第九届全国大学生数学竞赛预赛试卷 (非数学类, 2017 年)

题号	_		=	四	五.	总分
满分	42 分	14 分	14 分	15 分	15 分	100 分
得分						

注意: 本试卷共五大题, 满分100分, 考试时间为150分钟.

- 1 所有答题都须写在此试题纸密封线右边,写在其他纸上无效.
- 2 密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3 当题空白不够,可写在当页背面,并注明题号.

得分	
评阅人	

密封线

密封线

密封线

准考证号

- 一 (本题满分 42 分, 共 6 小题, 每小题 7 分)
- 1. 己知可导函数f(x)满足

$$f(x)\cos x + 2\int_0^x f(t)\sin t dt = x + 1$$

则
$$f(x) =$$

- 2. 极限 $\lim_{n\to\infty} \sin^2(\pi\sqrt{n^2+n}) = _____.$
- 3. 设w = f(u,v)具有二阶连续偏导数,且u = x cy, v = x + cy,其中c为非零

常数,则
$$w_{xx} - \frac{1}{c^2} w_{yy} = _____.$$

4. 极限**设** f(x) 有二阶导数连续,且 f(0) = f'(0) = 0, f''(0) = 6,则

$$\lim_{x \to 0} \frac{f(\sin^2 x)}{x^4} = \underline{\hspace{1cm}}.$$

5. 不定积分
$$I = \int \frac{e^{-\sin x} \sin 2x}{(1-\sin x)^2} dx = _____.$$

6. 记曲面 $z^2 = x^2 + y^2$ 和 $z = \sqrt{4 - x^2 - y^2}$ 围成空间区域为V ,则三重积分 $\iiint_V z dx dy dz = _____.$

得分	
评阅人	

二 (本题满分 14 分) 设二元函数 f(x,y) 在平面上有连续的二阶偏导数. 对任何角度 α ,定义一元函数

$$g_{\alpha}(t) = f(t\cos\alpha, t\sin\alpha),$$

若对任何 α 都有 $\frac{dg_{\alpha}(0)}{dt} = 0$ 且 $\frac{d^2g_{\alpha}(0)}{dt^2} > 0$. 证明 f(0,0) 是 f(x,y) 的极小值.

三 (本题满分14分) 设曲线 Г为曲线

 $I = \int_{\Gamma} y dx + z dy + x dz.$

 $x^2 + y^2 + z^2 = 1$, x + z = 1, $x \ge 0$, $y \ge 0$, $z \ge 0$

上从点 A(1,0,0) 到点 B(0,0,1) 的一段. 求曲线积分

	密封线
姓名	密封线
学校	密封线
省市	

得分

评阅人

得分	
评阅人	

四 (本题满分 15 分) 设函数 f(x) > 0 且在实轴上连续,

| 若对任意实数t,有 $\int_{-\infty}^{+\infty} e^{-|t-x|} f(x) dx \le 1$,证明 $\forall a,b$,

$$a < b$$
, $f = \int_a^b f(x)dx \le \frac{b-a+2}{2}$.

		得分 评阅人
	密封线	
姓名	密封线	
准考证号		
· · · · · ·	密封线	
争		

五 (本题满分 15 分) 设 $\{a_n\}$ 为一个数列,p为固定的正

整数. 若 $\lim_{n\to\infty} (a_{n+p}-a_n) = \lambda$,证明: $\lim_{n\to\infty} \frac{a_n}{n} = \frac{\lambda}{p}$.