NON-ALTERNATING HAMILTONIAN ALGEBRA $P(n, m)$ OF CHARACTERISTIC TWO

LEI Lin
Department of Mathematics, East China Normal University Shanghai 200062, The People'e Republic of China

Abstract

Over a field F of characteristic $p=2$, a class of Lie algebras $P(n, m)$, called non-alternating Hamiltonian algebras, is constructed, where n is a positive integer and $\mathbf{m}=$ (m_{1}, \cdots, m_{n}) is an n-tuple of positive integers. $P(n, m)$ is a graded and filtered subalgebra of the generalized Jacobson-Witt algebra $W(n, m)$ and bears resemblance to the Lie algebras of Cartan type. $P(n, m)$ is shown to be simple unless $m=1$ and $n<4$. The dimension of $P(n, \mathbf{m})$ is $2^{|\mathbf{m}|}-2$ if $\mathbf{m}=1,2^{|\boldsymbol{m}|}-1$ if $\mathbf{m} \neq 1$, where $|\mathbf{m}|=\sum_{i=1}^{n} m_{i}$. Different from the Lie algebras of Cartan type, all $P(n, m)$ are nonrestrictable. The derivation algebra of $P(n, m)$ is determined, and the natural filtration of $P(n, m)$ is proved to be invariant. It is then determined that $P(n, m)$ is a new class of simple Lie algebras if (n, m) satisfies some condition.

§1. Construction

In the paper, we assume the ground field F to be of characteristic $p=2$. If S is a subset of a linear space, $\langle S\rangle$ will denote the subspace spanned by S.

Let $g l(n)$ be the Lie algebra of all $n \times n$ matrices over F and $E_{i j}$ the matrix in $g l(n)$ with (i, j)-entry 1 and other entries 0 . Let $A(n)$ be the set of n-tuple of nonnegtive integers, $\varepsilon_{i}=\left(\delta_{1 i}, \cdots, \delta_{n i}\right) \in A(n)$. For $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in A(n)$, set

$$
|\alpha|=\sum_{i=1}^{n} \alpha_{i}
$$

If $\mathbf{m}=\left(m_{1}, \cdots, m_{n}\right)$ is an n-tuple of positive integers, we put $A(n, \mathbf{m})=\{\alpha \in A(n) \mid 0 \leq$ $\alpha \leq \pi\}$, where $\pi=\left(\pi_{1}, \cdots, \pi_{n}\right):=\left(2^{m_{1}}-1, \cdots, 2^{m_{n}}-1\right)$. Set $\mathfrak{A}=\mathfrak{A}(n)$ be the commutative associative F-algebra of all formal sums $\sum a_{\alpha} x^{\alpha}$ with multiplication

$$
x^{\alpha} x^{\beta}=\binom{\alpha+\beta}{\alpha} x^{\alpha+\beta}
$$

Supported by the Natural Science Foundation of China .
where $\binom{\alpha+\beta}{\alpha}=\prod_{i=1}^{n}\binom{\alpha_{i}+\beta_{i}}{\alpha_{i}}$. Iet $\left.\mathfrak{X}_{[i]}=\left\langle x^{\alpha}\right| \alpha \in A(n),|\alpha|=i\right\rangle$, then $\mathfrak{A}=\sum \mathfrak{A}_{[i]}$ is a graded algebra. If $0 \neq f \in \mathfrak{A}_{(i)}$, write $\operatorname{deg} f=i$. Set $\mathfrak{A}(n, \mathbf{m})=\left\langle x^{\alpha} \mid \alpha \in A(n, \mathbf{m})\right\rangle$, then $\mathfrak{A}(n, \mathbf{m})$ is a subalgebra of $\mathfrak{A}(n)$. Define derivations D_{i} :

$$
D_{i}\left(x^{\alpha}\right)=x^{\alpha-\varepsilon_{i}}, \alpha \in A(n), \quad i=1, \cdots, n .
$$

Let $\left.W_{1} \quad a_{i} D_{i} \mid a_{i} \in \mathfrak{X}(n)\right\}$. Then $W(n)=\sum W(n)_{(i)}$ is a graded Lie algebra, where $W\left(n_{\{i j} \quad\left\{\sum a_{j} D_{j} \mid a_{j} \in \mathfrak{A}(n)_{\{i+1\}}\right\}\right.$. $W(n)$ is also a filtered Lie algebra with a filtration $\{W(n$ associated with the gradation, and

$$
W(n, \mathbf{m})=\left\{\sum a_{i} D_{i} \mid a_{i} \in \mathfrak{A}(n, \mathbf{m})\right\}
$$

is a graded and filtered subalgebra of $W(n)$. Let $P_{0}=\left\{A \in \mathfrak{g l}(n) \mid A=A^{t}\right\}$, then P_{0} is a Lie subalgebra of $\mathfrak{g l}(n)$. Let $P(n)$ be the extention of P_{0} in $W(n)$ (cf. [5, Definition 1.1]), that is

$$
P(n):=\left\{\sum a_{i} D_{i} \in W(n) \mid \sum_{i, j} D_{i}\left(a_{j}\right) \otimes E_{i, j} \in \mathfrak{A} \otimes P_{0}\right\}
$$

By [5, heorem 1.1], $P(n)$ is a Lie subalgebra of $W(n)$ and an elementary computation shows that

$$
P(n)=\left\{\sum a_{i} D_{i} \in W(n) \mid D_{i}\left(a_{j}\right)=D_{j}\left(a_{i}\right), i, j=1, \cdots, n\right\} .
$$

Define

$$
P^{\prime \prime}(n, \mathbf{m}):=P(n) \cap W(n, \mathbf{m})
$$

then $P^{\prime \prime}(n, \mathbf{m})$ is a subalgebra of $W(n, \mathbf{m})$. We define $D_{P}: \mathfrak{A}(n) \longrightarrow W(n)$ by means of

$$
D_{P}(f):=\sum_{j=1}^{n} D_{j}(f) D_{j}, f \in \mathfrak{A}(n) .
$$

Clearly, $D_{P}(\mathfrak{A}(n, \mathbf{m})) \subset W(n, \mathbf{m})$. Let $P^{\prime}(\boldsymbol{n}, \mathbf{m})$ denote the image of $\mathfrak{A}(n, \mathbf{m})$ uader D_{P}. Note that $x^{\pi i e_{i}} D_{i}, 1 \leq i \leq n$, are elements of $P^{\prime \prime}(n, \mathbf{m})$ which do not lie in $P^{\prime}(n, \mathbf{m})$. We put

$$
P(n, \mathbf{m}):=P^{\prime}(n, \mathbf{m})^{(1)} .
$$

Lemma 1.1. (1) The linear map D_{P} has degree -2.
(2) $P^{\prime}(n, \mathbf{m})$ is contained in $P^{\prime \prime}(n, \mathbf{m})$.
(3) $\operatorname{ker} D_{P}=F 1$.
(4) Let $D=\sum f_{j} D_{j}, E=\sum g_{j} D_{j}$ be elements of $P^{\prime \prime}(n, m)$ (or $P(n)$); then

$$
\begin{equation*}
[D, E]=D_{P}\left(\sum_{i=1}^{n} f_{i} g_{i}\right) \tag{1.1}
\end{equation*}
$$

(5) $P(n)=D_{P}(\mathbb{A}(n))$.

Proof. The proof of (1)-(4) is very similar to that of [1, Chap. 4, Lemma 4.1].
(5) Similar to the proof of (2), we have $D_{P}(\mathfrak{A}(n)) \subset P(n)$. Given $D=\sum f_{i} D_{i} \in P(n)$, we have $D_{i}\left(f_{j}\right)=D_{j}\left(f_{i}\right), 1 \leq i, j \leq n$, thanks to $[7$, Lemma. 1.2], there is $f \in \mathfrak{A}(n)$, such that $D_{i}(f)=f_{i}, 1 \leq i \leq n$. Hence $D=D_{P}(f)$ and $P(n)=D_{P}(\mathfrak{A}(n))$.

Proposition 1.2. $P(n, \mathbf{m})$ is an ideal of $P^{\prime \prime}(n, \mathbf{m})$.
Definition. The Lie algebras $P(n, \mathbf{m})$ (resp. $P(n)$) are called the finite (resp. infinite) non-alternating Hamiltonian algebras.

Lemma 1.3. The following results hold:
(1) $\left[D_{P}(f), D_{P}(g)\right]=D_{P}\left(D_{P}(f)(g)\right), \quad f, g \in \mathfrak{A}(n)$.
(2) $\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\beta}\right)\right]=\sum_{i=1}^{n}\binom{\alpha+\beta-2 e_{i}}{\alpha-\varepsilon_{i}} D_{P}\left(x^{\alpha+\beta-2 z_{i}}\right)$.
(3) $\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{i}}\right)\right]=D_{P}\left(x^{\alpha-\epsilon_{i}}\right)$.
(4) $\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{2 \epsilon_{i}}\right)\right]=\alpha_{i} D_{P}\left(x^{\alpha}\right)$.
(5) $P(n, \mathbf{m})$ (resp. $P(n)$) is a graded and filtered subalgebra of $W(n, \mathbf{m})$ (resp. $W(n)$).

Proposition 1.4. Suppose that $\mathbf{m} \neq 1:=(1,1, \cdots, 1)$ or $\mathbf{m}=1$ and $n \geq 3$, then we have
(1) $P(n, 1)=\left\langle D_{P}\left(x^{\alpha}\right) \mid 0<\alpha<\pi\right\rangle$.
(2) If $\mathbf{m} \neq 1$, then $P(n, m)=P^{\prime}(n, m)$.
(3) $P(n, \mathbf{m})_{[-1]}=W(n, \mathbf{m})_{[-1]}$.
(4) The representation

$$
\varphi_{P}: P(n)_{[0]} \longrightarrow \mathfrak{g l ((\mathfrak { A } (n) _ { [1] })}
$$

which is induced by the canonical representation of $W(n)_{[0]}$ in $W(n)_{[-1]}$, defines an isomorphism $P(n)_{[0]} \simeq P_{0}$, and $\left.\varphi_{P}\right|_{P(n, 1)_{[0]}}$ defines an isomorphism $P(n, 1)_{[0]} \simeq P_{0}^{(1)}$.
 that if $\mathbf{m}=1$, for $0<\alpha, \beta \leq \pi, \alpha+\beta-2 \varepsilon_{i} \neq \pi, 1 \leq i \leq n$. Hence, by virtue of (1.3)(2), $\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\beta}\right)\right] \in\left\langle D_{P}\left(x^{\gamma}\right) \mid 0<\gamma<\pi\right\rangle$.
(2) If $\mathbf{m} \neq 1$, there exists $m_{i}>1$, so $x^{2 \varepsilon_{i}} \in \mathfrak{A}(n, \mathbf{m})$, (1.3)(4) shows that $D_{P}\left(x^{\pi}\right)=$ $\left[D_{P}\left(x^{\pi}\right), D_{P}\left(x^{2 \varepsilon_{i}}\right)\right] \in P(n, \mathbf{m})$. Therefore $P(n, \mathbf{m})=P^{\prime}(n, \mathbf{m})$.
(3) Note that $D_{P}\left(x^{\epsilon_{i}}\right)=D_{i}, 1 \leq i \leq n$. The assertion now follows from (1) and (2).
(4) $P(n)_{[0]}=\left\langle D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right) \mid 1 \leq i, j \leq n\right\rangle$. By Lemma 1.1 (3), we have $\operatorname{dim} P(n)_{[0]}=$ $\frac{n}{2}(n+1)=\operatorname{dim} P_{0}$. We also note that for $1 \leq i<j \leq n$,

$$
\varphi_{P}\left(D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right)=\varphi_{P}\left(x^{\varepsilon_{i}} D_{j}+x^{\varepsilon_{j}} D_{i}\right) ;
$$

and

$$
\varphi_{P}\left(D_{P}\left(x^{2 \varepsilon_{i}}\right)\right)=\varphi_{P}\left(x^{\varepsilon_{i}} D_{i}\right)
$$

for $1 \leq i \leq n$. The matrices representating these endomorphisms with respect to the basis $\left\{x^{\varepsilon_{1}}, x^{\varepsilon_{2}}, \cdots, x^{s_{n}}\right\}$ are given by $E_{i j}+E_{j i}$ in the former case, and $E_{i i}$ in the latter case. These matrices belong to P_{0}. Consequently, $P(n)_{[0]} \simeq P_{0}$. Observe that if $n \geq 3$, $P(n, 1)_{[0]}=P(n)_{[0]}^{(1)}$, thus, $P(n, 1)_{[0]} \simeq P_{0}^{(1)}$.

§2. Simplicity

Lemma 2.1. (1) $P(n, m)_{[-1]}$ is an irreducible $P(n, m)_{[0]}$-module unless $\mathrm{m}=1$ and $n<3$.
(2) $P(n)_{[-1]}$ is an irreducible $P(n)_{[0]-\text { module. }}$

Theorem 2.2. (1) Suppose that $\mathbf{m} \neq 1$, then $P(n, m)$ is simple and $\operatorname{dim} P(n, m)=$ $2^{|m|}-1$.
(2) Suppose that $\mathbf{m}=1$, then $P(n, m)$ is simple if and only if $n \geq 4$ and $\operatorname{dim} P(n, 1)=$ $2^{n}-2$.

Proof. The assertions concerning the dimension of $P(n, \mathbf{m})$ follow from Lemma 1.1 (3) and Proposition 1.4 (1), (2). The simplicity of $P(n, m)$ will be proven by applying [1, Chap. 3, Theorem 3.7]. The only work we have to do is to verify that the conditions (a)-(e) in the simplicity theorem hold.

As $P(n, \mathbf{m})_{[-1]}$ coincides with $W(n, \mathbf{m})_{[-1]}, P(n, \mathbf{m})$ is admissibly graded. The assumption that $m=1$ implies that $n \geq 4$ guarantees that condition (a) holds. (b) is trivially met. Thanks to Lemma 2.1 (c) is also met. Checking (d) is a small exercise. According to Lemma 1.3 (2),

$$
D_{P}\left(x^{\pi-\varepsilon_{i}}\right)=\left[D_{P}\left(x^{\pi-\varepsilon_{j}}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right], \text { for } i \neq j
$$

Therefore, (e) is fulfilled. Since $P(n, 1)_{[1]} \neq 0$ implies that $n \geq 4, P(n, 1)$ is not simple when $n<4$. Now the asserted results follow from the simplicity theorem.

§3. Nonrestrictablity

Theorem 3.1. Suppose that $\mathbf{m} \neq 1$ or $\mathrm{m}=1$ and $n \geq 4$, then all algebras $P(n, \mathrm{~m})$ are not restrictable.
$P_{\text {roof. Let }} \mathbf{m} \neq 1$, then there exists i, such that $m_{i}>1$. Hence $D_{P}\left(x^{3 \varepsilon_{i}}\right) \in P(n, \mathrm{~m})$, and $\left(\operatorname{ad} D_{i}\right)^{2}\left(D_{P}\left(x^{3 \varepsilon_{i}}\right)\right)=D_{i} \neq 0$. Thus, $\left(\operatorname{ad} D_{i}\right)^{2} \neq 0$. But $\left(\operatorname{ad} D_{i}\right)^{2}$ is not an inner derivation. Consequently, $P(n, \mathrm{~m})$ is not restrictable.

Let $\mathrm{m}=1$ and $n \geq 4$. Suppose $(P(n, 1),[p])$ is restricted, then for any $D \in P(n, 1)_{[0]}$, $D^{[2]} \in P(n, 1)_{\{0\}}$. Choose $D=D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{2}}\right)$ and put $E=D^{[2]}$, then

$$
(\operatorname{ad} E)\left(D_{1}\right)=D_{1},(\operatorname{ad} E)\left(D_{2}\right)=D_{2},(\operatorname{ad} E)\left(D_{i}\right)=0,2<i \leq n
$$

But such element E does not exist. Therefore, $P(n, 1)$ is not restrictable.

§4. Derivation Algebra

In this section, we will determine the derivation algebra of $P(n, \mathbf{m})$.
Theorem 4.1. If $n \geq 4$, then $P(n, 1)$ is generated by $P(n, 1)_{[-1]} \oplus P(n, 1)_{[1]}$.
Proof. Given $D_{P}\left(x^{\alpha}\right) \in P(n, 1)_{[0]}$, there is i, such that $\alpha_{i}=0$. We obtain

$$
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{\alpha+\varepsilon_{i}}\right), D_{i}\right],
$$

and $P(n, 1)_{[0]}=\left[P(n, 1)_{[-1]}, P(n, 1)_{[1]}\right]$. For $0 \neq D_{P}\left(x^{\alpha}\right) \in P(n, 1)_{[1+t]}$, where $t>0$, choose $i \neq j$, such that $\alpha_{i}=\alpha_{j}=1$. Since $\alpha<\pi$, there is k, such that $\alpha_{k}=0$. Now we have

$$
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{\alpha+\varepsilon_{k}-\varepsilon_{i}-\varepsilon_{j}}\right), D_{P}\left(x^{\varepsilon_{i}+e_{j}+\varepsilon_{k}}\right)\right] .
$$

Hence, $P(n, 1)_{[1+t]}=\left[P(n, 1)_{[t]}, P(n, 1)_{[1]}\right]$. By induction on t, we obtain

$$
P(n, 1)_{[1+t]}=P(n, 1)_{[1]}^{(t)} .
$$

The assertion holds.
Let L be a Lie algebra, $\operatorname{Der}(L)$ the derivation algebra of L. If $L=\oplus_{i \in \mathcal{Z}} L_{[i]}$ is graded, then $\operatorname{Der}(L)=\oplus_{t \in \mathbf{Z}} \operatorname{Der}(L)_{[t]}$ is also graded, where

$$
\operatorname{Der}(L)_{[t]}:=\left\{\phi \in \operatorname{Der}(L) \mid \phi L_{[j]} \subset L_{[t+j]}, \forall j \in \mathbb{Z}\right\}
$$

An element ϕ is called a derivation of degree t if $\phi \neq 0$ and $\phi \in \operatorname{Der}(L)_{[t]}$.
Let M be a Lie algebra, L its subalgebra. Norm(L) denotes the normalizer of L in M.
Proposition 4.2. Let $L=\mathbb{\oplus}_{i=-1}^{\prime} L \cap W(n, \mathfrak{m})_{[i]}$ be a graded subalgebra that contains $W(n, \mathbf{m})_{[-1]}$. Suppose that $\phi: L \longrightarrow L$ is a derivation of degree $t \geq 0$. Then there exists $E \in \operatorname{Nor}_{W(\mathrm{n}, \mathrm{m})}(L)$ such that $\phi=\left.(\operatorname{adE})\right|_{L}$.
Proof. When the base field F is of characteristic $p>2$, this is Proposition 8.3 of [1, Chap. 4]. But we find that the assumption $p>2$ is in fact unnecessary.
Lemma 4.3. Suppose that L is a graded subalgebra of $W(n, \mathbf{m})$ and $L_{[-1]}=W(n, \mathbf{m})_{[-1]}$. Let $G=\operatorname{Der}(L)$ be the derivation algebra of L. Let $t>0$ and $\phi \in G_{[-t]}$. If $\phi L_{[t-1]}=0$, then $\phi=0$.
Proof. Clearly, $\phi L_{[k]}=0, \forall k \leq t-1$. Assume that $\phi L_{[k-1]}=0$, for some $k>t-1$, then for any $D \in L_{[k]}$ and $1 \leq s \leq n,\left[D, D_{s}\right] \in L_{[k-1]}$. Hence $\phi\left[D, D_{s}\right]=0$. Let $\phi(D)=\sum g_{i} D_{i} \in L_{[k-1]}$, then

$$
0=\phi\left[D, D_{s}\right]=\left[\phi(D), D_{s}\right]=\left[\sum g_{i} D_{i}, D_{s}\right]=\sum D_{s}\left(g_{i}\right) D_{i} .
$$

Thus, $D_{s}\left(g_{i}\right)=0, \forall 1 \leq i, s \leq n$. Consequently, $g_{i} \in F 1,1 \leq i \leq n$. But $g_{i} \in$ $\mathfrak{A}(n, \mathbf{m})_{[k-t+1]}$ and $k>t-1$. Hence, $k-t+1>0$ and $g_{i} \in \mathfrak{A}(n, \mathbf{m})_{1}$. This yields $g_{i}=0,1 \leq i \leq n$. Consequently, $\phi(D)=0$ and $\phi L_{[k]}=0$. By induction on k, we obtain $\phi=0$.

In the following discussion, let $\left.\mathbf{D}_{1}=\operatorname{ad}_{P(n, m)}\right\rangle\left(P^{\prime \prime}(n, m)\right), \mathbf{D}_{2}=\left\langle\left(\operatorname{ad} D_{i}\right)^{2^{\boldsymbol{A}}}\right| 0<s_{i}<$ $\left.m_{i}, 1 \leq i \leq n\right\rangle, G=\operatorname{Der}(P(n, m))$, and $I_{k}=\left\{i \mid m_{i}>k\right\}, k=0,1,2, \cdots$.
Theorem 4.4. Suppose that $m \neq 1$ or $m=1$ and $n \geq 5$, then $G=D_{1} \oplus D_{2}$.
Proof. We divide the proof into several steps.
(1) For any $t>0, G_{[t]} \subset D_{1}$.

Given $\phi \in G_{[t]}$, by Proposition 4.2, there exists $E=\sum g_{i} D_{i} \in W(n, \mathbf{m})_{[t]}$, such that $\phi=\left.(\operatorname{ad} E)\right|_{P(n, m)}$. We have $\left[D_{i}, E\right] \in P(n, \mathbf{m}), 1 \leq i \leq n$. Thus, there are $f_{1}, f_{2}, \cdots, f_{n} \in \mathfrak{A}(n, \mathbf{m})$, such that $\left[D_{i}, E\right]=D_{P}\left(f_{i}\right), \quad 1 \leq i \leq n$. Hence, $D_{i}\left(g_{j}\right)=$ $D_{j}\left(f_{i}\right)$. But $D_{P}\left(D_{i}\left(f_{j}\right)\right)=D_{p}\left(D_{j}\left(f_{i}\right)\right)$, According to Lemma 1.1 (3), ker $D_{P}=F 1$, so $D_{i}\left(f_{j}\right)+D_{j}\left(f_{i}\right) \in F 1$. Because of $t>0$, we have $D_{i}\left(g_{j}\right)=D_{j}\left(g_{i}\right)$. Consequently, $E \in P^{\prime \prime}(n, \mathbf{m})$.
(2) $G_{[0]} \subset D_{1}$.

Given $\phi \in G_{[0]}$, according to Proposition 4.2, there is $E \in W(n, \mathbf{m})_{[0]}$, such that $\phi=\left.\operatorname{ad}(E)\right|_{P(n, \mathrm{~m})}$. Let $E=\sum a_{i j} x^{\epsilon} D_{j}$, we want to prove that $E \in P^{\prime \prime}(n, \mathrm{~m})$. If $n=1$, this is obvious. Suppose $n \geq 2$. Set $h_{i}=x^{\ell_{i}} D_{i}, i=1, \cdots, n$. Rewrite E as following

$$
\begin{equation*}
E=\sum_{i} a_{i i} h_{i}+\sum_{i>j} a_{i j} D_{P}\left(x^{\varepsilon_{i}+e_{j}}\right)+\sum_{i<j}\left(a_{i j}+a_{j i}\right) x^{\varepsilon_{i}} D_{j} \tag{4.1}
\end{equation*}
$$

Since the first two summands of the right hand side belong to $P^{\prime \prime}(n, \mathbf{m})$, we may harmlessly assume that $E=\sum_{i<j} b_{i j} x^{\varepsilon_{i}} D_{j}$. If $n=2$, then $E=b_{12} x^{\varepsilon_{1}} D_{2}$. By the assumption $\mathbf{m} \neq 1$, we may assume that $m_{1}>1$. Then $\left[E, D_{P}\left(x^{2 e_{1}}\right)\right] \in P(n, \mathbf{m})$, thus $b_{12}=0$, and $E=0$. If $n \geq 3$, put $b_{i j}=0$, for $i \geq j$. Then for any $1 \leq k<l \leq n$, we have $\sum f_{j} D_{j}:=\left[E, D_{P}\left(x^{\varepsilon_{k}+\epsilon_{l}}\right)\right] \in P(n, \mathbf{m})_{[0]}$, and

$$
\begin{equation*}
\sum_{j=1}^{n} f_{j} D_{j}=\sum_{i=1}^{n} b_{i k} x^{\varepsilon_{i}} D_{l}+\sum_{i=1}^{n} b_{i 1} x^{\varepsilon_{i}} D_{k}+\sum_{j=1}^{n} b_{l j} x^{\varepsilon_{k}} D_{j}+\sum_{j=1}^{n} b_{k j} x^{\varepsilon_{i}} D_{j} \tag{4.2}
\end{equation*}
$$

Hence, $D_{i}\left(f_{j}\right)=D_{j}\left(f_{i}\right), 1 \leq i, j \leq n$. Then for any $j \neq k, l, D_{l}\left(f_{j}\right)=b_{k j}, D_{j}\left(f_{i}\right)=$ $b_{j k}$. Thus, $b_{k j}=b_{j k}=0$. Similarly, it follows from $D_{k}\left(f_{j}\right)=D_{j}\left(f_{k}\right)$ that $b_{j l}=b_{l j}$. Consequently, $b_{i j}=0,1 \leq i, j \leq n$, that is $E=0$.
(3) $G_{[-1]} \subset D_{1}$.

We first assume that $m \neq 1$. We also assume that $n>1$. Given $i \in I_{1}$ and $\phi \in G_{[-1]}$, we can show that $\phi\left(D_{P}\left(x^{2 \varepsilon_{i}}\right)\right) \in\left\langle D_{i}\right\rangle$. Thus, there is $\phi^{\prime}=\phi-\sum_{i \in I_{1}} c_{i}\left(\operatorname{ad} D_{i}\right)$, where $c_{2} \in F$, such that $\phi^{\prime}\left(D_{P}\left(x^{2 \varepsilon_{j}}\right)\right)=0$, for any $j \in I_{1}$. Given $i \in I_{1}$ and $i \neq j$, we have $\left[D_{P}\left(x^{2 \varepsilon_{i}}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right]=D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)$, which implies that $\phi^{\prime}\left(D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right) \in\left\langle D_{i}\right\rangle$, thus $\phi^{\prime}\left(D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{i}} ;\right)=0\right.$, if $i, j \in I_{1}$. Fix some $i \in I_{1}$, and assume that $\phi^{\prime}\left(D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right)=$ $b_{j} D_{i}, \forall j \neq$. Put

$$
\psi:=\phi^{\prime}-\sum_{s \neq i} b_{s}\left(\operatorname{ad} D_{s}\right)
$$

then $\psi\left(D_{P}\left(x^{\varepsilon_{i}+\epsilon_{j}}\right)\right)=0$, for all j. Consequently, $\psi P(n, m)_{[0]}=0$ if $n=2$. If $n \geq 3$, then from the identity

$$
D_{P}\left(x^{\varepsilon_{j}+\varepsilon_{k}}\right)=\left[D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{k}}\right)\right]
$$

we have $\psi\left(D_{P}\left(x^{\epsilon_{j}+\varepsilon_{k}}\right)\right)=0$. Hence $\psi P(n, \mathbf{m})_{[0]}=0$. Now Lemma 4.3 yields $\psi=0$. Consequently, $G_{[-1]} \subset D_{1}$.

Now we suppose that $m=1$ and $n>4$. For any $\phi \in G_{[-1]}$, we can prove that $\phi\left(D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right) \in\left\langle D_{i}, D_{j}\right\rangle$. Fix some l and let

$$
\phi\left(D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{l}}\right)\right)=a_{i} D_{l}+b_{i} D_{i}, a_{i}, b_{i} \in F, 1 \leq i \leq n, i \neq l
$$

A direct computation shows that $b_{i}=b_{j}, \forall i, j \neq l$. Set $b=b_{i}$ and $D=\sum_{i \neq 1} a_{i} D_{i}+b D_{l}$, then $(\operatorname{ad} D+\phi) P(n, 1)_{[0]}=0$. Also Lemma 4.3 yields $\operatorname{ad} D+\phi=0$, that is $\phi=\operatorname{ad} D \in D_{1}$.
(4) Suppose that $t \geq 2$. If $t=2^{u}$, then

$$
G_{[-t]}=\left\langle\left(\operatorname{ad} D_{i}\right)^{t} \mid i \in I_{u}\right\rangle
$$

Otherwise $G_{[-t]}=0$.
Let $\phi \in G_{[-t]}$. Given $D_{P}\left(x^{\alpha}\right) \in L_{[t-1]}$, let $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=\sum_{s=1}^{n} a_{s} D_{s}$.
(4-i) There exists i such that $\alpha_{i} \equiv 0(\bmod 2), \alpha_{i}>0$ and $|\alpha|-\alpha_{i} \geq 2$.
In this case, we have

$$
\begin{equation*}
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{\left(\alpha_{i}+1\right) e_{i}}\right), D_{P}\left(x^{\alpha+\left(1-\alpha_{i}\right) e_{i}}\right)\right] \tag{4.3}
\end{equation*}
$$

where $D_{P}\left(x^{\left(\alpha_{i}+1\right) e_{i}}\right) \in L_{\left[\alpha_{i}-1\right]}, D_{P}\left(x^{\left(\alpha+\left(1-\alpha_{i}\right) \varepsilon_{i}\right.}\right) \in L_{\left[|\alpha|-\alpha_{i}-1\right]}$. Since $\left|\left(\alpha_{i}+1\right) \varepsilon_{i}\right|, \mid \alpha+$ $\left(1-\alpha_{i}\right) \varepsilon_{i} \mid \geq 3$ and $|\alpha|=t+1, \alpha_{i}-1,|\alpha|-\alpha_{i}-1<t-1$. But $\phi L_{[k]}=0$ for any $k<t-1$, so we have

$$
\begin{equation*}
\phi\left(D_{P}\left(x^{\left(\alpha_{i}+1\right) \varepsilon_{i}}\right)\right)=\phi\left(D_{P}\left(x^{\alpha+\left(1-\alpha_{i}\right) \varepsilon_{i}}\right)\right)=0 \tag{4.4}
\end{equation*}
$$

(4.3) and (4.4) yield $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0$.
(4-ii) For any $s, \alpha_{s}=0$ or $\alpha_{s} \equiv 1(\bmod 2)$, and there are $i \neq j$, such that $\alpha_{i}>1$ and $\alpha_{j}>0$.

In this case, we have $\alpha_{i} \geq 3$ and

$$
\begin{equation*}
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{\alpha_{1} \varepsilon_{i}}\right), D_{P}\left(x^{\alpha+\left(2-\alpha_{i}\right) \varepsilon_{i}}\right)\right] \tag{4.5}
\end{equation*}
$$

Since $\left|\alpha_{i} \varepsilon_{i}\right|,\left|\alpha+\left(2-\alpha_{i}\right) \varepsilon_{i}\right| \geq 3$, we obtain

$$
\begin{equation*}
\phi\left(D_{P}\left(x^{\alpha_{i} \varepsilon_{i}}\right)\right)=\phi\left(D_{P}\left(x^{\alpha+\left(2-\alpha_{i}\right) \varepsilon_{i}}\right)\right)=0 . \tag{4.6}
\end{equation*}
$$

(4.5) and (4.6) yield $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0$.
(4-iii) All $\alpha_{s} \leq 1$.
Since $t \geq 2$ and $D_{P}\left(x^{\alpha}\right) \in L_{\{t-1]},|\alpha| \geq 3$. For any $i \neq j$ such that $\alpha_{i}=\alpha_{j}=1$, we have

$$
\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right]=0 .
$$

Thus, $0=\phi\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right]=a_{i} D_{j}+a_{j} D_{i}$. Hence, $a_{s}=0$ for any s such that $\alpha_{s}=1$.
Suppose that $m \neq 1$. If there is i, such that $\alpha_{i}=1$ and $m_{i}>1$, then $a_{i}=0$ and

$$
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{2 \varepsilon_{i}}\right)\right] .
$$

Hence, $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=a_{i} D_{i}=0$. Otherwise, there exists j, such that $\alpha_{j}=0$ and $m_{j}>1$. Then,

$$
\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{2 e_{j}}\right)\right]=0
$$

thus $a_{j}=0$. If there is $k \neq j$, such that $\alpha_{k}=0$, then for any such k, we have

$$
\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{j}+e_{k}}\right)\right]=0
$$

which implies that $a_{j} D_{k}+a_{k} D_{j}=0$, that is, $a_{k}=0$. Consequently, $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0$.
Suppose that $m=1$ and $n>4$. Then by virtue of Theorem 4.1, we have $G_{[-t]}=0$, for any $t>2$. Therefore we assume that $t=2$. Choose i, j such that $\alpha_{i}=0$ and $\alpha_{j}=1$. Since

$$
\begin{aligned}
\phi\left(D_{P}\left(x^{\alpha+\varepsilon_{i}-\varepsilon_{j}}\right)\right) & =\phi\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right] \\
& =a_{i} D_{j}+a_{j} D_{i} \\
& =a_{i} D_{j},
\end{aligned}
$$

we have

$$
\phi\left(D_{P}\left(x^{\alpha}\right)\right)=\phi\left[D_{P}\left(x^{\alpha+\varepsilon_{i}-\varepsilon_{j}}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right]=a_{i} D_{i}
$$

$|\alpha|=3$ and $n>4$ implies that we have at least two choices for i. Therefore $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0$.
(4-iv) $\alpha=t \varepsilon_{i}+\varepsilon_{j}$, for some $i \neq j$, where $t \equiv 0(\bmod 2)$.
If $t \geq 4$, let $t=2^{u}+v, 0 \leq v<2^{u}$. Thus, $u \geq 2$ and v is even. Suppose that $v \neq 0$, then $v \geq 2$ and

$$
\begin{equation*}
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{(v+1) \varepsilon_{i}+\epsilon_{j}}\right), D_{P}\left(x^{\left(2^{\nu}+1\right) \epsilon_{i}}\right)\right] . \tag{4.7}
\end{equation*}
$$

But $\left|(v+1) \varepsilon_{i}+\varepsilon_{j}\right|,\left|\left(2^{u}+1\right) \varepsilon_{i}\right|>3$, thus, we have

$$
\begin{equation*}
\phi\left(D_{P}\left(x^{(v+1) e_{i}+\varepsilon_{j}}\right)\right)=\phi\left(D_{P}\left(x^{\left(2^{u}+1\right) \epsilon_{i}}\right)\right)=0 \tag{4.8}
\end{equation*}
$$

(4.7) and (4.8) yield $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0$.

If $t=2^{u}$, where $u \geq 1$, then

$$
\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{2 \varepsilon_{i}}\right)\right]=0
$$

yields $a_{i}=0$. If $n \geq 3$, then $\forall k \neq i, j$, and we get

$$
\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{i}+\epsilon_{k}}\right)\right]=D_{P}\left(x^{\beta}\right)
$$

where $\beta=(t-1) \varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}$ satisfies condition (ii) or (iii). Hence, $\phi\left(D_{P}\left(x^{\beta}\right)\right)=0$ and $a_{i} D_{k}+a_{k} D_{i}=0$, that is, $a_{k}=0$. Consequently, $\phi\left(D_{P}\left(x^{2^{2} \varepsilon_{i}+\varepsilon_{j}}\right)\right) \in\left\langle D_{j}\right\rangle$.
$(4-v) \alpha=(t+i) \varepsilon_{i}$, for some i, where $t \equiv 1(\bmod 2)$.
In this case, $\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{2 \varepsilon_{i}}\right)\right]=0$. Hence, $a_{i}=0$. For any $j \neq i$,

$$
\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right]=D_{P}\left(x^{t \varepsilon_{i}+\varepsilon_{j}}\right)
$$

By virtue of (ii), $\phi\left(D_{P}\left(x^{t \varepsilon_{i}+\varepsilon_{j}}\right)\right)=0$. Hence, $a_{i} D_{j}+a_{j} D_{i}=0$ and $a_{j}=0$. Therefore, $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0$.
$(4-\mathrm{vi}) \alpha=(t+1) \varepsilon_{i}$ for some i, where $t \equiv 0(\bmod 2)$.
Assume ihat $t \geq 4$. Let $t=2^{u}+v$, where $0 \leq v<2^{u}$. Then $u \geq 2$ and v is even. If $v>0$, then we have

$$
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{\left(2^{u}+1\right) \varepsilon_{i}}\right), D_{P}\left(x^{(v+2) \varepsilon_{i}}\right)\right]
$$

On the other hand, $\left|\left(2^{u}+1\right) \varepsilon_{i}\right|,\left|(v+2) \varepsilon_{i}\right|>3$, hence

$$
\phi\left(D_{P}\left(x^{\left(2^{u}+1\right) \varepsilon_{i}}\right)\right)=\phi\left(D_{P}\left(x^{(v+2) \varepsilon_{i}}\right)\right)=0
$$

Consequently, $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0$. If $t=2^{u}$, for some $u \in \mathbb{N}$, then

$$
D_{P}\left(x^{\alpha}\right)=\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{2 \varepsilon_{i}}\right)\right]
$$

Hence, $\phi\left(D_{P}\left(x^{\left(2^{u}+1\right) c_{i}}\right)\right) \in\left\langle D_{i}\right\rangle$.
According to above (i)-(vi), we have
(4-vii) $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=0, \forall D_{P}\left(x^{\alpha}\right) \in L_{[t-1]}$, unless
(A) $\alpha=2^{u} \varepsilon_{i}+\varepsilon_{j}$, for some $i \neq j$ and $u \in \mathbb{N}$. In this case, $\phi\left(D_{P}\left(x^{\alpha}\right)\right) \in\left\langle D_{j}\right\rangle$.
(B) $\alpha=\left(2^{u}+1\right) \varepsilon_{i}$, for some i and $u \in \mathbb{N}$. In this case, $\phi\left(D_{P}\left(x^{\alpha}\right)\right) \in\left\langle D_{i}\right\rangle$.

Hence, if $t \neq 2^{u}$, then $\phi L_{[t-1]}=0$. By virtue of Lemma 4.3, we have $\phi=0$. Consequently, $G_{[-t]}=0$.
(4-viii) Let $\alpha=2^{u} \varepsilon_{i}+\varepsilon_{j}, \beta=2^{u} \varepsilon_{i}+\varepsilon_{k}$. According to (vii), let

$$
\phi\left(D_{P}\left(x^{\alpha}\right)\right)=a D_{j}, \phi\left(D_{P}\left(x^{\beta}\right)\right)=b D_{k}, a, b \in F
$$

Since $D_{P}\left(x^{\beta}\right)=\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{j}+\varepsilon_{k}}\right)\right]$, we have $b D_{k}=\phi\left[D_{P}\left(x^{\alpha}\right), D_{P}\left(x^{\varepsilon_{j}+\varepsilon_{k}}\right)\right]=a D_{k}$, that is, $a=b$.
(4-ix) If $\alpha=2^{u} \varepsilon_{i}+\varepsilon_{j}$ and $\beta=\left(2^{u}+1\right) \varepsilon_{i}$. According to (vii), let $\phi\left(D_{P}\left(x^{\alpha}\right)\right)=a D_{j}$, $\phi\left(D_{P}\left(x^{\beta}\right)\right)=b D_{i}, a, b \in F$. Then $a D_{j}=\phi\left(D_{P}\left(x^{\alpha}\right)\right)=\phi\left[D_{P}\left(x^{\beta}\right), D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right]=b D_{j}$, hence $a=b$.
(4-x) According to (vii)-(ix), if $t=2^{u}$, we may assume that $\phi\left(D_{P}\left(x^{(t+1) c_{i}}\right)\right)=a_{i} D_{i}$ for $i \in I_{w}$, where $a_{i} \in F$. Put $\psi:=\phi-\sum a_{i}\left(\operatorname{ad} D_{i}\right)^{2 u} \in G_{[-t]}$, then $\psi L_{[t-1]}=0$. Thanks to Lemma 4.3, we obtain $\psi=0$. Thus, $\phi=\sum a_{i}\left(\operatorname{ad} D_{i}\right)^{2} \in\left\langle\left(\operatorname{ad} D_{i}\right)^{t} \mid i \in I_{u}\right\rangle$.

It is easy to verify that $D_{1}, D_{2} \subset G$. On the other hand, $D_{1} \cap D_{2}=\{0\}$ is clear. Therefore $D_{1} \oplus D_{2} \subset G$. According to (1)-(4), we have $G \subset D_{1} \oplus D_{2}$. Consequently, $G=\mathrm{D}_{1} \oplus \mathrm{D}_{2}$.
Corollary 4.5. If $\mathrm{m} \neq 1$, the dimension of the outer derivation algebra of $P(n, \mathrm{~m})$ is $|\mathrm{m}|$.
Theorem 4.6. $\operatorname{Der} P(4,1)=\operatorname{ad}_{P(4,1)} P^{\prime \prime}(4,1) \oplus(\theta)$, where θ is a homogeneous derivation of degree -2 defined by:

$$
\theta\left(D_{P}\left(x^{\pi-\epsilon_{i}}\right)\right)=D_{i}, 1 \leq i \leq 4
$$

§5. Filtration

If L is a Lie algebra, $\phi \in \operatorname{Der}(L)$, let $I(\phi)=\operatorname{dim}(\operatorname{Im} \phi)$. Clearly, $I(\phi)=I(a \phi), \forall a \in F^{*}$. If M is a subalgebra of $\operatorname{Der}(L)$, let $I(M)=\min _{0 \neq \phi \in M} I(\phi)$ (cf. [6]). If L is a graded Lie algebra, $0 \neq x \in L$, let $\lambda(x)$ denote the nonzero homogeneous part of x with the least degree.
Lemma 5.1. Let L be any graded Lie algebra, $w_{1}, w_{2}, \cdots, w_{k} \in L$. If $\left\{w_{i}\right\}$ is linearly dependent, then $\left\{\lambda\left(w_{i}\right)\right\}$ is also linearly dependent.

In the following discussion, we assume that $L=P(n, 1)$ and $n \geq 5$. By virtue of Theorem 4.4, $\xi:=\operatorname{ad}_{L}\left(D_{P}\left(x^{\pi}\right)\right) \in \operatorname{Der}(L)$.

Recall that $P(n, \mathbf{m})$ is a filtered algebra with filtration $\left\{P(n, \mathbf{m})_{i}\right\}$, where $P(n, \mathbf{m})_{i}=$ $\sum_{j \geq i} P(n, m)_{[j]}$, for $i \geq-1$. we have
Theorem 5.2. Let $n \geq 5$, then the following statements hold:
(1) $I(\operatorname{Der}(P(n, 1)))=n$.
(2) $I(\phi)=n$ if and only if $0 \neq \phi \in\langle\xi\rangle$.
(3) If $\mathbb{C}=\operatorname{ker} \xi$, then $\mathbb{C}=P(n, 1)_{0}$.

Proof. At first, a direct computation shows that if $0 \neq \phi \in\langle\xi\rangle$, then $I(\phi)=n$. We shall prove that if $\phi_{0} \notin\langle\xi\rangle$, then $I\left(\phi_{0}\right)>n$.

Recall that $\lambda\left(\phi_{0}\right)$ is the nonzero homogeneous part of ϕ_{0} with the least degree. According to Theorem 4.4

$$
\operatorname{Der}(P(n, \mathbf{1}))=\operatorname{ad} P(n, 1) \bigoplus\left(\operatorname{ad}_{P(n, 1)} h_{i}|1 \leq i \leq n\rangle \bigoplus\langle\xi\rangle\right.
$$

Hence,

$$
\operatorname{Der}(P(n, 1))=\sum_{i=-1}^{n-2} \operatorname{Der}(P(n, 1))_{[i]} .
$$

As $\phi_{0} \notin\langle\xi\rangle, \lambda\left(\phi_{0}\right) \in \operatorname{Der}(P(n, 1))_{[i]}$, for some $i \leq n-3$. Let $\phi=\lambda\left(\phi_{0}\right)$. Then there exist $n+1$ homogeneous elements E_{1}, \cdots, E_{n+1} of $P(n, 1)$, such that $\left\{\phi\left(E_{i}\right)\right\}$ is linearly independent. We list the $n+1$ elements in the following
(1) Let $\phi=\operatorname{ad}\left(\sum a_{i} D_{i}\right)$, where $a_{i} \in F$.

By symmetry, we may assume that $a_{1} \neq 0$. Put

$$
E_{j}=D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{j}+1}\right), 1 \leq j \leq n-1 ; E_{n}=D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}}\right), E_{n+1}=D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{4}}\right) .
$$

(2) Let $\phi=\operatorname{ad} D$, where $D \in L_{[t-2]}, t>2$.

Let $D=D_{P}\left(x^{\alpha}\right)+\sum_{\beta \neq \alpha} a_{\beta} D_{P}\left(x^{\beta}\right)$. By symmetry, we may assume that $\alpha=\sum_{i=1}^{t} \varepsilon_{i}$, for some $2<t<n$. Put

$$
\begin{aligned}
E_{i} & =D_{i}, 1 \leq i \leq t, \\
E_{t+j} & =D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{t+1}+\varepsilon_{i+2}+\cdots+\varepsilon_{t+j+1}}\right), 1 \leq j \leq n-t-1, \\
E_{n} & =D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{n}}\right), \\
E_{n+1} & =D_{P}\left(x^{\varepsilon_{2}+\varepsilon_{n}}\right) .
\end{aligned}
$$

(3) Let $\phi=\operatorname{ad}_{L}\left(\sum a_{i} h_{i}\right) \in \operatorname{Der}(L)$.

It is harmless to assume that there exists $t \geq 1$, such that $a_{i} \neq 0$ for all $i \leq t$ and $a_{j}=0$, for all $j>t$.
(3-i) $t=1$. Put $E_{1}=D_{1}, E_{j}=D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{j}}\right), 2 \leq j \leq n, E_{n+1}=D_{P}\left(x^{\varepsilon_{1}+e_{2}+e_{3}}\right)$.
(3-ii) $1<t<n$. In this case, put $E_{i}=D_{i}, 1 \leq i \leq t ; E_{i j}=D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right), 1 \leq i \leq$ $t, j>t$. As $t(n-t) \geq n+1-t$, we can choose $n+1-t$ different elements $E_{t+s} \in\left\{E_{i j}\right\}$, $1 \leq s \leq n+1-t$.
(3-iii) $t=n$. If $a_{i}=a_{j}, \forall i, j$, then put $E_{i}=D_{i}, 1 \leq i \leq n, E_{n+1}=D_{P}\left(x^{e_{1}+e_{2}+\epsilon_{3}}\right)$. Otherwise, there are i, j, such that $a_{i} \neq a_{j}$. Put $E_{s}=D_{s}, 1 \leq s \leq n$ and $E_{n+1}=$ $D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)$.
(4) Let $\phi=\phi_{1}+\phi_{2}$, where $\phi_{1}=\operatorname{ad}_{L}\left(\sum a_{i} h_{i}\right), 0 \neq \phi_{2}=\operatorname{ad} D, D=D_{P}\left(\sum a_{\beta} x^{\beta}\right)$ $\in L_{[0]}$.

According to the assumption, there is β such that $a_{\beta} \neq 0$. We may assume that $\beta=$ $\varepsilon_{1}+\varepsilon_{2}$. Thus, put $E_{1}=D_{P}\left(x^{\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}}\right), E_{2}=D_{P}\left(x^{\varepsilon_{3}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}}\right), E_{j}=D_{P}\left(x^{\varepsilon_{1}+\varepsilon_{j}}\right), 3 \leq$ $j \leq n$, and $E_{n+1}=D_{1}$.

As $\phi\left(E_{i}\right)=\lambda\left(\phi_{0}\right)\left(E_{i}\right)=\lambda\left(\phi_{0}\left(E_{i}\right)\right), 1 \leq i \leq n+1$, it follows from Lemma 5.1 that $\left\{\phi_{0}\left(E_{i}\right)\right\}$ is also linearly independent. Consequently, $I\left(\phi_{0}\right)>n$. Thus, (1) and (2) hold.
(3) is obvious.

Corollary 5.3. $P(n, 1)_{0}$ is an invariant subalgebra of $P(n, 1)$.
Theorem 5.4. The natural filtration $\left\{P(n, 1)_{i}\right\}$ of $P(n, 1)$ is intrinsically determined.
Proof. Let $\mathcal{L}_{-1}=P(n, 1)$ and $\mathcal{L}_{0}=\mathbb{C}$. Following Kač and Weisfeiler we define

$$
\begin{equation*}
\mathcal{L}_{i}=\left\{D \in \mathcal{L}_{i-1} \mid\left[D, \mathcal{L}_{-1}\right] \subset \mathcal{L}_{i-1}\right\}, \text { for } i \geq 1 \tag{5.1}
\end{equation*}
$$

It is directly verified that $\mathcal{L}_{i}=P(n, 1)_{i},-1 \leq i \leq n-3$. Hence, the natural filtration

$$
\begin{equation*}
P(n, \mathbf{1})=\mathcal{L}_{-1} \supset \mathcal{L}_{0} \supset \cdots \supset \mathcal{L}_{n-3} \supsetneq 0 \tag{5.2}
\end{equation*}
$$

is intrinsically determined by Corollary 5.3, and the Theorem follows.
Now we assume that

$$
\begin{equation*}
n>1, \mathbf{m}=\left(m_{1}, \cdots, m_{n}\right), \text { and } m_{i} \geq 1+\log _{2}(n+2), \forall i . \tag{5.3}
\end{equation*}
$$

Let $L=P(n, \mathrm{~m})$ and $\xi=\operatorname{ad} D_{P}\left(x^{\pi}\right)$.
Lemma 5.5. if $0 \neq \phi \in(\xi)$, then $I(\phi)=n+1$.
Proof. It is evident that $\phi\left(L_{1}\right)=0$. Moreover, $\phi\left(D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right)\right)=0, \forall i \neq j$. According to Lemma $1.3(4), 0 \neq \phi\left(D_{P}\left(x^{2 \epsilon_{i}}\right)\right) \in\left\langle D_{P}\left(x^{\pi}\right)\right\rangle$. Hence, $\left\{\phi\left(D_{1}\right), \cdots, \phi\left(D_{n}\right), D_{P}\left(x^{\pi}\right)\right\}$ consists of a basis of $\operatorname{Im}(\phi)$. Consequently, $I(\phi)=n+1$.

Lemma 5.6. If $0 \neq D \in L_{[t]},-1 \leq t<|\pi|-2$, then there exist $n+2$ homogeneous elements $E_{1}, \cdots, E_{n+2} \in L$, such that $\left\{\left[D, E_{1}\right],\left[D, E_{2}\right], \cdots,\left[D, E_{n+2}\right]\right\}$ is linearly independent.

Proof. (1) $t=-1$. Let $D=\sum a_{i} D_{i}$, then there is j such that $a_{j} \neq 0$. Put $E_{i}=$ $D_{P}\left(x^{(1+i) \varepsilon_{j}}\right), 1 \leq i \leq n+2$. The assumption $m_{j} \geq 1+\log _{2}(n+2)$ implies that $n+2<2^{m_{j}}$, thus $E_{1}, \cdots, E_{n+2} \in L$ and $\left\{\left[D, E_{i}\right]\right\}$ is linearly independent.
(2) $t>-1$. Let $D=\sum k_{\alpha} D_{P}\left(x^{\alpha}\right)$. Set $J=\left\{0 \neq \alpha \in A(n, m) \mid k_{\alpha} \neq 0\right\}$, then $D=\sum_{\alpha \in J} k_{\alpha} D_{P}\left(x^{\alpha}\right)$.
(a) There is $\alpha \in J$, such that $\alpha_{j}=0$ for some j. By symmetry, we may assume that $\alpha_{n}=0$ and $\alpha_{1}>0$. Put $E_{i}=D_{P}\left(x^{\varepsilon_{1}+2(i-1) \epsilon_{n}}\right), 1 \leq i \leq n+2$, then $\left\{E_{i}\right\} \subset L$ and $\left\{\left[D, E_{i}\right]\right\}$ is linearly independent.
(b) $\forall \alpha \in J, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \neq 0$. Put $E_{i}=D_{i}, 1 \leq i \leq n$. If $\forall \alpha \in J, \alpha_{i} \equiv$ $0(\bmod 2), \forall i$, then $\alpha_{i} \geq 2, \forall i$. Fix some $\alpha \in J$. Put $E_{n+1}=D_{P}\left(x^{\left(\pi_{1}-\alpha_{1}+2\right) e_{1}}\right), E_{n+2}=$ $D_{P}\left(x^{\left(\pi_{2}-\alpha_{2}+2\right) \epsilon_{2}}\right)$. If there exists $\alpha \in J$ such that $\alpha_{i} \equiv 1(\bmod 2)$ for some i. Put $E_{n+1}=$ $D_{P}\left(x^{2 \varepsilon_{i}}\right)$. As $\alpha<\pi$, there is j such that $\alpha_{j}<\pi_{j}$. If $\alpha_{j}=1$, put $E_{n+2}=D_{P}\left(x^{\pi_{j} \varepsilon_{j}}\right)$. If $\alpha_{j} \geq 2$, put $E_{n+2}=D_{P}\left(x^{\left(\pi_{j}-\alpha_{j}+2\right) \varepsilon_{j}}\right)$. Thus, $E_{1}, \cdots, E_{n+2} \in L$ and it is directly verified that $\left\{\left[D, E_{i}\right]\right\}$ is linearly independent.

Theorem 5.7. If $P(n, \mathbf{m})$ satisfies (5.3), then the following statments hold:
(1) $I(\operatorname{ad}(P(n, \mathbf{m})))=n+1$.
(2) $I(\operatorname{ad} D)=n+1$ if and only if $0 \neq D \in\left\langle D_{P}\left(x^{\pi}\right)\right\rangle$.
(3) If $0 \neq D \in\left\langle D_{P}\left(x^{\pi}\right)\right\rangle, \mathbb{C}$ and \mathfrak{N} are the centralizer and normalizer of D in $P(n, \mathbf{m})$ respectively, then $\operatorname{dim} \mathfrak{N} / \mathfrak{C}=1$.

Proof. (1), (2). By direct computation we have if $0 \neq \operatorname{ad} D \in\langle\xi\rangle$, then $I(\operatorname{ad} D)=n+1$. We shall prove that if $D \in P(n, \mathbf{m})$ and $D \notin\left\langle D_{P}\left(x^{r}\right)\right\rangle$, then $I(\operatorname{ad} D)>n+1$. Clearly, $\lambda(D) \notin\left\langle D_{P}\left(x^{\pi}\right)\right\rangle$, thus, by virtue of Lemma 5.6, there are $n+2$ homogeneous elements $E_{1}, \cdots, E_{n+2} \in P(n, \mathbf{m})$, such that $\left\{\left[\lambda(D), E_{i}\right] \mid 1 \leq i \leq n+2\right\}$ is linearly independent. But $\left[\lambda(D), E_{i}\right]=\lambda\left(\left[D, E_{i}\right]\right), 1 \leq i \leq n+2$. Hence, $\left\{\left[D, E_{i}\right] \mid 1 \leq i \leq n+2\right\}$ is also linearly independent by Lemma 5.1. Therefore, $I(\operatorname{ad} D) \geq n+2>n+1$.
(3). It is evident that

$$
\left.\mathfrak{C}=\left\langle D_{P}\left(x^{\alpha}\right)\right| \alpha \in A(n, \mathrm{~m}),|\alpha| \geq 2 \text { and } \alpha \neq 2 \varepsilon_{i}\right\rangle \bigoplus\left\{\sum_{i=1}^{n} a_{i} h_{i} \mid \sum_{i=1}^{n} a_{i}=0\right\}
$$

and $\mathfrak{N}=\mathfrak{C} \oplus\left\langle h_{1}\right\rangle$.
Corollary 5.8. $\left\langle D_{P}\left(x^{\pi}\right)\right\rangle$ is an invariant subspace of $P(n, m)$.
Corollary 5.9. \mathfrak{C} and \mathfrak{N} are invariant subalgebras of $\boldsymbol{P}(n, \mathbf{m})$.
Theorem 5.10. If $P(n, \mathbf{m})$ satisfies (5.3), then the natural filtration of $P(n, \mathbf{m})$ is intrinsically determined.

Proof. Let $\mathcal{L}_{-1}=P(n, \mathbf{m}), \mathcal{L}_{0}=\mathfrak{N}$. We define $\left\{\mathcal{L}_{i}\right\}$ as (5.1), then we have $\mathcal{L}_{i}=$ $P(n, \mathbf{m})_{i}, \forall i$. Hence, the natural filtration

$$
P(n, \mathbf{m})=\mathcal{L}_{-1} \supset \mathcal{L}_{0} \supset \cdots \supset \mathcal{L}_{s} \supsetneq 0
$$

where $s=\sum_{i=1}^{n} 2^{m_{i}}-(n+2)$ is the length of $P(n, m)$, is intrinsically determined by Corollary 5.9.
Theorem 5.11. Let $P(n, \mathbf{m})$ and $P\left(n^{\prime}, \mathbf{m}^{\prime}\right)$ both satisfy (5.3). Then $P(n, \mathbf{m}) \simeq P\left(n^{\prime}, \mathbf{m}^{\prime}\right)$, if and only if $n=n^{\prime}$ and $\left\{m_{1}, \cdots, m_{n}\right\}=\left\{m_{1}^{\prime}, \cdots, m_{n}^{\prime}\right\}$.

Proof. Thanks to Theorem 5.7 (1), n is an invariant of $P(n, m)$, hence, the assumption $P(n, \mathbf{m}) \simeq P\left(n^{\prime}, \boldsymbol{m}^{\prime}\right)$ implies $n=n^{\prime}$. Set $S=\left\{m_{1}, \cdots, m_{n}\right\}$. Let $V_{t}=(\operatorname{ad} P(n, \mathbf{m})+$
$\left.\left.(\operatorname{ad} P(n, \mathbf{m}))^{2}+\cdots+\cdots P(n, \mathbf{m})\right)^{2^{t}}\right) / \operatorname{ad} P(n, \mathbf{m}), t=1,2, \cdots$. Set $d_{t}=\operatorname{dim} V_{t}, t=$ $1,2, \cdots$, which are \mathbf{i}. iants of $P(n, \mathbf{m})$. By Theorem 4.4 we have $d_{t}=\sum_{j=1}^{t}\left|S_{j}\right|$, where $S_{j}:=\left\{x \in S \mid x>_{j}\right\}, j=\cdots$. Thus, $\left|S_{1}\right|=d_{1}$, and $\left|S_{t}\right|=d_{t}-d_{t-1}$ for $t>1$. Consequently, all $\left|S_{t}\right|$ are invariauts. For $P\left(n^{\prime}, \mathbf{m}^{\prime}\right)$ we can defint $V_{t}^{\prime}, d_{t}^{\prime}$, and S_{t}^{\prime} analogously. Thus, $\left|S_{t}\right|=\left|S_{t}^{\prime}\right|, t=1,2, \cdots$. Hence, $\left\{m_{1}, \cdots, m_{n}\right\}=\left\{m_{1}^{\prime}, \cdots, m_{n}^{\prime}\right\}$.

Let $B_{n}=F\left[x_{1}, \cdots, x_{n}\right], x_{i}^{2}=0$, be the truncated polynomial algebra over F, then $\mathfrak{A}(n, 1) \simeq B_{n}$. Set $y_{i}=1+x_{i}, i=1, \cdots, n$, then $y_{i}^{2}=1$. For $\alpha \in A(n, 1)$, put $y^{\alpha}:=y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}$. Then $\left\{y^{\alpha} \mid \alpha \in A(n, 1)\right\}$ is a basis of B_{n}. It is easy to prove that $\left\{D_{P}\left(y^{\alpha}\right) \mid 0<\alpha<\pi\right\}$ is a basis of $P(n, 1)$. Before proving the following theorem, let's recall the definition of the first class of algebras $G(n)$ given by I. Kaplansky in [3].

Let $n \geq 4, V$ an n-dimensional vector space over \mathbb{Z}_{2} equipped with a symmetric inner product (,) which is nonsingular and nonalternate, and e_{1}, \cdots, e_{n} an orthonormal basis of $V . G(n)$ is a Lie algebra over F with basis $\left\{x_{\alpha} \mid \alpha \in V, \alpha \neq 0, e_{1}+e_{2}+\cdots+e_{n}\right\}$ and Lie multiplication

$$
\left[x_{\alpha}, x_{\alpha}\right]=0, \quad\left[x_{\alpha}, x_{\beta}\right]=(\alpha, \beta) x_{\alpha+\beta}, \alpha \neq \beta .
$$

Theorem 5.12. Let $n \geq 4$, then the Lie algebras $P(n, 1)$ and $G(n)$ are isomorphic.
Proof. Define a linear map $\eta: P(n, 1) \longrightarrow G(n)$ as follow:

$$
\eta\left(D_{P}\left(y^{\alpha}\right)\right)=x_{\tilde{\alpha}}, \forall 0<\alpha<\pi,
$$

where $\bar{\alpha}=\sum_{i=1}^{n} \bar{\alpha}_{i} e_{i}$ and $n \mapsto \bar{n}$ is the canonical homomorphism from \mathbb{Z} to \mathbb{Z}_{2}. it is directly verified that η is an isomorphism of Lie algebras.

Let $R(P(n, 1))$ be the subalgebra of $P(n, 1)$ generated by "Kostrikin elements", i.e., these nonzero elements D with (adD) ${ }^{2}=0$. Then we have

Theorem 5.13. Let $n \geq 4$, then $R(P(n, 1))=P(n, 1)$.
Proof. It is easy to prove that $\left(\operatorname{ad} D_{P}\left(x^{\alpha}\right)\right)^{2}=0, \forall 0<\alpha<\pi$ and $\alpha \neq \varepsilon_{i}+\varepsilon_{j}$, thus $D_{P}\left(x^{\alpha}\right) \in R(P(n, 1)), \forall 0<\alpha<\pi$ and $\alpha \neq \varepsilon_{i}+\varepsilon_{j}$. However,

$$
D_{P}\left(x^{\varepsilon_{i}+e_{j}}\right)=\left[D_{k}, D_{P}\left(x^{e_{i}+\varepsilon_{j}+\varepsilon_{k}}\right)\right], k \neq i, j .
$$

Hence, $D_{P}\left(x^{\varepsilon_{i}+\varepsilon_{j}}\right) \in R(P(n, 1))$. Consequently, $R(P(n, 1))=P(n, 1)$.
Remark 5.14. According to Theorem 5.12 and Theorem 5.13, we correct an error occurring in [3, Remarks 2 (c)], where Kaplansky declared that $G(n)$ do not possess Kostrikin elements.

Remark 5.15. All the known simple Lie algebras over a field of characteristic 2 with dimension $2^{N}-1$ are:
(1) $W(1, N)^{(1)}(=P(1, N))$;
(2) some $K\left(n, m, \mu_{i}\right)$ with $n=2 r+1$ and $r \equiv 0(\bmod 2)$, (for the definition, see [2]);
(3) the Lie algebra $L(N)$, which is one of the second class of Lie algebras defined in [3]);
(4) $P(n, m)$, for $n \geq 2$ and $|m|=N$.

According to $[8]$ and Theorem 5.10, if N is big enough and $P(n, \mathbf{m})$ satisfies (5.3), then $P(n, \mathbf{m})$ is not isomorphic to $K\left(n, \mathbf{m}, \mu_{i}\right)$. Thus, for a fix n, there are infinitely many \mathbf{m}, such that $P(n, \mathbf{m})$ are new simple Lie algebras.

Acknowledgments

I would like to express my indebtedness to Professor Guangyu Shen for his great help to me in many ways.

References

1. Strade, H. and Farnsteiner, R., Modular Lie. Algebras and Their Representations, Marcel Dekker, New York and Basel, 1988.
2. Lin, Lei, Lie algebras $K\left(\mathcal{F}, \mu_{i}\right)$ of Cartan type of characteristic $p=2$ and their subalgebras, (in Chinese), J. of East China Normal Univ. (Natural Science Edition) no. 1 (1988), 16-23.
3. Kaplansky, I., Some simple Lie algebras of characteristic 2, Lie algebras and Related Topics, Lecture Notes in Math. 933 (1982), 127-129.
4. Shen, Guangyu, New simple Lie algebras of characteristic p, Chin. Ann. of Math. no. 4B(3) (1983).
5. \qquad , Graded modules of graded Lie algebras of Cartan type (I)-mixed product of modules, Scientia Sinics no. Ser.A 29(6) (1986), 570-581.
6. _, An inirinsic property of the Lie algebra $K(m, n)$, (Eng. Issue), Chin. Ann. of Math. no. 2 (1981), 105-115.
7. Wilson, R. L., A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic, J. Algebra (1976), 418-465.
8. Zhang, Yongzheng and Lin, Lei, Lie algebra $K\left(n, m, \mu_{i}\right)$ of Cartan type of characteristic $p=2$, (to appear in Chin. Ann. of Math.).

Received: November 1991
Revised: February 1992

