Classification of simple amenable C^* -algebras

Huaxin Lin East China Normal University and University of Oregon

References

- H. Lin, Classification of simple C*-algebras with unique traces, Amer. J. Math. 120 (1998), 1289–1315.
- [2] H. Lin, The tracial topological rank of C*-algebras, Proc. London Math. Soc. 83(2001), 199–234.
- [3] H. Lin, Classification of simple C*-algebras and higher dimensional noncommutative tori, Ann of Math. (2) 157 (2003), 521-544.
- [4] H. Lin, Traces and simple C*-algebras with tracial topological rank zero, J. Reine Angew. Math. 568 (2004), 99-137.
- [5] H. Lin, Classification of simple C*-algebras with tracial topological rank zero, Duke Math.
 J., to appear.

 \bigstar . A C^* -algebra is a complete normed algebra over $\mathbb C$ with an involution (*) for which

$$||a^*|| = ||a||$$
 and $||a^*a|| = ||a||^2$.

- \bigstar . Every C^* -algebra is closed and adjoint closed subalgebra of B(H), where B(H) is the C^* -algebra of all bounded operators on a Hilbert space H.
- \bigstar . Examples: \mathbb{C} , M_n , $C_0(X)$, where X is a locally compact Hausdorff space, \mathcal{K} , the algebra of all compact operators on l^2 .
- \bigstar . Gelfand: Every (unital) commutative C^* -algebra is isomorphic (as C^* -algebra) to C(X) for some compact Hausdorff space X.
- \bigstar . C^* -algebra are viewed as non-commutative topology.

★. Minimal dynamical systems.

Let X be a compact metric space and $\alpha: X \to X$ be a minimal homeomorphism. There is an α -invariant normalized Borel measure μ . Consider the Hilbert space $H = L^2(X, \mu)$ and homomorphism $\pi: C(X) \to B(H)$ defined by

$$\pi(g)(f) = gf$$
 for $f \in L^2(X, \mu)$

for all $g \in C(X)$. Define

$$U(f) = f \circ \alpha^{-1} \ f \in L^2(X, \mu).$$

Then U gives a homomorphism from \mathbb{Z} into the unitary group of B(H). The C^* -algebra generated by $\pi(C(X))$ and α is denoted by $A_{\alpha} = C(X) \rtimes_{\alpha} \mathbb{Z}$ and is called the crossed product of C(X) by \mathbb{Z} via α .

In this special case A_{α} is a unital separable simple C^* -algebra. (no proper ideal).

★. Irrational rotations.

Let S^1 be the unit circle and θ be an irrational number. Define $\alpha: S^1 \to S^1$ by $\alpha(e^{2\pi it}) = e^{2\pi i(t+\theta)}$. This is an irrational rotation. One can show that A_{α} is the universal C^* -algebra generated by two uniatries u and v with relation:

$$uv = e^{2\pi i \theta}vu.$$

(non-commutative torus).

 \bigstar . Question: when two C^* -algebras are isomorphic?

Two unital commutative C^* -algebras A=C(X) and B=C(Y) are isomorphic if and only if X and Y are homeomorphic.

 \bigstar . We are NOT going to classify commutative C^* -algebras.

- \bigstar . We consider simple separable amenable C^* -algebras with lower rank (for this talk zero rank).
- ★. AF-algebras can be classified by (scaled) dimension groups (G. A. Elliott—1978).

AF=== approximately finite dimensional. C(X) is AF if and only if $\dim X = 0$.

 \bigstar . A C^* -algebra has real rank zero if the set of invertible self-adjoint elements is dense in $A_{s.a.}$.

Every AF-algebra has real rank zero.

C(X) has real rank zero if and only if $\dim X = 0$.

Every Von-Neumann algebras has real rank zero.

★. AH-algebras:

$$A = \lim_{n \to \infty} (A_n, \phi_n)$$
, where

$$A_n = P(C(X_n) \otimes F_n)P = P(C(X, F_n))P,$$

where X_n is a finite CW-complex, P is a projection in $C(X, F_n)$.

A is said to be $A\mathbb{T}$ -algebra if each X_n can be taken as the unit circle.

 \bigstar . Theorem (Elliott-Gong) (On the classification of C^* -algebras of real rank zero. II. Ann. of Math. 144 (1996), 497–610.)

Let A and B be two unital AH-algebras with no dimension growth and with real rank zero. Then $A\cong B$ if and only if

$$(K_0(A), K_0(A)_+, [1_A], K_1(A))$$

 $\cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).$

 \bigstar . Moreover, for any countable abelian group G_1 and any countable weakly unperforated (partial) ordered group G_0 with order unit $u \in G_0$ with the Riesz interpolation, there is a unital simple AH-algebra with no dimension growth and with real rank zero such that

$$(K_0(A), K_0(A)_+, [1_A], K_1(A)) = (G_0, (G_0)_+, u, G_1).$$

Theorem (Elliott and Evans) The structure of the irrational rotation C^* -algebra, Ann. of Math. 138 (1993), 477–501.

Let θ be an irrational number and $\alpha: S^1 \to S^1$ is defined by $\alpha(z) = e^{2\pi i\theta}z$. Then $C(X) \rtimes_{\alpha} \mathbb{Z}$ is a unital simple $A\mathbb{T}$ -algebra with real rank zero.

- \bigstar . All purely infinite simple C^* -algebras have real rank zero. (S. Zhang)
- \bigstar . Tracial (topological) rank was introduced in 1998. If A has tracial rank zero, it will written TR(A) = 0.
- \bigstar . Every unital simple C*-algebra with TR(A) = 0 is quasidiagonal, has real rank zero, stable rank and weakly unperforated K_0 .

★. Every unital simple AH-algebra with no dimension growth and with real rank zero has tracial rank zero.

 \bigstar . \mathcal{N} : the so-called Bootstrap class of C^* -algebras.

It contains most interesting separable C^* -algebras. It contains all commutative C^* -algebras, type \mathbb{Z} C^* -algebras, closed under inductive limit, quotient, ideal, tensor product with AF-algebras, crossed products by \mathbb{Z} ,....

We are only interested in C^* -algebras in \mathcal{N} .

\bigstar . Theorem A (L—)

Let A and B be two unital separable simple C^* -algebras in \mathcal{N} . Suppose that TR(A) = TR(B) = 0. Then

$$A \cong B$$

if and only if

$$(K_0(A), K_0(A)_+, [1_A], K_1(A))$$

$$\cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).$$

★ Consider

$$\alpha: K_*(A) \longrightarrow K_*(B).$$

We hope to establish homomorphisms $\phi: A \to B$ so that $[\phi] = \alpha$.

One can settle for "approximately multiplicative maps".

 \bigstar A sequence of positive linear maps $\phi_n: A \to B$ is said to be asymptotically multiplicative if

$$\lim_{n\to\infty} \|\phi_n(a)\phi_n(b) - \phi_n(ab)\| = 0$$

for all $a, b \in A$.

In general, asymptotically multiplicative completely positive linear maps can not be "close" to any homomorphisms

For unital separable amenable simple C^* -algebras A and B with TR(A) = TR(B) = 0, given any

$$\alpha: (K_0(A), K_0(A)_+, [1_A], K_1(A))$$

 $\to K_0(B), K_0(B)_+, [1_B], K_1(B)).$

There existence a (sequence) of asymptotically multiplicative contractive completely positive linear maps $\{\phi_n\}$: $A \to B$ such that "locally" $\{\phi_n\}$ gives α .

 \bigstar (A non-commutaive diagram)

$$\begin{array}{cccc}
A & \xrightarrow{\mathrm{id}} & A & \xrightarrow{\mathrm{id}} & A \\
\downarrow \phi_1 \nearrow \psi_1 & \downarrow \phi_2 & & \\
B & \xrightarrow{\mathrm{id}} & B & \xrightarrow{\mathrm{id}} & B
\end{array}$$

★ Question:

Given two maps from $L_1, L_2 :\rightarrow B$.

- 1) When are they the "same"?
- 2) When are they unitarily equivalent?

★ Consider a spacial case:

Let X be a compact metric space and let A be a unital separable simple C^* -algebra with TR(A) = 0. Suppose $h_1, h_2 : C(X) \to A$ are two unital monomorphisms. When they are "equivalent?"

★. Theorem B (L—)

Let A be a unital simple C^* -algebra with tracial rank zero and X be a compact metric space. Suppose that $h_1, h_2 : C(X) \to A$ are two unital monomorphisms. Then h_1 and h_2 are approximately unitarily equivalent if and only if

$$[h_1] = [h_2]$$
 in $KL(C(X), A)$ and $\tau(h_1(f)) = \tau(h_2(f))$
for every $f \in C(X)$ and every trace τ of A .

★. Approximately unitarily equivalent:

There exists a sequence of unitaries $u_n \in A$ such that

$$\lim_{n \to \infty} \|u_n^* h_1(a) u_n - h_2(a)\| = 0$$

for all $f \in C(X)$.

★. Recall the BDF-theory.

Let A be the Calkin algebra. Suppose that h_1, h_2 : $C(X) \to A$ are two unital monomorphisms. Then h_1 and h_2 are unitarily equivalent if and only if

$$[h_1] = [h_2]$$
 in $KK(C(X), A)$.

 \bigstar . If $K_*(C(X))$ is torsion free, in Theorem A, condition about KL can be replaced by

$$(h_1)_{*i} = (h_2)_{*i}, i = 0, 1,$$

where $(h_j)_{*i}: K_i(C(X)) \to K_i(A)$ (i = 0, 1) is the induced homomorphism on K_i .

 \bigstar . If A has a trace τ and h_1 and h_2 are approximately unitarily equivalent, then

$$\tau(h_1(f)) = \tau(h_2(f))$$

for all $f \in C(X)$.

★. Calkin algebra is purely infinite and simple—no trace.

★. **Theorem C** Let A and B be two unital separable simple C^* -algebras with TR(A) = TR(B) = 0. Suppose that $\{\phi_n\}, \{\psi_n\} : A \to B$ are two sequence of completely positive linear maps which are asymptotically multiplicative such that

$$[\{\phi_n\}] = [\{\psi_n\}]$$
 in $KL(A, B)$

. Then there exists a sequence of unitaries $\{u_k\}\subset B$ such that

$$\lim_{k \to \infty} \|u_k^* \phi_{n_k}(a) u_k - \psi_{n_k}(a)\| = 0$$

for all $a \in A$.

 \bigstar If $K_*(A)$ is torsion free,

$$KL(A,B) = Hom(K_*(A),K_*(B)).$$

By using the "existence theorem" and the "uniqueness theorem" one can construct an approximate intertwining:

$$\star$$

$$\begin{array}{ccccc}
A & \stackrel{\mathrm{id}}{\to} & A & \stackrel{\mathrm{id}}{\to} A \\
\downarrow_{\phi_1} & \nearrow_{\operatorname{ad} u_1 \circ \psi_1} & \downarrow_{\operatorname{ad} v_2 \circ \phi_2} & \\
B & \stackrel{\mathrm{id}}{\to} & B & \stackrel{\mathrm{id}}{\to} B
\end{array}$$

Minimal dynamical systems

- \bigstar . Let X be a compact metric space and α be a homeomorphism on X. Set $A_{\alpha} = C(X) \rtimes_{\alpha} \mathbb{Z}$ and $j_{\alpha} : C(X) \to A_{\alpha}$ the obvious embedding map.
- \bigstar . Let X be a compact metric space and $\alpha, \beta: X \to X$ be minimal homeomorphisms. We say α and β are conjugate if there exists homeomorphism $\sigma: X \to X$ such that

$$\sigma^{-1} \circ \beta \circ \sigma = \alpha.$$

We say α and β are flip conjugate if either α and β^{-1} (or α^{-1} and β or α and β) are conjugate.

★. Theorem T (J. Tomiyama)

Let X be a compact metric space and $\alpha, \beta: X \to X$ be homeomorphisms. Suppose that (X, α) and (X, β) are topologically transitive. Then α and β are flip conjugate if and only if there is an isomorphism $\phi: C(X) \rtimes_{\alpha} \mathbb{Z} \to C(X) \rtimes_{\beta} \mathbb{Z}$ such that $\phi \circ j_{\alpha} = j_{\beta} \circ \chi$ for some isomorphism $\chi: C(X) \to C(X)$.

It should be noted that all minimal dynamical systems are transitive.

★. Definition

Let (X, α) and (X, β) be two topological transitive systems. (X, α) and (X, β) are C^* -strongly approximately flip conjugate if there exists an $\phi : A_{\alpha} \to A_{\beta}$, a sequence of unitaries $u_n \in C(X) \times_{\alpha} \mathbb{Z}$ and an isomorphism $\chi : C(X) \to C(X)$ such that

$$\lim_{n\to\infty} \|\operatorname{ad} u_n \circ \phi \circ j_\alpha(f) - j_\beta \circ \chi(f)\| = 0 \text{ for } f \in C(X).$$

 \bigstar . In Theorem T, let $\theta = [\phi]$ in $KK(A_{\alpha}, A_{\beta})$. Let $\Gamma(\theta)$ be the induced element in $Hom(K_*(A_{\alpha}), K_*(A_{\beta}))$ which preserves the order and the unit. Then one has

$$[j_\alpha]\times\theta=[j_\beta\circ\chi]$$

 \bigstar Let A be a stably finite C^* -algebra and T(A) be the space of tracial states on A. There is a positive homomorphism $\rho_A: K_0(A) \to Aff(T(A))$, where Aff(T(A)) is the set of all real affine continuous functions on T(A).

Suppose that $TR(A_{\alpha}) = TR(A_{\beta}) = 0$. Then $\rho_{A_{\alpha}}(K_0(A_{\alpha}))$ and $\rho_{A_{\beta}}(K_0(A_{\beta}))$ are dense in $Aff(T(A_{\alpha}))$ and $Aff(T(A_{\beta}))$ respectively. Thus $\Gamma(\theta)$ induces an order and unit preserving affine isomorphism $\theta_{\rho}: Aff(T(A_{\alpha})) \to Aff(T(A_{\beta}))$ For each $\alpha \in A_{s.a.}$, one defines an element $\hat{\alpha} \in Aff(T(A_{\alpha}))$ by $\hat{\alpha}(\tau) = \tau(\alpha)$. In particular, each element in $j_{\alpha}(C(X)_{s.a})$ gives an element in $Aff(T(A_{\alpha}))$. Therefore, in terms of K-theory and KK-theory, one has the following: If α and β are flip conjugate, then there is an isomorphism

$$\chi:C(X)\to C(X)$$
 such that

$$[j_lpha] imes heta=[j_eta\circ\chi] ext{ in } KK(C(X),A_eta) ext{ and} \ heta_
ho\circ
ho_{A_lpha}\circ j_lpha=
ho_{A_eta}\circ j_eta\circ\chi.$$

★. **Theorem D** (L—2004)

Let (X, α) and (X, β) be two minimal dynamical systems such that A_{α} and A_{β} have tracial rank zero. Then α and β are C^* -strongly approximately flip conjugate if and only if the following hold: There is an sequence of isomorphism $\chi_n: C(X) \to C(X)$ and $\theta \in KL(A_{\alpha}, A_{\beta})$ such that $\Gamma(\theta)$ gives an isomorphism from

$$(K_0(A_{\alpha}), K_0(A_{\alpha})_+, [1], K_1(A_{\alpha}))$$
 to $(K_0(A_{\beta}), K_0(A_{\beta})_+, [1], K_1(A_{\beta})),$

$$[j_{lpha}] imes heta = [j_{eta} \circ \chi_n]$$
 in $KL(C(X), A_{eta})$ for all n and

 $\lim_{n\to\infty}\|\rho_{A_{\beta}}\circ j_{\beta}\circ \chi_n(f)-\theta_{\rho}\circ \rho_{A_{\alpha}}\circ j_{\alpha}(f)\|=0$ for all $f\in C(X)$.

 \bigstar . Cor C. Let X be a compact metric space with torsion free K-theory. Let (X, α) and (X, β) be two minimal dynamical systems such that $TR(A_{\alpha}) = TR(A_{\beta}) = 0$. Suppose that there is a unit preserving order isomorphism

- (i) $\gamma: (K_0(A_{\alpha}), K_0(A_{\alpha})_+, [1_{A_{\alpha}}], K_1(A_{\alpha}))$ $\to (K_0(A_{\beta}), K_0(A_{\beta})_+, [1_{A_{\beta}}], K_1(A_{\beta})),$
- (ii) $[j_{\alpha}] \times \theta = [j_{\beta} \circ \chi]$ in $KL(C(X), A_{\beta})$ and
- (iii) $\gamma_{\rho} \circ j_{\alpha} = \rho_{A_{\beta}} \circ j_{\beta} \circ \chi$

for some isomorphism $\chi: C(X) \to C(X)$. Then (X, α) and (X, β) are C^* -strongly approximately flip conjugate.

★. The Cantor set.

In the case when X is the Cantor set, $K_0(C(X)) = C(X, \mathbb{Z})$. It follows that, if there is $\theta : K_i(A_\alpha) \to K_i(A_\beta)$ that is an order and unit preserving isomorphism, then there exists $\chi : C(X) \to C(X)$ such that

$$\theta \circ (j_{\alpha})_{*0} = (j_{\beta} \circ \chi)_{*0}.$$

Moreover, it implies that

$$heta_
ho\circ
ho_{A_lpha}\circ j_lpha=
ho_{A_eta}\circ j_eta\circ\chi.$$

In other words, in the case that X is the Cantor set condition (ii) and (iii) is automatic.

★. Approximate conjugacy.

Two dynamical systems (X, α) and (X, β) are said to be weakly approximately conjugate if there are $\sigma_n, \gamma_n : X \to X$ such that

$$\lim_{n o\infty}\|f(\sigma_n^{-1}\circeta\circ\sigma_n)-f(lpha)\|=0$$
 and $\lim_{n o\infty}\|f(\gamma_n^{-1}\circlpha\circ\gamma_n)-f(eta)\|=0$ for all $f\in C(X)$.

 \bigstar . This is too weak since there is no consistency among σ_n and γ_n .

Suppose

$$\lim_{n \to \infty} \| f(\sigma_n \circ \alpha \circ \sigma_n^{-1}) - f(\beta) \| = 0$$

for all $f \in C(X)$. Then there exists a sequence of completely positive linear maps $\psi_n : B \to A$ such that

$$\lim_{n \to \infty} \|\psi_n(ab) - \psi(a)\psi(b)\| = 0$$

for all $a, b \in B$ and

$$\lim_{n\to\infty} \|\psi_n(f) - f \circ \sigma_n\| = 0$$

for all $f \in C(X)$ and

$$\lim_{n\to\infty}\psi_n(u_\beta)=u_\alpha,$$

where u_{α} and u_{β} denote the implementing unitaries in $C(X) \rtimes_{\alpha} \mathbb{Z}$ and $C(X) \rtimes_{\beta} \mathbb{Z}$.

Let (X, α) and (X, β) be dynamical systems on compact metrizable spaces X and Y. Suppose that a sequence of homeomorphisms $\sigma_n : X \to X$ satisfies $\sigma_n \alpha \sigma_n^{-1} \to \beta$.

Let $\{\psi_n\}$ be the asymptotic morphism arising from σ_n .

 \bigstar . We say that the sequence $\{\sigma_n\}$ induces an order and unit preserving homomorphism $H_*: K_*(C(X) \rtimes_{\beta} \mathbb{Z}) \to K_*(C(X) \rtimes_{\alpha} \mathbb{Z})$ between K-groups, if for every projection $p \in M_{\infty}(C(X) \rtimes_{\beta} \mathbb{Z})$ and every unitary $u \in M_{\infty}(C(X) \rtimes_{\beta} \mathbb{Z})$, there exists $N \in \mathbb{N}$ such that

$$[\psi_n(p)] = H_*([p]) \in K_0(C(X) \rtimes_{\alpha} \mathbb{Z})$$
 and $[\psi_n(u)] = H_*([u]) \in K_1(C(X) \rtimes_{\beta} \mathbb{Z})$

for every $n \geq N$.

 \bigstar . (For torsion free case). We say that (X, α) and (X, β) are approximately K-conjugate, if there exist homeomorphisms $\sigma_n: X \to X$, $\gamma_n: X \to X$ and a (unit preserving) order isomorphism $H_*: K_*(C(X) \rtimes_{\beta} \mathbb{Z}) \to K_*(C(X) \rtimes_{\alpha} \mathbb{Z})$ between K-groups such that

$$\lim_{n o\infty}\|f(\sigma_nlpha\sigma_n^{-1})-f(eta)\|=0$$
 and $\lim_{n o\infty}\|f(\gamma_neta\gamma_n^{-1})-f(lpha)\|=0$

for all $f \in C(X)$ and the associated asymptotic morphisms $\{\psi_n\}: B \to A$ and $\{\phi_n\}: A \to B$ induce the isomorphisms H_* and H_*^{-1} .

Theorem E (with H. Matui)

Let X be the Cantor set and α and β be minimal homeomorphisms. Then the following are equivalent:

- (i) α and β are C^* -strongly approximately flip conjugate,
 - (ii) α and β are approximately K-conjugate,
 - (iii) A_{α} and A_{β} are isomorphic,

(iv)
$$(K_0(A_\alpha), K_0(A_\alpha)_+, [1_{A_\alpha}]) \cong (K_0(A_\beta), K_0(A_\beta)_+, [1_{A_\beta}]),$$

By a theorem of Giordano, Putnam and Skau, the above also equivalent to

(v) (X, α) and (X, β) are strong orbit equivalent.