# $F[x, y]$ AS A DIALGEBRA AND A LEIBNIZ ALGEBRA 

Lei LIN \& Yun ZHANG<br>Department of Mathematics, East China Normal<br>University, 200241 Shanghai, P. R. China<br>E-mail: llin@math.ecnu.edu.cn


#### Abstract

We define a new associative dialgebra over a polynomial algebra $F[x, y]$ with two indeterminates $x$ and $y$. Left derivations, right derivations, derivations and automorphisms of $F[x, y]$ as associative dialgebra are determined. Meanwhile, we also determine all homogeneous derivations of $F[x, y]$ as $\mathbb{Z}$-graded Leibniz algebra, and automorphisms of the Leibniz algebra $F[x, y]$ preserving the standard filtration. Key words dialgebra, Leibniz algebra, derivation algebra, automorphism group MR(2000) Subject Classifications 17A30, 17A32, 17B65


## 1. Introduction

The theory of Leibniz algebras has been actively studied by many mathematicians for years (cf. [1-12]). It is well-known that any associative algebra gives rise to a Lie algebra by $[x, y]=x y-y x$. It is J.-L. Loday who introduced a new notion (cf. [11]), namely, associative dialgebra, which gives (by similar procedure) a Leibniz algebra. In this paper, we introduce an associative dialgebraic structure on a polynomial algebra space $F[x, y]$ over a field $F$ with two variables $x$ and $y$. Thus $F[x, y]$ also becomes a Leibniz algebra. The purpose of this paper is to study derivation algebras and automorphism groups of $F[x, y]$ as an associative dialgebra and as a Leibniz algebra.

## § 1.1 Basic notations and results.

In this subsection we first recall some basic conceptions and notations which are all standard (cf. [11]).

Let $\mathcal{D}$ be a vector space over a field $F$ equipped with two associative multiplications $\dashv$ and $\vdash: \mathcal{D} \times \mathcal{D} \rightarrow \mathcal{D}$. If for any $x, y, z \in \mathcal{D}$, the following conditions hold

$$
\begin{align*}
& x \dashv(y \dashv z)=x \dashv(y \vdash z),  \tag{1.1}\\
& (x \vdash y) \dashv z=x \vdash(y \dashv z),  \tag{1.2}\\
& (x \vdash y) \vdash z=(x \dashv y) \vdash z, \tag{1.3}
\end{align*}
$$

then $(\mathcal{D}, \dashv, \vdash)$ is called an associative dialgebra (or dialgebra for short) (where $\dashv$ and $\vdash$ are called left multiplication and right multiplication, respectively).

Obviously, associative dialgebras merge into associative algebras if $a \dashv b=a \vdash$ $b=a b$.

[^0]Let $\mathcal{D}$ be a dialgebra. An element $e \in \mathcal{D}$ is called a bar-unit of $\mathcal{D}$ if $e$ satisfies

$$
x \dashv e=x=e \vdash x, \quad \forall x \in \mathcal{D}
$$

The set of bar-units of $\mathcal{D}$ is called its halo.
Suppose that $\mathcal{D}_{1}$ and $\mathcal{D}_{2}$ are two dialgebras over a field $F$, and $\varphi$ is a linear map from $\mathcal{D}_{1}$ to $\mathcal{D}_{2}$. If for any $a, b \in \mathcal{D}_{1}$,

$$
\begin{aligned}
& \varphi(a \dashv b)=\varphi(a) \dashv \varphi(b), \\
& \varphi(a \vdash b)=\varphi(a) \vdash \varphi(b),
\end{aligned}
$$

then $\varphi$ is called a homomorphism of dialgebras from $\mathcal{D}_{1}$ to $\mathcal{D}_{2}$.
Isomorphism of dialgebras and automorphism of dialgebra can be defined similarly.

Suppose that $I$ is a subspace of a dialgebra $\mathcal{D}$. If for any $a, b \in I$, we have $a \vdash b \in I$ and $a \dashv b \in I$, then $I$ is called a sub-dialgebra of $\mathcal{D}$.

Suppose that $I$ is a subspace of a dialgebra $\mathcal{D}$. If for any $a \in \mathcal{D}, b \in I$, we have $a \vdash b \in I, b \vdash a \in I, b \dashv a \in I$ and $a \dashv b \in I$, then $I$ is called an ideal of $\mathcal{D}$.

If $I$ is an ideal of a dialgebra $\mathcal{D}$, then on the quotient space $\mathcal{D} / I$ we can define a natural dialgebra structure, the dialgebra $\mathcal{D} / I$ is called the quotient dialgebra determined by $I$. It is easy to verify that the kernel of any homomorphism of dialgebras is an ideal.

Let $\mathcal{G}$ be a vector space over a field $F$. If $\mathcal{G}$ is equipped with a multiplication $[-,-]: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$, and satisfies the Leibniz identity

$$
[a,[b, c]]=[[a, b], c]-[[a, c], b], \quad \forall a, b, c \in \mathcal{G}
$$

then $(\mathcal{G},[-,-])$ is called a Leibniz algebra.
Suppose that $\mathcal{G}$ is a Leibniz algebra, $J$ is a subspace of $\mathcal{G}$. If $[\mathcal{G}, J] \subseteq J$, then $J$ is called a left ideal. If $[J, \mathcal{G}] \subseteq J$, then $J$ is called a right ideal of $\mathcal{G}$. If $J$ is both a left and right ideal of $\mathcal{G}$, then $J$ is called an (two-sided) ideal of $\mathcal{G}$.

For a Leibniz algebra $\mathcal{G}$, one puts

$$
Z^{r}(\mathcal{G})=\{a \in \mathcal{G} \mid[x, a]=0, x \in \mathcal{G}\}
$$

then $Z^{r}(\mathcal{G})$ is an ideal of $\mathcal{G}$ and is called the right annihilator of $\mathcal{G}$.
Let $\mathcal{G}$ be a Leibniz algebra. The lower central series of $\mathcal{G}$ is the sequence

$$
\mathcal{G}^{1} \supseteq \mathcal{G}^{2} \supseteq \cdots \supseteq \mathcal{G}^{n} \supseteq \cdots
$$

of ideals of $\mathcal{G}$ defined inductively as follows

$$
\mathcal{G}^{1}=\mathcal{G}, \mathcal{G}^{k+1}=\left[\mathcal{G}^{k}, \mathcal{G}\right], \quad k \in \mathbb{N} .
$$

$\mathcal{G}$ is said to be nilpotent if there is an integer $s>1$, such that $\mathcal{G}^{s}=0$.
The derived series of a Leibniz algebra $\mathcal{G}$ is the sequence

$$
\mathcal{G}^{(0)} \supseteq \mathcal{G}^{(1)} \supseteq \cdots \supseteq \mathcal{G}^{(n)} \supseteq \cdots
$$

of ideals of $\mathcal{G}$ defined inductively as follows

$$
\mathcal{G}^{(0)}=\mathcal{G}, \mathcal{G}^{(k+1)}=\left[\mathcal{G}^{(k)}, \mathcal{G}^{(k)}\right], \quad k \in \mathbb{Z}_{+}
$$

$\mathcal{G}$ is said to be solvable if there is an integer $s>0$, such that $\mathcal{G}^{(s)}=0$.
Assume that $\mathcal{G}$ is a Leibniz algebra, $d \in \operatorname{End}(\mathcal{G})$. If $d$ satisfies:

$$
d[a, b]=[d(a), b]+[a, d(b)], \quad \forall a, b \in \mathcal{G},
$$

then $d$ is called a derivation of the Leibniz algebra $\mathcal{G}$. We denote $\operatorname{der}(\mathcal{G})$ the set of all derivations of $\mathcal{G}$.

Suppose that $\mathcal{G}$ is a Leibniz algebra, and $x \in \mathcal{G}$. We define a linear transformation $\operatorname{ad} x$ of $\mathcal{G}$ as follows

$$
\operatorname{ad} x(y)=[y, x], \quad \forall y \in \mathcal{G}
$$

Then it is easy to verify that $\operatorname{ad} x$ is a derivation of $\mathcal{G}$, and is called an inner derivation of $\mathcal{G}$. We denote $\operatorname{ad}(\mathcal{G})$ the set of all inner derivations of $\mathcal{G}$.

Suppose that $(\mathcal{D}, \dashv, \vdash)$ is an associative dialgebra over $F$, we can define a new multiplication $[-,-]$ on $\mathcal{D}$ :

$$
[a, b]=a \dashv b-b \vdash a
$$

Then for any $a, b, c \in \mathcal{D}$, we have

$$
[a,[b, c]]=[[a, b], c]-[[a, c], b] .
$$

According to the definition of Leibniz algebra, $(\mathcal{D},[-,-])$ is a Leibniz algebra.
§ 1.2 Dialgebra and Leibniz algebra $F[x, y]$.
Suppose that $F[x, y]$ is a polynomial algebra over $F$ with commuting indeterminates $x$ and $y$, where $F$ is any field of characteristic 0 . In this subsection, we introduce an associative dialgebraic structure over the vector space $F[x, y]$ and discuss some fundamental properties of $F[x, y]$ as a dialgebra and a Leibniz algebra.

We define two multiplications $\dashv$ and $\vdash$ on $F[x, y]$ as follows

$$
\begin{align*}
& f(x, y) \dashv g(x, y)=f(x, y) g(y, y)  \tag{1.4}\\
& f(x, y) \vdash g(x, y)=f(x, x) g(x, y)
\end{align*}
$$

Then we have
Theorem 1.2.1. $(F[x, y], \dashv, \vdash)$ is an associative dialgebra, where the left multiplication $\dashv$ and the right multiplication $\vdash$ are defined as (1.4).

Proof. Since $\left\{x^{m} y^{n} \mid m, n \in \mathbb{Z}_{+}\right\}$is a basis of $F[x, y]$ it is sufficient to prove (1.1)(1.3) on basis elements. By (1.4), for any $x^{m} y^{n}, x^{s} y^{t}, x^{i} y^{j} \in F[x, y]$, we have

$$
\begin{aligned}
& x^{m} y^{n} \dashv\left(x^{s} y^{t} \dashv x^{i} y^{j}\right)=x^{m} y^{n} \dashv x^{s} y^{t+i+j}=x^{m} y^{n+s+t+i+j}, \\
& \left(x^{m} y^{n} \dashv x^{s} y^{t}\right) \dashv x^{i} y^{j}=x^{m} y^{n+s+t} \dashv x^{i} y^{j}=x^{m} y^{n+s+t+i+j} .
\end{aligned}
$$

Thus

$$
x^{m} y^{n} \dashv\left(x^{s} y^{t} \dashv x^{i} y^{j}\right)=\left(x^{m} y^{n} \dashv x^{s} y^{t}\right) \dashv x^{i} y^{j} .
$$

Since

$$
\begin{aligned}
& x^{m} y^{n} \vdash\left(x^{s} y^{t} \vdash x^{i} y^{j}\right)=x^{m} y^{n} \vdash x^{s+t+i} y^{j}=x^{m+n+s+t+i} y^{j}, \\
& \left(x^{m} y^{n} \vdash x^{s} y^{t}\right) \vdash x^{i} y^{j}=x^{m+n+s} y^{t} \vdash x^{i} y^{j}=x^{m+n+s+t+i} y^{j},
\end{aligned}
$$

we have

$$
x^{m} y^{n} \vdash\left(x^{s} y^{t} \vdash x^{i} y^{j}\right)=\left(x^{m} y^{n} \vdash x^{s} y^{t}\right) \vdash x^{i} y^{j} .
$$

Thus both $\dashv$ and $\vdash$ satisfy the associative law. On the other hand

$$
\begin{aligned}
& x^{m} y^{n} \dashv\left(x^{s} y^{t} \dashv x^{i} y^{j}\right)=x^{m} y^{n} \dashv x^{s} y^{t+i+j}=x^{m} y^{n+s+t+i+j}, \\
& x^{m} y^{n} \dashv\left(x^{s} y^{t} \vdash x^{i} y^{j}\right)=x^{m} y^{n} \dashv x^{s+t+i} y^{j}=x^{m} y^{n+s+t+i+j},
\end{aligned}
$$

thus (1.1) holds. But

$$
\begin{aligned}
& \left(x^{m} y^{n} \vdash x^{s} y^{t}\right) \dashv x^{i} y^{j}=x^{m+n+s} y^{t} \dashv x^{i} y^{j}=x^{m+n+s} y^{t+i+j}, \\
& x^{m} y^{n} \vdash\left(x^{s} y^{t} \dashv x^{i} y^{j}\right)=x^{m} y^{n} \vdash x^{s} y^{t+i+j}=x^{m+n+s} y^{t+i+j},
\end{aligned}
$$

then (1.2) holds. Furthermore

$$
\begin{aligned}
& \left(x^{m} y^{n} \vdash x^{s} y^{t}\right) \vdash x^{i} y^{j}=x^{m+n+s} y^{t} \vdash x^{i} y^{j}=x^{m+n+s+t+i} y^{j}, \\
& \left(x^{m} y^{n} \dashv x^{s} y^{t}\right) \vdash x^{i} y^{j}=x^{m} y^{n+s+t} \vdash x^{i} y^{j}=x^{m+n+s+t+i} y^{j},
\end{aligned}
$$

thus (1.3) holds. Therefore $(F[x, y], \dashv, \vdash)$ is an associative dialgebra.
Since the left (and right) multiplication of the associative dialgebra $F[x, y]$ satisfies associative law, $(F[x, y], \dashv)$ and $(F[x, y], \vdash)$ are all associative algebras.

From the above subsection, we know that any associative dialgebra can be turned naturally into a Leibniz algebra. Thus $F[x, y]$ can be considered as a Leibniz algebra, its Leibniz bracket is given by

$$
\begin{equation*}
[f(x, y), g(x, y)]=f(x, y)(g(y, y)-g(x, x)) \tag{1.5}
\end{equation*}
$$

or on its basis, we have

$$
\left[x^{m} y^{n}, x^{s} y^{t}\right]=x^{m} y^{n}\left(y^{s+t}-x^{s+t}\right)
$$

Lemma 1.2.2. Let $F[x, y]$ be the Leibniz algebra defined as above, then $F[x, y]^{(1)}=$ $(y-x) F[x, y]$.
Proof. Obviously, $(y-x) \mid g(y, y)-g(x, x)$, for any $g(x, y) \in F[x, y]$, thus by (1.5),

$$
F[x, y]^{(1)}=[F[x, y], F[x, y]] \subseteq(y-x) F[x, y]
$$

On the other hand, for any $f(x, y) \in F[x, y],(y-x) f(x, y)=[f(x, y), x] \in$ $F[x, y]^{(1)}$, so $(y-x) F[x, y] \subseteq F[x, y]^{(1)}$. Hence, $F[x, y]^{(1)}=(y-x) F[x, y]$.
Theorem 1.2.3. $F[x, y]$ is a solvable Leibniz algebra, but not a nilpotent Leibniz algebra.
Proof. By Lemma 1.2.2, we have $F[x, y]^{(1)}=(y-x) F[x, y]$. Since

$$
[(y-x) f(x, y),(y-x) g(x, y)]=0, \quad \forall f(x, y), g(x, y) \in F[x, y]
$$

thus $F[x, y]^{(2)}=0$. Hence $F[x, y]$ is solvable.
However, for any integer $n>0$,

$$
[\cdots[[1, \underbrace{x], x], \cdots, x}_{n}]=(y-x)^{n} .
$$

Thus, $F[x, y]^{n} \neq 0$, for any $n>0$. So $F[x, y]$ is not nilpotent.

Lemma 1.2.4. Let $Z^{r}(F[x, y])$ be the right annihilator of the Leibniz algebra $F[x, y]$, then

$$
Z^{r}(F[x, y])=\{a+(y-x) h(x, y) \mid a \in F, h(x, y) \in F[x, y]\}
$$

Proof. For any $a \in F$, and $f(x, y), h(x, y) \in F[x, y]$, we have

$$
[f(x, y), a+(y-x) h(x, y)]=[f(x, y), a]+[f(x, y),(y-x) h(x, y)]=0
$$

thus $a+(y-x) h(x, y) \in Z^{r}(F[x, y])$.
Conversely, if $g(x, y) \in Z^{r}(F[x, y])$, then $0=[1, g(x, y)]=g(y, y)-g(x, x)$. Hence $g(x, x)=a \in F .(y-x) \mid g(x, y)-g(x, x)$ implies that there is $h(x, y) \in$ $F[x, y]$, such that $g(x, y)-g(x, x)=(y-x) h(x, y)$, so $g(x, y)=g(x, x)+(g(x, y)-$ $g(x, x))=a+(y-x) h(x, y)$. This completes the proof.

We can also get the following result.
Lemma 1.2.5. The halo of the associative dialgebra $F[x, y]$ is

$$
\{1+(y-x) g(x, y) \mid g(x, y) \in F[x, y]\}
$$

In particular, 1 is a bar-unit of $F[x, y]$.
Assume that $F[x, y]_{n}$ is the subspace consisting of all homogeneous polynomials of degree $n$ in $F[x, y], n=0,1,2, \cdots$, then $F[x, y]=\bigoplus_{n=0}^{\infty} F[x, y]_{n}$ is a $\mathbb{Z}$-graded dialgebra and a $\mathbb{Z}$-graded Leibniz algebra. We can also define an increasing filtration on $F[x, y]$ by setting $F[x, y]_{(n)}=\bigoplus_{i=0}^{n} F[x, y]_{i}$, then $F[x, y]$ is also a filtered dialgebra and a filtered Leibniz algebra. The above gradation and filtration of $F[x, y]$ are said to be standard.

## 2. Derivation algebra and automorphism <br> GRoup of the dialgebra $F[x, y]$

In this section we consider $F[x, y]$ as an associative dialgebra. We first determine left derivations $\operatorname{LDer}(F[x, y])$ and right derivations $\operatorname{RDer}(F[x, y])$ of the associative dialgebra $F[x, y]$. Then derivation algebra $\operatorname{Der}(F[x, y])$ and automorphism group $\operatorname{Aut}(F[x, y])$ are also determined.

## $\S$ 2.1 Left derivations of the associative dialgebra $F[x, y]$.

Definition 2.1.1. Assume that $(\mathcal{D}, \dashv, \vdash)$ is a dialgebra, $d \in \operatorname{End}(F[x, y])$. If $d$ satisfies:

$$
d(a \dashv b)=d(a) \dashv b+a \dashv d(b), \quad \forall a, b \in \mathcal{D}
$$

then $d$ is called a left derivation of the dialgebra $(\mathcal{D}, \dashv, \vdash)$. Denote the set of all left derivations of $\mathcal{D}$ by $\operatorname{LDer}(\mathcal{D})$. Thus $\operatorname{LDer}(F[x, y])$ is the set of left derivations of the associative dialgebra $F[x, y]$.

Suppose that $(\mathcal{D}, \dashv, \vdash)$ is an associative dialgebra over $F$. For $z \in \mathcal{D}$, define $\widehat{\operatorname{ad}} z(a)=z \dashv a-a \dashv z, \forall a \in \mathcal{D}$, then $\widehat{\operatorname{ad}} z$ is a left derivation of $\mathcal{D}$, and call it a left inner derivation of the associative dialgebra $(\mathcal{D}, \dashv, \vdash)$.

Since $x^{m} y^{n}=x^{m} \dashv x^{n}=x^{m} \dashv \underbrace{x \dashv x \dashv \cdots \dashv x}_{n}$, the associative algebra $(F[x, y], \dashv)$ is generated by $\left\{x^{n}\right\}_{n \in \mathbb{Z}_{+}}$(note that we set $x^{0}=1$, and 1 is a right unit of $(F[x, y], \dashv)$, but not a unit element).

Lemma 2.1.2. Given any $f(x, y) \in F[x, y]$, we define a linear map $\widehat{f}(x, y): F[x, y]$ $\rightarrow F[x, y]$ as follows:

$$
g(x, y) \mapsto f(x, y) g(x, y), \quad \forall g(x, y) \in F[x, y]
$$

Then $\widehat{f}(x, y)$ is a left derivation of the associative dialgebra $F[x, y]$ if and only if $f(y, y)=0$, or equivalently, $(x-y) \mid f(x, y)$.

Proof. We prove the necessity first. If $\widehat{f}(x, y)$ is a left derivation of the dialgebra $F[x, y]$, then we have

$$
\widehat{f}(x, y)(1 \dashv 1)=\widehat{f}(x, y)(1) \dashv 1+1 \dashv \widehat{f}(x, y)(1)
$$

so $1 \dashv \widehat{f}(x, y)(1)=0$. Thus $f(y, y)=0$, that is, $(x-y) \mid f(x, y)$.
For sufficiency, we have to prove that if $f(y, y)=0$, then $\widehat{f}(x, y)$ is a left derivation of $F[x, y]$. It is enough to verify it on the basis $\left\{x^{s} y^{t} \mid s, t \in \mathbb{Z}_{+}\right\}$.

$$
\begin{aligned}
\widehat{f}(x, y)\left(x^{m} y^{n} \dashv x^{s} y^{t}\right)=\widehat{f}(x, y)\left(x^{m} y^{n+s+t}\right) & =x^{m} y^{n+s+t} f(x, y), \\
\widehat{f}(x, y)\left(x^{m} y^{n}\right) \dashv x^{s} y^{t}+x^{m} y^{n} \dashv \widehat{f}(x, y)\left(x^{s} y^{t}\right) & =f(x, y) x^{m} y^{n} y^{s+t}+0 \\
& =x^{m} y^{n+s+t} f(x, y) .
\end{aligned}
$$

Thus,

$$
\widehat{f}(x, y)\left(x^{m} y^{n} \dashv x^{s} y^{t}\right)=\widehat{f}(x, y)\left(x^{m} y^{n}\right) \dashv x^{s} y^{t}+x^{m} y^{n} \dashv \widehat{f}(x, y)\left(x^{s} y^{t}\right)
$$

Hence, $\widehat{f}(x, y)$ is a left derivation of $F[x, y]$. This proves the result.
In general, for any $d \in \operatorname{LDer}(F[x, y])$, we have

$$
d(1)=d(1 \dashv 1)=d(1) \dashv 1+1 \dashv d(1)
$$

Thus $d(1)=d(1)+1 \dashv d(1)$. So $1 \dashv d(1)=0$. Hence $(x-y) \mid d(1)$.
Theorem 2.1.3. Suppose that $d \in \operatorname{LDer}(F[x, y])$. Then

$$
\begin{equation*}
d\left(x^{m} y^{n}\right)=\left(m y^{m+n-1}+n x^{m} y^{n-1}\right) g(y)+(x-y) y^{n} f_{m}(x, y) \tag{2.1}
\end{equation*}
$$

where $f_{m}(x, y) \in F[x, y], m=0,1,2,3, \cdots, g(y) \in F[y]$. Conversely, for any $f_{m}(x, y) \in F[x, y], m=0,1,2,3, \cdots, g(y) \in F[y]$, the map $d \in \operatorname{End}(F[x, y])$ defined by formula (2.1) is an element in $\operatorname{LDer}(F[x, y])$.

Proof. If $d \in \operatorname{LDer}(F[x, y])$, we set $d\left(x^{n}\right)=h_{n}(x, y) \in F[x, y], n=0,1,2, \cdots$, then

$$
1 \dashv d\left(x^{n}\right)=1 \dashv d(x) \dashv x \dashv \cdots \dashv x+\cdots+1 \dashv x \dashv x \dashv \cdots \dashv d(x)
$$

That is,

$$
h_{n}(y, y)=n y^{n-1} h_{1}(y, y)
$$

Since $(x-y) \mid h_{n}(x, y)-h_{n}(y, y)$, there exist $f_{n}(x, y) \in F[x, y], n \in \mathbb{Z}_{+}$, such that

$$
h_{n}(x, y)=h_{n}(y, y)+(x-y) f_{n}(x, y)=n y^{n-1} h_{1}(y, y)+(x-y) f_{n}(x, y)
$$

From the definition of left derivation and the fact $x^{m} y^{n}=x^{m} \dashv x^{n}$ we get

$$
\begin{aligned}
d\left(x^{m} y^{n}\right) & =y^{n} d\left(x^{m}\right)+x^{m} h_{n}(y, y) \\
& =\left(m y^{m+n-1}+n x^{m} y^{n-1}\right) h_{1}(y, y)+(x-y) y^{n} f_{m}(x, y)
\end{aligned}
$$

Conversely, given $f_{m}(x, y) \in F[x, y], m=0,1,2,3, \cdots, g(y) \in F[y]$, we have to prove that the linear transformation $d$ determined by formula (2.1) is an element in $\operatorname{LDer}(F[x, y])$, that is, we have to check: for any $x^{i} y^{j}, x^{m} y^{n} \in F[x, y]$, the following identity holds:

$$
d\left(x^{i} y^{j} \dashv x^{m} y^{n}\right)=d\left(x^{i} y^{j}\right) \dashv x^{m} y^{n}+x^{i} y^{j} \dashv d\left(x^{m} y^{n}\right), \quad \forall i, j, m, n \geqslant 0 .
$$

But the left-hand side of the above equation is

$$
d\left(x^{i} y^{j+m+n}\right)=\left(i y^{i+j+m+n-1}+(j+m+n) x^{i} y^{j+m+n-1}\right) g(y)+(x-y) y^{j+m+n} f_{i}(x, y)
$$

and the right-hand side is

$$
\begin{aligned}
& y^{m+n}\left(\left(i y^{i+j-1}+j x^{i} y^{j-1}\right) g(y)+(x-y) y^{j} f_{i}(x, y)\right)+x^{i} y^{j}(m+n) y^{m+n-1} g(y) \\
= & \left(i y^{i+j+m+n-1}+(j+m+n) x^{i} y^{j+m+n-1}\right) g(y)+(x-y) y^{j+m+n} f_{i}(x, y) .
\end{aligned}
$$

Thus the equation holds, and $d \in \operatorname{LDer}(F[x, y])$.
Corollary 2.1.4. In Theorem 2.1.3, there exists an element $f(x, y) \in F[x, y]$ such that $d=\widehat{f}(x, y) \in \operatorname{LDer}(F[x, y])$ if and only if $g(y)=0$ and $f_{m}(x, y)=x^{m} f_{0}(x, y)$.

Corollary 2.1.5. Suppose that $d \in \operatorname{LDer}(F[x, y])$ and $g(y) \in F[y]$. Then $g(y) d \in$ $F[x, y]$, where $g(y) d$ is defined by

$$
g(y) d: \quad f(x, y) \mapsto g(y) d(f(x, y)), \quad \forall f(x, y) \in F[x, y] .
$$

For left inner derivations, we have the following result.
Theorem 2.1.6. If $d$ is a left inner derivation of the dialgebra $F[x, y]$, then there exist $f(x, y) \in F[x, y]$ and $f_{m}(x, y) \in F[x, y], m=0,1,2, \cdots$, satisfying

$$
(x-y) f_{m}(x, y)=y^{m} f(x, y)-x^{m} f(y, y)
$$

such that (2.1) hold with $g(y)=0$. Conversely, given any $f(x, y) \in F[x, y]$ and $f_{m}(x, y) \in F[x, y], m=0,1,2, \cdots$, satisfying

$$
(x-y) f_{m}(x, y)=y^{m} f(x, y)-x^{m} f(y, y)
$$

the linear transformation $d$ of $F[x, y]$ defined by (2.1), with $g(y)=0$, is a left inner derivation of the dialgebra $F[x, y]$.

Proof. Let $d=\widehat{\operatorname{ad}} f(x, y)$ be a left inner derivation of $F[x, y]$, for some $f(x, y) \in$ $F[x, y]$, then

$$
\begin{aligned}
\widehat{\operatorname{ad}} f(x, y)\left(x^{m} y^{n}\right) & =f(x, y) \dashv x^{m} y^{n}-x^{m} y^{n} \dashv f(x, y) \\
& =y^{m+n} f(x, y)-x^{m} y^{n} f(y, y) \\
& =y^{n}\left(y^{m} f(x, y)-x^{m} f(y, y)\right) .
\end{aligned}
$$

Assume that $f(x, y)=\sum_{i, j} a_{i, j} x^{i} y^{j}$, where all $a_{i, j} \in F$. Then

$$
\begin{aligned}
y^{m} f(x, y)-x^{m} f(y, y)= & \sum_{i, j} a_{i, j}\left(x^{i} y^{m+j}-x^{m} y^{i+j}\right) \\
= & \sum_{i, j} a_{i, j}\left(x^{i} y^{m+j}-x^{i+j+m}+x^{i+j+m}-x^{m} y^{i+j}\right) \\
= & \sum_{i, j} a_{i, j}\left(x^{m}\left(x^{i+j}-y^{i+j}\right)-x^{i}\left(x^{j+m}-y^{j+m}\right)\right) \\
= & (x-y) \sum_{i, j} a_{i, j}\left(x^{m}\left(x^{i+j-1}+x^{i+j-2} y+\cdots+y^{i+j-1}\right)\right. \\
& \left.-x^{i}\left(x^{j+m-1}+x^{j+m-2} y+\cdots+y^{j+m-1}\right)\right) .
\end{aligned}
$$

Thus there are $f_{m}(x, y) \in F[x, y]$, such that $(x-y) f_{m}(x, y)=y^{m} f(x, y)-x^{m} f(y, y)$, $m=0,1,2, \cdots$. Hence $d\left(x^{m} y^{n}\right)=(x-y) y^{n} f_{m}(x, y)$. Take $g(y)=0$, then (2.1) holds.

Conversely, given any $f(x, y) \in F[x, y]$ and $f_{m}(x, y) \in F[x, y], m=0,1,2, \cdots$, satisfying

$$
(x-y) f_{m}(x, y)=y^{m} f(x, y)-x^{m} f(y, y)
$$

we need to prove that the linear transformation $d$ determined by $(2.1)$, with $g(y)=$ 0 , is a left inner derivation of $F[x, y]$.

At first, by Theorem 2.1.3, $d$ is a left derivation of $F[x, y]$.
Secondly, we have

$$
\begin{aligned}
d\left(x^{m} y^{n}\right) & =y^{n}(x-y) f_{m}(x, y) \\
& =y^{n}\left(y^{m} f(x, y)-x^{m} f(y, y)\right) \\
& =y^{m+n} f(x, y)-x^{m} y^{n} f(y, y) \\
& =f(x, y) \dashv x^{m} y^{n}-x^{m} y^{n} \dashv f(x, y) \\
& =\widehat{\operatorname{ad}} f(x, y)\left(x^{m} y^{n}\right)
\end{aligned}
$$

Therefore $d=\widehat{\operatorname{ad}} f(x, y)$ is a left inner derivation.

## $\S$ 2.2 Right derivations of the associative dialgebra $F[x, y]$.

Definition 2.2.1. Let $(\mathcal{D}, \dashv, \vdash)$ be an associative dialgebra, and let $d \in \operatorname{End}(\mathcal{D})$, if d satisfies

$$
d(a \vdash b)=d(a) \vdash b+a \vdash d(b), \quad \forall a, b \in \mathcal{D},
$$

then $d$ is called a right derivation of the associative dialgebra $(\mathcal{D} \dashv, \vdash)$. We denote the set of all right derivations of $\mathcal{D}$ by $\operatorname{RDer}(\mathcal{D})$.

Firstly, we define a new algebra $\left(F[x, y]^{\mathrm{op}}, \vdash^{\prime}\right)$ as follows: as a vector space $F[x, y]^{\mathrm{op}}=F[x, y]$. For $f(x, y), g(x, y) \in F[x, y]^{\mathrm{op}}$, we define $f(x, y) \vdash^{\prime} g(x, y)=$ $g(x, y) \vdash f(x, y)$, then $\left(F[x, y]^{\mathrm{op}}, \vdash^{\prime}\right)$ is also an associative algebra.

We denote the set of all derivations of the associative algebra $\left(F[x, y]^{\mathrm{op}}, \vdash^{\prime}\right)$ by $\operatorname{Der}\left(F[x, y]^{\mathrm{op}}\right)$.

Lemma 2.2.2. Define a linear map $\eta:(F[x, y], \dashv) \rightarrow\left(F[x, y]^{\text {op }}, \vdash^{\prime}\right)$ by

$$
\eta(f(x, y))=f(y, x)
$$

then $\eta$ is an isomorphism of associative algebras.
Proof. For any $f(x, y), g(x, y) \in F[x, y]$, we have

$$
\begin{aligned}
\eta(f(x, y) \dashv g(x, y)) & =\eta(f(x, y) g(y, y)) \\
& =f(y, x) g(x, x) .
\end{aligned}
$$

And

$$
\begin{aligned}
\eta(f(x, y)) \vdash^{\prime} \eta(g(x, y)) & =f(y, x) \vdash^{\prime} g(y, x) \\
& =g(y, x) \vdash f(y, x)=g(x, x) f(y, x)
\end{aligned}
$$

Thus $\eta$ is a homomorphism from $(F[x, y], \dashv)$ to $\left(F[x, y], \vdash^{\prime}\right)$. Obviously, $\eta$ is an isomorphism of vector spaces, so $\eta$ is an isomorphism of associative algebras.

Due to the above results, we have
Theorem 2.2.3. If $d \in \operatorname{Der}\left(F[x, y]^{\text {op }}\right)$, then there are $f_{i}(x, y) \in F[x, y], i=$ $0,1,2, \cdots$, and $g(x) \in F[x]$, such that

$$
\begin{equation*}
d\left(x^{m} y^{n}\right)=\left(m x^{m-1} y^{n}+n x^{m+n-1}\right) g(x)+(x-y) x^{m} f_{n}(x, y), \quad \forall m, n \in \mathbb{Z}_{+} \tag{2.2}
\end{equation*}
$$

Conversely, if $f_{i}(x, y) \in F[x, y], i=0,1,2, \cdots$, and $g(x) \in F[x]$, then the linear transformation $d$ of $F[x, y]$ given by (2.2) is an element of $\operatorname{Der}\left(F[x, y]^{\mathrm{op}}\right)$.
Theorem 2.2.4. $\operatorname{RDer}(F[x, y])=\operatorname{Der}\left(F[x, y]^{\text {op }}\right)$.
Proof. For any linear transformation $d$ of $F[x, y]$, and $a, b \in F[x, y]$, we have

$$
d(a \vdash b)=d(a) \vdash b+a \vdash d(b)
$$

holds if and only if

$$
d\left(b \vdash^{\prime} a\right)=b \vdash^{\prime} d(a)+d(b) \vdash^{\prime} a
$$

holds. Thus $d \in \operatorname{RDer}(F[x, y])$ if and only if $d \in \operatorname{Der}\left(F[x, y]^{\text {op }}\right)$. Therefore, $\operatorname{RDer}(F[x, y])=\operatorname{Der}\left(F[x, y]^{\mathrm{op}}\right)$.

Suppose that $(\mathcal{D}, \dashv, \vdash)$ is a dialgebra. For $z \in \mathcal{D}$, set $\widetilde{\operatorname{ad}} z(a)=z \vdash a-a \vdash z$, $\forall a \in \mathcal{D}$, then $\widetilde{\mathrm{ad}} z$ is a derivation of the associative algebra $(\mathcal{D}, \vdash)$, so $\widetilde{\mathrm{ad}} z$ is called a right inner derivation of the dialgebra $(\mathcal{D}, \dashv, \vdash)$. From the above discussion we have

Theorem 2.2.5. If $d$ is a right inner derivation of the dialgebra $F[x, y]$, then there exist $f(x, y) \in F[x, y]$ and $f_{i}(x, y) \in F[x, y], i=0,1,2, \cdots$, satisfying

$$
(x-y) f_{n}(x, y)=y^{n} f(x, x)-x^{n} f(x, y)
$$

such that (2.2) hold with $g(x)=0$. Conversely, given $f(x, y) \in F[x, y]$ and $f_{i}(x, y) \in F[x, y], i=0,1,2, \cdots$, satisfying

$$
(x-y) f_{n}(x, y)=y^{n} f(x, x)-x^{n} f(x, y)
$$

the linear transformation $d$ of $F[x, y]$ determined by (2.2), with $g(x)=0$, is a right derivation of the dialgebra $F[x, y]$.
Proof. Suppose that $d=\widetilde{\operatorname{ad}} f(x, y)$ is a right derivation of $F[x, y]$, for some $f(x, y) \in$ $F[x, y]$. Then

$$
\begin{aligned}
d\left(x^{m} y^{n}\right) & =f(x, y) \vdash x^{m} y^{n}-x^{m} y^{n} \vdash f(x, y) \\
& =x^{m} y^{n} f(x, x)-x^{m+n} f(x, y) \\
& =x^{m}\left(y^{n} f(x, x)-x^{n} f(x, y)\right) .
\end{aligned}
$$

We can take $f_{i}(x, y)=\left(y^{i} g(x, x)-x^{i} g(x, y)\right) /(x-y) \in F[x, y], i=0,1,2, \cdots$, and $g(x)=0$, then

$$
(x-y) f_{n}(x, y)=y^{n} f(x, x)-x^{n} f(x, y), \quad n \in \mathbb{Z}_{+}
$$

and $d\left(x^{m} y^{n}\right)=(x-y) x^{m} f_{n}(x, y)$, that is, (2.2) holds.
If there are $f(x, y) \in F[x, y]$ and $f_{i}(x, y) \in F[x, y], i=0,1,2, \cdots$, such that

$$
(x-y) f_{n}(x, y)=y^{n} f(x, x)-x^{n} f(x, y)
$$

we have to prove that the linear transformation $d$ of $F[x, y]$ determined by (2.2), with $g(x)=0$, is a right inner derivation of the associative dialgebra $F[x, y]$. At first, by Theorem 2.2.3 and 2.2.4, $d$ is a right derivation. Secondly,

$$
\begin{aligned}
d\left(x^{m} y^{n}\right) & =(x-y) x^{m} f_{n}(x, y) \\
& =x^{m}\left(y^{n} f(x, x)-x^{n} f(x, y)\right) \\
& =x^{m} y^{n} f(x, x)-x^{m+n} f(x, y) \\
& =f(x, y) \vdash x^{m} y^{n}-x^{m} y^{n} \vdash f(x, y) \\
& =\widetilde{\operatorname{ad}} f(x, y)\left(x^{m} y^{n}\right) .
\end{aligned}
$$

Therefore, $d=\widetilde{\operatorname{ad}} f(x, y)$ is a right inner derivation.

## § 2.3 Derivations of the associative dialgebra $F[x, y]$.

Definition 2.3.1. Let $(\mathcal{D}, \dashv, \vdash)$ be an associative dialgebra, $d \in \operatorname{End}(\mathcal{D})$, if $d$ satisfies

$$
\begin{aligned}
& d(a \dashv b)=d(a) \dashv b+a \dashv d(b), \\
& d(a \vdash b)=d(a) \vdash b+a \vdash d(b), \quad \forall a, b \in \mathcal{D},
\end{aligned}
$$

then $d$ is called a derivation of the associative dialgebra $(\mathcal{D}, \dashv, \vdash)$. We denote the set of all derivations of $(\mathcal{D}, \dashv, \vdash)$ by $\operatorname{Der}(\mathcal{D})$. Obviously, $\operatorname{Der}(\mathcal{D})=\operatorname{LDer}(\mathcal{D}) \cap \operatorname{RDer}(\mathcal{D})$.

By the definition of the dialgebra $F[x, y]$, we have

$$
\begin{equation*}
x^{m} y^{n}=\underbrace{x \vdash x \vdash \cdots \vdash x}_{m} \vdash 1 \dashv \underbrace{x \dashv x \dashv \cdots \dashv x}_{n} . \tag{2.3}
\end{equation*}
$$

Suppose that $d \in \operatorname{Der}(F[x, y])$. Then from $\operatorname{Der}(F[x, y])=\operatorname{LDer}(F[x, y]) \cap$ $\operatorname{RDer}(F[x, y])$ and the above discussion about left derivations we know $(x-y) \mid d(1)$, hence we can set $d(1)=(x-y) f(x, y)$, where $f(x, y) \in F[x, y]$. By definition of derivation,

$$
d(x \vdash 1)=d(x)=d(x) \vdash 1+x \vdash d(1) .
$$

Assume that $d(x)=g(x, y)$. Then $g(x, y)=g(x, x)+x(x-y) f(x, y)$. By (2.3) we have

$$
\begin{aligned}
d\left(x^{m} y^{n}\right)= & d(x \vdash \cdots \vdash x \vdash 1 \dashv x \dashv \cdots \dashv x) \\
= & d(x) \vdash x \vdash \cdots \vdash 1 \dashv x \dashv \cdots \dashv x+\cdots+x \vdash \cdots \vdash d(1) \dashv x \dashv \cdots \dashv x \\
& +x \vdash \cdots \vdash 1 \dashv d(x) \dashv \cdots \dashv x+\cdots+x \vdash \cdots \vdash x \vdash 1 \dashv x \dashv \cdots \dashv d(x) \\
= & m x^{m-1} y^{n} g(x, x)+x^{m} y^{n} d(1)+n x^{m} y^{n-1} g(y, y) .
\end{aligned}
$$

Therefore we have the following results.
Theorem 2.3.2. If $d \in \operatorname{Der}(F[x, y])$, then there are $f(x) \in F[x]$ and $g(x, y) \in$ $F[x, y]$, such that

$$
\begin{equation*}
d\left(x^{m} y^{n}\right)=m x^{m-1} y^{n} f(x)+x^{m} y^{n}(x-y) g(x, y)+n x^{m} y^{n-1} f(y) \tag{2.4}
\end{equation*}
$$

Conversely, for any $f(x) \in F[x]$ and $g(x, y) \in F[x, y]$, the linear transformation $d$ of $F[x, y]$ determined by (2.4) is an element of $\operatorname{Der}(F[x, y])$.
Proof. Suppose that $d \in \operatorname{Der}(F[x, y])$. Then by the above discussions, we have

$$
d\left(x^{m} y^{n}\right)=m x^{m-1} y^{n} f(x)+x^{m} y^{n}(x-y) g(x, y)+n x^{m} y^{n-1} f(y)
$$

where $f(x)=d(x) \vdash 1$ and $g(x, y)=d(1) /(x-y) \in F[x, y]$.
Conversely, for any $f(x) \in F[x]$ and $g(x, y) \in F[x, y]$, we have to prove that the linear transformation $d$ of $F[x, y]$ determined by (2.4) is a derivation of $F[x, y]$. For any $x^{m} y^{n} \in F[x, y]$, clearly, $(x-y) \mid x^{m-1} f(x)-y^{m-1} f(y)$, thus, $f_{m}(x, y):=$ $x^{m} g(x, y)+\frac{m\left(x^{m-1} f(x)-y^{m-1} f(y)\right)}{x-y} \in F[x, y], m=0,1,2, \cdots$, so

$$
\begin{aligned}
d\left(x^{m} y^{n}\right) & =m x^{m-1} y^{n} f(x)+x^{m} y^{n}(x-y) g(x, y)+n x^{m} y^{n-1} f(y) \\
& =\left(m y^{m+n-1}+n x^{m} y^{n-1}\right) f(y)+(x-y) y^{n} f_{m}(x, y)
\end{aligned}
$$

By Theorem 2.1.3, $d \in \operatorname{LDer}(F[x, y])$. Similarly,

$$
d\left(x^{m} y^{n}\right)=\left(m x^{m-1} y^{n}+n x^{m+n-1}\right) f(x)+(x-y) x^{m} g_{n}(x, y)
$$

where $g_{n}(x, y)=y^{n} g(x, y)+\frac{n\left(y^{n-1} f(y)-x^{n-1} f(x)\right)}{x-y} \in F[x, y]$, thus $d \in \operatorname{RDer}(F[x, y])$ and $d \in \operatorname{LDer}(F[x, y]) \cap \operatorname{RDer}(F[x, y])=\operatorname{Der}(F[x, y])$, completing the proof.

Let $(\mathcal{D}, \dashv, \vdash)$ be an associative dialgebra over $F$. For $z \in \mathcal{D}$, set ad $z(X)=X \dashv$ $z-z \vdash X(\forall X \in \mathcal{D})$, we can prove that ad $z$ is a derivation of $(\mathcal{D}, \dashv, \vdash)$. For any $X, Y \in \mathcal{D}$, we have

$$
\operatorname{ad} z(X \dashv Y)=(X \dashv Y) \dashv z-z \vdash(X \dashv Y),
$$

and

$$
\begin{aligned}
\operatorname{ad} z(X) \dashv Y & +X \dashv \operatorname{ad} z(Y)=(X \dashv z-z \vdash X) \dashv Y+X \dashv(Y \dashv z-z \vdash Y) \\
& =X \dashv(z \dashv Y)-(z \vdash X) \dashv Y+X \dashv(Y \dashv z)-X \dashv(z \dashv Y) \\
& =X \dashv(Y \dashv z)-(z \vdash X) \dashv Y .
\end{aligned}
$$

Hence,

$$
\operatorname{ad} z(X \dashv Y)=\operatorname{ad} z(X) \dashv Y+X \dashv \operatorname{ad} z(Y)
$$

On the other hand,

$$
\operatorname{ad} z(X \vdash Y)=(X \vdash Y) \dashv z-z \vdash(X \vdash Y),
$$

and

$$
\begin{aligned}
\operatorname{ad} z(X) \vdash Y & +X \vdash \operatorname{ad} z(Y)=(X \dashv z-z \vdash X) \vdash Y+X \vdash(Y \dashv z-z \vdash Y) \\
& =(X \vdash z) \vdash Y-(z \vdash X) \vdash Y+X \vdash(Y \dashv z)-(X \vdash z) \vdash Y \\
& =X \vdash(Y \dashv z)-(z \vdash X) \vdash Y .
\end{aligned}
$$

Thus,

$$
\operatorname{ad} z(X \vdash Y)=\operatorname{ad} z(X) \vdash Y+X \vdash \operatorname{ad} z(Y)
$$

$\operatorname{ad} z$ is called an inner derivation of $\mathcal{D}$. We denote the set of all inner derivations of $F[x, y]$ by $\operatorname{Inder}(F[x, y])$. By the above definition, we have

$$
\begin{aligned}
\operatorname{ad}\left(x^{m} y^{n}\right)\left(x^{i} y^{j}\right) & =x^{i} y^{j} \dashv x^{m} y^{n}-x^{m} y^{n} \vdash x^{i} y^{j} \\
& =x^{i} y^{j}\left(y^{m+n}-x^{m+n}\right)
\end{aligned}
$$

Thus we have
Theorem 2.3.3. If $d \in \operatorname{Inder}(F[x, y])$, then there exist $h(x) \in F[x]$ and $g(x, y) \in$ $F[x, y]$ satisfying

$$
\begin{equation*}
(x-y) g(x, y)=h(y)-h(x) \tag{2.5}
\end{equation*}
$$

such that (2.4) hold with $f(x)=0$. Conversely, given $h(x) \in F[x]$ and $g(x, y) \in$ $F[x, y]$ satisfying (2.5), the linear transformation $d$ of $F[x, y]$ determined by (2.4), with $f(x)=0$, is an element in $\operatorname{Inder}(F[x, y])$.
Proof. Let $d=\operatorname{ad} h(x, y) \in \operatorname{Inder}(F[x, y])$, for some $h(x, y) \in F[x, y]$, then we have

$$
\begin{aligned}
d\left(x^{m} y^{n}\right) & =x^{m} y^{n} \dashv h(x, y)-h(x, y) \vdash x^{m} y^{n} \\
& =x^{m} y^{n} h(y, y)-x^{m} y^{n} h(x, x) \\
& =x^{m} y^{n}(h(y, y)-h(x, x)), \quad \forall m, n \in \mathbb{Z}_{+} .
\end{aligned}
$$

Take $g(x, y)=(h(y, y)-h(x, x)) /(x-y), h(x)=h(x, x)$ and $f(x)=0$, then $g(x, y) \in F[x, y],(x-y) g(x, y)=h(y)-h(x)$ and (2.4) holds.

Conversely, take $h(x) \in F[x]$ and $g(x, y) \in F[x, y]$, such that (2.5) hold. If $d$ is the linear transformation of $F[x, y]$ determined by $(2.4)$, with $f(x)=0$, then by Theorem 2.3.2, $d$ is a derivation, and

$$
\begin{aligned}
d\left(x^{m} y^{n}\right) & =x^{m} y^{n}(x-y) g(x, y) \\
& =x^{m} y^{n}(h(y)-h(x)) \\
& =x^{m} y^{n} h(y)-x^{m} y^{n} h(x) \\
& =x^{m} y^{n} \dashv h(x)-h(x) \vdash x^{m} y^{n} \\
& =\operatorname{ad} h(x)\left(x^{m} y^{n}\right) .
\end{aligned}
$$

Thus $d=\operatorname{ad} h(x) \in \operatorname{Inder}(F[x, y])$.
§ 2.4 Automorphisms of the associative dialgebra $F[x, y]$.
Definition 2.4.1. Suppose that $(\mathcal{D}, \dashv, \vdash)$ is an associative dialgebra, $\sigma \in \operatorname{End}(\mathcal{D})$. If $\sigma$ satisfies the following conditions

$$
\begin{aligned}
& \sigma(a \dashv b)=\sigma(a) \dashv \sigma(b), \\
& \sigma(a \vdash b)=\sigma(a) \vdash \sigma(b), \quad \forall a, b \in \mathcal{D},
\end{aligned}
$$

and $\sigma$ is bijective, then $\sigma$ is called an automorphism of the dialgebra $(\mathcal{D}, \dashv, \vdash)$. We denote the set of all automorphisms of $\mathcal{D}$ by $\operatorname{Aut}(\mathcal{D})$.

In this subsection, we always denote $\operatorname{Aut}(F[x, y])$ the automorphism group of the associative dialgebra $F[x, y]$.

By (2.3) we know $F[x, y]$ is generated by 1 and $x$ as a dialgebra. Let $\sigma \in$ $\operatorname{Aut}(F[x, y])$, then

$$
\begin{aligned}
& \sigma(x)=\sigma(x \dashv 1)=\sigma(x) \dashv \sigma(1), \\
& \sigma(x)=\sigma(1 \vdash x)=\sigma(1) \vdash \sigma(x) .
\end{aligned}
$$

Suppose that $\sigma(x)=f(x, y)$ and $\sigma(1)=g(x, y)$. Then $g(x, x)=g(y, y)=1$. By (2.3), we have

$$
\sigma\left(x^{m} y^{n}\right)=f(x, x)^{m} g(x, y) f(y, y)^{n}
$$

For any $h(x, y)=\sum_{m, n} a_{m, n} x^{m} y^{n} \in F[x, y]$, we get

$$
\begin{aligned}
\sigma(h(x, y)) & =\sum_{m, n} a_{m, n} \sigma\left(x^{m} y^{n}\right) \\
& =\left(\sum_{m, n} a_{m, n} f(x, x)^{m} f(y, y)^{n}\right) g(x, y)
\end{aligned}
$$

Thus, $F[x, y]=\sigma(F[x, y]) \subseteq g(x, y) F[x, y]$, which implies that $\sigma(1)=g(x, y)$ is a non-zero element in $F$. From $g(x, x)=1$ we get $\sigma(1)=1$.

Now suppose that $f(x)=f(x, x)=\sum_{i=0}^{s} a_{i} x^{i}$ (where all $a_{i} \in F$ and $a_{s} \neq 0$ ). Then

$$
\sigma\left(x^{m} y^{n}\right)=f(x)^{m} f(y)^{n}
$$

Assume that $\eta$ is the inverse of $\sigma$, and $\eta(x)=g(x)=\sum_{j=0}^{t} b_{j} x^{j}$, where all $b_{j} \in F$ and $b_{t} \neq 0$. Then

$$
\begin{aligned}
x & =\eta \sigma(x)=\eta(f(x))=\sum_{i=0}^{s} a_{i} \eta\left(x^{i}\right)=\sum_{i=0}^{s} a_{i} g(x)^{i} \\
& =a_{0}+a_{1}\left(b_{0}+b_{1} x+\cdots+b_{t} x^{t}\right)+\cdots+a_{s}\left(b_{0}+b_{1} x+\cdots+b_{t} x^{t}\right)^{s} .
\end{aligned}
$$

Since the degree of the last polynomial of the above equation is 1 , we have $s t=1$, that is, $s=t=1$. Therefore, $f(x)=a+b x$, where $a, b \in F$ and $b \neq 0$.

By the above discussion we know that all automorphisms $\sigma$ of the associative dialgebra $F[x, y]$ preserve the standard filtration, that is, $\sigma\left(F[x, y]_{(n)}\right) \subseteq F[x, y]_{(n)}$, $n=0,1,2, \cdots$.

Now, let us determine the automorphism group $\operatorname{Aut}(F[x, y])$.

Theorem 2.4.2. The automorphism group $\operatorname{Aut}(F[x, y])$ of the dialgebra $F[x, y]$ is

$$
\{\sigma \in \operatorname{End}(F[x, y]) \mid \sigma f(x, y)=f(a+b x, a+b y), \forall f(x, y) ; a, b \in F, b \neq 0\}
$$

Proof. Set

$$
A=\{\sigma \in \operatorname{End}(F[x, y]) \mid \sigma f(x, y)=f(a+b x, a+b y), \forall f(x, y) ; a, b \in F, b \neq 0\}
$$

Then by the above discussion we know that $\operatorname{Aut}(F[x, y]) \subseteq A$. On the other hand, for any $\sigma \in A$, such that $\sigma(x)=a+b x$, it is easy to verify that $\sigma$ is a homomorphism of dialgebras. We can define a linear transformation $\eta$ of $F[x, y]$ by $\eta\left(x^{m} y^{n}\right)=\left(-a b^{-1}+b^{-1} x\right)^{m}\left(-a b^{-1}+b^{-1} y\right)^{n}$, for all $m, n \in \mathbb{Z}_{+}$. Then $\eta$ is the inverse of $\sigma$, thus $\sigma$ is a bijection and $A \subseteq \operatorname{Aut}(F[x, y])$. Therefore, $\operatorname{Aut}(F[x, y])=$ A.

Corollary 2.4.3. Aut $(F[x, y])$ is a subgroup of the automorphism group of the polynomial associative algebra $F[x, y]$.

## 3. Derivations and automorphisms of the Leibniz algebra $F[x, y]$

In this section we will consider $F[x, y]$ as a Leibniz algebra induced by its associative dialgebraic structure. Recall that its Leibniz brackets are given by

$$
\left[x^{m} y^{n}, x^{s} y^{t}\right]=x^{m} y^{n}\left(y^{s+t}-x^{s+t}\right)
$$

Our main purpose is to determine the derivation algebra and the automorphism group of $F[x, y]$. Since it is difficult to determine all derivations and all automorphisms of $F[x, y]$, we only discuss its homogeneous derivations and automorphisms preserving the standard filtration.

## §3.1 Derivations of the Leibniz algebra $F[x, y]$.

Suppose that $d$ is a derivation of the Leibniz algebra $F[x, y]$. Since $[1,1]=0$, $d([1,1])=0$, thus $[f(x, y), d(1)]=f(x, y)[1, d(1)]=0$, for any $f(x, y) \in F[x, y]$. Set $d(1)=g(x, y)$, then $g(x, y) \in Z^{r}(F[x, y])$. Hence by Lemma 1.2.4, there are $c \in F$ and $f(x, y) \in F[x, y]$, such that $d(1)=c+(y-x) f(x, y)$. But

$$
d\left[x^{m}, x^{n}\right]=d\left(x^{m} \dashv x^{n}-x^{n} \vdash x^{m}\right)=d\left(x^{m} y^{n}\right)-d\left(x^{m+n}\right)
$$

thus,

$$
\begin{align*}
d\left(x^{m} y^{n}\right) & =d\left(x^{m+n}\right)+d\left[x^{m}, x^{n}\right] \\
& =d\left(x^{m+n}\right)+\left(y^{n}-x^{n}\right) d\left(x^{m}\right)+x^{m}\left[1, d\left(x^{n}\right)\right] \tag{3.1}
\end{align*}
$$

That is, $d\left(x^{m} y^{n}\right)$ can be determined by $d\left(x^{m+n}\right), d\left(x^{m}\right)$ and $d\left(x^{n}\right)$.
Lemma 3.1.1. If $d$ is a derivation of an associative dialgebra $\mathcal{D}$, then $d$ is $a$ derivation of $\mathcal{D}$ as a Leibniz algebra.

By definition of derivation of Leibniz algebra we have

$$
\begin{equation*}
d\left[x^{m}, x^{n}\right]=\left[d\left(x^{m}\right), x^{n}\right]+\left[x^{m}, d\left(x^{n}\right)\right]=d\left(x^{m} y^{n}-x^{m+n}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left[y^{n}, x^{m}\right]=\left[d\left(y^{n}\right), x^{m}\right]+\left[y^{n}, d\left(x^{m}\right)\right]=d\left(y^{m+n}-x^{m} y^{n}\right) . \tag{3.3}
\end{equation*}
$$

Adding (3.2) and (3.3) we get

$$
\begin{equation*}
d\left[x^{m}, x^{n}\right]+d\left[y^{n}, x^{m}\right]=d\left(y^{m+n}\right)-d\left(x^{m+n}\right) \tag{3.4}
\end{equation*}
$$

Since $d\left[1, x^{m+n}\right]=d\left(y^{m+n}\right)-d\left(x^{m+n}\right)$, substituting it into (3.4) we get

$$
\left[d\left(x^{m}\right), x^{n}\right]+\left[x^{m}, d\left(x^{n}\right)\right]+\left[d\left(y^{n}\right), x^{m}\right]+\left[y^{n}, d\left(x^{m}\right)\right]=\left[d(1), x^{m+n}\right]+\left[1, d\left(x^{m+n}\right)\right]
$$

or

$$
\begin{aligned}
\left(y^{n}-x^{n}\right) d\left(x^{m}\right) & +x^{m}\left[1, d\left(x^{n}\right)\right]+\left(y^{m}-x^{m}\right) d\left(y^{n}\right)+y^{n}\left[1, d\left(x^{m}\right)\right] \\
& =\left(y^{m+n}-x^{m+n}\right) d(1)+\left[1, d\left(x^{m+n}\right)\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(y^{n}-x^{n}\right) d\left(x^{m}\right) & +x^{m}\left[1, d\left(x^{n}\right)\right]+\left(y^{m}-x^{m}\right)\left(d\left(x^{n}\right)+\left(y^{n}-x^{n}\right) d(1)\right. \\
& \left.+\left[1, d\left(x^{n}\right)\right]\right)+y^{n}\left[1, d\left(x^{m}\right)\right]=\left(y^{m+n}-x^{m+n}\right) d(1)+\left[1, d\left(x^{m+n}\right)\right]
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
{\left[1, d\left(x^{n+m}\right)\right]=( } & \left.y^{m}-x^{m}\right) d\left(x^{n}\right)  \tag{3.5}\\
& +\left(y^{n}-x^{n}\right) d\left(x^{m}\right)+y^{m}\left[1, d\left(x^{n}\right)\right] \\
& +y^{n}\left[1, d\left(x^{m}\right)\right]
\end{align*}+\left(2 x^{n+m}-x^{m} y^{n}-x^{n} y^{m}\right) d(1) . ~ \$
$$

Lemma 3.1.2. For $f(x, y) \in F[x, y]$, we define a linear transformation $\widehat{f}(x, y)$ of $F[x, y]$ as follows:

$$
\begin{aligned}
\widehat{f}(x, y): F[x, y] & \rightarrow F[x, y] \\
g(x, y) & \mapsto f(x, y) g(x, y), \quad \forall g(x, y) \in F[x, y]
\end{aligned}
$$

Then $\widehat{f}(x, y)$ is a derivation of the Leibniz algebra $F[x, y]$ if and only if $(x-y) \mid$ $f(x, y)$.

Proof. Suppose that $\widehat{f}(x, y)$ is a derivation of the Leibniz algebra $F[x, y]$. Then

$$
\widehat{f}(x, y)[1, y]=[\widehat{f}(x, y)(1), y]+[1, \widehat{f}(x, y)(y)] .
$$

Since

$$
\widehat{f}(x, y)[1, y]=f(x, y)[1, y]=f(x, y)(y-x)
$$

and

$$
\begin{aligned}
{[\widehat{f}(x, y)(1), y] } & +[1, \widehat{f}(x, y)(y)] \\
& =[f(x, y), y]+[1, f(x, y) y] \\
& =f(x, y)(y-x)+(f(y, y) y-f(x, x) x)
\end{aligned}
$$

we obtain that $f(x, x)=f(y, y)=0$, so $(x-y) \mid f(x, y)$.
On the other hand, if $(x-y) \mid f(x, y)$, then due to Theorem 2.3.2, $\widehat{f}(x, y)$ is a derivation of the dialgebra $F[x, y]$. Thus it follows from Lemma 3.1.1 that $\widehat{f}(x, y)$ is a derivation of the Leibniz algebra $F[x, y]$.

Definition 3.1.3. Let $\mathcal{G}$ be a $\mathbb{Z}$-graded Leibniz algebra. If $d$ is a derivation of $\mathcal{G}$ such that $d\left(\mathcal{G}_{i}\right) \subseteq \mathcal{G}_{i+j}$, for any $i \in \mathbb{Z}$, then $d$ is called a homogeneous derivation of the Leibniz algebra $\mathcal{G}$ of degree $j$. We denote by $\operatorname{der}_{j}(\mathcal{G})$ the set of all homogeneous derivations of $\mathcal{G}$ with degree $j$.

If a Leibniz algebra $\mathcal{G}=\bigoplus_{i \in \mathbb{Z}} \mathcal{G}_{i}$ is $\mathbb{Z}$-graded algebra and finite dimensional, then the derivation algebra $\operatorname{der}(\mathcal{G})$ is also $\mathbb{Z}$-graded (cf. [13, p119-120]). If $\mathcal{G}$ is not finite dimensional, then the derivation algebra $\operatorname{der}(\mathcal{G})$ is not necessarily $\mathbb{Z}$-graded (with respect to the original $\mathbb{Z}$-gradation of $\mathcal{G})$. But the space $\bigoplus_{i \in \mathbb{Z}} \operatorname{der}_{i}(\mathcal{G})$ generated by homogeneous derivations of $\mathcal{G}$ is a (Lie) subalgebra of $\operatorname{der}(\mathcal{G})$. We denote this subalgebra by $\operatorname{der}^{\prime}(\mathcal{G})$ and call it the homogeneous derivation algebra of $\mathcal{G}$.

In the following we discuss the subalgebra $\operatorname{der}^{\prime}(F[x, y])$.
Lemma 3.1.4.

$$
\frac{\partial}{\partial x}+\frac{\partial}{\partial y} \in \operatorname{der}_{-1}(F[x, y])
$$

Proof. By Lemma 3.1.1, a derivation of a dialgebra $\mathcal{D}$ is also a derivation of $\mathcal{D}$ as a Leibniz algebra. Thus if in Theorem 2.3.2 we put $f(x)=1$ and $g(x, y)=0$, then we have

$$
d=\frac{\partial}{\partial x}+\frac{\partial}{\partial y} \in \operatorname{der}_{-1}(F[x, y])
$$

In general, by direct checking we have
Lemma 3.1.5. For any non-positive integer $m$,

$$
d_{m-1}:=x^{m} \frac{\partial}{\partial x}+y^{m} \frac{\partial}{\partial y} \in \operatorname{der}_{m-1}(F[x, y])
$$

In particular, $d_{-1}=\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$.
Lemma 3.1.6. $\operatorname{der}_{-1}(F[x, y])=\left\langle d_{-1}\right\rangle$, where $\left\langle d_{-1}\right\rangle$ is the space generated by $d_{-1}$.
Proof. We have proved that $\left\langle d_{-1}\right\rangle \subseteq \operatorname{der}_{-1}(F[x, y])$.
Now for any $\delta \in \operatorname{der}_{-1}(F[x, y])$, we have $\delta(1)=0$ and $\delta(x)=r \in F$. Set $d=\delta-r d_{-1}$, then $d \in \operatorname{der}_{-1}(F[x, y])$, and $d(1)=d(x)=0$. From (3.1), $d(y)=$ $d(x)+(y-x) d(1)+[1, d(x)]=0$. By (3.5), we get

$$
\left[1, d\left(x^{2}\right)\right]=2(y-x) d(x)+2 y[1, d(x)]+\left(2 x^{2}-2 x y\right) d(1)=0
$$

But $d\left(x^{2}\right) \in F[x, y]_{1}$, so we can write $d\left(x^{2}\right)=b(y-x)$. On the other hand,

$$
\begin{aligned}
{\left[1, d\left(x^{3}\right)\right]=} & \left(y^{2}-x^{2}\right) d(x)+(y-x) d\left(x^{2}\right)+y^{2}[1, d(x)] \\
& \quad+y\left[1, d\left(x^{2}\right)\right]+\left(2 x^{3}-x^{2} y-x y^{2}\right) d(1) \\
= & (y-x) d\left(x^{2}\right) \\
= & (y-x)(b y-b x)
\end{aligned}
$$

Since $d\left(x^{3}\right) \in F[x, y]_{2}$, we can write $d\left(x^{3}\right)=f(x, y) \in F[x, y]_{2}$. As the right-hand side of the above equation is $f(y, y)-f(x, x)$, the coefficients of $x$ and $y$ in its second factor are the same, which implies that $b=0$, that is, $d\left(x^{2}\right)=0$ and $\left[1, d\left(x^{3}\right)\right]=0$.

In the following by using the induction on $k$ we prove that if $d$ is a homogeneous derivation of the Leibniz algebra $F[x, y]$ with degree -1 , then $d\left(x^{k}\right)=0$, for all $k \geq 0$.

Suppose that for $k=n(\geq 2)$ we have $d\left(x^{n}\right)=0$. Then for $k=n+1$, by (3.5) we get

$$
\begin{aligned}
{\left[1, d\left(x^{n+1}\right)\right]=} & (y-x) d\left(x^{n}\right)+\left(y^{n}-x^{n}\right) d(x)+y\left[1, d\left(x^{n}\right)\right]+y^{n}[1, d(x)] \\
& +\left(2 x^{n+1}-x y^{n}-x^{n} y\right) d(1)=0
\end{aligned}
$$

As $d\left(x^{n+1}\right) \in F[x, y]_{n}$, we can set $d\left(x^{n+1}\right)=\sum_{i=0}^{n} a_{n-i, i} x^{n-i} y^{i}$, where all $a_{i, j} \in F$ and $\sum_{i=0}^{n} a_{n-i, i}=0$. But $d\left(x^{n+2}\right) \in F[x, y]_{n+1}$, again by (3.5) we have

$$
\begin{aligned}
{\left[1, d\left(x^{n+2}\right)\right] } & =(y-x) d\left(x^{n+1}\right) \\
& =(y-x)\left(\sum_{i=0}^{n} a_{n-i, i} x^{n-i} y^{i}\right)
\end{aligned}
$$

Since coefficients of monomials in the second factor of the right-hand side are all equal,

$$
a_{n, 0}=a_{n-1,1}=\cdots=a_{0, n}=0
$$

thus, $d\left(x^{n+1}\right)=0$. By induction, we have $d\left(x^{k}\right)=0$, for any $k \geq 0$.
Now $d\left(x^{m} y^{n}\right)=d\left(x^{m+n}\right)+\left(y^{n}-x^{n}\right) d\left(x^{m}\right)+x^{m}\left[1, d\left(x^{n}\right)\right]$, thus $d\left(x^{m} y^{n}\right)=0$, for all $m, n \geq 0$, that is, $d=0$. So $\delta=r d_{-1}$. Hence, $\operatorname{der}_{-1}(F[x, y]) \subseteq\left\langle d_{-1}\right\rangle$. Consequently, $\operatorname{der}_{-1}(F[x, y])=\left\langle d_{-1}\right\rangle$.
Lemma 3.1.7. If $d$ is a homogeneous derivation of the Leibniz algebra $F[x, y]$ with degree -2 , then $d=0$.

Proof. First, we prove by induction on $k$ that if $d$ is a such derivation, then $d\left(x^{k}\right)=$ 0 , for all $k \geq 0$.

Since $d$ is of degree $-2, d(1)=d(x)=d(y)=0$ and $d\left(x^{2}\right)=a \in F$. By (3.5) we have $\left[1, d\left(x^{3}\right)\right]=a(y-x)$, and $d\left(x^{3}\right) \in F[x, y]_{1}$, so we can put $d\left(x^{3}\right)=b x+(a-b) y$. By (3.5), we have

$$
\begin{aligned}
{\left[1, d\left(x^{4}\right)\right] } & =2\left(y^{2}-x^{2}\right) d\left(x^{2}\right)+2 y^{2}\left[1, d\left(x^{2}\right)\right]=2 a\left(y^{2}-x^{2}\right) \\
& =(y-x) d\left(x^{3}\right)+\left(y^{3}-x^{3}\right) d(x)+y\left[1, d\left(x^{3}\right)\right]+y^{3}[1, d(x)]+\left(2 x^{4}-x^{2} y-x y^{2}\right) d(1) \\
& =(y-x)(b x+(a-b) y+a y)
\end{aligned}
$$

Thus $a=b=0, d\left(x^{2}\right)=d\left(x^{3}\right)=0$ and $\left[1, d\left(x^{4}\right)\right]=0$.
Suppose that for $k=n, d\left(x^{n}\right)=0$ and $\left[1, d\left(x^{n+1}\right)\right]=0$ hold. Then for $k=n+1$, by (3.5) we have $\left[1, d\left(x^{n+2}\right)\right]=(y-x) d\left(x^{n+1}\right)$, and

$$
\begin{aligned}
{\left[1, d\left(x^{n+2}\right)\right]=} & \left(y^{n}-x^{n}\right) d\left(x^{2}\right)+\left(y^{2}-x^{2}\right) d\left(x^{n}\right)+y^{n}\left[1, d\left(x^{2}\right)\right]+y^{2}\left[1, d\left(x^{n}\right)\right] \\
& +\left(2 x^{n+2}-x^{n} y^{2}-x^{2} y^{n}\right) d(1) \\
= & 0 .
\end{aligned}
$$

So $d\left(x^{n+1}\right)=0$. Thus, by induction we have $d\left(x^{k}\right)=0$, for any $k \geq 0$. But $d\left(x^{m} y^{n}\right)=d\left(x^{m+n}\right)+\left(y^{n}-x^{n}\right) d\left(x^{m}\right)+x^{m}\left[1, d\left(x^{n}\right)\right]$, hence $d\left(x^{m} y^{n}\right)=0$, for all $m, n \geq 0$. Consequently, $d=0$.

Lemma 3.1.8. For the Leibniz algebra $F[x, y], \operatorname{der}_{-3}(F[x, y])=0$.
Proof. At first, by induction on $k$ we can prove that if $d \in \operatorname{der}_{-3}(F[x, y])$, then $d\left(x^{k}\right)=0$, for any $k \geq 0$.

Since $\operatorname{deg} d=-3$, we have $d(1)=d(x)=d\left(x^{2}\right)=0$ and $\left[1, d\left(x^{3}\right)\right]=0$.
Suppose that for $k=n(\geq 2), d\left(x^{n}\right)=0$ and $\left[1, d\left(x^{n+1}\right)\right]=0$ hold. Then for $k=n+1$, by (3.5) we get $\left[1, d\left(x^{n+2}\right)\right]=(y-x) d\left(x^{n+1}\right)$ and

$$
\begin{aligned}
{\left[1, d\left(x^{n+2}\right)\right] } & =\left(y^{n}-x^{n}\right) d\left(x^{2}\right)+\left(y^{2}-x^{2}\right) d\left(x^{n}\right)+y^{n}\left[1, d\left(x^{2}\right)\right]+y^{2}\left[1, d\left(x^{n}\right)\right] \\
& +\left(2 x^{n+2}-x^{n} y^{2}-x^{2} y^{n}\right) d(1) \\
& =0
\end{aligned}
$$

That is, $d\left(x^{n+1}\right)=\left[1, d\left(x^{n+2}\right)\right]=0$. By induction on $k$ we have $d\left(x^{k}\right)=0$, for any $k \geq 0$. But $d\left(x^{m} y^{n}\right)=d\left(x^{m+n}\right)+\left(y^{n}-x^{n}\right) d\left(x^{m}\right)+x^{m}\left[1, d\left(x^{n}\right)\right]$, thus $d\left(x^{m} y^{n}\right)=0$, for any $m, n \geq 0$. Consequently, $d=0$.

Similar to the proof of Lemma 3.1.8, we have the following result.
Theorem 3.1.9. For the Leibniz algebra $F[x, y]$, $\operatorname{der}_{m}(F[x, y])=0, \forall m<-3$.
Now we discuss homogeneous derivations of the Leibniz algebra $F[x, y]$ with non-negative degrees.
Theorem 3.1.10. $\operatorname{der}_{0}(F[x, y])=\left\langle d_{0}\right\rangle$.
Proof. Note that $d_{0} \in \operatorname{der}_{0}(F[x, y])$ and $d_{0}(f(x, y))=s f(x, y)$, for any $f(x, y) \in$ $F[x, y]_{s}$.

Now suppose that $\delta \in \operatorname{der}_{0}(F[x, y])$, and $\delta(x)=a y+b x$, then by Lemma 3.1.5,

$$
\delta-b d_{0} \in \operatorname{der}_{0}(F[x, y])
$$

Set $d=\delta-b d_{0}$, then $d(x)=a y$. Suppose $d(1)=a^{\prime} \in F$, then

$$
\begin{aligned}
{\left[1, d\left(x^{2}\right)\right] } & =2(y-x) d(x)+2 y[1, d(x)]+\left(2 x^{2}-2 x y\right) d(1) \\
& =(y-x)\left(-2 a^{\prime} x+4 a y\right)
\end{aligned}
$$

Since the coefficients of $x$ and $y$ in the second factor of the right-hand side of the above equation are equal, we get $a^{\prime}=-2 a$. Thus $d(1)=-2 a$ and $d(x)=a y$. But $d\left(x^{2}\right) \in F[x, y]_{2}$, we can write $d\left(x^{2}\right)=a_{2,0} x^{2}+a_{1,1} x y+a_{0,2} y^{2}$, such that $a_{2,0}+a_{1,1}+a_{0,2}=4 a$. Now

$$
\begin{aligned}
{\left[1, d\left(x^{3}\right)\right]=} & \left(y^{2}-x^{2}\right) d(x)+(y-x) d\left(x^{2}\right)+y^{2}[1, d(x)]+y\left[1, d\left(x^{2}\right)\right] \\
& +\left(2 x^{3}-x^{2} y-x y^{2}\right) d(1) \\
= & (y-x)\left(\left(4 a+a_{2,0}\right) x^{2}+\left(a+a_{1,1}+4 a+2 a\right) x y\right. \\
& \left.+\left(a+a_{0,2}+a+4 a\right) y^{2}\right)
\end{aligned}
$$

Since the coefficients of $x^{2}, x y, y^{2}$ in the second factor of the right-hand side of the above equation are equal, $a_{2,0}=3 a, a_{1,1}=0, a_{0,2}=a$, hence

$$
d\left(x^{2}\right)=3 a x^{2}+a y^{2},\left[1, d\left(x^{3}\right)\right]=7 a\left(y^{3}-x^{3}\right)
$$

As $d\left(x^{3}\right) \in F[x, y]_{3}$, we can assume that $d\left(x^{3}\right)=\sum_{i=0}^{3} b_{3-i, i} x^{4-i} y^{i}$, where all $b_{i, j} \in F$ and $\sum_{i=0}^{3} b_{3-i, i}=7 a$. From (3.5) we have

$$
\begin{aligned}
{\left[1, d\left(x^{4}\right)\right]=} & \left(y^{3}-x^{3}\right) d(x)+(y-x) d\left(x^{3}\right)+y\left[1, d\left(x^{3}\right)\right]+y^{3}[1, d(x)] \\
& +\left(2 x^{4}-x^{3} y-x y^{3}\right) d(1) \\
= & (y-x)\left(\left(4 a+b_{3,0}\right) x^{3}+\left(b_{2,1}+10 a\right) x^{2} y+\left(b_{1,2}+10 a\right) x y^{2}\right. \\
& \left.+\left(b_{0,3}+9 a\right) y^{3}\right)
\end{aligned}
$$

As the coefficients of $x^{3}, x^{2} y, x y^{2}, y^{3}$ in the second factor of right-hand side of the above equation are equal, we have

$$
4 a+b_{3,0}=b_{2,1}+10 a=b_{1,2}+10 a=b_{0,3}+9 a
$$

That is, $b_{3,0}=6 a, b_{1,2}=b_{2,1}=0, b_{0,3}=a$, thus

$$
d\left(x^{3}\right)=6 a x^{3}+a y^{3},\left[1, d\left(x^{4}\right)\right]=10 a\left(y^{4}-x^{4}\right)
$$

As $d[x y, x]=[d(x y), x]+[x y, d(x)]$, and $d\left(x^{m} y^{n}\right)=d\left(x^{m+n}\right)+\left(y^{n}-x^{n}\right) d\left(x^{m}\right)+$ $x^{m}\left[1, d\left(x^{n}\right)\right]$, we have

$$
\begin{aligned}
d[x y, x]= & d\left(x y^{2}\right)-d\left(x^{2} y\right)=d\left(x^{3}\right)+\left(y^{2}-x^{2}\right) d(x)+x\left[1, d\left(x^{2}\right)\right] \\
& -d\left(x^{3}\right)-(y-x) d\left(x^{2}\right)-x^{2}[1, d(x)] \\
= & 5 a\left(x y^{2}-x^{2} y\right)
\end{aligned}
$$

and

$$
\begin{aligned}
{[d(x y), x]+[x y, d(x)] } & =(y-x) d(x y)+x y[1, d(x)] \\
& =(y-x)\left(2 a x^{2}+2 a y^{2}\right)+a(y-x) x y \\
& =-2 a x^{3}+(-a)\left(x y^{2}-x^{2} y\right)+2 a y^{3}
\end{aligned}
$$

which implies that $a=0$, so $d(x)=d\left(x^{2}\right)=d\left(x^{3}\right)=0$ and $\left[1, d\left(x^{4}\right)\right]=0$.
By induction on $k$ we can prove that if $d \in \operatorname{der}_{0}(F[x, y])$, then $d\left(x^{k}\right)=0$, for any $k \in \mathbb{Z}_{+}$.

Suppose that for $k=n, d\left(x^{k}\right)=0$. Then for $k=n+1$, by (3.5) we have $\left[1, d\left(x^{n+1}\right)\right]=0$. Since $d\left(x^{n+1}\right) \in F[x, y]_{n+1}$, we can suppose that

$$
d\left(x^{n+1}\right)=\sum_{i=0}^{n+1} c_{n+1-i, i} x^{n+1-i} y^{i}
$$

where all $c_{n+1-i, i} \in F$ and $\sum_{i=0}^{n+1} c_{n+1-i, i}=0$. But

$$
\begin{aligned}
{\left[1, d\left(x^{n+2}\right)\right]=} & \left(y^{n+1}-x^{n+1}\right) d(x)+(y-x) d\left(x^{n+1}\right)+y\left[1, d\left(x^{n+1}\right)\right]+y^{n+1}[1, d(x)] \\
& +\left(2 x^{n+2}-x^{n+1} y-x y^{n+1}\right) d(1) \\
= & (y-x) d\left(x^{n+1}\right)
\end{aligned}
$$

As the coefficients of $x^{n}, x^{n-1} y, \cdots, y^{n}$ in the second factor of the right-hand side of the above equation are equal, we can get $d\left(x^{n+1}\right)=0$. By induction we have $d\left(x^{k}\right)=0$, for any $k \geq 0$.

Now $d\left(x^{s} y^{t}\right)=d\left(x^{s+t}\right)+\left(y^{t}-x^{t}\right) d\left(x^{s}\right)+x^{s}\left[1, d\left(x^{t}\right)\right]$, thus $d\left(x^{s} y^{t}\right)=0$, that is $d=0$, so $\delta=b d_{0}$. Hence $\operatorname{der}_{0}(F[x, y]) \subseteq\left\langle d_{0}\right\rangle$. Therefore, $\operatorname{der}_{0}(F[x, y])=\left\langle d_{0}\right\rangle$.

We determine general forms of derivations of positive degrees as follows.

Lemma 3.1.11. For any positive integer $n, \operatorname{der}_{n}(F[x, y])=\langle\widehat{f}(x, y)| f(x, y) \in$ $F[x, y]_{n}$, and $(x-y)|f(x, y)\rangle \oplus\left\langle d_{n}\right\rangle$.
Proof. At first, we want to prove that if $d \in \operatorname{der}_{n}(F[x, y]), d(1)=0$ and

$$
d(x)=\sum_{i=1}^{n+1} a_{n+1-i, i} x^{n+1-i} y^{i}, \text { where } a_{n+1-i, i} \in F, \text { for all } i,
$$

then $d=0$.
We have

$$
\begin{aligned}
{\left[1, d\left(x^{2}\right)\right] } & =2(y-x) d(x)+2 y[1, d(x)]+\left(2 x^{2}-2 x y\right) d(1) \\
& =2(y-x)\left(\sum_{i=1}^{n+1} a_{n+1-i, i} x^{n+1-i} y^{i}\right)+2 \alpha y\left(y^{n+1}-x^{n+1}\right) \\
& =2(y-x)\left(\sum_{i=1}^{n+1} a_{n+1-i, i} x^{n+1-i} y^{i}+\alpha y\left(x^{n}+x^{n-1} y+\cdots+x y^{n-1}+y^{n}\right)\right) \\
& =2(y-x) \sum_{i=1}^{n+1}\left(a_{n+1-i, i}+\alpha\right) x^{n+1-i} y^{i},
\end{aligned}
$$

where $\alpha=\sum_{i=1}^{n+1} a_{n+1-i, i}$. But the coefficients of $x^{n+1}, x^{n} y, \cdots, y^{n+1}$ in the second factor of $\left[1, d\left(x^{2}\right)\right]$ are equal, so $a_{n, 1}=a_{n-1,2}=\cdots=a_{0, n+1}=0$, thus $d(x)=0$ and $\left[1, d\left(x^{2}\right)\right]=0$.

Suppose that $d\left(x^{k}\right)=\left[1, d\left(x^{k+1}\right)\right]=0(k \geq 1)$. We will prove that $d\left(x^{k+1}\right)=$ $\left[1, d\left(x^{k+2}\right)\right]=0$. Let

$$
d\left(x^{k+1}\right)=a_{n+k+1,0} x^{n+k+1}+a_{n+k, 1} x^{n+k} y+\cdots+a_{0, n+k+1} y^{n+k+1},
$$

where all $a_{n+k+1-i, i} \in F$. Then

$$
\begin{aligned}
{\left[1, d\left(x^{k+2}\right)\right]=} & \left(y^{k+1}-x^{k+1}\right) d(x)+(y-x) d\left(x^{k+1}\right)+y^{k+1}[1, d(x)] \\
& +y\left[1, d\left(x^{k+1}\right)\right]+\left(2 x^{k+2}-x^{k+1} y-x y^{k+1}\right) d(1) \\
= & (y-x) d\left(x^{k+1}\right) \\
= & (y-x)\left(a_{n+k+1,0} x^{n+k+1}+a_{n+k, 1} x^{n+k} y+\cdots+a_{0, n+k+1} y^{n+k+1}\right) .
\end{aligned}
$$

Thus, since the coefficients of all monomials in the second factor of $\left[1, d\left(x^{k+2}\right)\right]$ are equal we have $a_{n+k+1,0}=\cdots=a_{0, n+k+1}$. But $\left[1, d\left(x^{k+1}\right)\right]=0$ implies that $\sum_{i=0}^{n+k+1} a_{n+k+1-i, i}=0$. Thus $a_{n+k+1,0}=\cdots=a_{0, n+k+1}=0$, that is, $\left[1, d\left(x^{k+2}\right)\right]=0$ and $d\left(x^{k+1}\right)=0$. By induction on $m$, we have $d\left(x^{m}\right)=0$, for any $m \geq 0$. Now by (3.1), $d\left(x^{s} y^{t}\right)=d\left(x^{s+t}\right)+\left(y^{t}-x^{t}\right) d\left(x^{s}\right)+x^{s}\left[1, d\left(x^{t}\right)\right]=0$, for any $s, t \in \mathbb{Z}_{+}$. Thus $d=0$.

In general, suppose that $\delta \in \operatorname{der}_{n}(F[x, y])$. Then $\delta(1) \in F[x, y]_{n}$. Let $\delta(1)=$ $f(x, y)$, then $(x-y) \mid f(x, y)$. By Lemma 3.1.2, $\widehat{f}(x, y) \in \operatorname{der}_{n}(F[x, y])$, and $\delta(1)=\widehat{f}(x, y)(1)$. Set $d^{\prime}=\delta-\widehat{f}(x, y) \in \operatorname{der}_{n}(F[x, y])$, then $d^{\prime}(1)=0$. Suppose that $d^{\prime}(x)=a_{n+1,0} x^{n+1}+a_{n, 1} x^{n} y+\cdots+a_{0, n+1} y^{n+1}$, where all $a_{n+1-i, i} \in F$. Then

$$
\left(d^{\prime}-a_{n+1,0} d_{n}\right)(x)=d^{\prime}(x)-a_{n+1,0} x^{n+1}=a_{n, 1} x^{n} y+\cdots+a_{0, n+1} y^{n+1},
$$

and $\left(d^{\prime}-a_{n+1,0} d_{n}\right)(1)=0$. Set $d=d^{\prime}-a_{n+1,0} d_{n}$, then $d \in \operatorname{der}_{n}(F[x, y]), d(1)=0$ and $d(x)=b_{n} x^{n} y+\cdots+b_{0} y^{n+1}$. Now by above discussion, we have $d=0$. Thus $\delta=$ $\widehat{f}(x, y)+a_{n+1,0} d_{n}$. Consequently, $\operatorname{der}_{n}(F[x, y])=\langle\widehat{f}(x, y)| f \in F[x, y]_{n}$, and $(x-$ $y)|f(x, y)\rangle+\left\langle d_{n}\right\rangle$. If $\widehat{f}(x, y) \in\left\langle d_{n}\right\rangle$, then $0=\widehat{f}(x, y)(1)=f(x, y)$, thus $\widehat{f}(x, y)=0$ and

$$
\operatorname{der}_{n}(F[x, y])=\langle\widehat{f}(x, y)| f \in F[x, y]_{n}, \text { and }(x-y)|f(x, y)\rangle \oplus\left\langle d_{n}\right\rangle
$$

We collect all these results into the following theorem.
Theorem 3.1.12. For the $\mathbb{Z}$-graded Leibniz algebra $F[x, y]$, its homogeneous derivation algebra

$$
\operatorname{der}^{\prime}(F[x, y])=\{\widehat{f}(x, y) \mid f(x, y) \in(y-x) F[x, y]\} \oplus\left\langle d_{m} \mid m \geq-1\right\rangle
$$

Corollary 3.1.13. $\operatorname{Der}(F[x, y])=\operatorname{der}^{\prime}(F[x, y])$, that is, the derivation algebra of $F[x, y]$ as an associative dialgebra is the same as the homogeneous derivation algebra of $F[x, y]$ as a $\mathbb{Z}$-graded Leibniz algebra.

Set

$$
\mathcal{D}_{1}(F[x, y])=\{\widehat{f}(x, y) \mid f(x, y) \in(y-x) F[x, y]\}
$$

and

$$
\mathcal{D}_{2}(F[x, y])=\left\langle d_{m} \mid m \geq-1\right\rangle
$$

Thus, by Theorem 3.1.12, $\operatorname{der}^{\prime}(F[x, y])=\mathcal{D}_{1}(F[x, y]) \oplus \mathcal{D}_{2}(F[x, y])$. In the following theorem we point out the structure of the Lie algebra $\operatorname{der}^{\prime}(F[x, y])$.

Theorem 3.1.14. For the homogeneous derivation algebra $\operatorname{der}^{\prime}(F[x, y])$ of the $\mathbb{Z}$ graded Leibniz algebra $F[x, y]$, we have
(1) $\mathcal{D}_{1}(F[x, y])$ is an abelian ideal of $\operatorname{der}^{\prime}(F[x, y])$;
(2) $\mathcal{D}_{2}(F[x, y])$ is a subalgebra of $\operatorname{der}^{\prime}(F[x, y])$ and is isomorphic to Witt algebra $W(1)$;
(3) For any $f(x, y) \in(y-x) F[x, y]$ and $m \geq-1$,

$$
\left[d_{m}, \widehat{f}(x, y)\right]=\widehat{g}(x, y)
$$

where $g(x, y)=d_{m}(f(x, y)) \in(y-x) F[x, y]$.
Proof. Since $F[x, y]$ is a commutative algebra as a polynomial algebra (with respect to the ordinary multiplication), we have that $[\widehat{f}(x, y), \widehat{g}(x, y)]=0$, and $\mathcal{D}_{1}(F[x, y])$ is an abelian subalgebra.

It is easy to verify that

$$
\left[d_{m}, d_{n}\right]= \begin{cases}(n-m) d_{m+n}, & \text { if } m+n \geq-1 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, (2) is true.

For any $f(x, y) \in(y-x) F[x, y], h(x, y) \in F[x, y]$ and integer $m \geq-1$, one has

$$
\begin{aligned}
{\left[d_{m}, \widehat{f}(x, y)\right] h(x, y) } & =d_{m} \widehat{f}(x, y)(h(x, y))-\widehat{f}(x, y) d_{m}(h(x, y)) \\
& =d_{m}(f(x, y) h(x, y))-f(x, y)\left(x^{m+1} \frac{\partial h(x, y)}{\partial x}+y^{m+1} \frac{\partial h(x, y)}{\partial y}\right) \\
& =x^{m+1} \frac{\partial f(x, y)}{\partial x} h(x, y)+y^{m+1} \frac{\partial f(x, y)}{\partial y} h(x, y) \\
& =\widehat{g}(x, y) h(x, y),
\end{aligned}
$$

where $g(x, y)=x^{m+1} \frac{\partial f(x, y)}{\partial x}+y^{m+1} \frac{\partial f(x, y)}{\partial y}=d_{m}(f(x, y))$. Since $\left[d_{m}, \widehat{f}(x, y)\right]$ is also a derivation, by Lemma 3.1.2, $g(x, y) \in(y-x) F[x, y]$. Thus (3) holds, and $\mathcal{D}_{1}(F[x, y])$ is an ideal of $\operatorname{der}^{\prime}(F[x, y])$. So (1) is true.

## §3.2 Automorphisms of the Leibniz algebra $F[x, y]$.

In this subsection, we discuss automorphisms of the Leibniz algebra $F[x, y]$.
Definition 3.2.1. Let $\mathcal{G}$ be a Leibniz algebra, $\sigma \in \operatorname{End}(\mathcal{G})$. If

$$
\sigma[a, b]=[\sigma(a), \sigma(b)], \quad \forall, a, b \in \mathcal{G},
$$

and $\sigma$ is bijective, then $\sigma$ is called an automorphism of the Leibniz algebra $\mathcal{G}$. We denote the automorphism group of the Leibniz algebra $\mathcal{G}$ by $\operatorname{Aut}(\mathcal{G})$.

Suppose that $\sigma$ is an automorphism of the Leibniz algebra $F[x, y]$, that is, $\sigma \in$ $\operatorname{Aut}(F[x, y])$. Then

$$
\begin{equation*}
\sigma\left[x^{m}, x^{n}\right]=\sigma\left(x^{m} y^{n}-x^{m+n}\right) \tag{3.6}
\end{equation*}
$$

Thus $\sigma\left(x^{m} y^{n}\right)=\sigma\left(x^{m+n}\right)+\sigma\left(x^{m}\right)\left[1, \sigma\left(x^{n}\right)\right]$. That is, $\sigma\left(x^{m} y^{n}\right)$ can be determined by $\sigma\left(x^{m+n}\right), \sigma\left(x^{m}\right)$ and $\sigma\left(x^{n}\right)$. Further,

$$
\begin{equation*}
\sigma\left[y^{n}, x^{m}\right]=\sigma\left(y^{m+n}-x^{m} y^{n}\right) \tag{3.7}
\end{equation*}
$$

By adding (3.6) and (3.7) we get

$$
\sigma\left[x^{m}, x^{n}\right]+\sigma\left[y^{n}, x^{m}\right]=\sigma\left(y^{m+n}\right)-\sigma\left(x^{m+n}\right)
$$

Since $\sigma\left[1, x^{m+n}\right]=\sigma\left(y^{m+n}-x^{m+n}\right)$,

$$
\begin{align*}
& \sigma\left[x^{m}, x^{n}\right]+\sigma\left[y^{n}, x^{m}\right]=\sigma\left[1, x^{m+n}\right]  \tag{3.8}\\
\sigma\left(y^{n}\right) & =\sigma\left(x^{n}\right)[1, \sigma(1)]+\sigma(1)\left[1, \sigma\left(x^{n}\right)\right]+\sigma\left(x^{n}\right) \\
& =\sigma\left(x^{n}\right)+\sigma(1)\left[1, \sigma\left(x^{n}\right)\right]
\end{align*}
$$

Substituting this expression into (3.8) we have

$$
\begin{equation*}
\sigma(1)\left[1, \sigma\left(x^{m+n}\right)\right]=\sigma\left(x^{m}\right)\left[1, \sigma\left(x^{n}\right)\right]+\sigma\left(x^{n}\right)\left[1, \sigma\left(x^{m}\right)\right]+\sigma(1)\left[1, \sigma\left(x^{m}\right)\right]\left[1, \sigma\left(x^{n}\right)\right] \tag{3.9}
\end{equation*}
$$

Suppose that $\sigma(1)=f(x, y)$, then $f(y, y)=f(x, x)$ follows from $[1, \sigma(1)]=0$. Thus there are $c \in F$ and $g(x, y) \in F[x, y]$, such that $f(x, y)=c+(y-x) g(x, y)$.

Next, we will prove that $c \neq 0$.

By Lemma 1.2.4, the right annihilator $Z^{r}(F[x, y])$ of the Leibniz algebra $F[x, y]$ is $\{a+(y-x) h(x, y) \mid a \in F, h(x, y) \in F[x, y]\}$. On the other hand, by Lemma 1.2.2, $F[x, y]^{(1)}=(y-x) F[x, y]$.

Obviously, for any $\sigma \in \operatorname{Aut}(F[x, y]), F[x, y]^{(1)}$ and $Z^{r}(F[x, y])$ are all $\sigma$-invariant. Hence, $(y-x) F[x, y]$ is $\sigma$-invariant.

Now $1 \notin(y-x) F[x, y]$ implies that $\sigma(1) \notin(y-x) F[x, y]$, thus $c \neq 0$.
By (3.9), we have

$$
\begin{equation*}
\sigma(1)\left[1, \sigma\left(x^{2}\right)\right]=2 \sigma(x)[1, \sigma(x)]+\sigma(1)[1, \sigma(x)]^{2} \tag{3.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma(1)\left(\left[1, \sigma\left(x^{2}\right)\right]-[1, \sigma(x)]^{2}\right)=2 \sigma(x)[1, \sigma(x)] \tag{3.11}
\end{equation*}
$$

Suppose that $\sigma$ preserves the standard filtration $\left\{F[x, y]_{(n)}\right\}_{n \geq 0}$ of $F[x, y]$. Then $\sigma(1)=c, \sigma(x) \in F[x, y]_{(1)}$. So we can write $\sigma(x)=a+b x+e y$, for some $a, b, e \in F$. Then

$$
\begin{aligned}
0 \neq c\left[1, \sigma\left(x^{2}\right)\right] & =2 \sigma(x)[1, \sigma(x)]+c[1, \sigma(x)]^{2} \\
& =(b+e)(y-x)(2 a+2 b x+2 e y+c(b+e)(y-x))
\end{aligned}
$$

As the coefficients of $x^{2}$ and $y^{2}$ in $\left[1, \sigma\left(x^{2}\right)\right]$ are equal, $(1-c) b=(1+c) e$. Hence, if $c=1$, then $e=0$; if $c=-1$, then $b=0$. So in the following we first consider two special cases: $c=1$ or $c=-1$.

Theorem 3.2.2. Let $\sigma$ be an automorphism of the Leibniz algebra $F[x, y]$ which preserves the standard filtration and $\sigma(1)=1$, then

$$
\begin{equation*}
\sigma\left(x^{m} y^{n}\right)=(a+b x)^{m}(a+b y)^{n}, \quad \forall m, n \in \mathbb{Z}_{+} \tag{3.12}
\end{equation*}
$$

where $a, b \in F$ and $b \neq 0$.
Conversely, for any $a, b \in F$ and $b \neq 0$, the linear transformation $\sigma$ of $F[x, y]$ defined by (3.12) is an automorphism of the Leibniz algebra $F[x, y]$.

Proof. If $\sigma \in \operatorname{End}(F[x, y])$ defined by (3.12), then it is easy to see that

$$
\sigma f(x, y)=f(a+b x, a+b y), \quad \forall f(x, y) \in F[x, y] .
$$

Obviously,

$$
\begin{aligned}
\sigma[f(x, y), g(x, y)] & =f(a+b x, a+b y)(g(a+b y, a+b y)-g(a+b x, a+b x)) \\
& =[\sigma f(x, y), \sigma g(x, y)] .
\end{aligned}
$$

Thus $\sigma$ is a homomorphism. On the other hand, if we define $\eta \in \operatorname{End}(F[x, y])$ by

$$
\eta f(x, y)=f\left(-a b^{-1}+b^{-1} x,-a b^{-1}+b^{-1} y\right), \quad \forall f(x, y) \in F[x, y]
$$

then $\eta$ is the inverse of $\sigma$. Hence, $\sigma \in \operatorname{Aut}(F[x, y])$.
If $\sigma$ is any automorphism of $F[x, y]$ preserving the standard filtration and $\sigma(1)=$ $1, \sigma(x)=a+b x$, for some $a, b \in F, b \neq 0$, then by $(3.9),\left[1, \sigma\left(x^{2}\right)\right]=b(y-x)(2 a+b x+$
by). Suppose that $\sigma\left(x^{2}\right)=\sum_{k=0}^{2} \sum_{i=0}^{k} a_{i, k-i} x^{i} y^{k-i}$ and the coefficients satisfying $a_{1,0}+a_{0,1}=2 a b, a_{2,0}+a_{1,1}+a_{0,2}=b^{2}$. Then by (3.9), we have

$$
\begin{aligned}
{\left[1, \sigma\left(x^{3}\right)\right]=} & \sigma(x)\left[1, \sigma\left(x^{2}\right)\right]+\sigma\left(x^{2}\right)[1, \sigma(x)]+[1, \sigma(x)]\left[1, \sigma\left(x^{2}\right)\right] \\
= & b(y-x)\left(\left(2 a^{2}+a_{00}\right)+\left(a b+a_{1,0}\right) x+\left(3 a b+a_{0,1}\right) y+a_{2,0} x^{2}\right. \\
& \left.+\left(b^{2}+a_{1,1}\right) x y+\left(b^{2}+a_{0,2}\right) y^{2}\right) .
\end{aligned}
$$

Since the coefficients of $x, y$ and of $x^{2}, x y, y^{2}$ in the second factor of the right-hand side of the above equation are equal respectively, we have
$\sigma\left(x^{2}\right)=c+2 a b x+b^{2} x^{2},\left[1, \sigma\left(x^{3}\right)\right]=b(y-x)\left(2 a^{2}+c+3 a b(x+y)+b^{2}\left(x^{2}+x y+y^{2}\right)\right)$.
Now suppose that

$$
\sigma\left(x^{3}\right)=\sum_{k=0}^{3} \sum_{i=0}^{k} b_{i, k-i} x^{i} y^{k-i}
$$

and the coefficients satisfy

$$
b_{1,0}+b_{0,1}=b\left(2 a^{2}+c\right), \sum_{i=0}^{2} b_{i, 2-i}=3 a b^{2}, \sum_{i=0}^{3} b_{i, 3-i}=b^{3}
$$

Then

$$
\begin{aligned}
{\left[1, \sigma\left(x^{4}\right)\right]=} & 2 \sigma\left(x^{2}\right)\left[1, \sigma\left(x^{2}\right)\right]+\left[1, \sigma\left(x^{2}\right)\right]^{2} \\
= & b(y-x)\left(4 a c+\left(4 a^{2} b+2 b c\right)(x+y)+4 a b^{2}\left(x^{2}+x y+y^{2}\right)\right. \\
& \left.+b^{3}\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)\right) \\
= & \sigma(x)\left[1, \sigma\left(x^{3}\right)\right]+\sigma\left(x^{3}\right)[1, \sigma(x)]+[1, \sigma(x)]\left[1, \sigma\left(x^{3}\right)\right] \\
= & b(y-x)\left(2 a^{3}+a c+b_{0,0}+\left(3 a^{2} b+b_{1,0}\right) x+\left(5 a^{2} b+b c+b_{0,1}\right) y\right. \\
& +\left(a b^{2}+b_{2,0}\right) x^{2}+\left(4 a b^{2}+b_{1,1}\right) x y+\left(4 a b^{2}+b_{0,2}\right) y^{2} \\
& \left.+b_{3,0} x^{3}+\left(b_{2,1}+b^{3}\right) x^{2} y+\left(b_{1,2}+b^{3}\right) x y^{2}+\left(b_{0,3}+b^{3}\right) y^{3}\right)
\end{aligned}
$$

Thus $c=a^{2}, b_{0,0}=a^{3}$, which implies that $\sigma\left(x^{2}\right)=(a+b x)^{2}$ and $\sigma\left(x^{3}\right)=(a+b x)^{3}$.
In the following we prove by induction that $\sigma\left(x^{k}\right)=(a+b x)^{k}$, for all $k \geq 0$.
Suppose that for $k=n, \sigma\left(x^{k}\right)=(a+b y)^{k}$ holds. Then for $k=n+1$, by (3.9) we have $\left[1, \sigma\left(x^{n+1}\right)\right]=(a+b y)^{n+1}-(a+b x)^{n+1}$. Thus

$$
\begin{aligned}
{\left[1, \sigma\left(x^{n+2}\right)\right] } & =\sigma\left(x^{2}\right)\left[1, \sigma\left(x^{n}\right)\right]+\sigma\left(x^{n}\right)\left[1, \sigma\left(x^{2}\right)\right]+\left[1, \sigma\left(x^{2}\right)\right]\left[1, \sigma\left(x^{n}\right)\right] \\
& =(a+b y)^{n+2}-(a+b x)^{n+2} \\
& =\sigma(x)\left[1, \sigma\left(x^{n+1}\right)\right]+\sigma\left(x^{n+1}\right)[1, \sigma(x)]+[1, \sigma(x)]\left[1, \sigma\left(x^{n+1}\right)\right]
\end{aligned}
$$

Hence

$$
\sigma\left(x^{n+1}\right)=(a+b x)^{n+1}
$$

By induction, for any $k \geq 0, \sigma\left(x^{k}\right)=(a+b x)^{k}$ holds.
As $\sigma\left(x^{m} y^{n}\right)=\sigma\left(x^{m+n}\right)+\sigma\left(x^{m}\right)\left[1, \sigma\left(x^{n}\right)\right]$, for any $m, n \in \mathbb{Z}_{+}$, we get

$$
\sigma\left(x^{m} y^{n}\right)=(a+b x)^{m}(a+b y)^{n}
$$

which completes the proof.

Theorem 3.2.3. Let $\sigma$ be an automorphism of the Leibniz algebra $F[x, y]$ which preserves the standard filtration and $\sigma(1)=-1$, then there are $a, b \in F$, and $b \neq 0$, such that

$$
\begin{equation*}
\sigma f(x, y)=-f(a+b y, a+b x), \quad \forall f(x, y) \in F[x, y] \tag{3.13}
\end{equation*}
$$

Conversely, for any $a, b \in F$ and $b \neq 0$, the linear transformation $\sigma$ of $F[x, y]$ defined by (3.13) is an automorphism of the Leibniz algebra $F[x, y]$.

Proof. For any $a, b \in F$ and $b \neq 0$, if $\sigma$ is the transformation of $F[x, y]$ defined by (3.13), then similar to the proof of Theorem 3.2.2, we obtain that $\sigma$ is an automorphism of the Leibniz algebra $F[x, y]$, and clearly, $\sigma$ preserves the standard filtration.

On the other hand, it is easy to verify that the linear transformation $\gamma$ of $F[x, y]$ defined by

$$
\gamma: f(x, y) \mapsto-f(y, x), \quad \forall f(x, y) \in F[x, y]
$$

is an automorphism of $F[x, y]$, and $\gamma(1)=-1$. Obviously, $\gamma$ preserves the standard filtration.

Now consider any automorphism $\sigma$ of $F[x, y]$ which preserves the filtration and $\sigma(1)=-1$. Set $\sigma^{\prime}=\gamma^{-1} \sigma$, then $\sigma^{\prime}$ is also an automorphism preserving the filtration, and $\sigma^{\prime}(1)=\gamma^{-1} \sigma(1)=\gamma^{-1}(-1)=1$. By Theorem 3.2.2, there are $a, b \in F$, $b \neq 0$, such that $\sigma^{\prime} f(x, y)=f(a+b x, a+b y)$, for any $f(x, y) \in F[x, y]$. Hence,

$$
\begin{aligned}
\sigma f(x, y) & =\gamma \sigma^{\prime} f(x, y)=\gamma f(a+b x, a+b y) \\
& =-f(a+b y, a+b x), \quad \forall f(x, y) \in F[x, y]
\end{aligned}
$$

which is the result we want to get.
In the following, we will prove that if $\sigma$ is any automorphism of the Leibniz algebra $F[x, y]$ preserving the standard filtration, and $\sigma(1)=a \in F$, then $a= \pm 1$, or equivalently, if $a \neq-1$ then $a=1$.

So suppose that $\sigma(1)=a \neq 1$, and $\sigma(x)=b+c x+e y$. As $a\left[1, \sigma\left(x^{2}\right)\right]=$ $2 \sigma(x)[1, \sigma(x)]+a[1, \sigma(x)]^{2}$, we have

$$
\begin{aligned}
a\left[1, \sigma\left(x^{2}\right)\right] & =2(b+c x+e y)(c+e)(y-x)+a(c+e)^{2}(y-x)^{2} \\
& =(c+e)(y-x)(2 b+(2 c-a e-a c) x+(2 e+a c+a e) y)
\end{aligned}
$$

Thus $e=\frac{1-a}{1+a} c$ and

$$
\sigma(x)=b+c x+\frac{1-a}{1+a} c y, a\left[1, \sigma\left(x^{2}\right)\right]=\frac{4 b c}{1+a}(y-x)+\frac{4 c^{2}}{(1+a)^{2}}\left(y^{2}-x^{2}\right)
$$

In this case $c \neq 0$, otherwise,

$$
\sigma(y-x)=\sigma[1, x]=\sigma(1)[1, \sigma(x)]=0,
$$

and $\sigma$ is injective, a contradiction. Hence, $c \neq 0$.
Suppose that $\sigma\left(x^{2}\right)=a_{0,0}+a_{1,0} x+a_{0,1} y+a_{2,0} x^{2}+a_{1,1} x y+a_{0,2} y^{2}$, where all $a_{i, j} \in F$ and

$$
a_{1,0}+a_{0,1}=\frac{4 b c}{a(1+a)}, a_{2,0}+a_{1,1}+a_{0,2}=\frac{4 c^{2}}{a(1+a)^{2}} .
$$

By (3.9) we have

$$
\begin{aligned}
a\left[1, \sigma\left(x^{3}\right)\right]= & \frac{2 c}{a(1+a)}(y-x)\left(2 b+\frac{2 c}{1+a} x+\frac{2 c}{1+a} y\right)\left(b+c x+\frac{1-a}{1+a} c y\right. \\
& \left.+\frac{2 a c}{1+a}(y-x)\right)+\frac{2 c}{1+a}(y-x) \sigma\left(x^{2}\right) \\
= & \frac{2 c}{1+a}(y-x)\left(\frac{2 b^{2}}{a}+\frac{2 b c(2-a)}{a(1+a)} x+\frac{2 b c(2+a)}{a(1+a)} y+\frac{2 c^{2}(1-a)}{a(1+a)^{2}} x^{2}\right. \\
+ & \left.\frac{4 c^{2}}{a(1+a)^{2}} x y+\frac{2 c^{2}}{a(1+a)} y^{2}+a_{0,0}+a_{1,0} x+a_{0,1} y+a_{2,0} x^{2}+a_{1,1} x y+a_{0,2} y^{2}\right) .
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
& \frac{2 b c(2-a)}{a(1+a)}+a_{1,0}=\frac{2 b c(2+a)}{a(1+a)}+a_{0,1} \\
& \frac{2 c^{2}(1-a)}{a(1+a)^{2}}+a_{2,0}=\frac{4 c^{2}}{a(1+a)^{2}}+a_{1,1}=\frac{2 c^{2}}{a(1+a)}+a_{0,2}
\end{aligned}
$$

Hence,

$$
a_{1,0}=\frac{2 b c}{a}, a_{0,1}=\frac{2 b c(1-a)}{a(1+a)}, a_{2,0}=\frac{2 c^{2}}{a(1+a)}, a_{1,1}=0, a_{0,2}=\frac{2 c^{2}(1-a)}{a(1+a)^{2}} .
$$

Thus

$$
\sigma\left(x^{2}\right)=a_{0,0}+\frac{2 b c}{a} x+\frac{2 b c(1-a)}{a(1+a)} y+\frac{2 c^{2}}{a(1+a)} x^{2}+\frac{2 c^{2}(1-a)}{a(1+a)^{2}} y^{2}
$$

On the other hand, $\sigma[x y, x]=[\sigma(x y), \sigma(x)]=\sigma(x y)[1, \sigma(x)]$, and

$$
\begin{aligned}
\sigma[x y, x] & =\sigma\left(x y^{2}-x^{2} y\right) \\
& =\sigma\left(x^{3}\right)+\sigma\left[x, x^{2}\right]-\sigma\left(x^{3}\right)-\sigma\left[x^{2}, x\right] \\
& =\sigma(x)\left[1, \sigma\left(x^{2}\right)\right]-\sigma\left(x^{2}\right)[1, \sigma(x)] \\
& =\frac{\sigma x}{a}\left(2 \sigma(x)[1, \sigma(x)]+a[1, \sigma(x)]^{2}\right)-\sigma\left(x^{2}\right)[1, \sigma(x)] \\
& =[1, \sigma(x)]\left(\frac{2(\sigma(x))^{2}}{a}+\sigma(x)[1, \sigma(x)]-\sigma\left(x^{2}\right)\right)
\end{aligned}
$$

But

$$
\sigma[x y, x]=\sigma(x y)[1, \sigma(x)]=[1, \sigma(x)]\left(\sigma\left(x^{2}\right)+\sigma(x)[1, \sigma(x)]\right)
$$

and $[1, \sigma(x)] \neq 0$, hence

$$
\frac{2(\sigma(x))^{2}}{a}+\sigma(x)[1, \sigma(x)]-\sigma\left(x^{2}\right)=\sigma\left(x^{2}\right)+\sigma(x)[1, \sigma(x)]
$$

which implies that $(\sigma(x))^{2}=a \sigma\left(x^{2}\right)$. By comparing the coefficients of $x^{2}$ in two sides of the equation we have $a=1$. Hence, we have proved the following

Theorem 3.2.4. If $\sigma$ is an automorphism of the Leibniz algebra $F[x, y]$ and preserves the standard filtration $\left\{F[x, y]_{(n)}\right\}_{n \in \mathbb{Z}_{+}}$, then $\sigma(1)= \pm 1$.

Thus, we can describe all automorphisms of the Leibniz algebra $F[x, y]$ which preserve the standard filtration.
Theorem 3.2.5. Let $\operatorname{Aut}^{\prime}(F[x, y])$ be the set of automorphisms of the Leibniz algebra $F[x, y]$ which preserve the standard filtration $\left\{F[x, y]_{(n)}\right\}_{n \in \mathbb{Z}_{+}}$of $F[x, y]$, then $\operatorname{Aut}^{\prime}(F[x, y])$ is a subgroup of $\operatorname{Aut}(F[x, y])$, and $\operatorname{Aut}^{\prime}(F[x, y])$ is isomorphic to the following matrix multiplication group

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & a \\
0 & b & 0 \\
0 & 0 & b
\end{array}\right) \right\rvert\, a, b \in F, b \neq 0\right\} \cup\left\{\left.\left(\begin{array}{ccc}
-1 & a & a \\
0 & 0 & b \\
0 & b & 0
\end{array}\right) \right\rvert\, a, b \in F, b \neq 0\right\}
$$

Proof. Clearly, $\operatorname{Aut}^{\prime}(F[x, y])$ is a subgroup of the automorphism group $\operatorname{Aut}(F[x, y])$, and by Theorem 3.2.4, for any $\sigma \in \operatorname{Aut}^{\prime}(F[x, y]), \sigma(1)= \pm 1$. But by Theorem 3.2.2 and 3.2.3, such an automorphism $\sigma$ can be determined uniquely by its images $\sigma(1)$, $\sigma(x)$ and $\sigma(y)$. If we identify $\sigma$ with the matrix of linear transformation $\left.\sigma\right|_{F[x, y]_{(1)}}$ with respect to the basis $1, x, y$, we get the result.

## References

[1] Albeverio, S.; Ayupov, Sh. A.; Omirov, B. A., On nilpotent and simple Leibniz algebras, Comm. in Algebra 33 (2005), 159-172.
[2] Ayupov, Sh. A.; Omirov, B. A., On Leibniz algebra, Algebra and Operator Theory. Proceeding of the Colloquium in Tashkent (1997), Kluwer (1998), 1-13.
[3] Ayupov, Sh. A.; Omirov, B. A., On 3-dimensional Leibniz algebra, Uzbek Math. (1999), 9-14.
[4] Ayupov, Sh. A.; Omirov, B. A., On some classes of nilpotent Leibniz algebras, Siberian Math. Journal 42(1) (2001), 18-29.
[5] Bloch, A., On a generalization of Lie algebra notion, Math In USSR Doklady 163(3) (1965), 471-473.
[6] Dokas, I.; Loday, J.-L., On restricted Leibniz algebras, Comm. in Algebra 34(12) (2006), 4467-4478.
[7] Dzhumadil'daev, A. S.; Abdykassymova, S. A., Leibniz algebras in characteristic p, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001).
[8] Liu, D.; Hu, N. H., Leibniz superalgebras and central extensions, Journal of algebra and its Applications 5(6) (2006), 765-780.
[9] Liu, D.; Lin, L., On the Toroidal Leibniz Algebras, Acta Mathematica Sinica, English Series 24(2) (2008), 227-240.
[10] Loday, J.-L.; Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), 139-158.
[11] Loday, J.-L., Dialgebras, Springer, Lecture Notes in Mathematics, Vol. 1763 (2001), 7-66.
[12] Pirashvili, T., On Leibniz homology, Ann. Inst. Faurier (Grenoble) 44 (1994), 401-411.
[13] Strade H.; Farnsteiner, Modular Lie algebras and their representations, Dekker, New York, 1988.


[^0]:    L. Lin is supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), and the Shanghai Priority Academic Discipline from the SMEC.

