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1. Introduction

The theory of Leibniz algebras has been actively studied by many mathemati-
cians for years (cf. [1-12]). It is well-known that any associative algebra gives rise
to a Lie algebra by [x, y] = xy − yx. It is J.-L. Loday who introduced a new no-
tion (cf. [11]), namely, associative dialgebra, which gives (by similar procedure) a
Leibniz algebra. In this paper, we introduce an associative dialgebraic structure
on a polynomial algebra space F [x, y] over a field F with two variables x and y.
Thus F [x, y] also becomes a Leibniz algebra. The purpose of this paper is to study
derivation algebras and automorphism groups of F [x, y] as an associative dialgebra
and as a Leibniz algebra.

§ 1.1 Basic notations and results.
In this subsection we first recall some basic conceptions and notations which are

all standard (cf. [11]).
Let D be a vector space over a field F equipped with two associative multipli-

cations a and `: D × D → D. If for any x, y, z ∈ D, the following conditions
hold

x a (y a z) = x a (y ` z), (1.1)

(x ` y) a z = x ` (y a z), (1.2)

(x ` y) ` z = (x a y) ` z, (1.3)

then (D,a,`) is called an associative dialgebra (or dialgebra for short) (where a
and ` are called left multiplication and right multiplication, respectively).

Obviously, associative dialgebras merge into associative algebras if a a b = a `
b = ab.
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Let D be a dialgebra. An element e ∈ D is called a bar-unit of D if e satisfies

x a e = x = e ` x, ∀x ∈ D.

The set of bar-units of D is called its halo.
Suppose that D1 and D2 are two dialgebras over a field F , and ϕ is a linear map

from D1 to D2. If for any a, b ∈ D1,

ϕ(a a b) =ϕ(a) a ϕ(b),

ϕ(a ` b) =ϕ(a) ` ϕ(b),

then ϕ is called a homomorphism of dialgebras from D1 to D2.
Isomorphism of dialgebras and automorphism of dialgebra can be defined simi-

larly.
Suppose that I is a subspace of a dialgebra D. If for any a, b ∈ I, we have

a ` b ∈ I and a a b ∈ I, then I is called a sub-dialgebra of D.
Suppose that I is a subspace of a dialgebra D. If for any a ∈ D, b ∈ I, we have

a ` b ∈ I, b ` a ∈ I, b a a ∈ I and a a b ∈ I, then I is called an ideal of D.
If I is an ideal of a dialgebra D, then on the quotient space D/I we can define

a natural dialgebra structure, the dialgebra D/I is called the quotient dialgebra
determined by I. It is easy to verify that the kernel of any homomorphism of
dialgebras is an ideal.

Let G be a vector space over a field F . If G is equipped with a multiplication
[−,−]: G × G → G, and satisfies the Leibniz identity

[a, [b, c]] = [[a, b], c]− [[a, c], b], ∀ a, b, c ∈ G,

then (G, [−,−]) is called a Leibniz algebra.
Suppose that G is a Leibniz algebra, J is a subspace of G. If [G, J ] ⊆ J , then J

is called a left ideal. If [J,G] ⊆ J , then J is called a right ideal of G. If J is both a
left and right ideal of G, then J is called an (two-sided) ideal of G.

For a Leibniz algebra G, one puts

Zr(G) = {a ∈ G | [x, a] = 0, x ∈ G},

then Zr(G) is an ideal of G and is called the right annihilator of G.
Let G be a Leibniz algebra. The lower central series of G is the sequence

G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊇ · · ·

of ideals of G defined inductively as follows

G1 = G, Gk+1 = [Gk,G], k ∈ N.

G is said to be nilpotent if there is an integer s > 1, such that Gs = 0.
The derived series of a Leibniz algebra G is the sequence

G(0) ⊇ G(1) ⊇ · · · ⊇ G(n) ⊇ · · ·
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of ideals of G defined inductively as follows

G(0) = G, G(k+1) = [G(k),G(k)], k ∈ Z+.

G is said to be solvable if there is an integer s > 0, such that G(s) = 0.
Assume that G is a Leibniz algebra, d ∈ End(G). If d satisfies:

d[a, b] = [d(a), b] + [a, d(b)], ∀ a, b ∈ G,

then d is called a derivation of the Leibniz algebra G. We denote der(G) the set of
all derivations of G.

Suppose that G is a Leibniz algebra, and x ∈ G. We define a linear transformation
adx of G as follows

adx(y) = [y, x], ∀ y ∈ G.

Then it is easy to verify that ad x is a derivation of G, and is called an inner
derivation of G. We denote ad(G) the set of all inner derivations of G.

Suppose that (D,a,`) is an associative dialgebra over F , we can define a new
multiplication [−,−] on D:

[a, b] = a a b− b ` a.

Then for any a, b, c ∈ D, we have

[a, [b, c]] = [[a, b], c]− [[a, c], b].

According to the definition of Leibniz algebra, (D, [−,−]) is a Leibniz algebra.

§ 1.2 Dialgebra and Leibniz algebra F [x, y].
Suppose that F [x, y] is a polynomial algebra over F with commuting indeter-

minates x and y, where F is any field of characteristic 0. In this subsection, we
introduce an associative dialgebraic structure over the vector space F [x, y] and dis-
cuss some fundamental properties of F [x, y] as a dialgebra and a Leibniz algebra.

We define two multiplications a and ` on F [x, y] as follows

f(x, y) a g(x, y) =f(x, y)g(y, y),

f(x, y) ` g(x, y) =f(x, x)g(x, y).
(1.4)

Then we have

Theorem 1.2.1. (F [x, y],a,`) is an associative dialgebra, where the left multipli-
cation a and the right multiplication ` are defined as (1.4).

Proof. Since {xmyn | m,n ∈ Z+} is a basis of F [x, y] it is sufficient to prove (1.1)-
(1.3) on basis elements. By (1.4), for any xmyn, xsyt, xiyj ∈ F [x, y], we have

xmyn a (xsyt a xiyj) = xmyn a xsyt+i+j = xmyn+s+t+i+j ,

(xmyn a xsyt) a xiyj = xmyn+s+t a xiyj = xmyn+s+t+i+j .

Thus
xmyn a (xsyt a xiyj) = (xmyn a xsyt) a xiyj .
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Since
xmyn ` (xsyt ` xiyj) = xmyn ` xs+t+iyj = xm+n+s+t+iyj ,

(xmyn ` xsyt) ` xiyj = xm+n+syt ` xiyj = xm+n+s+t+iyj ,

we have
xmyn ` (xsyt ` xiyj) = (xmyn ` xsyt) ` xiyj .

Thus both a and ` satisfy the associative law. On the other hand

xmyn a (xsyt a xiyj) =xmyn a xsyt+i+j = xmyn+s+t+i+j ,

xmyn a (xsyt ` xiyj) =xmyn a xs+t+iyj = xmyn+s+t+i+j ,

thus (1.1) holds. But

(xmyn ` xsyt) a xiyj =xm+n+syt a xiyj = xm+n+syt+i+j ,

xmyn ` (xsyt a xiyj) =xmyn ` xsyt+i+j = xm+n+syt+i+j ,

then (1.2) holds. Furthermore

(xmyn ` xsyt) ` xiyj =xm+n+syt ` xiyj = xm+n+s+t+iyj ,

(xmyn a xsyt) ` xiyj =xmyn+s+t ` xiyj = xm+n+s+t+iyj ,

thus (1.3) holds. Therefore (F [x, y],a,`) is an associative dialgebra. ¤
Since the left (and right) multiplication of the associative dialgebra F [x, y] sat-

isfies associative law, (F [x, y],a) and (F [x, y],`) are all associative algebras.
From the above subsection, we know that any associative dialgebra can be turned

naturally into a Leibniz algebra. Thus F [x, y] can be considered as a Leibniz alge-
bra, its Leibniz bracket is given by

[f(x, y), g(x, y)] = f(x, y)
(
g(y, y)− g(x, x)

)
, (1.5)

or on its basis, we have

[xmyn, xsyt] = xmyn(ys+t − xs+t).

Lemma 1.2.2. Let F [x, y] be the Leibniz algebra defined as above, then F [x, y](1) =
(y − x)F [x, y].

Proof. Obviously, (y− x) | g(y, y)− g(x, x), for any g(x, y) ∈ F [x, y], thus by (1.5),

F [x, y](1) =
[
F [x, y], F [x, y]

] ⊆ (y − x)F [x, y].

On the other hand, for any f(x, y) ∈ F [x, y], (y − x)f(x, y) = [f(x, y), x] ∈
F [x, y](1), so (y − x)F [x, y] ⊆ F [x, y](1). Hence, F [x, y](1) = (y − x)F [x, y]. ¤
Theorem 1.2.3. F [x, y] is a solvable Leibniz algebra, but not a nilpotent Leibniz
algebra.

Proof. By Lemma 1.2.2, we have F [x, y](1) = (y − x)F [x, y]. Since

[(y − x)f(x, y), (y − x)g(x, y)] = 0, ∀ f(x, y), g(x, y) ∈ F [x, y],

thus F [x, y](2) = 0. Hence F [x, y] is solvable.
However, for any integer n > 0,

[· · · [[1, x], x], · · · , x︸ ︷︷ ︸
n

] = (y − x)n.

Thus, F [x, y]n 6= 0, for any n > 0. So F [x, y] is not nilpotent. ¤
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Lemma 1.2.4. Let Zr(F [x,y]) be the right annihilator of the Leibniz algebra F [x,y],
then

Zr(F [x, y]) = {a + (y − x)h(x, y) | a ∈ F, h(x, y) ∈ F [x, y]}.

Proof. For any a ∈ F , and f(x, y), h(x, y) ∈ F [x, y], we have

[f(x, y), a + (y − x)h(x, y)] = [f(x, y), a] + [f(x, y), (y − x)h(x, y)] = 0,

thus a + (y − x)h(x, y) ∈ Zr(F [x, y]).
Conversely, if g(x, y) ∈ Zr(F [x, y]), then 0 = [1, g(x, y)] = g(y, y) − g(x, x).

Hence g(x, x) = a ∈ F . (y − x) | g(x, y) − g(x, x) implies that there is h(x, y) ∈
F [x, y], such that g(x, y)− g(x, x) = (y−x)h(x, y), so g(x, y) = g(x, x)+

(
g(x, y)−

g(x, x)
)

= a + (y − x)h(x, y). This completes the proof. ¤
We can also get the following result.

Lemma 1.2.5. The halo of the associative dialgebra F [x, y] is

{1 + (y − x)g(x, y) | g(x, y) ∈ F [x, y]}.

In particular, 1 is a bar-unit of F [x, y].

Assume that F [x, y]n is the subspace consisting of all homogeneous polynomials
of degree n in F [x, y], n = 0, 1, 2, · · · , then F [x, y] =

⊕∞
n=0 F [x, y]n is a Z-graded

dialgebra and a Z-graded Leibniz algebra. We can also define an increasing filtra-
tion on F [x, y] by setting F [x, y](n) =

⊕n
i=0 F [x, y]i, then F [x, y] is also a filtered

dialgebra and a filtered Leibniz algebra. The above gradation and filtration of
F [x, y] are said to be standard.

2. Derivation algebra and automorphism
group of the dialgebra F [x, y]

In this section we consider F [x, y] as an associative dialgebra. We first determine
left derivations LDer(F [x, y]) and right derivations RDer(F [x, y]) of the associative
dialgebra F [x, y]. Then derivation algebra Der(F [x, y]) and automorphism group
Aut(F [x, y]) are also determined.

§ 2.1 Left derivations of the associative dialgebra F [x, y].

Definition 2.1.1. Assume that (D,a,`) is a dialgebra, d ∈ End(F [x, y]). If d
satisfies:

d(a a b) = d(a) a b + a a d(b), ∀ a, b ∈ D,

then d is called a left derivation of the dialgebra (D,a,`). Denote the set of all left
derivations of D by LDer(D). Thus LDer(F [x, y]) is the set of left derivations of
the associative dialgebra F [x, y].

Suppose that (D,a,`) is an associative dialgebra over F . For z ∈ D, define
âdz(a) = z a a− a a z, ∀ a ∈ D, then âdz is a left derivation of D, and call it a left
inner derivation of the associative dialgebra (D,a,`).

Since xmyn=xm a xn=xm a x a x a · · · a x︸ ︷︷ ︸
n

, the associative algebra (F [x, y],a)

is generated by {xn}n∈Z+ (note that we set x0=1, and 1 is a right unit of (F [x, y],a),
but not a unit element).
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Lemma 2.1.2. Given any f(x, y) ∈ F [x, y], we define a linear map f̂(x, y): F [x, y]
→ F [x, y] as follows:

g(x, y) 7→ f(x, y)g(x, y), ∀ g(x, y) ∈ F [x, y].

Then f̂(x, y) is a left derivation of the associative dialgebra F [x, y] if and only if
f(y, y) = 0, or equivalently, (x− y) | f(x, y).

Proof. We prove the necessity first. If f̂(x, y) is a left derivation of the dialgebra
F [x, y], then we have

f̂(x, y)(1 a 1) = f̂(x, y)(1) a 1 + 1 a f̂(x, y)(1),

so 1 a f̂(x, y)(1) = 0. Thus f(y, y) = 0, that is, (x− y) | f(x, y).
For sufficiency, we have to prove that if f(y, y) = 0, then f̂(x, y) is a left deriva-

tion of F [x, y]. It is enough to verify it on the basis {xsyt | s, t ∈ Z+}.

f̂(x, y)(xmyn a xsyt) = f̂(x, y)(xmyn+s+t) = xmyn+s+tf(x, y),

f̂(x, y)(xmyn) a xsyt + xmyn a f̂(x, y)(xsyt) = f(x, y)xmynys+t + 0

= xmyn+s+tf(x, y).

Thus,

f̂(x, y)(xmyn a xsyt) = f̂(x, y)(xmyn) a xsyt + xmyn a f̂(x, y)(xsyt).

Hence, f̂(x, y) is a left derivation of F [x, y]. This proves the result. ¤
In general, for any d ∈ LDer(F [x, y]), we have

d(1) = d(1 a 1) = d(1) a 1 + 1 a d(1).

Thus d(1) = d(1) + 1 a d(1). So 1 a d(1) = 0. Hence (x− y)|d(1).

Theorem 2.1.3. Suppose that d ∈ LDer(F [x, y]). Then

d(xmyn) = (mym+n−1 + nxmyn−1)g(y) + (x− y)ynfm(x, y), (2.1)

where fm(x, y) ∈ F [x, y], m = 0, 1, 2, 3, · · · , g(y) ∈ F [y]. Conversely, for any
fm(x, y) ∈ F [x, y], m = 0, 1, 2, 3, · · · , g(y) ∈ F [y], the map d ∈ End(F [x, y]) defined
by formula (2.1) is an element in LDer(F [x, y]).

Proof. If d ∈ LDer(F [x, y]), we set d(xn) = hn(x, y) ∈ F [x, y], n = 0, 1, 2, · · · , then

1 a d(xn) = 1 a d(x) a x a · · · a x + · · ·+ 1 a x a x a · · · a d(x).

That is,
hn(y, y) = nyn−1h1(y, y).

Since (x− y)|hn(x, y)− hn(y, y), there exist fn(x, y) ∈ F [x, y], n ∈ Z+, such that

hn(x, y) = hn(y, y) + (x− y)fn(x, y) = nyn−1h1(y, y) + (x− y)fn(x, y).
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From the definition of left derivation and the fact xmyn = xm a xn we get

d(xmyn) = ynd(xm) + xmhn(y, y)

= (mym+n−1 + nxmyn−1)h1(y, y) + (x− y)ynfm(x, y).

Conversely, given fm(x, y) ∈ F [x, y], m = 0, 1, 2, 3, · · · , g(y) ∈ F [y], we have to
prove that the linear transformation d determined by formula (2.1) is an element in
LDer(F [x, y]), that is, we have to check: for any xiyj , xmyn ∈ F [x, y], the following
identity holds:

d(xiyj a xmyn) = d(xiyj) a xmyn + xiyj a d(xmyn), ∀ i, j,m, n > 0.

But the left-hand side of the above equation is

d(xiyj+m+n) = (iyi+j+m+n−1+(j+m+n)xiyj+m+n−1)g(y)+(x−y)yj+m+nfi(x, y),

and the right-hand side is

ym+n
(
(iyi+j−1 + jxiyj−1)g(y) + (x− y)yjfi(x, y)

)
+ xiyj(m + n)ym+n−1g(y)

= (iyi+j+m+n−1 + (j + m + n)xiyj+m+n−1)g(y) + (x− y)yj+m+nfi(x, y).

Thus the equation holds, and d ∈ LDer(F [x, y]). ¤
Corollary 2.1.4. In Theorem 2.1.3, there exists an element f(x, y) ∈ F [x, y] such
that d = f̂(x, y) ∈ LDer(F [x, y]) if and only if g(y) = 0 and fm(x, y) = xmf0(x, y).

Corollary 2.1.5. Suppose that d ∈ LDer(F [x, y]) and g(y) ∈ F [y]. Then g(y)d ∈
F [x, y], where g(y)d is defined by

g(y)d : f(x, y) 7→ g(y)d(f(x, y)), ∀ f(x, y) ∈ F [x, y].

For left inner derivations, we have the following result.

Theorem 2.1.6. If d is a left inner derivation of the dialgebra F [x, y], then there
exist f(x, y) ∈ F [x, y] and fm(x, y) ∈ F [x, y], m = 0, 1, 2, · · · , satisfying

(x− y)fm(x, y) = ymf(x, y)− xmf(y, y)

such that (2.1) hold with g(y) = 0. Conversely, given any f(x, y) ∈ F [x, y] and
fm(x, y) ∈ F [x, y], m = 0, 1, 2, · · · , satisfying

(x− y)fm(x, y) = ymf(x, y)− xmf(y, y),

the linear transformation d of F [x, y] defined by (2.1), with g(y) = 0, is a left inner
derivation of the dialgebra F [x, y].

Proof. Let d = âdf(x, y) be a left inner derivation of F [x, y], for some f(x, y) ∈
F [x, y], then

âdf(x, y)(xmyn) = f(x, y) a xmyn − xmyn a f(x, y)

= ym+nf(x, y)− xmynf(y, y)

= yn(ymf(x, y)− xmf(y, y)).
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Assume that f(x, y) =
∑

i,j ai,jx
iyj , where all ai,j ∈ F . Then

ymf(x, y)− xmf(y, y) =
∑

i,j

ai,j(xiym+j − xmyi+j)

=
∑

i,j

ai,j

(
xiym+j − xi+j+m + xi+j+m − xmyi+j

)

=
∑

i,j

ai,j

(
xm(xi+j − yi+j)− xi(xj+m − yj+m)

)

= (x− y)
∑

i,j

ai,j

(
xm(xi+j−1 + xi+j−2y + · · ·+ yi+j−1)

− xi(xj+m−1 + xj+m−2y + · · ·+ yj+m−1)
)
.

Thus there are fm(x, y) ∈ F [x, y], such that (x−y)fm(x, y) = ymf(x, y)−xmf(y, y),
m = 0, 1, 2, · · · . Hence d(xmyn) = (x − y)ynfm(x, y). Take g(y) = 0, then (2.1)
holds.

Conversely, given any f(x, y) ∈ F [x, y] and fm(x, y) ∈ F [x, y], m = 0, 1, 2, · · · ,
satisfying

(x− y)fm(x, y) = ymf(x, y)− xmf(y, y),

we need to prove that the linear transformation d determined by (2.1), with g(y) =
0, is a left inner derivation of F [x, y].

At first, by Theorem 2.1.3, d is a left derivation of F [x, y].
Secondly, we have

d(xmyn) = yn(x− y)fm(x, y)

= yn(ymf(x, y)− xmf(y, y))

= ym+nf(x, y)− xmynf(y, y)

= f(x, y) a xmyn − xmyn a f(x, y)

= âdf(x, y)(xmyn).

Therefore d = âdf(x, y) is a left inner derivation. ¤

§ 2.2 Right derivations of the associative dialgebra F [x, y].

Definition 2.2.1. Let (D,a,`) be an associative dialgebra, and let d ∈ End(D), if
d satisfies

d(a ` b) = d(a) ` b + a ` d(b), ∀ a, b ∈ D,

then d is called a right derivation of the associative dialgebra (D a,`). We denote
the set of all right derivations of D by RDer(D).

Firstly, we define a new algebra (F [x, y]op,`′) as follows: as a vector space
F [x, y]op = F [x, y]. For f(x, y), g(x, y) ∈ F [x, y]op, we define f(x, y) `′ g(x, y) =
g(x, y) ` f(x, y), then (F [x, y]op,`′) is also an associative algebra.

We denote the set of all derivations of the associative algebra (F [x, y]op,`′) by
Der(F [x, y]op).
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Lemma 2.2.2. Define a linear map η : (F [x, y],a) → (F [x, y]op,`′) by

η(f(x, y)) = f(y, x),

then η is an isomorphism of associative algebras.

Proof. For any f(x, y), g(x, y) ∈ F [x, y], we have

η(f(x, y) a g(x, y)) = η(f(x, y)g(y, y))

= f(y, x)g(x, x).

And
η(f(x, y)) `′ η(g(x, y)) = f(y, x) `′ g(y, x)

= g(y, x) ` f(y, x) = g(x, x)f(y, x).

Thus η is a homomorphism from (F [x, y],a) to (F [x, y],`′). Obviously, η is an
isomorphism of vector spaces, so η is an isomorphism of associative algebras. ¤

Due to the above results, we have

Theorem 2.2.3. If d ∈ Der(F [x, y]op), then there are fi(x, y) ∈ F [x, y], i =
0, 1, 2, · · · , and g(x) ∈ F [x], such that

d(xmyn) = (mxm−1yn + nxm+n−1)g(x) + (x− y)xmfn(x, y), ∀m,n ∈ Z+. (2.2)

Conversely, if fi(x, y) ∈ F [x, y], i = 0, 1, 2, · · · , and g(x) ∈ F [x], then the linear
transformation d of F [x, y] given by (2.2) is an element of Der(F [x, y]op).

Theorem 2.2.4. RDer(F [x, y]) = Der(F [x, y]op).

Proof. For any linear transformation d of F [x, y], and a, b ∈ F [x, y], we have

d(a ` b) = d(a) ` b + a ` d(b)

holds if and only if
d(b `′ a) = b `′ d(a) + d(b) `′ a

holds. Thus d ∈ RDer(F [x, y]) if and only if d ∈ Der(F [x, y]op). Therefore,
RDer(F [x, y]) = Der(F [x, y]op). ¤

Suppose that (D,a,`) is a dialgebra. For z ∈ D, set ãdz(a) = z ` a − a ` z,
∀ a ∈ D, then ãdz is a derivation of the associative algebra (D,`), so ãdz is called
a right inner derivation of the dialgebra (D,a,`). From the above discussion we
have

Theorem 2.2.5. If d is a right inner derivation of the dialgebra F [x, y], then there
exist f(x, y) ∈ F [x, y] and fi(x, y) ∈ F [x, y], i = 0, 1, 2, · · · , satisfying

(x− y)fn(x, y) = ynf(x, x)− xnf(x, y),

such that (2.2) hold with g(x) = 0. Conversely, given f(x, y) ∈ F [x, y] and
fi(x, y) ∈ F [x, y], i = 0, 1, 2, · · · , satisfying

(x− y)fn(x, y) = ynf(x, x)− xnf(x, y),
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the linear transformation d of F [x, y] determined by (2.2), with g(x) = 0, is a right
derivation of the dialgebra F [x, y].

Proof. Suppose that d = ãdf(x, y) is a right derivation of F [x, y], for some f(x, y) ∈
F [x, y]. Then

d(xmyn) = f(x, y) ` xmyn − xmyn ` f(x, y)

= xmynf(x, x)− xm+nf(x, y)

= xm(ynf(x, x)− xnf(x, y)).

We can take fi(x, y) =
(
yig(x, x)− xig(x, y)

)
/(x− y) ∈ F [x, y], i = 0, 1, 2, · · · , and

g(x) = 0, then

(x− y)fn(x, y) = ynf(x, x)− xnf(x, y), n ∈ Z+,

and d(xmyn) = (x− y)xmfn(x, y), that is, (2.2) holds.
If there are f(x, y) ∈ F [x, y] and fi(x, y) ∈ F [x, y], i = 0, 1, 2, · · · , such that

(x− y)fn(x, y) = ynf(x, x)− xnf(x, y),

we have to prove that the linear transformation d of F [x, y] determined by (2.2),
with g(x) = 0, is a right inner derivation of the associative dialgebra F [x, y]. At
first, by Theorem 2.2.3 and 2.2.4, d is a right derivation. Secondly,

d(xmyn) = (x− y)xmfn(x, y)

= xm(ynf(x, x)− xnf(x, y))

= xmynf(x, x)− xm+nf(x, y)

= f(x, y) ` xmyn − xmyn ` f(x, y)

= ãdf(x, y)(xmyn).

Therefore, d = ãdf(x, y) is a right inner derivation. ¤
§ 2.3 Derivations of the associative dialgebra F [x, y].

Definition 2.3.1. Let (D,a,`) be an associative dialgebra, d ∈ End(D), if d sat-
isfies

d(a a b) = d(a) a b + a a d(b),

d(a ` b) = d(a) ` b + a ` d(b), ∀ a, b ∈ D,

then d is called a derivation of the associative dialgebra (D,a,`). We denote the set
of all derivations of (D,a,`) by Der(D). Obviously, Der(D) = LDer(D)∩RDer(D).

By the definition of the dialgebra F [x, y], we have

xmyn = x ` x ` · · · ` x︸ ︷︷ ︸
m

` 1 a x a x a · · · a x︸ ︷︷ ︸
n

. (2.3)

Suppose that d ∈ Der(F [x, y]). Then from Der(F [x, y]) = LDer(F [x, y]) ∩
RDer(F [x, y]) and the above discussion about left derivations we know (x−y)|d(1),
hence we can set d(1) = (x − y)f(x, y), where f(x, y) ∈ F [x, y]. By definition of
derivation,

d(x ` 1) = d(x) = d(x) ` 1 + x ` d(1).
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Assume that d(x) = g(x, y). Then g(x, y) = g(x, x) + x(x− y)f(x, y). By (2.3) we
have

d(xmyn) = d(x ` · · · ` x ` 1 a x a · · · a x)

= d(x) ` x ` · · · ` 1 a x a · · · a x + · · ·+ x ` · · · ` d(1) a x a · · · a x

+ x ` · · · ` 1 a d(x) a · · · a x + · · ·+ x ` · · · ` x ` 1 a x a · · · a d(x)

= mxm−1yng(x, x) + xmynd(1) + nxmyn−1g(y, y).

Therefore we have the following results.

Theorem 2.3.2. If d ∈ Der(F [x, y]), then there are f(x) ∈ F [x] and g(x, y) ∈
F [x, y], such that

d(xmyn) = mxm−1ynf(x) + xmyn(x− y)g(x, y) + nxmyn−1f(y), (2.4)

Conversely, for any f(x) ∈ F [x] and g(x, y) ∈ F [x, y], the linear transformation
d of F [x, y] determined by (2.4) is an element of Der(F [x, y]).

Proof. Suppose that d ∈ Der (F [x, y]). Then by the above discussions, we have

d(xmyn) = mxm−1ynf(x) + xmyn(x− y)g(x, y) + nxmyn−1f(y),

where f(x) = d(x) ` 1 and g(x, y) = d(1)/(x− y) ∈ F [x, y].
Conversely, for any f(x) ∈ F [x] and g(x, y) ∈ F [x, y], we have to prove that

the linear transformation d of F [x, y] determined by (2.4) is a derivation of F [x, y].
For any xmyn ∈ F [x, y], clearly, (x− y) | xm−1f(x)− ym−1f(y), thus, fm(x, y) :=
xmg(x, y) + m(xm−1f(x)−ym−1f(y))

x−y ∈ F [x, y], m = 0, 1, 2, · · · , so

d(xmyn) = mxm−1ynf(x) + xmyn(x− y)g(x, y) + nxmyn−1f(y)

= (mym+n−1 + nxmyn−1)f(y) + (x− y)ynfm(x, y).

By Theorem 2.1.3, d ∈ LDer(F [x, y]). Similarly,

d(xmyn) = (mxm−1yn + nxm+n−1)f(x) + (x− y)xmgn(x, y),

where gn(x, y) = yng(x, y) + n(yn−1f(y)−xn−1f(x))
x−y ∈ F [x, y], thus d ∈ RDer(F [x, y])

and d ∈ LDer(F [x, y]) ∩ RDer(F [x, y]) = Der(F [x, y]), completing the proof. ¤
Let (D,a,`) be an associative dialgebra over F . For z ∈ D, set ad z(X) = X a

z − z ` X (∀X ∈ D), we can prove that ad z is a derivation of (D,a,`). For any
X, Y ∈ D, we have

ad z(X a Y ) = (X a Y ) a z − z ` (X a Y ),

and

ad z(X) a Y + X a ad z(Y ) = (X a z − z ` X) a Y + X a (Y a z − z ` Y )

= X a (z a Y )−(z ` X) a Y +X a (Y a z)−X a (z a Y )

= X a (Y a z)− (z ` X) a Y.
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Hence,
ad z(X a Y ) = ad z(X) a Y + X a ad z(Y ).

On the other hand,

ad z(X ` Y ) = (X ` Y ) a z − z ` (X ` Y ),

and

ad z(X) ` Y + X ` ad z(Y ) = (X a z − z ` X) ` Y + X ` (Y a z − z ` Y )

= (X ` z) ` Y − (z ` X) ` Y + X ` (Y a z)− (X ` z) ` Y

= X ` (Y a z)− (z ` X) ` Y.

Thus,
ad z(X ` Y ) = ad z(X) ` Y + X ` ad z(Y ).

ad z is called an inner derivation of D. We denote the set of all inner derivations
of F [x, y] by Inder(F [x, y]). By the above definition, we have

ad(xmyn)(xiyj) = xiyj a xmyn − xmyn ` xiyj

= xiyj(ym+n − xm+n).

Thus we have

Theorem 2.3.3. If d ∈ Inder(F [x, y]), then there exist h(x) ∈ F [x] and g(x, y) ∈
F [x, y] satisfying

(x− y)g(x, y) = h(y)− h(x), (2.5)

such that (2.4) hold with f(x) = 0. Conversely, given h(x) ∈ F [x] and g(x, y) ∈
F [x, y] satisfying (2.5), the linear transformation d of F [x, y] determined by (2.4),
with f(x) = 0, is an element in Inder(F [x, y]).

Proof. Let d = ad h(x, y) ∈ Inder(F [x, y]), for some h(x, y) ∈ F [x, y], then we have

d(xmyn) = xmyn a h(x, y)− h(x, y) ` xmyn

= xmynh(y, y)− xmynh(x, x)

= xmyn(h(y, y)− h(x, x)), ∀m,n ∈ Z+.

Take g(x, y) = (h(y, y) − h(x, x))/(x − y), h(x) = h(x, x) and f(x) = 0, then
g(x, y) ∈ F [x, y], (x− y)g(x, y) = h(y)− h(x) and (2.4) holds.

Conversely, take h(x) ∈ F [x] and g(x, y) ∈ F [x, y], such that (2.5) hold. If d is
the linear transformation of F [x, y] determined by (2.4), with f(x) = 0, then by
Theorem 2.3.2, d is a derivation, and

d(xmyn) = xmyn(x− y)g(x, y)

= xmyn(h(y)− h(x))

= xmynh(y)− xmynh(x)

= xmyn a h(x)− h(x) ` xmyn

= ad h(x)(xmyn).

Thus d = ad h(x) ∈ Inder(F [x, y]). ¤
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§ 2.4 Automorphisms of the associative dialgebra F [x, y].

Definition 2.4.1. Suppose that (D,a,`) is an associative dialgebra, σ∈End(D).
If σ satisfies the following conditions

σ(a a b) = σ(a) a σ(b),

σ(a ` b) = σ(a) ` σ(b), ∀ a, b ∈ D,

and σ is bijective, then σ is called an automorphism of the dialgebra (D,a,`). We
denote the set of all automorphisms of D by Aut (D).

In this subsection, we always denote Aut(F [x, y]) the automorphism group of
the associative dialgebra F [x, y].

By (2.3) we know F [x, y] is generated by 1 and x as a dialgebra. Let σ ∈
Aut(F [x, y]), then

σ(x) = σ(x a 1) = σ(x) a σ(1),

σ(x) = σ(1 ` x) = σ(1) ` σ(x).

Suppose that σ(x) = f(x, y) and σ(1) = g(x, y). Then g(x, x) = g(y, y) = 1. By
(2.3), we have

σ(xmyn) = f(x, x)mg(x, y)f(y, y)n.

For any h(x, y) =
∑

m,n am,nxmyn ∈ F [x, y], we get

σ(h(x, y)) =
∑
m,n

am,nσ(xmyn)

=

(∑
m,n

am,nf(x, x)mf(y, y)n

)
g(x, y).

Thus, F [x, y] = σ(F [x, y]) ⊆ g(x, y)F [x, y], which implies that σ(1) = g(x, y) is a
non-zero element in F . From g(x, x) = 1 we get σ(1) = 1.

Now suppose that f(x) = f(x, x) =
∑s

i=0 aix
i (where all ai ∈ F and as 6= 0).

Then
σ(xmyn) = f(x)mf(y)n.

Assume that η is the inverse of σ, and η(x) = g(x) =
∑t

j=0 bjx
j , where all bj ∈ F

and bt 6= 0. Then

x = ησ(x) = η(f(x)) =
s∑

i=0

aiη(xi) =
s∑

i=0

aig(x)i

= a0 + a1(b0 + b1x + · · ·+ btx
t) + · · ·+ as(b0 + b1x + · · ·+ btx

t)s.

Since the degree of the last polynomial of the above equation is 1, we have st = 1,
that is, s = t = 1. Therefore, f(x) = a + bx, where a, b ∈ F and b 6= 0.

By the above discussion we know that all automorphisms σ of the associative
dialgebra F [x, y] preserve the standard filtration, that is, σ(F [x, y](n)) ⊆ F [x, y](n),
n = 0, 1, 2, · · · .

Now, let us determine the automorphism group Aut(F [x, y]).
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Theorem 2.4.2. The automorphism group Aut(F [x, y]) of the dialgebra F [x, y] is

{σ ∈ End (F [x, y]) | σf(x, y) = f(a + bx, a + by), ∀ f(x, y); a, b ∈ F , b 6= 0}.

Proof. Set

A = {σ ∈ End (F [x, y]) | σf(x, y) = f(a + bx, a + by), ∀ f(x, y); a, b ∈ F , b 6= 0}.

Then by the above discussion we know that Aut(F [x, y]) ⊆ A. On the other
hand, for any σ ∈ A, such that σ(x) = a + bx, it is easy to verify that σ is a
homomorphism of dialgebras. We can define a linear transformation η of F [x, y]
by η(xmyn) = (−ab−1 + b−1x)m(−ab−1 + b−1y)n, for all m,n ∈ Z+. Then η is the
inverse of σ, thus σ is a bijection and A ⊆ Aut(F [x, y]). Therefore, Aut(F [x, y]) =
A. ¤
Corollary 2.4.3. Aut(F [x, y]) is a subgroup of the automorphism group of the
polynomial associative algebra F [x, y].

3. Derivations and automorphisms of the Leibniz algebra F [x, y]

In this section we will consider F [x, y] as a Leibniz algebra induced by its asso-
ciative dialgebraic structure. Recall that its Leibniz brackets are given by

[xmyn, xsyt] = xmyn(ys+t − xs+t).

Our main purpose is to determine the derivation algebra and the automorphism
group of F [x, y]. Since it is difficult to determine all derivations and all automor-
phisms of F [x, y], we only discuss its homogeneous derivations and automorphisms
preserving the standard filtration.

§ 3.1 Derivations of the Leibniz algebra F [x, y].
Suppose that d is a derivation of the Leibniz algebra F [x, y]. Since [1, 1] = 0,

d([1, 1]) = 0, thus [f(x, y), d(1)] = f(x, y)[1, d(1)] = 0, for any f(x, y) ∈ F [x, y]. Set
d(1) = g(x, y), then g(x, y) ∈ Zr(F [x, y]). Hence by Lemma 1.2.4, there are c ∈ F
and f(x, y) ∈ F [x, y], such that d(1) = c + (y − x)f(x, y). But

d[xm, xn] = d(xm a xn − xn ` xm) = d(xmyn)− d(xm+n),

thus,
d(xmyn) = d(xm+n) + d[xm, xn]

= d(xm+n) + (yn − xn)d(xm) + xm[1, d(xn)].
(3.1)

That is, d(xmyn) can be determined by d(xm+n), d(xm) and d(xn).

Lemma 3.1.1. If d is a derivation of an associative dialgebra D, then d is a
derivation of D as a Leibniz algebra.

By definition of derivation of Leibniz algebra we have

d[xm, xn] = [d(xm), xn] + [xm, d(xn)] = d(xmyn − xm+n), (3.2)

and
d[yn, xm] = [d(yn), xm] + [yn, d(xm)] = d(ym+n − xmyn). (3.3)
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Adding (3.2) and (3.3) we get

d[xm, xn] + d[yn, xm] = d(ym+n)− d(xm+n). (3.4)

Since d[1, xm+n] = d(ym+n)− d(xm+n), substituting it into (3.4) we get

[d(xm), xn] + [xm, d(xn)] + [d(yn), xm] + [yn, d(xm)] = [d(1), xm+n] + [1, d(xm+n)],

or
(yn − xn)d(xm) + xm[1, d(xn)] + (ym − xm)d(yn) + yn[1, d(xm)]

= (ym+n − xm+n)d(1) + [1, d(xm+n)].

Then

(yn − xn)d(xm) + xm[1, d(xn)] + (ym − xm)
(
d(xn) + (yn − xn)d(1)

+ [1, d(xn)]
)

+ yn[1, d(xm)] = (ym+n − xm+n)d(1) + [1, d(xm+n)].

Therefore, we have

[1, d(xn+m)] = (ym − xm)d(xn) + (yn − xn)d(xm) + ym[1, d(xn)]

+ yn[1, d(xm)] + (2xn+m − xmyn − xnym)d(1).
(3.5)

Lemma 3.1.2. For f(x, y) ∈ F [x, y], we define a linear transformation f̂(x, y) of
F [x, y] as follows:

f̂(x, y) : F [x, y] → F [x, y]

g(x, y) 7→ f(x, y)g(x, y), ∀ g(x, y) ∈ F [x, y].

Then f̂(x, y) is a derivation of the Leibniz algebra F [x, y] if and only if (x − y) |
f(x, y).

Proof. Suppose that f̂(x, y) is a derivation of the Leibniz algebra F [x, y]. Then

f̂(x, y)[1, y] = [f̂(x, y)(1), y] + [1, f̂(x, y)(y)].

Since
f̂(x, y)[1, y] = f(x, y)[1, y] = f(x, y)(y − x),

and
[f̂(x, y)(1), y] + [1, f̂(x, y)(y)]

= [f(x, y), y] + [1, f(x, y)y]

= f(x, y)(y − x) +
(
f(y, y)y − f(x, x)x

)
,

we obtain that f(x, x) = f(y, y) = 0, so (x− y) | f(x, y).
On the other hand, if (x − y) | f(x, y), then due to Theorem 2.3.2, f̂(x, y) is a

derivation of the dialgebra F [x, y]. Thus it follows from Lemma 3.1.1 that f̂(x, y)
is a derivation of the Leibniz algebra F [x, y]. ¤
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Definition 3.1.3. Let G be a Z-graded Leibniz algebra. If d is a derivation of G
such that d(Gi) ⊆ Gi+j, for any i ∈ Z, then d is called a homogeneous derivation of
the Leibniz algebra G of degree j. We denote by derj(G) the set of all homogeneous
derivations of G with degree j.

If a Leibniz algebra G =
⊕

i∈Z Gi is Z-graded algebra and finite dimensional, then
the derivation algebra der(G) is also Z-graded (cf. [13, p119-120]). If G is not finite
dimensional, then the derivation algebra der(G) is not necessarily Z-graded (with
respect to the original Z-gradation of G). But the space

⊕
i∈Z deri(G) generated

by homogeneous derivations of G is a (Lie) subalgebra of der(G). We denote this
subalgebra by der′(G) and call it the homogeneous derivation algebra of G.

In the following we discuss the subalgebra der′(F [x, y]).

Lemma 3.1.4.
∂

∂x
+

∂

∂y
∈ der−1 (F [x, y]).

Proof. By Lemma 3.1.1, a derivation of a dialgebra D is also a derivation of D as
a Leibniz algebra. Thus if in Theorem 2.3.2 we put f(x) = 1 and g(x, y) = 0, then
we have

d =
∂

∂x
+

∂

∂y
∈ der−1 (F [x, y]). ¤

In general, by direct checking we have

Lemma 3.1.5. For any non-positive integer m,

dm−1 := xm ∂

∂x
+ ym ∂

∂y
∈ derm−1(F [x, y]).

In particular, d−1 = ∂
∂x + ∂

∂y .

Lemma 3.1.6. der−1(F [x, y]) = 〈d−1〉, where 〈d−1〉 is the space generated by d−1.

Proof. We have proved that 〈d−1〉 ⊆ der−1(F [x, y]).
Now for any δ ∈ der−1(F [x, y]), we have δ(1) = 0 and δ(x) = r ∈ F . Set

d = δ − rd−1, then d ∈ der−1(F [x, y]), and d(1) = d(x) = 0. From (3.1), d(y) =
d(x) + (y − x)d(1) + [1, d(x)] = 0. By (3.5), we get

[1, d(x2)] = 2(y − x)d(x) + 2y[1, d(x)] + (2x2 − 2xy)d(1) = 0.

But d(x2) ∈ F [x, y]1, so we can write d(x2) = b(y − x). On the other hand,

[1, d(x3)] = (y2 − x2)d(x) + (y − x)d(x2) + y2[1, d(x)]

+ y[1, d(x2)] + (2x3 − x2y − xy2)d(1)

= (y − x)d(x2)

= (y − x)(by − bx).

Since d(x3) ∈ F [x, y]2, we can write d(x3) = f(x, y) ∈ F [x, y]2. As the right-hand
side of the above equation is f(y, y)−f(x, x), the coefficients of x and y in its second
factor are the same, which implies that b = 0, that is, d(x2) = 0 and [1, d(x3)] = 0.
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In the following by using the induction on k we prove that if d is a homogeneous
derivation of the Leibniz algebra F [x, y] with degree −1, then d(xk) = 0, for all
k ≥ 0.

Suppose that for k = n (≥ 2) we have d(xn) = 0. Then for k = n + 1, by (3.5)
we get

[1, d(xn+1)] = (y − x)d(xn) + (yn − xn)d(x) + y[1, d(xn)] + yn[1, d(x)]

+ (2xn+1 − xyn − xny)d(1) = 0.

As d(xn+1) ∈ F [x, y]n, we can set d(xn+1) =
∑n

i=0 an−i,ix
n−iyi, where all ai,j ∈ F

and
∑n

i=0 an−i,i = 0. But d(xn+2) ∈ F [x, y]n+1, again by (3.5) we have

[1, d(xn+2)] = (y − x)d(xn+1)

= (y − x)

(
n∑

i=0

an−i,ix
n−iyi

)
.

Since coefficients of monomials in the second factor of the right-hand side are all
equal,

an,0 = an−1,1 = · · · = a0,n = 0,

thus, d(xn+1) = 0. By induction, we have d(xk) = 0, for any k ≥ 0.
Now d(xmyn) = d(xm+n) + (yn − xn)d(xm) + xm[1, d(xn)], thus d(xmyn) = 0,

for all m,n ≥ 0, that is, d = 0. So δ = rd−1. Hence, der−1(F [x, y]) ⊆ 〈d−1〉.
Consequently, der−1(F [x, y]) = 〈d−1〉. ¤
Lemma 3.1.7. If d is a homogeneous derivation of the Leibniz algebra F [x, y] with
degree −2, then d = 0.

Proof. First, we prove by induction on k that if d is a such derivation, then d(xk) =
0, for all k ≥ 0.

Since d is of degree −2, d(1) = d(x) = d(y) = 0 and d(x2) = a ∈ F . By (3.5) we
have [1, d(x3)] = a(y−x), and d(x3) ∈ F [x, y]1, so we can put d(x3) = bx+(a−b)y.
By (3.5), we have

[1, d(x4)] = 2(y2 − x2)d(x2) + 2y2[1, d(x2)] = 2a(y2 − x2)

= (y−x)d(x3)+(y3−x3)d(x)+y[1, d(x3)]+y3[1, d(x)]+(2x4−x2y−xy2)d(1)

= (y − x)(bx + (a− b)y + ay).

Thus a = b = 0, d(x2) = d(x3) = 0 and [1, d(x4)] = 0.
Suppose that for k = n, d(xn) = 0 and [1, d(xn+1)] = 0 hold. Then for k = n+1,

by (3.5) we have [1, d(xn+2)] = (y − x)d(xn+1), and

[1, d(xn+2)] = (yn − xn)d(x2) + (y2 − x2)d(xn) + yn[1, d(x2)] + y2[1, d(xn)]

+ (2xn+2 − xny2 − x2yn)d(1)

= 0.

So d(xn+1) = 0. Thus, by induction we have d(xk) = 0, for any k ≥ 0. But
d(xmyn) = d(xm+n) + (yn − xn)d(xm) + xm[1, d(xn)], hence d(xmyn) = 0, for all
m,n ≥ 0. Consequently, d = 0. ¤
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Lemma 3.1.8. For the Leibniz algebra F [x, y], der−3(F [x, y]) = 0.

Proof. At first, by induction on k we can prove that if d ∈ der−3(F [x, y]), then
d(xk) = 0, for any k ≥ 0.

Since deg d = −3, we have d(1) = d(x) = d(x2) = 0 and [1, d(x3)] = 0.
Suppose that for k = n (≥ 2), d(xn) = 0 and [1, d(xn+1)] = 0 hold. Then for

k = n + 1, by (3.5) we get [1, d(xn+2)] = (y − x)d(xn+1) and

[1, d(xn+2)] = (yn − xn)d(x2) + (y2 − x2)d(xn) + yn[1, d(x2)] + y2[1, d(xn)]

+ (2xn+2 − xny2 − x2yn)d(1)

= 0.

That is, d(xn+1) = [1, d(xn+2)] = 0. By induction on k we have d(xk) = 0, for any
k ≥ 0. But d(xmyn) = d(xm+n)+(yn−xn)d(xm)+xm[1, d(xn)], thus d(xmyn) = 0,
for any m,n ≥ 0. Consequently, d = 0. ¤

Similar to the proof of Lemma 3.1.8, we have the following result.

Theorem 3.1.9. For the Leibniz algebra F [x, y], derm(F [x, y]) = 0, ∀m < −3.

Now we discuss homogeneous derivations of the Leibniz algebra F [x, y] with
non-negative degrees.

Theorem 3.1.10. der0(F [x, y]) = 〈d0〉.
Proof. Note that d0 ∈ der0(F [x, y]) and d0(f(x, y)) = sf(x, y), for any f(x, y) ∈
F [x, y]s.

Now suppose that δ ∈ der0(F [x, y]), and δ(x) = ay + bx, then by Lemma 3.1.5,

δ − bd0 ∈ der0(F [x, y]).

Set d = δ − bd0, then d(x) = ay. Suppose d(1) = a′ ∈ F , then

[1, d(x2)] = 2(y − x)d(x) + 2y[1, d(x)] + (2x2 − 2xy)d(1)

= (y − x)(−2a′x + 4ay).

Since the coefficients of x and y in the second factor of the right-hand side of the
above equation are equal, we get a′ = −2a. Thus d(1) = −2a and d(x) = ay.
But d(x2) ∈ F [x, y]2, we can write d(x2) = a2,0x

2 + a1,1xy + a0,2y
2, such that

a2,0 + a1,1 + a0,2 = 4a. Now

[1, d(x3)] = (y2 − x2)d(x) + (y − x)d(x2) + y2[1, d(x)] + y[1, d(x2)]

+ (2x3 − x2y − xy2)d(1)

= (y − x)
(
(4a + a2,0)x2 + (a + a1,1 + 4a + 2a)xy

+ (a + a0,2 + a + 4a)y2
)
.

Since the coefficients of x2, xy, y2 in the second factor of the right-hand side of the
above equation are equal, a2,0 = 3a, a1,1 = 0, a0,2 = a, hence

d(x2) = 3ax2 + ay2, [1, d(x3)] = 7a(y3 − x3).



F [x, y] AS A DIALGEBRA AND A LEIBNIZ ALGEBRA 19

As d(x3) ∈ F [x, y]3, we can assume that d(x3) =
∑3

i=0 b3−i,ix
4−iyi, where all

bi,j ∈ F and
∑3

i=0 b3−i,i = 7a. From (3.5) we have

[1, d(x4)] = (y3 − x3)d(x) + (y − x)d(x3) + y[1, d(x3)] + y3[1, d(x)]

+ (2x4 − x3y − xy3)d(1)

= (y − x)
(
(4a + b3,0)x3 + (b2,1 + 10a)x2y + (b1,2 + 10a)xy2

+ (b0,3 + 9a)y3
)
.

As the coefficients of x3, x2y, xy2, y3 in the second factor of right-hand side of the
above equation are equal, we have

4a + b3,0 = b2,1 + 10a = b1,2 + 10a = b0,3 + 9a.

That is, b3,0 = 6a, b1,2 = b2,1 = 0, b0,3 = a, thus

d(x3) = 6ax3 + ay3, [1, d(x4)] = 10a(y4 − x4).

As d[xy, x] = [d(xy), x] + [xy, d(x)], and d(xmyn) = d(xm+n) + (yn − xn)d(xm) +
xm[1, d(xn)], we have

d[xy, x] = d(xy2)− d(x2y) = d(x3) + (y2 − x2)d(x) + x[1, d(x2)]

− d(x3)− (y − x)d(x2)− x2[1, d(x)]

= 5a(xy2 − x2y),

and
[d(xy), x] + [xy, d(x)] = (y − x)d(xy) + xy[1, d(x)]

= (y − x)(2ax2 + 2ay2) + a(y − x)xy

= −2ax3 + (−a)(xy2 − x2y) + 2ay3,

which implies that a = 0, so d(x) = d(x2) = d(x3) = 0 and [1, d(x4)] = 0.
By induction on k we can prove that if d ∈ der0(F [x, y]), then d(xk) = 0, for

any k ∈ Z+.
Suppose that for k = n, d(xk) = 0. Then for k = n + 1, by (3.5) we have

[1, d(xn+1)] = 0. Since d(xn+1) ∈ F [x, y]n+1, we can suppose that

d(xn+1) =
n+1∑

i=0

cn+1−i,ix
n+1−iyi,

where all cn+1−i,i ∈ F and
∑n+1

i=0 cn+1−i,i = 0. But

[1, d(xn+2)] = (yn+1 − xn+1)d(x) + (y − x)d(xn+1) + y[1, d(xn+1)] + yn+1[1, d(x)]

+ (2xn+2 − xn+1y − xyn+1)d(1)

= (y − x)d(xn+1).

As the coefficients of xn, xn−1y, · · · , yn in the second factor of the right-hand side
of the above equation are equal, we can get d(xn+1) = 0. By induction we have
d(xk) = 0, for any k ≥ 0.

Now d(xsyt) = d(xs+t) + (yt − xt)d(xs) + xs[1, d(xt)], thus d(xsyt) = 0, that is
d = 0, so δ = bd0. Hence der0(F [x, y]) ⊆ 〈d0〉. Therefore, der0(F [x, y]) = 〈d0〉. ¤

We determine general forms of derivations of positive degrees as follows.
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Lemma 3.1.11. For any positive integer n, dern(F [x, y]) = 〈f̂(x, y) | f(x, y) ∈
F [x, y]n, and (x− y) | f(x, y)〉 ⊕ 〈dn〉.
Proof. At first, we want to prove that if d ∈ dern(F [x, y]), d(1) = 0 and

d(x) =
n+1∑

i=1

an+1−i,ix
n+1−iyi, where an+1−i,i ∈ F , for all i,

then d = 0.
We have

[1, d(x2)] = 2(y − x)d(x) + 2y[1, d(x)] + (2x2 − 2xy)d(1)

= 2(y − x)

(
n+1∑

i=1

an+1−i,ix
n+1−iyi

)
+ 2αy(yn+1 − xn+1)

= 2(y − x)

(
n+1∑

i=1

an+1−i,ix
n+1−iyi + αy

(
xn+xn−1y+ · · ·+xyn−1+yn

)
)

= 2(y − x)
n+1∑

i=1

(an+1−i,i + α)xn+1−iyi,

where α =
∑n+1

i=1 an+1−i,i. But the coefficients of xn+1, xny, · · · , yn+1 in the second
factor of [1, d(x2)] are equal, so an,1 = an−1,2 = · · · = a0,n+1 = 0, thus d(x) = 0
and [1, d(x2)] = 0.

Suppose that d(xk) = [1, d(xk+1)] = 0 (k ≥ 1). We will prove that d(xk+1) =
[1, d(xk+2)] = 0. Let

d(xk+1) = an+k+1,0x
n+k+1 + an+k,1x

n+ky + · · ·+ a0,n+k+1y
n+k+1,

where all an+k+1−i,i ∈ F . Then

[1, d(xk+2)] = (yk+1 − xk+1)d(x) + (y − x)d(xk+1) + yk+1[1, d(x)]

+ y[1, d(xk+1)] + (2xk+2 − xk+1y − xyk+1)d(1)

= (y − x)d(xk+1)

= (y − x)
(
an+k+1,0x

n+k+1 + an+k,1x
n+ky + · · ·+ a0,n+k+1y

n+k+1
)
.

Thus, since the coefficients of all monomials in the second factor of [1, d(xk+2)]
are equal we have an+k+1,0 = · · · = a0,n+k+1. But [1, d(xk+1)] = 0 implies
that

∑n+k+1
i=0 an+k+1−i,i = 0. Thus an+k+1,0 = · · · = a0,n+k+1 = 0, that is,

[1, d(xk+2)] = 0 and d(xk+1) = 0. By induction on m, we have d(xm) = 0, for any
m ≥ 0. Now by (3.1), d(xsyt) = d(xs+t) + (yt − xt)d(xs) + xs[1, d(xt)] = 0, for any
s, t ∈ Z+. Thus d = 0.

In general, suppose that δ ∈ dern(F [x, y]). Then δ(1) ∈ F [x, y]n. Let δ(1) =
f(x, y), then (x − y) | f(x, y). By Lemma 3.1.2, f̂(x, y) ∈ dern(F [x, y]), and
δ(1) = f̂(x, y)(1). Set d′ = δ − f̂(x, y) ∈ dern(F [x, y]), then d′(1) = 0. Suppose
that d′(x) = an+1,0x

n+1 +an,1x
ny+ · · ·+a0,n+1y

n+1, where all an+1−i,i ∈ F . Then

(d′ − an+1,0dn)(x) = d′(x)− an+1,0x
n+1 = an,1x

ny + · · ·+ a0,n+1y
n+1,
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and (d′ − an+1,0dn)(1) = 0. Set d = d′ − an+1,0dn, then d ∈ dern(F [x, y]), d(1) = 0
and d(x) = bnxny+· · ·+b0y

n+1. Now by above discussion, we have d = 0. Thus δ =
f̂(x, y) + an+1,0dn. Consequently, dern(F [x, y]) = 〈f̂(x, y) | f ∈ F [x, y]n, and (x−
y) | f(x, y)〉+〈dn〉. If f̂(x, y) ∈ 〈dn〉, then 0 = f̂(x, y)(1) = f(x, y), thus f̂(x, y) = 0
and

dern(F [x, y]) = 〈f̂(x, y) | f ∈ F [x, y]n, and (x− y) | f(x, y)〉 ⊕ 〈dn〉. ¤

We collect all these results into the following theorem.

Theorem 3.1.12. For the Z-graded Leibniz algebra F [x, y], its homogeneous deri-
vation algebra

der′(F [x, y]) = {f̂(x, y) | f(x, y) ∈ (y − x)F [x, y]} ⊕ 〈dm | m ≥ −1〉.

Corollary 3.1.13. Der(F [x, y])=der′(F [x, y]), that is, the derivation algebra of
F [x,y] as an associative dialgebra is the same as the homogeneous derivation algebra
of F [x, y] as a Z-graded Leibniz algebra.

Set
D1(F [x, y]) = {f̂(x, y) | f(x, y) ∈ (y − x)F [x, y]},

and
D2(F [x, y]) = 〈dm | m ≥ −1〉.

Thus, by Theorem 3.1.12, der′(F [x, y]) = D1(F [x, y])⊕D2(F [x, y]). In the following
theorem we point out the structure of the Lie algebra der′(F [x, y]).

Theorem 3.1.14. For the homogeneous derivation algebra der′(F [x, y]) of the Z-
graded Leibniz algebra F [x, y], we have

(1) D1(F [x, y]) is an abelian ideal of der′(F [x, y]);
(2) D2(F [x, y]) is a subalgebra of der′(F [x, y]) and is isomorphic to Witt algebra

W (1);
(3) For any f(x, y) ∈ (y − x)F [x, y] and m ≥ −1,

[dm, f̂(x, y)] = ĝ(x, y),

where g(x, y) = dm(f(x, y)) ∈ (y − x)F [x, y].

Proof. Since F [x, y] is a commutative algebra as a polynomial algebra (with respect
to the ordinary multiplication), we have that [f̂(x, y), ĝ(x, y)] = 0, and D1(F [x, y])
is an abelian subalgebra.

It is easy to verify that

[dm, dn] =
{

(n−m)dm+n, if m + n ≥ −1;
0, otherwise.

Thus, (2) is true.
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For any f(x, y) ∈ (y − x)F [x, y], h(x, y) ∈ F [x, y] and integer m ≥ −1, one has

[dm, f̂(x, y)]h(x, y) = dmf̂(x, y)(h(x, y))− f̂(x, y)dm(h(x, y))

= dm(f(x, y)h(x, y))−f(x, y)
(

xm+1 ∂h(x, y)
∂x

+ym+1 ∂h(x, y)
∂y

)

= xm+1 ∂f(x, y)
∂x

h(x, y) + ym+1 ∂f(x, y)
∂y

h(x, y)

= ĝ(x, y)h(x, y),

where g(x, y) = xm+1 ∂f(x,y)
∂x + ym+1 ∂f(x,y)

∂y = dm(f(x, y)). Since [dm, f̂(x, y)] is
also a derivation, by Lemma 3.1.2, g(x, y) ∈ (y − x)F [x, y]. Thus (3) holds, and
D1(F [x, y]) is an ideal of der′(F [x, y]). So (1) is true. ¤
§ 3.2 Automorphisms of the Leibniz algebra F [x, y].

In this subsection, we discuss automorphisms of the Leibniz algebra F [x, y].

Definition 3.2.1. Let G be a Leibniz algebra, σ ∈ End(G). If

σ[a, b] = [σ(a), σ(b)], ∀, a, b ∈ G,

and σ is bijective, then σ is called an automorphism of the Leibniz algebra G. We
denote the automorphism group of the Leibniz algebra G by Aut(G).

Suppose that σ is an automorphism of the Leibniz algebra F [x, y], that is, σ ∈
Aut(F [x, y]). Then

σ[xm, xn] = σ(xmyn − xm+n). (3.6)

Thus σ(xmyn) = σ(xm+n) + σ(xm)[1, σ(xn)]. That is, σ(xmyn) can be determined
by σ(xm+n), σ(xm) and σ(xn). Further,

σ[yn, xm] = σ(ym+n − xmyn). (3.7)

By adding (3.6) and (3.7) we get

σ[xm, xn] + σ[yn, xm] = σ(ym+n)− σ(xm+n).

Since σ[1, xm+n] = σ(ym+n − xm+n),

σ[xm, xn] + σ[yn, xm] = σ[1, xm+n]. (3.8)

σ(yn) = σ(xn)[1, σ(1)] + σ(1)[1, σ(xn)] + σ(xn)

= σ(xn) + σ(1)[1, σ(xn)].

Substituting this expression into (3.8) we have

σ(1)[1, σ(xm+n)]=σ(xm)[1, σ(xn)]+σ(xn)[1, σ(xm)]+σ(1)[1, σ(xm)][1, σ(xn)].
(3.9)

Suppose that σ(1) = f(x, y), then f(y, y) = f(x, x) follows from [1, σ(1)] = 0.
Thus there are c ∈ F and g(x, y) ∈ F [x, y], such that f(x, y) = c + (y − x)g(x, y).

Next, we will prove that c 6= 0.
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By Lemma 1.2.4, the right annihilator Zr(F [x, y]) of the Leibniz algebra F [x, y]
is {a + (y − x)h(x, y) | a ∈ F, h(x, y) ∈ F [x, y]}. On the other hand, by Lemma
1.2.2, F [x, y](1) = (y − x)F [x, y].

Obviously, for any σ ∈ Aut(F [x, y]), F [x, y](1) and Zr(F [x, y]) are all σ-invariant.
Hence, (y − x)F [x, y] is σ-invariant.

Now 1 6∈ (y − x)F [x, y] implies that σ(1) 6∈ (y − x)F [x, y], thus c 6= 0.
By (3.9), we have

σ(1)[1, σ(x2)] = 2σ(x)[1, σ(x)] + σ(1)[1, σ(x)]2, (3.10)

or
σ(1)

(
[1, σ(x2)]− [1, σ(x)]2

)
= 2σ(x)[1, σ(x)]. (3.11)

Suppose that σ preserves the standard filtration {F [x, y](n)}n≥0 of F [x, y]. Then
σ(1) = c, σ(x) ∈ F [x, y](1). So we can write σ(x) = a+bx+ey, for some a, b, e ∈ F .
Then

0 6= c[1, σ(x2)] = 2σ(x)[1, σ(x)] + c[1, σ(x)]2

= (b + e)(y − x)(2a + 2bx + 2ey + c(b + e)(y − x)).

As the coefficients of x2 and y2 in [1, σ(x2)] are equal, (1− c)b = (1 + c)e. Hence,
if c = 1, then e = 0; if c = −1, then b = 0. So in the following we first consider two
special cases: c = 1 or c = −1.

Theorem 3.2.2. Let σ be an automorphism of the Leibniz algebra F [x, y] which
preserves the standard filtration and σ(1) = 1, then

σ(xmyn) = (a + bx)m(a + by)n, ∀m, n ∈ Z+, (3.12)

where a, b ∈ F and b 6= 0.
Conversely, for any a, b ∈ F and b 6= 0, the linear transformation σ of F [x, y]

defined by (3.12) is an automorphism of the Leibniz algebra F [x, y].

Proof. If σ ∈ End(F [x, y]) defined by (3.12), then it is easy to see that

σf(x, y) = f(a + bx, a + by), ∀ f(x, y) ∈ F [x, y].

Obviously,

σ[f(x, y), g(x, y)] = f(a + bx, a + by)
(
g(a + by, a + by)− g(a + bx, a + bx)

)

= [σf(x, y), σg(x, y)].

Thus σ is a homomorphism. On the other hand, if we define η ∈ End(F [x, y]) by

ηf(x, y) = f(−ab−1 + b−1x,−ab−1 + b−1y), ∀ f(x, y) ∈ F [x, y].

then η is the inverse of σ. Hence, σ ∈ Aut(F [x, y]).
If σ is any automorphism of F [x, y] preserving the standard filtration and σ(1) =

1, σ(x) = a+bx, for some a, b ∈ F , b 6= 0, then by (3.9), [1, σ(x2)] = b(y−x)(2a+bx+
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by). Suppose that σ(x2) =
∑2

k=0

∑k
i=0 ai,k−ix

iyk−i and the coefficients satisfying
a1,0 + a0,1 = 2ab, a2,0 + a1,1 + a0,2 = b2. Then by (3.9), we have

[1, σ(x3)] = σ(x)[1, σ(x2)] + σ(x2)[1, σ(x)] + [1, σ(x)][1, σ(x2)]

= b(y − x)((2a2 + a00) + (ab + a1,0)x + (3ab + a0,1)y + a2,0x
2

+ (b2 + a1,1)xy + (b2 + a0,2)y2).

Since the coefficients of x, y and of x2, xy, y2 in the second factor of the right-hand
side of the above equation are equal respectively, we have

σ(x2) = c+2abx+b2x2, [1, σ(x3)] = b(y−x)(2a2+c+3ab(x+y)+b2(x2+xy+y2)).

Now suppose that

σ(x3) =
3∑

k=0

k∑

i=0

bi,k−ix
iyk−i,

and the coefficients satisfy

b1,0 + b0,1 = b(2a2 + c),
2∑

i=0

bi,2−i = 3ab2,

3∑

i=0

bi,3−i = b3.

Then

[1, σ(x4)] = 2σ(x2)[1, σ(x2)] + [1, σ(x2)]2

= b(y − x)
(
4ac + (4a2b + 2bc)(x + y) + 4ab2(x2 + xy + y2)

+ b3(x3 + x2y + xy2 + y3)
)

= σ(x)[1, σ(x3)] + σ(x3)[1, σ(x)] + [1, σ(x)][1, σ(x3)]

= b(y − x)
(
2a3 + ac + b0,0 + (3a2b + b1,0)x + (5a2b + bc + b0,1)y

+ (ab2 + b2,0)x2 + (4ab2 + b1,1)xy + (4ab2 + b0,2)y2

+ b3,0x
3 + (b2,1 + b3)x2y + (b1,2 + b3)xy2 + (b0,3 + b3)y3

)
.

Thus c = a2, b0,0 = a3, which implies that σ(x2) = (a+ bx)2 and σ(x3) = (a+ bx)3.
In the following we prove by induction that σ(xk) = (a + bx)k, for all k ≥ 0.
Suppose that for k = n, σ(xk) = (a + by)k holds. Then for k = n + 1, by (3.9)

we have [1, σ(xn+1)] = (a + by)n+1 − (a + bx)n+1. Thus

[1, σ(xn+2)] = σ(x2)[1, σ(xn)] + σ(xn)[1, σ(x2)] + [1, σ(x2)][1, σ(xn)]

= (a + by)n+2 − (a + bx)n+2

= σ(x)[1, σ(xn+1)] + σ(xn+1)[1, σ(x)] + [1, σ(x)][1, σ(xn+1)].

Hence
σ(xn+1) = (a + bx)n+1.

By induction, for any k ≥ 0, σ(xk) = (a + bx)k holds.
As σ(xmyn) = σ(xm+n) + σ(xm)[1, σ(xn)], for any m,n ∈ Z+, we get

σ(xmyn) = (a + bx)m(a + by)n,

which completes the proof. ¤



F [x, y] AS A DIALGEBRA AND A LEIBNIZ ALGEBRA 25

Theorem 3.2.3. Let σ be an automorphism of the Leibniz algebra F [x, y] which
preserves the standard filtration and σ(1) = −1, then there are a, b ∈ F , and b 6= 0,
such that

σf(x, y) = −f(a + by, a + bx), ∀ f(x, y) ∈ F [x, y]. (3.13)

Conversely, for any a, b ∈ F and b 6= 0, the linear transformation σ of F [x, y]
defined by (3.13) is an automorphism of the Leibniz algebra F [x, y].

Proof. For any a, b ∈ F and b 6= 0, if σ is the transformation of F [x, y] defined
by (3.13), then similar to the proof of Theorem 3.2.2, we obtain that σ is an
automorphism of the Leibniz algebra F [x, y], and clearly, σ preserves the standard
filtration.

On the other hand, it is easy to verify that the linear transformation γ of F [x, y]
defined by

γ : f(x, y) 7→ −f(y, x), ∀ f(x, y) ∈ F [x, y]

is an automorphism of F [x, y], and γ(1) = −1. Obviously, γ preserves the standard
filtration.

Now consider any automorphism σ of F [x, y] which preserves the filtration and
σ(1) = −1. Set σ′ = γ−1σ, then σ′ is also an automorphism preserving the filtra-
tion, and σ′(1) = γ−1σ(1) = γ−1(−1) = 1. By Theorem 3.2.2, there are a, b ∈ F ,
b 6= 0, such that σ′f(x, y) = f(a + bx, a + by), for any f(x, y) ∈ F [x, y]. Hence,

σf(x, y) = γσ′f(x, y) = γf(a + bx, a + by)

= −f(a + by, a + bx), ∀ f(x, y) ∈ F [x, y],

which is the result we want to get. ¤
In the following, we will prove that if σ is any automorphism of the Leibniz

algebra F [x, y] preserving the standard filtration, and σ(1) = a ∈ F , then a = ±1,
or equivalently, if a 6= −1 then a = 1.

So suppose that σ(1) = a 6= 1, and σ(x) = b + cx + ey. As a[1, σ(x2)] =
2σ(x)[1, σ(x)] + a[1, σ(x)]2, we have

a[1, σ(x2)] = 2(b + cx + ey)(c + e)(y − x) + a(c + e)2(y − x)2

= (c + e)(y − x)
(
2b + (2c− ae− ac)x + (2e + ac + ae)y

)
.

Thus e = 1−a
1+ac and

σ(x) = b + cx +
1− a

1 + a
cy, a[1, σ(x2)] =

4bc

1 + a
(y − x) +

4c2

(1 + a)2
(y2 − x2).

In this case c 6= 0, otherwise,

σ(y − x) = σ[1, x] = σ(1)[1, σ(x)] = 0,

and σ is injective, a contradiction. Hence, c 6= 0.
Suppose that σ(x2) = a0,0 + a1,0x + a0,1y + a2,0x

2 + a1,1xy + a0,2y
2, where all

ai,j ∈ F and

a1,0 + a0,1 =
4bc

a(1 + a)
, a2,0 + a1,1 + a0,2 =

4c2

a(1 + a)2
.
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By (3.9) we have

a[1, σ(x3)] =
2c

a(1 + a)
(y − x)

(
2b +

2c

1 + a
x +

2c

1 + a
y
)(

b + cx +
1− a

1 + a
cy

+
2ac

1 + a
(y − x)

)
+

2c

1 + a
(y − x)σ(x2)

=
2c

1 + a
(y − x)

(2b2

a
+

2bc(2− a)
a(1 + a)

x +
2bc(2 + a)
a(1 + a)

y +
2c2(1− a)
a(1 + a)2

x2

+
4c2

a(1 + a)2
xy+

2c2

a(1 + a)
y2+a0,0+a1,0x+a0,1y+a2,0x

2+a1,1xy+a0,2y
2
)
.

Thus we get

2bc(2− a)
a(1 + a)

+ a1,0 =
2bc(2 + a)
a(1 + a)

+ a0,1,

2c2(1− a)
a(1 + a)2

+ a2,0 =
4c2

a(1 + a)2
+ a1,1 =

2c2

a(1 + a)
+ a0,2.

Hence,

a1,0 =
2bc

a
, a0,1 =

2bc(1− a)
a(1 + a)

, a2,0 =
2c2

a(1 + a)
, a1,1 = 0, a0,2 =

2c2(1− a)
a(1 + a)2

.

Thus

σ(x2) = a0,0 +
2bc

a
x +

2bc(1− a)
a(1 + a)

y +
2c2

a(1 + a)
x2 +

2c2(1− a)
a(1 + a)2

y2.

On the other hand, σ[xy, x] = [σ(xy), σ(x)] = σ(xy)[1, σ(x)], and

σ[xy, x] = σ(xy2 − x2y)

= σ(x3) + σ[x, x2]− σ(x3)− σ[x2, x]

= σ(x)[1, σ(x2)]− σ(x2)[1, σ(x)]

=
σx

a
(2σ(x)[1, σ(x)] + a[1, σ(x)]2)− σ(x2)[1, σ(x)]

= [1, σ(x)]
(2(σ(x))2

a
+ σ(x)[1, σ(x)]− σ(x2)

)
.

But
σ[xy, x] = σ(xy)[1, σ(x)] = [1, σ(x)](σ(x2) + σ(x)[1, σ(x)]),

and [1, σ(x)] 6= 0, hence

2(σ(x))2

a
+ σ(x)[1, σ(x)]− σ(x2) = σ(x2) + σ(x)[1, σ(x)],

which implies that (σ(x))2 = aσ(x2). By comparing the coefficients of x2 in two
sides of the equation we have a = 1. Hence, we have proved the following
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Theorem 3.2.4. If σ is an automorphism of the Leibniz algebra F [x, y] and pre-
serves the standard filtration {F [x, y](n)}n∈Z+ , then σ(1) = ±1.

Thus, we can describe all automorphisms of the Leibniz algebra F [x, y] which
preserve the standard filtration.

Theorem 3.2.5. Let Aut′(F [x, y]) be the set of automorphisms of the Leibniz al-
gebra F [x, y] which preserve the standard filtration {F [x, y](n)}n∈Z+ of F [x, y], then
Aut′(F [x, y]) is a subgroup of Aut(F [x, y]), and Aut′(F [x, y]) is isomorphic to the
following matrix multiplication group

G =








1 a a
0 b 0
0 0 b




∣∣∣∣∣ a, b ∈ F, b 6= 0



 ∪







−1 a a
0 0 b
0 b 0




∣∣∣∣∣ a, b ∈ F, b 6= 0



 .

Proof. Clearly, Aut′(F [x, y]) is a subgroup of the automorphism group Aut(F [x, y]),
and by Theorem 3.2.4, for any σ ∈ Aut′(F [x, y]), σ(1) = ±1. But by Theorem 3.2.2
and 3.2.3, such an automorphism σ can be determined uniquely by its images σ(1),
σ(x) and σ(y). If we identify σ with the matrix of linear transformation σ|F [x,y](1)

with respect to the basis 1, x, y, we get the result. ¤
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