[17] Li Luo, Weiqiang Wang, The q-Schur algebras and q-Schur dualities of finite type. arXiv: 1710.10375. 32 pages.

[16] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Affine Hecke algebras and quantum symmetric pairs. arXiv: 1609.06199. 87 pages.


[15] Jie Liu, Li Luo, Weiqiang Wang,  Odd singular vector formula for general linear superalgebras. Bull. Inst. Math. Acad. Sin. (N.S.), to appear. arXiv: 1903.04684. 9 pages.

[14] Chun-Ju Lai, Li Luo, Schur algebras and quantum symmetric pairs with unequal parameters. Int. Math. Res. Not., to appear. arXiv: 1808.00938. 34 pages.

[13] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Hideya Watanabe, Quantum Schur duality of affine type C with three parameters. Math. Res. Lett., to appear. arXiv: 1802.01047. 25 pages.

[12] Zhaobing Fan, Chun-Ju Lai, Yiqiang Li, Li Luo, Weiqiang Wang, Affine flag varieties and quantum symmetric pairs. Memo. Amer. Math. Soc., to appear. arXiv: 1602.04383. 113 pages.

[11] Li Luo, Husileng Xiao, Vust's theorem and higher level Schur-Weyl duality for types B, C and D. J. Pure Appl. Alg. 222 (2018), no. 2, 340--358.

[10] Chun-Ju Lai, Li Luo, An elementary construction of monomial bases of modified quantum affine gl_n. J. London Math. Soc. 96 (2017), no. 1, 15--27.

[9] Bintao Cao, Li Luo, Ke Ou, Extensions of inhomogeneous polynomial representations for sl(m+1|n). J. Math. Phy. 55 (2014), no.8, 081705, 13pp.

[8] Bintao Cao, Li Luo, Hom-Lie superalgebra structures on finite-dimensional simple Lie superalgebras. J. Lie Theory 23 (2013), no. 4, 1115--1128.

[7] Bintao Cao, Li Luo, Trivial module for ortho-symplectic Lie superalgebras and Littlewood's formula. Sci. China Math. 56 (2013), no. 11, 2251--2260.

[6] Lili Liu, Li Luo, On ad-nilpotent b-ideals for orthogonal Lie algebras. Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 2, 241--262.

[5] Li Luo, Abelian ideals with given dimension in Borel subalgebras. Algebra Colloq. 19 (2012), no. 4, 755--770.

[4] Li Luo, Character formulae for ortho-symplectic Lie superalgebras osp(n|2). J. Algebra 353 (2012), 31--61.

[3] Li Luo, Oriented tree diagram Lie algebras and their abelian ideals. Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 11, 2041--2058.

[2] Li Luo, Cohomology of oriented tree diagram Lie algebras. Comm. Algebra 37 (2009), no. 3, 965--984.

[1] Li Luo, Abelian ideals and cohomology of symplectic type. Proc. Amer. Math. Soc. 137 (2009), no. 2, 479--485.