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NON-ALTERNATING HAMILTONIAN 
ALGEBRA P ( n , m )  OF CHARACTERISTIC TWO 

LEI LIN 

Department of Mathematics, East China Normal University 
Shanghai 200062, The People'e Republic of China 

ABSTRACT. Over a field F of characteristic p = 2, a class of Lie algebras P (n ,m) ,  called 
non-alternating Hamiltonian algebras, is constructed, where n is a positive integer and m =  
(ml ,  . . . , m,) is an n-tuple of positive integers. P(n, m )  is a graded and filtered subalgebra 
of the generalized Jacobson-Witt algebra W(n,m) and bears resemblance to the Lie algebras 
of Cactan type. P ( n , m )  is shown to be simple unless m = l  and n < 4. The dimension 
of P ( n , m )  is 21-1 - 2 if m=l, 21-1 - 1 if m $1, where Irnl = EL, mi .  Different from 
the Lie algebras of Cartan type, all P (n ,m)  are nonrestrictable. The derivation algebra of 
P(n,  m) is determined, and the natural filtration of P (n ,m)  is proved to be invariant. It  is 
then determined that P ( n , m )  is a new class of simple Lie algebras if ( n , m )  satisfies some 
condition. 

In the paper, we assume the ground field F to be of characteristic p = 2. If S is a 
subset of a linear space, (S) will denote the subspace spanned by S. 

Let g[(n) be the Lie algebra of all n x n matrices over F and Eij the matrix in g[(n) 
with (i, j)-entry 1 and other entries 0. Let A(n) be the set of n-tuple of nonnegtive integers, 
Ei = ( 6 1 i ,  . . . ,6ni)  E A(n). For a = (a l ,  . . . , a n )  E A(n), set 

If m = (ml,. . . , m,) is an n-tuple of positive integers, we put A(n, m) = {a E A(n) I 0 5 
a 5 n), where .n = (xl, , n,) := (2ml - 1, .  . ,2"'n - 1). Set Q = %(n) be the 
commutative associative F-algebra of all formal sums a,xa with multiplication 
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where = nr=l (PCBi). I.et Oiil = (za  ( a E A(n), (a( = i ) ,  then O = EQl[;) is a 
graded algebra. If 0 # j E !Xii l l  write deg f = i. Set O(n, m )  = ( za  I a E A(n, m ) ) ,  then 
O(n, m) is a subalgebra of ??l(n). Define derivations Di: 

Let W ,  <aiDi I a, E O(n)).  Then W ( n )  = C W(n)lil is a graded Lie algebra, 
where W(nli,, { C a j D j  I aj E 21(n)ii+ll}. W ( n )  is also a filtered Lie algebra with a 
filtration {W(tr . associated with the gradation, and 

is a graded and filtered subalgebra of W(n) .  Let Po = { A  E gl(n) ( A = A'), then PO is a 
Lie subalgebra of gl(n). Let P(n) be the extention of Po in W ( n )  (cf. [5, Definition l . l ] ) ,  
that is 

By 15, l'heorem 1.11, P(n)  is a Lie subalgebra of W ( n )  and an elementary computation 
shows that 

Define 
P1'(n, m) := P(n) n W ( n ,  m), 

then P"(n, m) is a subalgebra of W ( n ,  m). We define Dp : U(n) --+ W ( n )  b y  means of 

Clearly, Dp(Ql(n, m)) C W(n ,  m). Let P1(n, m) denote the, image of O(n, mj wder Dp. 
Note that xTie'Di, 1 5 i 5 n, are elements of P1#(n, m) which do not lie in P1(n, m). We 
put 

P(n,  m) := ~ ' ( n ,  m)('). 

Lemma 1.1. (1) The linear map Dp has degree -2. 
(2) P'(n, m) is contained in Pfl(n,  m). 
(3) kerDp = F1. 
(4) Let D = C f j D j ,  E = C g j D j  be elements of PU(n, m )  ( or P(n)); then 

Proof. The proof of (1)-(4) is very similar to that of [ I ,  Chap. 4, Lemma 4.11. 
(5) Similar to the proof of (2), we have Dp(O(n)) c P(n). Given D = C fiDi E P(n),  

we have D i ( f j )  = D j ( f i ) ,  1 < i, j < n ,  thanks to  [7, Lemma 1.21, there is j E O(n), such 
that D i ( f )  = f i ,  1 5 i 5 n. Hence D = Dp( f )  and P(n) = Dp(%(n)). 
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Proposition 1.2. P(n ,  m) is an ideal of  P"(n, m). 

Definition. The Lie algebras P (n ,  m) (resp. P (n ) )  are called the finite (resp. infinite) 
non-alternating Hamiltonian algebras. 

Lemma 1.3. The following results hold: 

(1) [Dp( f  1, Dp(g)l = Dp(Dp( f  )(g)), f ,  g E a(n) .  (1.2) 
(2) [Dp(xP) ,  Dp(x@)] = Cy=l ( " ~ ~ ~ ~ i ) ~ p ( ~ a + @ - 2 c i  1. (1.3) 
(3) [Dp(xu) ,  Dp(x")]  = D ~ ( X ~ - ~ ' ) .  (1.4) 
(4) (Dp(xa) ,  Dp(xZEi)j  = aiDP(xP).  (1.5) 
(5) P(n,  m) (resp. P (n ) )  is a graded and filtered subalgebra of  W ( n ,  m) (resp. W(n ) ) .  

Proposition 1.4. Suppose that m # 1 := (1,1,. . . ,1) or m = 1 and n 2 3, then we 
have 

(1 )  P(n ,  1 )  = (Dp(xu )  I 0 < a < n). 
(2) Urn  # 1, then P(n,  m) = P1(n, m). 
(3) P(n,  4 1 - 1 1  = W n ,  m)[-11. 
(4) The representation 

which is induced by the canonical representation of W(n)tol in W(n)[ - l l ,  defines an iso- 

morphism P(n)Iol  2 PO, and ' P ~ I ~ ( ~ , ~ ) ( ~ ~  defines an isomorphism P(n , l ) [o l  2 pi1). 

Proof. (1) Efom Lemma 1.3 (3)  it follows that Dp(xu) E P ( n , l ) ,  for 0 < a < T .  Note 
that i f  m = 1 ,  for 0 < a , p  ( a ,  (Y + p - 2Ei # T, 1 < i ( n. Hence, by virtue of (1.3)(2), 
[ D P ( X ~ ) , D P ( X @ ) I  E (Dp(x r )  I 0 < Y < 4. 

( 2 )  I f  m # I, there exists mi > 1, so x2" E a (n ,  m), (1.3)(4) shows that Dp(xZ )  = 
[Dp(xT ), D ~ ( x ~ ~ ~  )] E P(n,  m). Therefore P(n,  m) = P'(n, m). 

(3)  Note that Dp(xCi)  = Di, 1 5 i 5 n. The assertion now follows from ( 1 )  and (2) .  
(4 )  P(n)lo] = (Dp(xCi+'j) I 1 5 i, j 5 n) .  By  Lemma 1.1 (3), we have dimP(n)[ol = 

$ ( n  + 1) = dim Po. We also note that for 1 5 i < j 5 n ,  

' p p ( ~ p ( x c ' + C j ) )  = (pp(xCi Dj  + xCi Di); 

for 1 < i 5 n. The matrices representating these endomorphisms with respect to the 
basis {se t ,  re', . . , xcn are given by Eij + Ej i  in the former case, and Eii in the latter 
case. These matrices belong to Po. Consequently, P(n)lol 2 Po. Observe that i f  n > 3, 

P (n ,  = ~ ( n ) # ,  thus, P(n,  I)[,] 2 ~ o ( ' ) .  

Lemma 2.1. (1) P(n,m)l-ll  is an irreducible P(n ,  m)[q-module unless m = 1 and n < 3. 
(2) P(n)[-q is an irreducible P(n)tol-module. 0 

Theorem  2.2. (1 )  Suppose that m # 1, then P(n, m )  is simple and dim P(n ,  m) = 
2Iml - 1. 

(2) Suppose that m = 1, then P(n ,  m) is simple if and only i f  n 2 4 and dim P(n,  1 )  = 
2" - 2. 
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Proof. The assertions concerning the dimension of P(n,  m) follow from Lemma 1.1 (3) and 
Proposition 1.4 (I),  (2). The simplicity of P(n, m) will be proven by applying [I, Chap. 
3, Theorem 3.71. The only work we have to do is to verify that the conditions (a)-(e) in 
the simplicity theorem hold. 

As P(n,  m)I-ll coincides with W(n, m)[-]], P(n,  m) is admissibly graded. The as- 

sumption that m = 1 implies that n > 4 guarantees that condition (a) holds. (b) is 
trivially met. Thanks to Lemma 2.1 (c) is also met. Checking (d) is a small exercise. 
According to Lemmd 1.3 (2), 

Dp(xA-Ci) = [DP(xT-'I ), Dp(xEi+'j )], for i # j. 
Therefore, (e) is fulfilled. Since P(n,  # 0 implies that n 1 4, P(n, 1 )  is not simple 
when n < 4. Now the asserted results follow from the simplicity theorem. 0 

Theorem 3.1. Suppose that m # 1 or m = 1 and n 2 4, then all algebras P(n,  m )  are 
not restrictable. 

Proof. Let m # 1, then there exists i, such that mi > 1. Hence Dp(x3Q) E P(n, m), and 
(adDi)2(Dp(x3ci)) = Di # 0. Thus, (adDi)2 # 0. But (adDi)2 is not an inner derivation. 
Consequently, P(n, m) is not restrictable. 

Let m = 1 and n 2 4. Suppose (P(n, I ) ,  b]) is restricted, then for any D E P(n, l)[ol, 
D['] E P(n ,  Choose D = Dp(xe1+'z) and put E = D [ ~ ] ,  then 

(adE)(D,) = Dl, (adE)(Da) = Dz, (adE)(Di) = 0, 2 < i < n. 

But such element E does not exist. Therefore, P(n,  1) is not restrictable. O 

In this section, we will determine the derivation algebra of P(n, m). 

Theorem 4.1. If n > 4, then P(n,  1 )  is generated by P(n,  $ P(n ,  l)I1l. 

Proof. Given Dp(xa) E P(n, there is i ,  such that a; = 0. We obtain 

D ~ ( X ~ )  = [ D ~ ( X O + ~ ~ ) ,  D ~ J ,  

and P(n ,  l)[o] = R n ,  l)[-11, P(n, 1)[111. For 0 # DP(+") E P(n, l ) ~ l + q ,  where t > 0, 
choose i # j, such that ai = aj  = 1. Since a < a, there is k,  such that ar = 0. Now we 
have 

~ ~ ( ~ 0 )  = [ ~ ~ ( ~ a + e b  -~ i -c j  ), ~ ~ ( ~ ~ i + e j + e b  11 
Hence, P(n,  l)[l+il = [P(n, l)(q, P(n,  l)[ll]. By induction on t, we obtain 

Let L be a Lie algebra, Der(L) the derivation algebra of L. If L = $i&,l is graded, 
then Der(L) = $tezDer(L)ltl is also graded, where 

Der(L)[il := (4 E Der(L) I dLfjl C L[i+jl, V j  f'E g), 
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ALGEBRA P(n,m) OF CHARACTERISTIC TWO 403 

An element 4 is called a derivation of degree t if 4 # 0 and 4 E Der(L)[,]. 
Let M be a Lie algebra, L its subalgebra. NorM(L) denotes the norrnalizer of L in M. 

Proposition 4.2. Let L = L n W(n, m)li1 be a graded subalgebra that contains 
W(n, m)I-ll. Suppose that 4 : L - L is a derivation of degree t 1 0. 'Then there exists 
E E Noryn,,)(L) such that 4 = ( a d E ) ( ~ .  

Proof. When the base field F is of characteristic p > 2, this is Proposition 8.3 of (1, Chap. 
4). But we find that the assumption p > 2 is in fact unnecessary. 0 

Lemma 4.3. Suppose that L i s a  graded subalgebra of W(n, m) and L[-l1 = W(n, m)I-ll. 
Let G = Der(L) be the derivation algebra of L. Let t > 0 and 4 E G[-tl IidLIt-ll = 0, 
then 4 = 0. 

Proof. Clearly, +Llkl = 0, t/ k j t - 1. Assume that 4Llk-]j = 0, for some k > t - 1, 
then for any D E LIkl and 1 < s j n, [D, D,] E LIk-lI. Hence d[D,D,] = 0. Let 
$(D) = C g i D i  E L~k-11, then 

0 = 4[D, DsI = [4(D), D.1- [x g i ~ i ,  D.] = C ~ s ( g i ) ~ i .  

Thus, D,(gi) = 0, V 1 5 i , s  < n. Consequently, gi E F1, 1 < i <: n. But gi E 
%(n, m)[k-t+ll and k > t - 1. Hence, k - t + I > 0 and gi E %(n, m)l. This yields 
gi = 0, 1 _< i _< n. Consequently, 4(D) = 0 and 4Lrsl = 0. By induction on k, we obtain 
4 = 0 .  0 

In the following discussion, let D l  = adp(n,m)(P"(n, m)), Dz  =  ad^^)'" I 0 < si < 
mi, l < i < n ) , G = D e r ( P ( n , m ) ) , a n d I k = { i I m i > k ) ,  k=0 ,1 ,2 , . . .  . 
Theorem 4.4. Suppose that m # 1 or m = 1 and n > 5, then G = Dl  $ Dz. 

Proof. We divide the proof into several steps. 
(1) For any t > 0, Gill c Dl. 
Given 4 E GFil, by Proposition 4.2, there exists E = C g i D i  E W(n,m)[,], such 

that 4 = (adE)lp(,,,). We have [Di,E] E P(n,m),  1 5 i < n. Thus, there are 
f i , f i , . - . , f n  E B ( n , r n ) , s u c h t h a t  [Di,E] = Dp(fi), 1 < i  <n.Hence ,  Di(gj) = 

Dj(fi). But Dp(Di(fj)) = Dp(Dj(fi)), According to Lemma 1.1 (3), kerDp = F1, 
SO Di(fj) + Dj(fi) E F1. Because of t > 0, we have Di(gj) = Dj(gi). Consequently, 
E E P"(n, m). 

(2) q o ]  C Dl .  
Given 4 E Giol, according to Proposition 4.2, there is E E W(n,m)lol, such that 

4 = ad(E)lp(,,,). Let E = C a i j ~ ~ i D , ,  we want to  prove that E E PU(n,m). If n = 1, 
this is obvious. Suppose n > 2. Set hi = xeiD;, i = 1,. . . , n. Rewrite E as following 

Since the fist two summands of the right hand side belong to P"(n, m), we may harmlessly 
assume that E = '&j bijxciDj. If n = 2, then E = b12xc1D2. By the assumption 
m # 1, we may assume that ml > 1. Then [E,Dp(zZC1)] E P(n,m),  thus bw = 0, 
and E = 0. If n 2 3, put bij = 0, for i > j. Then for any 1 _< k < I < n, we have 

f j ~ j  := [E, )I E P(n,  m)[ol, and 
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Hence, Di(fj) = Dj(f,), 1 5 i, j < n. Then for any j # k , l ,  Dl(fj) = bk j ,  D,(ft) = 
bjt.  Thus, bk, = bjk = 0. Similarly, it follows from Dk(fj) = Dj(fk) that bj, = br,. 
Consequently, bij = 0, 1 < i ,  j < n, that is E = 0. 

(3) GI-11 C Dl. 
We first assume that m # 1. We also assume that n > 1. Given i E Il and 4 E G[-ll, 

we can show that 4(Dp(xZEi)) E ( D i )  Thus, there is 4' = 4 - &I, ci(adDi), where 
c, F, such that g'(Dp(x2q)) = 0, for any j E I1. Given i E Il and i # j ,  we have 
[ D p ( ~ ~ ~ ~ ) , L ) p ( x " + ~ j ) J  = Dp(xci+'j), which implies that # ( D p ( ~ " + ~ j ) )  E (Di), thus 
$'(Dp(xq+"; >) = 0, if i, j E Il. Fix some i E Ill and assume that ~ ' ( D p ( ~ ~ i + ~ j ) )  = 
bjDi, V j 3 . Put 

$ := t$' - bd(ad~, ) ,  
s f i  

then $ ( D p ( ~ ~ ~ + ~ j ) )  = 0, for all j. Consequently, $P(n, m)[ol = 0 if n = 2. If n 2 3, then 
from the identity 

~ p ( x ~ j + ~ ' )  = [Dp(zci+q), D ~ ( X ~ ' + ~ * ) ] ,  

we have +(Dp(~' j+~k)) = 0. Hence $P(n,m)p1 = 0. Now Lemma 4.3 yields $ = 0. 
Consequently, GI-11 c Dl. 

Now we suppose that m = 1 and n > 4. For any 4 E GI-11, we can prove that 
4(Dp(xCi+"j )) E (Di, Dj). Fix some I and let 

A direct computation shows that bi = b,, V i, j # I .  Set b = bi and D = aiDi + bDr, 
then (adD + d)P(n, 1)p1 = 0. Also Lemma 4.3 yields adD + 4 = 0, that is 4 = adD E Dl. 

(4) Suppose that t 2 2. If t = 2", then 

G[-q = ((adDi)' [ i E I,,). 

Otherwise GI-~] = 0. 
Let 4 E GI-,]. Given Dp(xa) E LI,-l), let 4(Dp(xa)) = ELl a,Dd. 
(44) There exists i such that ai r 0 (mod 2), ai > 0 and la1 - cui 2 2. 
In this case, we have 

(4.3) and (4.4) yield 4(Dp(sa)) = 0. 
(4i i )  For any s, a, = 0 or a, I 1 (mod 2), and there are i # j ,  such that ai > 1 and 

cuj > 0. 
In this case, we have ai 2 3 and 
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ALGEBRA P(n,m) OF CHARACTERISTIC TWO 405 

Since l a ; ~ ~ l ,  la + (2 - cri)&il 2 3, we obtain 

(4.5) and (4.6) yield d(Dp(xa)) = 0. 
(4-iii) All as 5 1. 
Since t 2 2 and Dp(xa) E L[t-ll, la1 > 3. For any i # j such that ai = a, = 1, we 

have 
[DP(xP), D p ( ~ ~ ~ + ~ j ) ]  = 0. 

Thus, 0 = 4[Dp(xa), D ~ ( X ~ ~ + ~ J ) ]  = a;Dj+ajDi. Hence, a, = 0 for any s such that a, = 1. 
Suppose that m # 1. If there is i, such that cri = 1 and mi > 1, then ai = 0 and 

Hence, d(Dp(xa)) = aiDi = 0. Otherwise, there exists j, such that a, = 0 and mj > 1. 
Then, 

[Dp(xa), Dp(xzcj)] = 0, 

thus a j  = 0. If there is k # j, such that ak = 0, then for any such k, we have 

which implies that ajDk + akDj = 0, that is, a k  = 0. Consequently, d(Dp(xa)) = 0. 
Suppose that m = 1 and n > 4. Then by virtue of Theorem 4.1, we have G[-tl = 0, 

for any t > 2. Therefore we assume that t = 2. Choose i, j such that ai = 0 and crj = 1. 
Since 

~ ( ~ ~ ( x " + ~ i ~ ' j  )) =d[DP(xa), Dp(zci+'j )] 

=aiDj + ajDi 

=aiDj, 

(a( = 3 and n > 4 implies that we have at least two choices for i. Therefore d(Dp(xa)) = 0. 
(4-iv) a = t ~ i  + ~ j ,  for some i # j, where t 0 (mod 2). 
If t 2 4, let t = ZU + v, 0 2 v < 2". Thus, u 2 2 and v is even. Suppose that v # 0, 

(4.7) and (4.8) yield d(Dp(xO)) = 0. 
If t = 2", where u >_ 1, then 
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yields ai = 0. If n 2 3, then V k # i, j, and we get 

where f i  = ( t  - l )c i  + E ,  + ck satisfies condition (ii) or (iii). Hence, d ( ~ p ( x @ ) )  = 0 and 
aiDk + akDi = 0, that is, ak = 0. Consequently, d ( ~ p ( x ~ ' ~ ~ + ~ j  )) E ( D j ) .  

(4-v) (Y = ( t  + ' k i ,  for some i,  where t 1 (mod 2). 
In this case, [Dp(xa) ,  Dp(x2'i)] = 0. Hence, ai = 0. For any j # i, 

[Dp(xa) ,  D p ( ~ " + ~ j ) ]  = Dp(xiCi+cj). 

By virtue of (ii), ~ ( D p ( ~ ~ ~ i + ~ j ) )  = 0. Hence, aiDj + ajDi = 0 and aj = 0. Therefore, 
d(DP(xa))  = 0. 

( 4 v i )  a = ( t  + l)ei for some i, where t - 0 (mod 2). 
Assume that t 2 4. Let t = 2" + v ,  where 0 5 v < 2". Then u 2 2 and v is even. I f  

v > 0 ,  then we have 

D p ( x a )  = [ ~ ~ ( ~ ( 2 ~ + l ) ~ i ) ,  ~ ~ ( ~ ( v + 2 ) ~ i  11, 

O n  the other hand, 1(2" + l ) ~ i l ,  I(v + 2 ) ~ i l  > 3, hence 

Consequently, d ( D p ( x a ) )  = 0. I f  t = 2", for some u E W ,  then 

D P ( X ~ )  = [ D ~ ( X O ) ,  D ~ ( X ~ ~ O ] .  

Hence, d ( D p ( ~ ( ~ ~ + ' ) " i ) )  E (Di) .  
According t o  above (i)-(vi), we have 
( 4 4 )  d (Dp(xa) )  = 0, V D p ( z a )  E Lp-ll, unless 

( A )  (Y = 2"ci + e j ,  for some i # j and u E W .  In this case, d (Dp(xa) )  E ( D j ) .  
( B )  cu = (2" + l ) c i ,  for some i and u E N. In this case, #(Dp(xa) )  E (Di) .  

Hence, i f  t # 2", then dL[i-ll = 0. By virtue of Lemma 4.3, we have 4 = 0. Conse- 
quently, GI-i1 = 0. 

(4-viii) Let cu = 2"ci + E,, IB = 2 " ~ ~  + ~ k .  According to  (vii), let 

Since Dp(x@) = [Dp(xa),Dp(x"+ch)], we have bDk = ~ ( D p ( ~ ~ ) , D ~ ( x ' j + ~ ~ ) ]  = aDk, 
that is, a = b. 

(4-ix) I f  a = 2"c; + ~j and p = (2" + 1 ) ~ ~ .  According to (vii), let d (Dp(xa) )  = aDj ,  
d(Dp(xP))  = bDi, a, b E F. Then aDj = #(Dp(xO))  = d[Dp(x @), Dp(xci+cj)] = bD,, 
hence a = b. 

(4-x) According to (vii)-(ix), i f  t = 2", we may assume that # ( ~ p ( x ( ' + ' ) " ) )  = aiDi 
for i E I,,, where ai E F. Put $ := 4 - C a ; ( a d ~ i ) ~ '  E then $L[c-ll = 0. Thanks 
t o  Lemma 4.3, we obtain @ = 0. Thus, 4 = C a i ( a d ~ i ) "  E ((adDi)' li E I,). 

It is easy to  verify that D1,D2 C G. On the other hand, Dl n D2 = ( 0 )  is clear. 
Therefore Dl $ D2 C G. According to (1)-(4), we have G c Dl  $ D z  Consequently, 
G = D 1 $ D z .  0 

Corollary 4.5. Ifm # 1, the dimension of the outer derivation algebra of P(n, m) is Iml. 

T h e o r e m  4.6. DerP(4,l) = adp(r,l)P"(4, 1 )  $ (e) ,  where e is a homogeneous derivation 
of  degree -2 defined by: 

B ( D ~ ( X " - ~ ~ ) )  = Di, 1 < i < 4. 
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If L is a Lie algebra, 6 Der(L), let I(@) = dim(Im4). Clearly, I (d)  = I(ad), Va E F'. 
If M is a subalgebra of Der(L), let I (M)  = m i n ~ + + ~ ~  I(4) (cf. [6]). If L is a graded Lie 
algebra, 0 # x 6 L, let X(x) denote the nonzero homogeneous part of x with the least 
degree. 

Lemma 5.1. Let L be any graded Lie algebra, wl, w2,. . . , wk E L. If {wi} is linearly 
dependent, then {X(wi)) is also Linearly dependent. 0 

In the following discussion, we assume that L = P(n, 1 )  and n 2 5. By virtue of 
Theorem 4.4, 6 := adL(Dp(xff)) E Der(L). 

Recall that P(n ,  m) is a filtered algebra with filtration {P(n, m)i), where P(n,  rn)i = 
P(n,m)t j l ,  for i 2 -1. we have 

Theorem 5.2. Let n 2 5, then the following statements hold: 
(I) I(Der(P(n, 1))) = n. 
(2) I(+) = n if and only if 0 # 4 E (5). 
(3) If C =  kert,  then C =  P(n, l )o.  

Proof. At first, a direct computation shows that if 0 # 4 E ( 0 ,  then I(+) = n. We shall 
prove that if 40 $! (f), then I(do) > n. 

Recall that A(4o) is the nonzero homogeneous part of 4o with the least degree. Ac- 
cording to Theorem 4.4 

Hence, 
n-2 

Der(P(n, 1)) = Der(P(n, l))(il. 
;=-I 

As do 4 (f) ,  X(do) E Der(P(n, l))[il, for some i 5 n - 3. Let 4 = X(do). Then there 
exist n + 1 homogeneous elements El,... ,En+, of P(n, I ) ,  such that {4(Ei)) is linearly 
independent. We list the n + 1 elements in the following 

(1) Let 4 = ad(Ca;D;), where ai E F. 
By symmetry, we may assume that a1 # 0. Put 

(2) Let 4 = adD, where D E L[,-,], t > 2. 
Let D = Dp(xa)+CBZaaBDp(~') .  By symmetry, we may assume that (Y = Cf,, Ei, 

for some 2 < t < n. Put 

E, = Di, 15 i 5 t ,  
E,+~ = D~(~CI+CI+I+C~+Z+".+C~+~+I ), l s j s n - t - 1 ,  

En = D ~ ( x " ' + ' ~  1, 
En+1 = D ~ ( x ~ ~ + ~ ~ ) .  

(3) Let 4 = ad t (Caih i )  E Der(L). 
It is harmless to assume that there exists t 2 1, such that ai # 0 for all i < t and 

a j  = 0, for all j > 1. 
(3-i) t = 1. Put El = Dl,  E, = Dp(~E1+Cj), 2 5 j < n, En+l  = ). : 
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(3-ii) 1 < t < n. In this case, put Ei = Di, 1 5 i 5 t ;  Ei j  = D p ( ~ ~ ' + ~ j ) ,  1 5 i 5 
t ,  j > t .  As t ( n  - t )  2 n + 1 - t ,  we can choose n + 1 - t different elements E,+, E { E i j ) ,  
l < s < n + l - t .  

(3%) t = n.  I f  a, = aj, V i, j ,  then put Ei = Di, 1 5 i 5 n, En+1 = Dp(xc~+c~+E8 ). 
Otherwise, there are i ,  j ,  such that ai # aj. Put E. = D,, 1 5 s < n and E,+I = 
DP(xe'+'j ). 

( 4 )  Let $ = $1 + $2, where $1 = adL(Caihi) ,  0 # $2 = adD, D = D p ( C a S x @ )  
E L[0]. 

According to the assumption, there is /3 such that aa # 0. We may assume that P = 
€ 1  + €2. Thus, put El = E2 = D p ( x c ~ + e ~ + C ~ + c ~ ) ,  E j  = Dp(xc1+9 1, 3 1  
j 5 n ,  and E,+I = Dl .  

AS 4(Ei)  = X(qh)(Ei) = X($o(Ei)), 1 5 i < n + 1, it follqws from Lemma 5.1 that 
{40(Ei)}  is also linearly independent. Consequently, I (do)  > n. Thus, (1 )  and (2)  hold. 

(3 )  is obvious. 

Corollary 5.3. P (n ,  l ) o  is an invariant subalgebra of P(n ,  1). I3 

Theorem  5.4. The natural filtration {P (n ,  l)i} of P(n ,  1) is intrinsically determined. 

Proof. Let L1 = P(n ,  1 )  and to = C. Following KaE and Weisfeiler we d e h e  

It is directly verified that ti = P(n,  l ) i ,  -1 5 i 5 n - 3. Hence, the natural filtration 

is intrinsically determined by Corollary 5.3, and the Theorem follows. 13 

Now we assume that 

n > 1, m = ( m l  , . . . , m,), and mi 2 1 + logz(n + 2),  v i. (5.3) 

Let L = P(n,  m) and = adDp(xr). 

Lemma 5.6. if 0 # $ E (t), then I($) = n + 1. 

P T O O ~ .  I t  is evident that # (L1)  = 0. Moreover, # (Dp(~e i+c j ) )  = 0, V i # j, According 
to Lemma 1.3 (41, 0 # 4(Dp(x2'')) E (Dp(xr)) .  Hence, { ~ ( D I ) ,  . . . , 4(Dn),Dp(xw))  
consists o f  a basis of Im(#), Consequently, I(4) = n + 1. 0 

Lemma  5.6. I f  0 # D E Lltl, -1 5 t < In1 - 2, then there exist n + 2 homogeneous 
elements El , .  . . ,En+* E L, such that {[D,  El] ,  [D,  E2],  , [D, is linearly inde- 
pendent. 

Proof. (1) t = -1. Let D = C a i D i ,  then there is  j such that a, # 0. Put Ei = 
~ p ( t ( ' + ' ) ' j ) ,  1 5 i _< n+2. The assumption mj 2 l+logz(n+2) implies that n+2 < 2"j, 
thus E l ,  . . , En+2 E L and { [D ,  Ei]}  is linearly independent. 

(2 )  t > -1. Let D = C k a D p ( x a ) .  Set J = {0 # a E A(n,m) I k, # 0 ) ,  then 
D = CaEj kaDp(xa). 
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(a)  There is a E J ,  such that a,  = 0 for some j .  By symmetry, we may assume 
that a ,  = 0 and a1 > 0. Put Ei = ~ ~ ( x ~ l + ~ ( ~ - ~ ) ~ ~  ), 1 5 i 5 n + 2, then {E i )  c L and 
{ [D ,  Ei])  is linearly independent. 

( b ) V a  E J ,a l ,crz , . . . ,an  $0. Put Ei = Di, 1 5  i 5 n. I f V a  6 J ,  ai G 

0 (mod 2), V i ,  then ai 2 2, V i. Fix some a E J. Put E,+l = D p ( ~ ( " l - ~ 1 + ~ ) ~ 1  ) ,  En+z = 
D ~ ( X ( " ' - " Z + ~ ) ~ ~ ) .  I f  there exists a E J such that a ;  - 1  (mod 2) for some i. Put E,+l = 
Dp(x2"). AS Q < R, there is j such that aj  < irj. I f  a ,  = 1, put En+a = D p ( x x j c ~ ) .  I f  
a. J -  > 2 I P  ut En+2 = ~ ~ ( z ( ~ j - ~ j + ~ ) ~ j ) .  Thus, El , .  . . , En+2 E L and it is directly verified 
that {[D,  E i ] }  is linearly independent. 0 

Theorem 5.7. If P(n,  m )  satisfies (5.3), then the foUowing statments hold: 
(1 )  I(ad(P(n, m))) = n + 1. 
(2) I(adD) = n + 1 i f  and only if 0 # D E (Dp(xn)) .  
(3) I f  0 # D E (Dp(xx ) ) ,  C and 9l are the centralizer and normalizer of D in P (n ,m)  

respectively, then dim9l/C = 1. 

Proof. ( I ) ,  (2) .  By direct computation we have i f  0 # adD E (I), then I(adD) = n + 1. 
We shall prove that i f  D E P(n,  m) and D 4 (Dp(xx ) ) ,  then I(adD) > n + 1. Clearly, 
X(D) $! (Dp(xn)) ,  thus, by virtue of Lemma 5.6, there are n + 2 homogeneous elements 
El ,  .. . , En+2 E P(n,  m), such that {[X(D), Ei] I 1 5 i 5 n + 2 )  is linearly independent. 
But [X(D), Ei] = X([D, Ei]) ,  1  5 i 5 n+2. Hence, { [ D ,  Ei] I 1 5 i 5  n+2)  is also linearly 
independent by Lemma 5.1. Therefore, I(adD) 2 n + 2 > n + 1. 

(3).  It is evident that 

C = ( D p ( x a )  1 a! E A(n, m), JaJ  2 2 and a # 2 4  $ { a.h.  a I Z a i = ~ )  
and91=C$(hl ) .  

Corollary 5.8. (Dp(xn ) )  is an invm'ant subspace of P(n,  m) .  0 

Corollary 5.9. C and 37 are invariant subalgebras of P(n,  m ) .  0 

Theorem 5.10. If P(n,  m )  satides (5.31, then the natural filtration of P(n,  m) is intrin- 
sically determined. 

Proof. Let L1 = P(n ,m) ,  Lo = 3. We d e h e  {ti) as (5.1), then we have t i  = 
P(n, m)i, V i. Hence, the natural filtration 

where s = Cy=l 2m' - (n + 2) is the length of P (n ,m) ,  is intrinsically determined by 
Corollary 5.9. 0 

Theorem 5.11. Let P(n,  m) and P(nl, m') both satisfy (5.3). Then P(n,  m) z P(nl, ml), 
ifandonlyifn=nland{ml,~..,mn)={m~,...,m',). 

Proof. Thanks to Theorem 5.7 (I), n is an invariant of P(n ,m) ,  hence, the assumption 
P(a, m) z P(nl, ml) implies n = n'. Set S = {ml , . . . , m,). Let l4 = (adP(n, m) + 
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(adP(n, m))2 + . . . ' ' ~ ( n ,  m ) ) 2 ' ) / a d ~ ( n ,  m), t = 1,2, .  . . . Set dt = dim Vt, t = 
1,2,. . . , which are i, *ants of P(n,  m). By Theorem 4.4 we have dt = CiZl ISjl, where 
Sj := {I E S I x > J ) ,  j = ... . Thus, (4 )  = dl, and lStl = dt - dt-I for t > 1. 
Consequently, all (St( are invarirtr~~s. For P(n' , m') we can defint V / ,  d; ,  and Si analogously. 
Thus ,JStI=IS~I , t=1 ,2 , . . .  . Hence,{ml,~~~,m,)={m~,~~~,m~). 0 

Let B, = F[x l , .  . . , x,], xy = 0, be the truncated polynomial algebra over F, then 
a ( n , l )  N B,. Set yi = 1 + xi, i = I , . . .  , n ,  then y: = 1. For a E A(n, 1), put 
YO := y;l . . . yg". Then {yo ( a E A(n,l)} is a basis of B,. It is easy t o  prove that 
{Dp(yO) I 0 < cu < a) is a basis of P(n,  1). Before proving the following theorem, let's 
recall the definition of the first class of algebras G(n) given by I. Kaplansky in 131. 

Let n 2 4, V an n-dimensional vector space over Z2 equipped with a symmetric inner 
product ( , ) which is nonsingular and nonalternate, and e l , .  . . , en an orthonormal basis 
of V. G(n) is a Lie algebra over F with basis {x, ( a E V, a # 0, el + ez + + en) and 
Lie multiplication 

1x0, ~ a l  = 0, [ ~ a ,  ~ + 9 ]  = (a, P)x0++9, Q # P. 

Theorem 5.12. Let n 2 4, then the Lie algebras P(n, 1 )  and G(n) are isomorphic. 

Proof. Define a linear map q : P(n,  1 )  4 G(n) as follow: 

where 6 = Cy=, &iei and n I+ f i  is the canonical homomorphism from Z to Z2. it is 
directly verified that q is an isomorphism of Lie algebras. 0 

Let R(P(n, 1)) be the subalgebra of P(n, 1 )  generated by "Kostrikin elements", i.e., 
these nonzero elements D with (adD)2 = 0. Then we have 

Theorem 5.13. Let n > 4, then R(P(n, 1)) = P(n, 1). 

Proof. It  is easy to  prove that ( a d D p ( ~ O ) ) ~  = 0, V 0 < a < T and a # ei + ej, thus 
Dp(xO) E R(P(n, 1)), V 0 < a < r and a # €4 + ej. However, 

D ~ ( X ~ ' + ' ~ )  = [ D ~ ,  D ~ ( x ' ' + ~ ~ + ~ ~ ) ] ,  k + i :  j. 
Hence, Dp(zCi+'j ) E R(P(n, 1)). Consequently, R(P(n, 1)) = P(n, 1). O 

Remark 5.14. According to Theorem 5.12 and Theorem 5.13, we correct an error occur- 
ring in [3, Remarks 2 (c)], where Kaplansky declared that G(n) do not possess Kostrikin 
elements. 

Remark 5.15. All the known simple Lie algebras over a field of characteristic 2 with 
dimension 2N - 1 are: 

(1) ~ ( 1 ,  N ) ( ~ )  (= P(1, N)); 
(2) some K(n, m ,  pi) with n = 2r + 1 and r E 0 (mod 2), (for the definition, see 12)); 
(3) the Lie algebra L(N), which is one of the second class of Lie algebras defined in 

PI 1 i 
(4) P(n ,  m), for n > 2 and (mi = N. 
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According to (81 and Theorem 5.10, if N is big enough and P(n,  m) satisfies (5.3), 
then P(n, m) is not isomorphic to K(n,  m, Thus, for a fix n, there are infinitely many 
m, such that P(n,  m) are new simple Lie algebras. 

I would like to express my indebtedness to Professor Guangyu Shen for his great help 
to me in many ways. 
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