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Abstract. We find all the inequivalent simple root systems for the complex reflection groups
G12, G24, G25 and G26. Then we give all the non-congruent essential presentations of these
groups by generators and relations. The methed used in the paper is applicable to any finite
(complex) reflection groups.

Introduction.

Shephard and Todd classified all the finite complex reflection groups in paper [5]. Later

Cohen gave a more systematic description for these groups in terms of root systems (R, f)

and root graphs in [2], in particular, he defined a simple root system (B,w) for the root

system of such a group, which is analogous to the corresponding concept for a Coxeter

group. In general, for a given finite complex reflection group G, a root system (R, f) is

essentially unique but a simple root system (B, w) for (R, f) is not (even up to G-action),

e.g., when G = G33, G34 (see [1, Table 4]). One can define an equivalence relation on the

set of simple root systems for (R, f) (see 1.7). A natural question is to ask

Problem A. How many inequivalent simple root systems are there in total for any irre-

ducible finite complex reflection group G ?
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It is well known that any Coxeter group can be presented by generators and relations. A

finite complex reflection group G can also be presented in a similar way (see [2]). But such a

presentation is not unique for G in general. Different presentations of G may reveal various

different properties of G (see [6] for example). Then it is worth to define a congruence

relation among the presentations of G (see 1.9) and then to ask

Problem B. How many non-congruent presentations are there for any irreducible finite

complex reflection group G ?

In the present paper, we solve these problems just for the finite primitive complex re-

flection groups G = G12, G24, G25, G26 (in the notations of [5]). The other finite primitive

complex reflection groups except G34 will be dealt with subsequently in two papers by my

graduate students Li Wang and Peng Zeng (see [8, 9]). We choose to deal with these four

groups as they represent four different cases. Among these groups, G12 is the only group

the number of whose generating reflections is not equal to the dimension of the space it

acts. The group G24 is generated by three reflections of order 2, G25 is generated by three

reflections of order 3, while G26 is generated by three reflections of different orders: one

of order 2 and two of order 3. Our method in dealing with Problem A is based on the

knowledge of the action of G on its root system. Then the results so obtained, together

with a known presentation of G, will be used in dealing with Problem B. We shall further

show that the reduced forms for the presentations of the groups obtained in the paper are

all essential (see 7.1 and Theorem 7.3). It is a relatively easy task if one is only content with

getting the non-congruent essential presentations for a given finite complex reflection group.

But some of such presentations may have very complicated form and hence is not applicable

in practice. So in the present paper we are trying to find the forms of the non-congruent

essential presentations as simple as possible. Then it becomes quite subtle in finding such

forms and even more subtle in proving that they are indeed non-congruent and essential.

The methods used in the paper are applicable to any other finite (complex) reflection group.

The contents are organized as follows. Section 1 is served as preliminaries, some defini-

tions and results are collected there. Then we give all the inequivalent simple root systems

for the group G12 in Section 2, and give all the non-congruent presentations of G12 in

Section 3. We do the same for the groups G24, G25, G26 in Sections 4, 5, 6, respectively.

Finally we show in Section 7 that the reduced forms for all the presentations of the groups

obtained in the paper are essential.
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§1. Preliminaries.

We collect some definitions and results concerning irreducible finite reflection groups,

where 1.1-1.5 follow from Cohen’s paper [2] except for the definition of a simple root system

which follows from [3].

1.1. Let V be a complex vector space of dimension n. A reflection on V is a linear

transformation on V of finite order with exactly n− 1 eigenvalues equal to 1. A reflection

group G on V is a finite group generated by reflections on V . The group G is reducible if it

is a direct product of two proper reflection subgroups and irreducible otherwise. The action

of G on V is said to be irreducible if V has no nonzero proper G-invariant subspace. In the

present paper we shall always assume that G is irreducible and acts irreducibly on V . A

reflection group G on V is called a real group or a Coxeter group if there is a G-invariant

R-subspace V0 of V such that the canonical map C ⊗R V0 → V is bijective. If this is not

the case, G will be called complex. (Note that, according to this definition, a real reflection

group is not complex.)

Since G is finite, there exists a unitary inner product ( , ) on V invariant under G. From

now on we assume that such an inner product is fixed.

1.2. A root of a reflection on V is an eigenvector corresponding to the unique nontrivial

eigenvalue of the reflection. A root of G is a root of a reflection in G.

Let s be a reflection on V of order d > 1. There is a vector a ∈ V of length 1 and a

primitive d-th root ζ of unity such that s = sa,ζ , where sa,ζ is defined by

(1.2.1) sa,ζ(v) = v + (ζ − 1)(v, a)a for all v ∈ V .

We also write sa,d for sa,ζ if ζ = e2πi/d. In this case, we often write sa,d simply by sa if d

is clear from the context.

For each v ∈ V define oG(v) to be the order of the (necessarily cyclic) group that

consists of the identity and the reflections in G which have v as a root. (This group is

GW = { g ∈ G | gu = u for all u ∈ W }, where W = v⊥.) Thus oG(v) > 1 if and only if v

is a root of G. If a is a root of G, then oG(a) will be called the order of a (with respect to

G). We shall denote oG(a) simply by o(a) when G is clear from the context.

The following results can be shown easily.

Lemma 1.3. (1) o(gv) = o(v) = o(cv) for all v ∈ V , g ∈ G and c ∈ C \ {0}.
(2) gsag−1 = sg(a) for any g ∈ G and any root a of G.
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1.4. A pair (R, f) is called a root system in V , if

(i) R is a finite set of vectors v spanning V with |(v, v)| = 1;

(ii) f : R → N \ {1} is a map such that sa,f(a)R = R and f(sa,f(a)(b)) = f(b) for all

a, b ∈ R;

(iii) the group G generated by { sa,f(a) | a ∈ R } is a finite reflection group, and for all

a ∈ R and c ∈ C,

ca ∈ R ⇐⇒ ca ∈ Ga.

The group G is called the reflection group associated with the root system (R, f). We

have oG(a) = f(a) for any a ∈ R.

We shall denote a root system (R, f) simply by R when f is clear from the context.

1.5. A simple root system is a pair (B, w), where B is a finite set of vectors spanning V

and w is a map from B to N \ {1}, satisfying the following conditions:

(i) for all a, b ∈ B, we have |(a, b)| = 1 ⇐⇒ a = b;

(ii) the group G generated by S = { sa,w(a) | a ∈ B } is finite;

(iii) there is a root system (R, f) with R = GB and f(a) = w(a) for all a ∈ B;

(iv) the group G cannot be generated by fewer than |B| reflections.

We call the elements of S simple reflections. We also call (R, f) the root system of G

generated by B, and B a simple root system for R (or for G).

Note that we do not require B to be linearly independent. If B is linearly independent,

then condition (iv) holds automatically.

The above definition of a simple system is considerably weaker than the usual definition

for Coxeter groups; in particular, it is not always true that if B1 and B2 are simple root

systems for the same root system R then there is an element g ∈ G with gB1 = B2.

By Lemma 1.3 we see that if α ∈ B and β ∈ Cα ∩ R, then B′ = (B \ {α}) ∪ {β} also

forms a simple root system for R.

1.6. Let B (resp. B′) be a subset of V and w : B −→ N\{1} (resp. w′ : B′ −→ N\{1}) be

a function. Let G (resp. G′) be the reflection group generated by {sα,w(α) | α ∈ B} (resp.

{sα,w′(α) | α ∈ B′} ). If there exists a bijection φ : B −→ B′ such that w(α) = w′(φ(α))

and (α, β) = (φ(α), φ(β)) for any α, β ∈ B. Then by the theory of linear algebra, we see

that the assignment sα,w(α) 7→ sφ(α),w′(φ(α)) determines a group isomorphism from G to G′.

1.7. Let (R, f) be a root system with G the associated reflection group and B a simple

root system for R. Then it is known that as a root system for G, R is determined by G
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up to scalar factors (see [3, 1.9]). However, a simple root system B for R is not uniquely

determined by G. Two simple root systems (B,w) and (B′, w′) for (R, f) are equivalent,

written B ∼ B′, if there exists a bijection φ : B −→ B′ such that for any α, β ∈ B,

(1) w(α) = w′(φ(α)) and,

(2) 〈sα,w(α), sβ,w(β)〉 ∼= 〈sφ(α),w′(φ(α)), sφ(β),w′(φ(β))〉, where the notation 〈s, t〉 stands for

the group generated by s, t.

In particular, two simple root systems B, B′ for R are equivalent if one of the following

cases occurs:

(a) gB = B′ for some g ∈ G;

(b) Condition (2) is replaced by condition (2′) below in the above definition of B ∼ B′:

(2′) |(α, β)| = |(φ(α), φ(β))| for any α, β ∈ B.

In general, not all the simple root systems are equivalent for a given reflection group. So

it is natural to ask Problem A in Introduction.

It is known that at least one simple root system has been found for any irreducible finite

reflection group G (see [7]). We have the following criterion for a subset of a root system

to be a simple root system.

Proposition 1.8. Let G be a finite reflection group with (R, f) the associated root system

and B a simple root system for R. Let B′ be a subset of R and let GB′ be the group generated

by the reflections sα,f(α), α ∈ B′.

(1) B′ forms a simple root system for G if and only if GB′B
′ = R and |B′| = |B|.

(2) If B ⊆ GB′B
′ then GB′B

′ = R.

Proof. (1) The implication “=⇒” is obvious by the definition of a simple root system. For

the reversing implication, we need only check conditions (i) and (ii) in 1.5. Since GB′B
′ = R,

we have GB′ = G. So (ii) follows by the assumption that G is finite. Since (R, f) is a root

system, any vector v in R (in particular, when v is in B′) satisfies |(v, v)| = 1 and hence

|(v, v′)| 6= 1 for any non-proportional v, v′ ∈ R. So to show that (B′, w′) satisfies (i), it is

enough to show that B′ does not contain two proportional vectors α, β. For otherwise, the

reflections with respect to the vectors in the proper subset B′ \ {β} of B′ would generate

the group G, contradicting the assumptions that |B′| = |B| and that B is a simple root

system for G.

(2) Any reflection in the group GB′ has the form sα with α ∈ GB′B
′. Since B ⊆ GB′B

′

and G = 〈sβ | β ∈ B〉, we have GB′ ⊇ G and hence GB′ contains all the reflections sβ ,
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β ∈ R. This implies the inclusion R ⊆ GB′B
′ and hence GB′B

′ = R. ¤

1.9. Given a reflection group G, a presentation of G by generators and relations (or a

presentation in short) is by definition a pair (S,P), where

(1) S is a finite generator set for G which consists of reflections, and S has minimal

cardinality with this property.

(2) P is a finite set of relations on S, and any other relation on S is a consequence of the

relations in P.

Two presentations (S,P) and (S′,P ′) for G are congruent, if there exists a bijection

η : S −→ S′ such that for any s, t ∈ S,

(∗) 〈s, t〉 ∼= 〈η(s), η(t)〉.
In this case, we see by taking s = t that the order o(s) of r is equal to the order o(η(r))

of η(r) for any r ∈ S.

If there does not exist such a bijection η, then we say that they are non-congruent.

For any reflections s, t in G, it is known (see, for example, Koster [4]) that there exists

a positive integer k such that sts... = tst... (k factors on each side). Denote by n(s, t) the

smallest such k. It is easily seen that when o(s) = o(t) = 2, condition (∗) is equivalent to

condition

(∗∗) n(s, t) = n(η(s), η(t)).

However, when either o(s), o(t) > 2 or max{o(s), o(t)} = 5, one can show that neither of (∗)
and (∗∗) implies the other in general by checking all the cases where a complex reflection

group is irreducible and is generated by exactly two reflections.

1.10. Given a simple root system (B, w) for G, say B = {α1, ..., αr}, denote by n(B) the(
r
2

)
-tuple (X12, X13, ..., X1r, X23, X24, ..., X2r, ..., Xr−1,r) with

(
r
2

)
= r(r+1)

2 , where Xij =

〈sαi,w(αi), sαj ,w(αj)〉 for 1 6 i < j 6 r. In particular, when w is the constant function 2, we

can replace the group Xij by the number n(sαi,2, sαj ,2) for any i, j in the definition of n(B).

This is because in that case, Xij becomes a dihedral group which is entirely determined by

the number n(sαi,2, sαj ,2).

1.11. For each presentation (S,P) for G, there exists a simple root system (BS , wS) for

G (called an associated simple root system of (S,P)) such that each element of S has the

form s
kS(α)
α,wS(α) for some α ∈ BS and some kS(α) ∈ N with kS(α) coprime to wS(α). By the

minimality for the cardinality of S, we see that for any α, β ∈ BS , s
kS(α)
α,wS(α) = s

kS(β)
β,wS(β) in

S if and only if α = β. By properly choosing generators in a presentation (S,P) for G,
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we can always make an associated simple root system (BS , wS) to satisfy kS(α) = 1 for all

α ∈ BS)

Lemma. Two presentations of G are congruent if and only if their associated simple root

systems are equivalent (see 1.7).

Proof. It follows directly from the definitions. ¤

Remark 1.12. (1) In the present paper, we shall deal with Problems A and B (see Intro-

duction) for the groups G = G12 G24, G25 and G26. As a basic work in our method, we

calculate the group 〈sα, sβ〉 (or the value n(sα, sβ) when f(α) = f(β) = 2) for any pair of

reflections sα 6= sβ in G with respect to α, β ∈ R, and also calculate all the permutations

of R given rise by the action of the reflections sα, α ∈ R (these results are not included

explicitly in the paper). These can be done by computer in general.

(2) Howlett classified all the non-congruent simple reflection sets for the groups G12 and

G24 by a certain detailed analysis on the group-theoretic structure of these groups in a

private communication. The method used in the paper is quite different from Howlett’s,

and could be applied without essential change for the other finite complex reflection groups.

§2. Simple root systems for the group G12.

2.1. Let ε1, ε2 be an orthonormal basis in a hermitian space V of dimension 2. Let e1 = ε1

and e2 = −1+
√

2 i
2 ε1 +

√
3−√6 i

6 ε2. Then e1, e2 is also a basis of V . Denote by (a, b) a vector

ae1 + be2 in V . Let R12 = {±ei | 1 6 i 6 12}, where

e1 =(1, 0), e2 =(0, 1), e3 =(1, 1), e4 =(1−
√

2 i, 1),

e5 =(−
√

2 i, 1), e6 =(1, 1+
√

2 i), e7 =(1,
√

2 i), e8 =(
√

2 i,−1+
√

2 i),

e9 =(1+
√

2 i,
√

2 i), e10 =(1+
√

2 i,−1+
√

2 i), e11 =(1−
√

2 i, 2), e12 =(2, 1+
√

2 i).

Let si be the reflection in V with respect to ei for 1 6 i 6 12. Then the action of si on ej ,

1 6 i, j 6 3, are as follows.

ei s1(ei) s2(ei) s3(ei)
e1 −e1 e6 e8

e2 e4 −e2 −e9

e3 e5 e7 −e3



8 Jian-yi Shi

The group generated by the set S1 = {s1, s2, s3} is G12 according to the notation by

Shephard-Todd (see [5] and [7]). R12 is a root system for G12 with B1 = {e1, e2, e3} a

simple root system by [1] or [7].

2.2. By Proposition 1.8, we see that any simple root system B for the group G12 contains

exactly three vectors. Since R12 is transitive under G12, we may assume e1 ∈ B up to G12-

action. Consider all the possible orders o(s1si) of the product s1si for 1 < i 6 12. Then

o(s1s11)=2, o(s1si) is 3 for i ∈ {6, 8, 10, 12}, 4 for i ∈ {7, 9} and 6 for i ∈ {2, 3, 4, 5}. Let

GB be the group generated by the reflections with respect to the vectors in B. It is easily

checked that no B ⊂ R12 with e1, e11 ∈ B and |B| = 3 satisfies the equation GBB = R12.

So no simple root system for G12 contains a pair of orthogonal roots. We can also show

that any B ∈ {{e1, e6, e10}, {e1, e8, e12}} satisfies the condition GBB $ R12. So in a simple

root system there must exist some pair of roots α, β with n(sα, sβ) > 3 (see 1.9).

2.4. We can show that any of the following Bi ⊂ R12 satisfies the equation GBiBi = R12

and hence is a simple root system for G12 by Proposition 1.8.

B1 ={e1,e2,e3}, B2 ={e1,e2,e10}, B3 ={e1,e2,e7}, B4 ={e1,e2,e8}, B5 ={e1,e3,e8}.

Recall the notation n(B) in 1.10. We have n(B1) = (6, 6, 6), n(B2) = (6, 3, 3), n(B3) =

(6, 3, 4), n(B4) = (6, 4, 6) and n(B5) = (4, 3, 3). This implies that Bi, 1 6 i 6 5, are

five inequivalent simple root systems for G12. By 1.6 and by the knowledge of the values

n(sα, sβ) for all the non-proportional pairs α, β in R12, we can further show that there is

no more inequivalent simple root system for G12 at all.

§3. Presentations of the group G12.

In this section, we shall find all the non-congruent presentations of the complex reflection

group G12 by generators and relations according to the results in 2.4 (see Propositions 3.2-

3.6).

3.1. Suppose that we are given a complex reflection group G, the associated root system

R of G, and all the inequivalent simple root systems Bk, 1 6 k 6 r, for R. The strategy for

finding all the non-congruent presentations of G is as follows. We start with the presentation

of G given by Shephard-Todd which corresponds to a simple root system, say B1, for R.

Let Sk be the reflection set associated to the simple root system Bk. We make use of

the relations among the simple root systems Bk, 1 6 k 6 r, to establish some transition
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among the Sk’s by Lemma 1.3. Then for each 1 < k 6 r, we get a presentation of G with

the generator set Sk by some related transition. Suppose that we are given a presentation

(Sh,P) of G with the generator set Sh and the transition between the sets Sh and Sk. Then

the simplest method to produce a presentation of G with the generator set Sk is just to

substitute the reflections of Sh by those of Sk in the relations of P by the related transition.

But it may happen that sometimes the resulting relations we get in the new presentation of

G are quite complicated and hence are not very useful in practice. So we shall not always

use such a method.

3.2. It is well known that the group G12 is presented by the generator set S = {s, u, t} and

the relations (see [1]):

(1) s2 = u2 = t2 = 1.

(2) suts = utsu = tsut.

The reflections s1, s2 and s3 in V satisfy relations (1), (2) with s1, s2, s3 in the places of

s, u, t respectively. Since B1 = {e1, e2, e3} is a simple root system for G12, the assignment

ρ(s) = s1, ρ(u) = s2 and ρ(t) = s3 determines a faithful representation ρ of the group G12

to GL(V ). This implies part (1) of the following

Proposition 3.3. (1) The group G12 can be presented by the generator set S1 = {s1, s2, s3}
and the relations:

(a1) s2
1 = s2

2 = s2
3 = 1.

(a2) s1s2s3s1 = s2s3s1s2.

(a3) s1s2s3s1 = s3s1s2s3.

(2) Under the presentation of G12 in (1), we have

(a4) s1s2s1s2s1s2 = s2s1s2s1s2s1.

(a5) s2s3s2s3s2s3 = s3s2s3s2s3s2.

(a6) s1s3s1s3s1s3 = s3s1s3s1s3s1.

(a7) o(s1s2s3) = 8.

Proof. We need only show (2). Let x = s1s2s3s1 and y = s1s2s3. Then x6 = y8 and

o(x) = o(s1s2) = o(s1s3) = o(s2s3) by (a1)-(a3). Thus to show (a4)-(a7), it suffices to show

that x6 = 1, x2 6= 1 and x3 6= 1, where 1 is the identity transformation in V . These can be

shown by observing the action of x6, x2, x3 on the basis elements e1, e2 in V . ¤
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3.4. We have, by Lemma 1.3 (2), that

(3.4.1) s10 = s2s3s2s3s2 and s3 = s1s2s10s1s10s2s1.

Proposition. (1) The group G12 can be presented by the generator set S2 = {s1, s2, s10}
and the relations:

(b1) s2
1 = s2

2 = s2
10 = 1.

(b2) s1s2s1s2s1s2 = s2s1s2s1s2s1.

(b3) s1s10s1 = s10s1s10.

(b4) s1s10s2 · s1 = s2 · s1s10s2.

(2) Under the presentation of G12 in (1), we have

(b5) s2s10s2 = s10s2s10.

Proof. (b5) follows from (b1), (b3) and (b4). This shows (2) under the assumption of (1).

Now we show (1). We must show that relations (a1)-(a3) in Proposition 3.3 are equivalent

to (b1)-(b4) here under transition (3.4.1). Clearly, (a1) is equivalent to (b1). So it remains

to show that relations (a2)-(a3) are equivalent to (b2)-(b4) under the assumption of (3.4.1)

and (a1) (hence (b1)).

(i) First assume (a2)-(a3). Hence (a4)-(a7) hold by Proposition 3.3 (2). Now (b2) is the

same as (a4). By (a2)-(a3), we have

(3.4.2) s3s2s3s1 = s1s2s3s2.

(b4) is amount to

(3.4.3) s1 · s2s3s2s3s2 · s2s1s2 · s2s3s2s3s2 · s1s2 = 1

By (3.4.2) and (a1)-(a7), LHS of (3.4.3) is equal to

s1s2s3s2s3s1s3s2s3s2s1s2 = s1s2s1s2s3s2s3s2s3s2s1s2

=s1s2s1 · s3s2s3s2s3 · s1s2 = s1s2s1s3s2s1s2s3 = s1s2 · s2s1s3s2 · s2s3 = 1.

So (3.4.3) follows and hence we get (b4).

For (b3), we need show

(3.4.4) s1 · s2s3s2s3s2 · s1 · s2s3s2s3s2 · s1 · s2s3s2s3s2 = 1.
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By (3.4.2) and (a1)-(a7), LHS of (3.4.4) becomes

s1s2s3 · s1s3s2s3 · s2s3s2s3s2 · s3s2s3s1 · s3s2

=s1s2s3s1 · s2s1s3s2 = s1s2s3s1 · s1s3s2s1 = 1.

This shows (3.4.4) and hence (b3) follows.

(ii) Next assume (b2)-(b4). Hence (b5) holds also. To show (a2)-(a3), we must show the

following two equations:

s1s2 · s1s2s10s1s10s2s1 · s1 = s2 · s1s2s10s1s10s2s1 · s1s2(3.4.5)

s1s2 · s1s2s10s1s10s2s1 · s1 = s1s2s10s1s10s2s1 · s1s2 · s1s2s10s1s10s2s1.(3.4.6)

Now by (b1)-(b5), we have

(3.4.5) ⇐⇒ s1s2 · s1s2s10s1s10s2 · s10s1s10s2s1 · s2 = 1

⇐⇒ s1s2s1s2 · s1s10s1s2s1s10s1 · s2s1s2 = 1

⇐⇒ s1s2s1s2s1s2s1s2 · s1s2s1s2 = 1.

The last equation follows by (b2) and hence we get (3.4.5).

Finally, by (b1)-(b5), we have

(3.4.6) ⇐⇒ s1s2s10s1s10s2 · s1s2s10s1s10s2s1 · s10s1s10 = 1

⇐⇒ s1s2s10s1 · s1s2s1 · s1s10s2s1 · s1s10s1 = 1

⇐⇒ s2s10s2s10s2s10 = 1.

The last equation follows by (b5) and hence (3.4.6) is shown. ¤

3.5. We have

(3.5.1) s7 = s2s3s2 and s3 = s2s7s2.

Proposition. (1) The group G12 can be presented by the generator set S3 = {s1, s2, s7}
and the relations:

(c1) s2
1 = s2

2 = s2
7 = 1.
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(c2) s1s2s7 · s1 = s2 · s1s2s7.

(c3) s7s2s1 · s7 = s2 · s7s2s1.

(2) Under the presentation of G12 in (1), we have

(c4) s1s7s1s7 = s7s1s7s1.

(c5) s1s2s1s2s1s2 = s2s1s2s1s2s1.

(c6) s2s7s2s7s2s7 = s7s2s7s2s7s2.

Proof. (1) We must show that relations (a1)-(a3) in Proposition 3.3 are equivalent to (c1)-

(c3) here under transition (3.5.1).

By (3.5.1), relation (a1) is equivalent to (c1). Under the assumption of (3.5.1) and (a1)

(hence (c1)), we have

(a2) ⇐⇒ s1s2 · s2s7s2 · s1 = s2 · s2s7s2 · s1s2

⇐⇒ s1s7s2s1 = s7s2s1s2 ⇐⇒ (c2) ¤

Then under the assumption of relations (a1)-(a2) (hence (c1)-(c2)), we can show that rela-

tion (a3) is equivalent to (c3).

(c5) is the same as (a4). So (c5) follows from (c1)-(c3) by the equivalence between

(a1)-(a3) and (c1)-(c3). Then one can easily deduce the equations

(3.5.1) s1s7s1s7 = s1s2s1s2s1s2 = s2s7s2s7s2s7.

from (c1)-(c3). So (c4) and (c6) follow from (c5) and (c1). ¤

3.6. We have

(3.6.1) s8 = s3s1s3, and s3 = s1s2s8s2s1.

Proposition. (1) The group G12 can be presented by the generator set S4 = {s1, s2, s8}
and the relations:

(d1) s2
1 = s2

2 = s2
8 = 1.

(d2) s2s1s2s8 · s2 = s1 · s2s1s2s8.

(d3) s8 · s1s2s8s2 = s1s2s8s2 · s1.

(2) Under the presentation (1) of G12, we have

(d4) s1s8s1 = s8s1s8.
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(d5) s2s8s2s8 = s8s2s8s2.

(d6) s1s2s1s2s1s2 = s2s1s2s1s2s1.

Proof. For (1), we must show that relations (a1)-(a3) in Proposition 3.3 are equivalent to

(d1)-(d3) here. (a1) is equivalent to (d1) by (3.6.1). Then under relations (3.6.1) and (a1)

(hence (d1)), we have

(a2) ⇐⇒ s1s2s1s2s8s2 = s2s1s2s8 ⇐⇒ (d2)

(a3) ⇐⇒ s1s2s1s2s8s2 = s1s2s8s1s2s8s2s1 ⇐⇒ (d3).

This shows (1). Now we show (d4)-(d6) under the presentation (1) of G12. (d6) is the same

as (a4). Rewrite (d2) as

(3.6.2) s1s2s1s2s1s2 = s2s8s2s8

by (d1), this implies (d5)-(d6) from (d1)-(d3) by the equivalence between (a1)-(a3) and

(d1)-(d3). Rewrite (d3) as

(3.6.3) s1s8s1 = s2s8s2s1s2s8s2.

Then to show (d4), it suffices to show that

(3.6.4) s8s1s8 = s2s8s2s1s2s8s2.

That is to show

(3.6.5) s1 · s2s8s2s8 = s2s8s2s8 · s1,

which follows by (3.6.2) and (d6). Hence (d4) is shown. ¤

3.7. We have

(3.7.1) s8 = s1s7s2s7s1 and s2 = s7s1s8s1s7.
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Proposition. The group G12 can be presented by the generator set S5 = {s1, s7, s8} and

the relations:

(e1) s2
1 = s2

7 = s2
8 = 1.

(e2) s1s7s1s7 = s7s1s7s1.

(e3) s1s8s1 = s8s1s8.

(e4) s7s8s7 = s8s7s8.

(e5) s1s7s1s7 · s8 = s8 · s1s7s1s7.

Proof. We must show that relations (c1)-(c3) are equivalent to (e1)-(e5) under transition

(3.7.1). Clearly, (c1) is equivalent to (e1). It remains to show that relations (c2)-(c3) are

equivalent to (e2)-(e5) under the assumption of (3.7.1) and (c1) (hence (e1)).

(i) First assume (c2)-(c3). Hence (c4)-(c6) hold by Proposition 3.5 (2). (e2) is the same

as (c4). (e3) is equivalent to

(3.7.2) s1 · s1s7s2s7s1 · s1 · s1s7s2s7s1 · s1 · s1s7s2s7s1 = 1

By (c1)-(c4), LHS of (3.7.2) is equal to

s7s2s7s1 · s7s2s7s1 · s7s2s7s1 = s7s2s1 · s7s1s7s1 · s2s7s1 · s7s2s7s1

= s2s7s2s1 · s1 · s1s2s7s2s1 · s7s2s7s1 = s2s7s2s1 · s7s2s1 · s2s7s1

= s7s2s1 · s1s2s7 = 1.

This implies (e3). (e4) can be shown similarly. Finally, (e5) follows from (c6) by substitution

of s2 = s7s1s8s1s7.

(ii) Next assume (e2)-(e5). By (3.7.1) , we get from (e5) that

s1s7s1s7 · s1s7s2s7s1 = s1s7s2s7s1 · s1s7s1s7

and hence

(3.7.3) s1s7s1s7 · s2 = s2 · s1s7s1s7.

By (3.7.1) and (3.7.3), we get

(e3) =⇒ s1 · s7s2s7 · s1 = s7s2s7 · s1 · s7s2s7

=⇒ s1s7s1s7 · s2 · s7s1s7 = s1s2 · s7s1s7 · s2

=⇒ s2 · s1s7s1s7 · s7s1s7 = s1s2 · s7s1s7 · s2

=⇒ s1 · s7s2s1 = s7s2s1 · s2

=⇒ (c2).
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Similarly, (c3) follows from (e4) by (3.7.1) and (3.7.3). ¤

§4. Simple root systems and presentations for the group G24.

In this section, we shall find all the inequivalent simple root systems for the complex

reflection group G24 (see 4.2). Then we shall give all the non-congruent presentations of the

group G24 by generators and relations according to these inequivalent simple root systems

(see Propositions 4.3-4.5).

4.1. Let V be a hermitian space of dimension 3 with an orthonormal basis ε1, ε2, ε3. Then

e1 = ε2, e2 = 1
2 (−ε1 + ε2 +αε3) and e3 = ᾱ

2 (ε2 + ε3) also form a basis of V , where ᾱ denotes

the complex conjugate of α = 1
2 (1+ i

√
7), the latter is a root of the equation x2−x+2 = 0.

Denote by (a, b, c) a vector ae1 + be2 + ce3. Let R24 = {±ei | 1 6 i 6 21}, where

e1 =(1, 0, 0) e2 =(0, 1, 0) e3 =(0, 0, 1) e4 = (−1, 1, 0)

e5 =(−ᾱ, 0, 1) e6 =(0, α, 1) e7 =(1, 0,−α) e8 =(0, 1, ᾱ)

e9 =(−1, 1, 1) e10 =(−ᾱ, 1, 1) e11 =(−1, α, 1) e12 =(1, ᾱ,−α)

e13 =(α, 1, ᾱ) e14 =(−ᾱ, 1, 1+ᾱ) e15 =(−1, α, 1+α) e16 =(α, ᾱ,−α)

e17=(1, ᾱ,−1−α) e18=(α, 1, 1+ᾱ) e19=(−ᾱ, 2, 1+ᾱ) e20=(−2, α, 1+α)

e21=(α, ᾱ, ᾱ).

Denote by si the reflection in V with respect to the vector ei, 1 6 i 6 21. The action of

si on ej , i, j = 1, 2, 3, are as follows.

ei s1(ei) s2(ei) s3(ei)
e1 −e1 −e4 e7

e2 e4 −e2 e8

e3 e5 e6 −e3

The group generated by s1, s2, s3 is G24. R24 is the root system for G24 with B1 =

{e1, e2, e3} a simple root system (see [7]).

4.2. We want to find all the inequivalent simple root systems Bk, k > 1, for G24. By

Proposition 1.8, we have |Bk| = 3. Since R24 is transitive under G24, we may assume

e1 ∈ Bk up to G24-action. The number n(s1, si) (see 1.9) is 2 for i ∈ {7, 17, 19, 21}, 3 for

i ∈ {2, 4, 6, 11, 14, 15, 18, 20} and 4 for i ∈ {3, 5, 8, 9, 10, 12, 13, 16}.
Any finite reflection group generated by s1, si, sj with i ∈ {7, 17, 19, 21} is a homomorphic

image of the Coxeter group of type A3, B3 or C̃2, hence it has order 6 48 and is not
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isomorphic to G24 (G24 has order 336). So a simple root system Bk for G24 contains no

pair of orthogonal roots. By 1.6, Proposition 1.8 and the knowledge of the values n(si, sj),

1 6 i, j 6 21, we see that the following are all the inequivalent simple root systems for R24:

B1 = {e1, e2, e3}, B2 = {e1, e3, e4} and B3 = {e1, e3, e8}.

We have n(B1) = (3, 4, 4), n(B2) = (4, 3, 3) and n(B3) = (4, 4, 4) (see 1.10).

4.3. Next we shall find all the non-congruent presentations of G24 by generators and

relations.

Proposition. The group G24 can be presented by the generator set S1 = {s1, s2, s3} and

the relations:

(a1) s2
1 = s2

2 = s2
3 = 1.

(a2) s1s3s1s3 = s3s1s3s1.

(a3) s1s2s1 = s2s1s2.

(a4) s2s3s2s3 = s3s2s3s2.

(a5) s3 · s2s1s2s3s2 = s2s1s2s3s2 · s1.

Proof. This follows by [1, Table 4] and by the argument as for Proposition 3.3 (1). ¤

4.4. We have

(4.4.1) s4 = s1s2s1 and s2 = s1s4s1.

Proposition. The group G24 can be presented by the generator set S2 = {s1, s3, s4} and

the relations:

(b1) s2
1 = s2

3 = s2
4 = 1.

(b2) s1s3s1s3 = s3s1s3s1.

(b3) s1s4s1 = s4s1s4.

(b4) s3s4s3 = s4s3s4.

(b5) s1s3s1 · s4s1s3s1s4 = s4s1s3s1s4 · s1s3s1.

Proof. Under transition (4.4.1), relation (a1) is equivalent to (b1). Also, (a2) is the same

as (b2). Then under relations (4.4.1) and (a1) (hence (b1)), relation (a3) (resp. (a4)) is

equivalent to (b3) (resp. (b5)). Finally, under relations (4.4.1), (a1), (a3), (b1) and (b3),

relation (a5) is equivalent to (b4). So our result follows by Proposition 4.3. ¤
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4.5. We have

(4.5.1) s8 = s3s2s3 and s2 = s3s8s3.

Proposition. (1) The group G24 can be presented by the generator set S3 = {s1, s3, s8}
and the relations:

(c1) s2
1 = s2

3 = s2
8 = 1.

(c2) s1s3s1s3 = s3s1s3s1.

(c3) s3s8s3s8 = s8s3s8s3.

(c4) s3s1s3s8s3 · s1 = s8 · s3s1s3s8s3.

(c5) s8s1s8s3s8 · s1 = s3 · s8s1s8s3s8.

(2) Under the presentation of G24 in (1), we have

(c6) s1s8s1s8 = s8s1s8s1.

Proof. Under transition (4.5.1), relation (a1) is equivalent to (c1). Also, (a2) is the same

as (c2). Then under relations (4.5.1) and (a1) (hence (c1)), relation (a4) (resp. (a3)) is

equivalent to (c3) (resp. (c4)). Then under relations (a1) and (a4) (hence (c1) and (c3)),

relation (a5) is equivalent to (c5). This implies (1). Now we show (2). Right-multiplying

both sides of (c4) by the inverse of the corresponding sides of (c5) and then applying (c3),

we get

s8s1 · s3s8 · s1s3 = s3s8s1 · s3s8 · s1s3s8

and hence

(4.5.2) s3s8s1s3s8 · s1s3 = s8s1 · s3s8s1s3s8.

So for any k ∈ N, we have

s3s8s1s3s8 · (s1s3)k = (s8s1)k · s3s8s1s3s8.

This implies that (s1s3)k = 1 if and only if (s8s1)k = 1. So (c6) follows by (c2). ¤

§5. Simple root systems and presentations for the group G25.

In this section, we deal with the complex reflection group G25. Comparing with the

groups G12, G24, a notable difference of G25 is that all of its reflections have order 3, rather

than 2. There are two inequivalent simple root systems and two non-congruent presentations
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for G25 (see 5.2 and Propositions 5.3, 5.4). The presentation given in Corollary 5.4 is

congruent to that in Proposition 5.4.

5.1. Let V , εi be as in 4.1. Let e1 = ω̄ε3, e2 = 3−1/2i(ε1 + ε2 + ε3) and e3 = ω̄ε2, where

ω is a primitive cubic root of unity and ω̄ its complex conjugate. Then B1 = {e1, e2, e3}
forms a basis of V . Denote by (a, b, c) a vector ae1 + be2 + ce3. Let R25 = {(−ω)kei | 1 6
i 6 12, 0 6 k < 6}, where

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), e4 = (−ω̄, 1, 0),

e5 = (1, 1, 0), e6 = (0, 1, 1), e7 = (0, 1,−ω̄), e8 = (−ω̄, 1, 1),

e9 = (1, 1, 1), e10 = (1, 1,−ω̄), e11 = (−ω̄, 1,−ω̄), e12 = (−ω̄, 1−ω̄,−ω̄).

Let si be the reflection in V with respect to ei, 1 6 i 6 12. Then the group generated by

S1 = {s1, s2, s3} is the complex reflection group G25 (in the notation of [5]). The set R25

forms a root system of G25 with B1 a simple root system (see [7]). The action of S1 on B1

is as follows.

ei s1(ei) s2(ei) s3(ei)
e1 ωe1 −ωe4 e1

e2 e5 ωe2 e6

e3 e3 −ωe7 ωe3

5.2. We want to find all the inequivalent simple root systems Bk, k > 1, for G25. By

Proposition 1.8, we have |Bk| = 3. Since R25 is transitive under G25, we may assume e1 ∈ Bk

up to G25-action. Let Hij be the subgroup of G25 generated by si, sj for 1 6 i 6= j 6 12.

Then by the action on R25 of the subgroups H1i for any 1 < i 6 12, we see that H1i is

isomorphic to the elementary 3-group Z2
3 for i = 3, 12, and is isomorphic to the group G4

(in the notation of [5]) for all the other i. From this fact, it is easily seen that all the

inequivalent simple root systems for R25 are as follows.

B1 = {e1, e2, e3}, B2 = {e1, e2, e6}.
We have n(B1) = (G4, G4,Z2

3) and n(B2) = (G4, G4, G4) (see 1.10).

5.3. Next we shall find all the non-congruent presentations of G25 by generators and

relations according to the result in 5.2.

Proposition. The group G25 can be presented by the generator set S1 = {s1, s2, s3} and

the relations:
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(a1) s3
1 = s3

2 = s3
3 = 1;

(a2) s1s2s1 = s2s1s2;

(a3) s2s3s2 = s3s2s3;

(a4) s1s3 = s3s1.

Proof. This follows by [1, Table 1]. ¤

5.4. We have

(5.4.1) s6 = s−1
2 s3s2 and s3 = s2s6s

−1
2 .

Proposition. (1) The group G25 can be presented by the generator set S2 = {s1, s2, s6}
and the relations:

(b1) s3
1 = s3

2 = s3
6 = 1;

(b2) s1s2s1 = s2s1s2;

(b3) s2s6s2 = s6s2s6;

(b4) s6s1s2s6 = s2s6s1s2.

(2) Under the presentation of G25 in (1), we have

(b5) s1s6s1 = s6s1s6.

Proof. (a2) is the same as (b2). By transition (5.4.1), relation (a1) (resp. (a3)) is equivalent

to (b1) (resp. (b3)). Then under the assumption of relation (a3) (hence (b3)), relation (a4)

is equivalent to (b4). So (1) follows by Proposition 5.3. Now we show (2). Left-multiplying

s−1
6 and right-multiplying s1 on both sides of (b4) and then applying (b2)-(b3), we get

(5.4.2) s1s2s6s1 = s−1
6 s2s6s1s2s1 = s2s6s

−1
2 s1s2s1 = s2s6s1s2.

This, together with (b4), implies that

(5.4.3) s1s2s6s1 = s6s1s2s6.

Left-multiplying s−1
1 s−1

2 on both sides of (5.4.2) and then applying (b2), we get

(5.4.4) s2s
−1
1 s6s1 = s−1

1 s6s1s2.

Then left-multiplying s−1
1 and right-multiplying s−1

6 on both sides of (5.4.3), we get

(5.4.5) s2s6s1s
−1
6 = s−1

1 s6s1s2.

Therefore (b5) follows by (5.4.4) and (5.4.5). ¤

With (5.4.3) instead of (b3) in the proposition, we get another congruent presentation

of G25.
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Corollary. The group G25 can be presented by the generator set S2 = {s1, s2, s6} and the

relations:

(b1) s3
1 = s3

2 = s3
6 = 1;

(b2) s1s2s1 = s2s1s2;

(b3′) s1s2s6s1 = s2s6s1s2;

(b4) s6s1s2s6 = s2s6s1s2.

The proof is left to the readers. Clearly, the presentation in the corollary is congruent

to that in the proposition. With (b2) replaced by either (b3) or (b5) in the corollary, we

get two more congruent presentations of G25. One might notice that relations (b3′), (b4)

are similar to (a2), (a3) in Proposition 3.3 for the group G12 with s3 instead of s6. But it

should be indicated that the orders of the generators for G25 are different from those for

G12.

§6. Simple root systems and presentations for the group G26.

In this section, we do the same for the complex reflection group G26. Unlike the previous

three groups, the generators of G26 have two different orders, and the root system of G26

consists of two G26-orbits. There are two inequivalent simple root systems and two non-

congruent presentations for G26 (see 6.2 and Propositions 6.3, 6.4).

6.1. Let V , εi be as in 4.1. The vectors e1 = 2−1/2(ε2 − ε3), e2 = ε3 and e3 = 3−1/2i(ε1 +

ε2 + ε3) form a basis in V . Denote by (a, b, c) a vector ae1 + be2 + ce3. Let R26 = {(−ω)jei |
1 6 i 6 21, j ∈ J} be with

e1 =(1, 0, 0), e2 =(0, 1, 0), e3 =(0, 0, 1), e4 =(1, y, 0),

e5 =(
√

2, 1, 0), e6 =(0, 1,−ω), e7 =(0, ω̄, 1), e8 =(−ω, y, 0),

e9 =(1,y,−ωy), e10 =(
√

2,1,−ω), e11 =(
√

2,1,ω), e12 =(−ω,y,−ωy),

e13 =(1,y,ωy), e14 =(
√

2,1−ω,−ω), e15 =(
√

2,2,ω), e16 =(−ω,y,ωy),

e17 =(1, 3/
√

2, ωy), e18 =(−
√

2ω,1−ω,−ω), e19 =(
√

2, 2,−ω), e20 =(2, 3/
√

2, ωy),

e21 =(
√

2, 2,
√

3i),

where J = {0, 1, 2, 3, 4, 5} and y = 1√
2
(1− ω). Let si be the reflection in V with respect to

the vector ei. Then the action of si on ej , i, j = 1, 2, 3, are as follows.
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ei s1(ei) s2(ei) s3(ei)
e1 −e1 e4 e1

e2 e5 ωe2 e6

e3 e3 e7 ωe3

The group generated by s1, s2, s3 is G26. R26 is the root system for G26 with B1 =

{e1, e2, e3} a simple root system (see [7]).

6.2. Now we consider all the inequivalent simple root systems Bk, k > 1. By Proposition

1.8, we have |Bk| = 3. The set R26 consists of two G26-orbits: R1 = {ωjei | i ∈ I, j ∈
J} and R2 = {ωjek | j ∈ J, k ∈ K}, where I = {1, 4, 8, 9, 12, 13, 16, 17, 20} and K =

{2, 3, 5, 6, 7, 10, 11, 14, 15, 18, 19, 21}. By Lemma 1.3 and condition G26Bk = R26, we have

Bk ∩ Ri 6= ∅ for i = 1, 2. We may assume e1 ∈ Bk up to G26-action. By the action of

the si’s on R26, we see that each Bk contains one root in R1 and two roots in R2. All the

inequivalent simple root systems for R26 are as follows.

B1 = {e1, e2, e3}, B2 = {e1, e2, e6}.
We have n(B1) = (G(3, 1, 2), G4,Z2 × Z3) and n(B2) = (G(3, 1, 2), G(3, 1, 2), G4) (see

1.10 for n(B) and [5] for G(3, 1, 2)).

6.3. Next we consider all the non-congruent presentations of G26 by generators and relations

according to the result in 6.2.

Proposition. The group G26 can be presented by the generator set S1 = {s1, s2, s3} and

the relations:

(a1) s2
1 = s3

2 = s3
3 = 1;

(a2) s1s2s1s2 = s2s1s2s1;

(a3) s2s3s2 = s3s2s3;

(a4) s1s3 = s3s1.

Proof. This follows by [1, Table 1]. ¤

6.4. We have

(6.4.1) s6 = s−1
2 s3s2 and s3 = s2s6s

−1
2 .

Proposition. (1) The group G26 can be presented by the generator set S2 = {s1, s2, s6}
and the relations:

(b1) s2
1 = s3

2 = s3
6 = 1;
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(b2) s1s2s1s2 = s2s1s2s1;

(b3) s2s6s2 = s6s2s6;

(b4) s2s6s1s2 = s6s1s2s6.

(2) Under the presentation of G26 in (1), we have

(b5) s1s6s1s6 = s6s1s6s1.

Proof. (1) Relations (a2) and (b2) are the same. By transition (6.4.1), relation (a1) (resp.,

(a3)) is equivalent to (b1) (resp., (b3)). Then under the assumption of relations (6.4.1) and

(b3) (hence (a3)), we have

(a4) ⇐⇒ s1 · s2s6s
−1
2 = s2s6s

−1
2 · s1 ⇐⇒ s1 · s2s6s

−1
2 = s−1

6 s2s6 · s1 ⇐⇒ (b4)

This implies (1). Now we show (2). Rewrite (b4) as

(6.4.2) s−1
2 · s6s1 · s2 = s6 · s1s2 · s−1

6 .

Squaring both sides and then applying (b2), we get

(6.4.3) s−1
2 · s6s1s6s1 · s2 = s6 · s2s1s2s1 · s−1

6 .

Left-multiplying s−1
2 s−1

6 s2 and right-multiplying s6s2s
−1
6 on both sides of (6.4.3) and then

applying (b3), we get

(6.4.4) s−1
2 · s1s6s1s6 · s2 = s6 · s1s2s1s2 · s−1

6

So (b5) follows by (b2), (6.4.3) and (6.4.4). ¤

§7. Essential presentations.

7.1. According to the definition in 1.9, if (S,P) is a presentation of a reflection group G,

and if P ′ is a set of relations on S, including P as a subset, then (S,P ′) is also a presentation

of G.

A presentation (S,P) of G is essential if (S,P0) is not a presentation of G for any proper

subset P0 of P.

Checking the essentiality for a presentation of a group is usually a sublte task.

In a presentation (S,P) of G, a relation P ∈ P is redundant if P is a consequence of the

relations in P \ {P}. Thus a presentation (S,P) of G is essential if and only if P contains

no redundant relation.
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Let (S,P) be one of the presentations we get so far for the groups G = G12, G24, G25, G26.

We define Pre, which is obtained from P in the following way: Let B be a simple root system

for G such that S = {sα | α ∈ B}. For any α ∈ B, if Gα∩B contains k > 1 elements, then

we remove any k − 1 of the relations s
o(sβ)
β = 1, β ∈ Gα ∩B, from P.

Example 7.2. (1) Let (S,P) be the presentation of G12 given in Proposition 3.3. Then

Pre is obtained from P by removing relations s2
2 = 1 and s2

3 = 1.

(2) Let (S,P) be the presentation of G26 in Proposition 6.3. Then Pre is obtained from

P by removing relation s3
3 = 1.

The main result of the present section is as follows.

Theorem 7.3. For any presentation (S,P) we get so far for the group G = G12, G24, G25 or

G26, the above defined (S,Pre) is again a presentation of G. Moreover, (S,Pre) is essential.

We shall show the theorem in the remaining part of the section. The following is a simple

fact in the group theory.

Lemma 7.4. In a group G, if x, y, z ∈ G satisfy xy = yz, then o(x) = o(z).

Then the conclusion that (S,Pre) is a presentation of the group G follows by Lemma

7.4. In Example 7.2 (1), relations s2
2 = s2

3 = 1 are the consequence of relations s2
1 = 1,

s1 ·s2s3s1 = s2s3s1 ·s2 and s3 ·s1s2s3 = s1s2s3 ·s1 in Pre (see Proposition 3.3, (a1)-(a3)). In

Example 7.2 (2), relation s3
3 = 1 is a consequence of relations s3

2 = 1 and s2 · s3s2 = s3s2 · s3

in Pre (see Proposition 6.3, (a1)-(a4)). So in each of these two examples, (S,Pre) is a

presentation of the respective group. All the other cases could be checked similarly. Thus

it makes sense to call (S,Pre) the reduced form for the presentation (S,P).

Let (x1re) be the set of relation(s) in the presentation (S,Pre) obtained from (x1) in

the presentation (S,P) by removing certain relation(s) for x=a,b,c,... . For example, when

(S,P) is the presentation of the group G12 (resp., G26) in Proposition 3.3 (resp., Proposition

6.3), (a1re) in (S,Pre) contains a single relation s2
1 = 1 (resp., two relations s2

1 = 1 and

s3
2 = 1).

The following fact is useful in checking the essentiality for a presentation of a complex

reflection group.

Lemma 7.5. Let G be a complex reflection group with (S,P) its presentation.

(1) The relation set P contains at least one relation which either involves more than two

generators, or has the form sm = 1 with m > 2 for some s ∈ S.
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(2) The relation(s) contained in (x1re), x=a,b,..., is(are) not redundant in the reduced

form of (S,P) when (S,P) is one of those we get in the previous sections.

(3) Let (S,P ′) be another presentation of G with P ′ ⊆ P. For any P ∈ P ′, if P is

redundant in P ′, then P is redundant in P.

Proof. (1) is true since a complex reflection group is not a Coxeter group. Then (2) follows

by the following fact: substituting si = c for all 1 6 i 6 3 and any fixed c ∈ C \ {0}, all

the relations in P \ {P | P ∈ (x1)} remain valid. Finally, as a consequence of relations in

P ′ \ {P}, P is clearly a consequence of relations in P \ {P}. So we get (3). ¤

Thus it remains to show the essentiality of the reduced form (S,Pre) for any presentation

(S,P) we get so far for the group G = G12, G24, G25 or G26. The following result will be

used for this purpose.

Lemma 7.6. Suppose that a reflection group G has two presentations (S,P) and (S′,P ′),
where P = {Pi | i ∈ I} and P ′ = {P ′i | i ∈ I ′} are relation sets with (I, 6I), (I ′,6I′)

finite posets (the word “ poset ”means “ partially ordered set ”). Suppose that there exists

an order-preserving surjection φ : (I, 6I) −→ (I ′,6I′) such that for any k ∈ I, relation

set {Pi | i 6I k} is equivalent to {P ′i′ | i′ 6I′ φ(k)}. Suppose that m, φ(m) are maximal

elements in I, I ′, respectively with φ−1(φ(m)) = {m}. Then relation Pm is not redundant

in P if and only if P ′φ(m) is not redundant in P ′.

Proof. First show the implication “ =⇒ ”. We argue by contrary. Suppose that P ′φ(m) is a

consequence of all the other relations in P ′. By our assumption, we see that relation Pm is

a consequence of the relations in {P ′i | i 6I′ φ(m)} and hence a consequence of the relations

in P ′ \{P ′φ(m)}. Since relation set P \{Pm} is equivalent to relation set P ′ \{P ′φ(m)} by our

condition, this implies that Pm is a consequence of the relations in P\{Pm}, a contradiction.

The implication “ ⇐= ” can be shown similarly by interchanging the roles of m, I,P
with φ(m), I ′,P ′ respectively. ¤

7.7. By Lemma 7.5 (2), we see that relation (x1re), x=a,b,..., is not redundant in the

respective reduced presentation for the group G = G12, G24, G25 or G26. In the following

discussion, when we talk about the redundancy of a relation P in a (or reduced) presentation

(S,P) (or (S,Pre)) of G, we often simply state “P is not redundant ” for “P is not redundant

in (S,P) (or (S,Pre)) ” if (S,P) (or (S,Pre)) is clear in the context. By Lemma 7.5 (3),
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when a relation P is in Pre, to show that P is not redundant in Pre, we need only show

that P is not redundant in P (we always do in this way in the subsequent discussion).

7.8. Let us first consider the group G24. We can show that the generators s1, s2 are

symmetric for the presentation of G24 in Proposition 4.3 in the following sense: suppose

that relations (ai′), 1 6 i 6 3, are obtained from (ai) by interchanging s1, s2, then two

relation sets (a1)-(a3) and (a1′)-(a3′) can be obtained from one to another. We can also

show that s1, s3 (resp. s1, s3, s8) are symmetric for the presentation of G24 in Proposition

4.4 (resp. Proposition 4.5). Since the reflection group G24 is complex, relations (a5), (b5)

are not redundant by Lemma 7.5 (1), and neither are relations (a4) and (b4) by the proof of

Proposition 4.4 and by Lemma 7.6. By symmetry, relations (a2) and (b3) are not redundant.

Relations (a2), (b2) and (c2) are the same. So neither of (b2) and (c2) is redundant by the

proof of Propositions 4.4, 4.5 and by Lemma 7.6. Again by the proof of Proposition 4.5 and

by Lemma 7.6, relation (c5) is not redundant. By the symmetry of s1, s8 for the presentation

of G24 in Proposition 4.5, neither of relations (c3) and (c4) is redundant. Finally, by the

proof of Proposition 4.5 and by Lemma 7.6, relation (a3) is not redundant. This proves

the essentiality of the reduced forms for all the presentations of G24 in Propositions 4.3, 4.4

and 4.5.

7.9. Now we consider the group G25. We claim that relation (a2) is not redundant.

For, relation s1s2 = s2s1 together with relations (a1), (a3) and (a4) determine a reducible

reflection group 〈s1〉×〈s2, s3〉, meaning that (a2) is not a consequence of relations (a1), (a3),

(a4). Similarly, (a3) is not redundant. We claim that relation (a4) is not redundant. For, by

replacing s6 by s3 for the presentation of G25 in Proposition 5.4, relations (b1)-(b3) becomes

(a1)-(a3), respectively, and (b5) becomes s1s3s1 = s3s1s3, differing from (a4), which shows

that relation (a4) is not a consequence of relations (a1)-(a3). So the reduced form for the

presentation of G25 in Proposition 5.3 is essential. Then by the proof of Proposition 5.4 and

by Lemma 7.6, we see that neither of relations (b2) and (b4) is redundant. Then by the

symmetry of s1, s2, s6 for the presentation of G25 in Proposition 5.4, we see that relation

(b3) is not redundant, too. This implies that the reduced form for the presentation of G25

in Proposition 5.4 is essential. Finally, to show that the reduced form for the presentation

of G25 in Corollary 5.5 is essential, we need only show that relation (b3′) is not redundant.

But this follows by the symmetry of

s1, s2, s6 for the presentation of G25 in Corollary 5.5.
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The proof is similar for the essentiality of the reduced form for the presentations of the

group G26 in Propositions 6.3 and 6.4.

7.10. Finally we consider the group G12. Relation (a3) is not redundant, since (b1) and

(b4) become (a1) and (a2) respectively by replacing s10 by s3, while (b3) does not become

(a6) under the same substitution. By symmetry of s1, s2, s3 for the presentation of G12 in

Proposition 3.3, we see that relation (a2) is not redundant, too. So the reduced form for the

presentation of G12 in Proposition 3.3 is essential. By Lemma 7.5 (1), relation (b4) is not

redundant. We claim that relation (b3) is not redundant. For, relation s1s10s1s10s1s10 =

s10s1s10s1s10s1 does not conflict with (b1), (b2) and (b4) by observing the presentation of

G12 in Proposition 3.3 with s3 in the place of s10. Next we claim that relation (b2) is not

redundant. To see this, one need only notice that with respect to the presentation of G12 in

Proposition 3.3, the images s̄1, s̄2, s̄3 of the generators s1, s2, s3 in the quotient group of G12

over its center Z (Z has order two) satisfy relations (b1), (b3), (b4) with s̄1, s̄2, s̄3 in the

places of s1, s2, s10 respectively, and relation s̄1s̄2s̄1 = s̄2s̄1s̄2. Hence the reduced form for

the presentation of G12 in Proposition 3.4 is essential. The non-redundancy of relation (c3)

follows by the proof of Proposition 3.5 and by Lemma 7.6. Then by the symmetry of s1, s7

for the presentation of G12 in Proposition 3.5, we see that relation (c2) is not redundant,

too. This implies that the reduced form for the presentation of G12 in Proposition 3.5

is essential. By the proof of Proposition 3.6 and by Lemma 7.6, we see that neither of

relations (d2) and (d3) is redundant and hence the reduced form for the presentation of

G12 in Proposition 3.6 is essential. Finally consider the presentation of G12 in Proposition

3.7. Relation (e5) is not redundant by Lemma 7.5 (1). Relation (e2) is not redundant since

one gets a presentation of the quotient group G12/Z (isomorphic to the symmetric group

S4) by replacing (e2) by s1s7 = s7s1 in Proposition 3.7. Next we claim that relation (e3)

is not redundant. For, substituting s1, s7, s8 by s2, s8, s1 in relations (e1)-(e5) respectively,

followed by replacing a resulting relation s1s2s1 = s2s1s2 (which comes from (e3)) by (d6),

all the relations we get are the consequence of the presentation of G12 in Proposition 3.6.

This shows the claim. By symmetry of s1, s7 in the presentation, we see that relation (e4)

is not redundant, too. So the reduced form for the presentation of G12 in Proposition 3.7

is essential.

Appendix.

Here we record the results of L. Wang and P. Zeng on the numbers N(G) of inequivalent
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simple root systems for the primitive complex reflection groups G7, G11, G13, G15, G19,

G22, G27, G29, G31, G32, G33.

G N(G) G N(G)
G7 2 G11 4
G13 4 G15 4
G19 6 G22 18
G27 6 G29 9
G31 61 G32 5
G33 14

Since any complex reflection group generated by one or two reflections has a unique

inequivalent simple root system, so far G34 is the only group left unknown concerning the

inequivalent simple root systems.
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379-436.

3. R. B. Howlett and J. Y. Shi, On regularity of finite reflection groups, manuscripta mathematica 102(3)
(2000), 325-333.

4. D. W. Koster, Complex reflection groups, Ph.D. thesis, University of Wisconsin (1975).
5. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
6. J. Y. Shi, Certain imprimitive reflection groups and their generic versions, Trans. Amer. Math. Soc.

354 (2002), 2115-2129.
7. V. L. Popov, Discrete complex reflection groups, Communications of the Mathematical Institute, Rijk-

suniversiteit Utrecht 15. (1982), 1-89.
8. Li Wang, Simple root systems and some presentations for the primitive reflection groups generated by

reflections of order 2, Master Dissertation, East China Normal University, 2003.
9. Peng Zeng, Simple root systems and presentations for the primitive reflection groups containing a

reflection of order > 2, Master Dissertation, East China Normal University, 2003.

Email: jyshi@math.ecnu.edu.cn


