d, r, 0; \lambda^1, \ldots, \lambda^r) = \frac{(r - 1)!d^{n-3}\prod_{i=1}^{n} \tau_i^{\tau_i}/\tau_i!}{m_1!m_2! \cdots m_d!},$$
Hurwitz factorizations of other types?

Other related results on Hurwitz factorizations:

Hurwitz (1891) and Goulden-Jackson (1997) showed that if $\lambda^1 = \cdots = \lambda^{r-1} = (2, 1, \ldots, 1)$ and $\lambda^r = (\tau_1, \ldots, \tau_n)$, then

$$h(d, r, 0; \lambda^1, \ldots, \lambda^r) = \frac{(r - 1)!d^{n-3} \prod_{i=1}^{n} \tau_i^{\tau_i}/\tau_i!}{m_1!m_2! \cdots m_d!},$$

Liu and Osserman (2008) showed that

$$h(d, 4, 0; e_1, e_2, e_3, e_4) = \min\{e_i(d + 1 - e_i)\}.$$
Other related results on Hurwitz factorizations:

Hurwitz (1891) and Goulden-Jackson (1997) showed that if

$\lambda^1 = \cdots = \lambda^{r-1} = (2, 1, \ldots, 1)$

and

$\lambda^r = (\tau_1, \ldots, \tau_n)$,

then

$$h(d, r, 0; \lambda^1, \ldots, \lambda^r) = \frac{(r - 1)! d^{n-3} \prod_{i=1}^{n} \frac{\tau_i}{\tau_i!}}{m_1! m_2! \cdots m_d!},$$

Liu and Osserman (2008) showed that

$$h(d, 4, 0; e_1, e_2, e_3, e_4) = \min\{e_i(d + 1 - e_i)\}.$$

What are the Hurwitz numbers of other types?