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ABSTRACT. The aim of the present paper is to describe all the left cells L with
a(L) 6 12 in the affine Weyl groups Es. We find a representative set of those
left cells which occurs as the vertex sets of the corresponding left cell graphs
by applying Shi’s algorithm.

Let W be a Coxeter group with S its distinguished generator set. In [8], Kazhdan and
Lusztig introduced the concept of left, right and two-sided cells in W in order to construct
representations of W and the associated Hecke algebra H. Later Lusztig raised a theme for
the description of all the cells in the affine Weyl groups W, (see [10]). Lusztig defined a
function a : W — N U {oco}, which is upper-bounded and is constant on any two-sided cell
of W = W, (see [12]). Since then, the cells (in particular, the left cells) of W, have been
studied extensively by many people. So far, the left cells L of W, in the following cases have
been described explicitly:

(i) Wo = Ap, n > 1 (see [17));

(ii) The rank of W, is < 4 (see [12], [1], [7], [6], [23], [24], [25], [31]);

(iii) a(L) is either £|®| or < 4, where ® is the root system of the Weyl group associated
to W (see [19], [20], [9], [16], [3], [4], [5], [29]);

(iv) L contains a fully-commutative element of W, (see [26], [27]).

)
(

Now consider an irreducible affine Weyl group W,. For any k € N, let W) = {w €
W, | a(w) = k}. Then W(;y is a union of some two-sided cells of W,. In the present paper,
we shall describe all the left cells in the set W) with i < 12 for the affine Weyl group
W, = Fg.

The main tool in describing the left cells is Algorithm 3.6, which was constructed in

[22] and improved in [25] by Shi. We apply it to find a representative set E(€2) for all the
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left cells (or an lc.r. set for brevity) of W, in a two-sided cell . E(Q) is given in terms of
left cell graphs My (x), x € P(Q), for a certain subset P(£2) of Q as follows.

(i) P(9) C B(9);

(ii) There exists a bijective map ¢ : E(Q2) — Ugzep)Mr(x) (Mr(z) is the vertex set
of Mg (x)) such that for any y € E(Q), ¢(y) is the left cell of W, containing y, and that
there exists a unique z € P(2) and a path Lo = 9(x), L1, ..., L, = ¢¥(y) in My (z), where
{p=Y(Li—1), v~ (L;)} is a string for any 1 < i <7 (see 2.1).

The main technical difficulties for doing this is in applying Processes B and C since the
jointed relation x — y and the value a(z) for z,y,z € W, are hard to be determined in
general. To avoid this obstruction, we find many (right) primitive pairs in a quite ingenious
way.

By expressing the elements of the group Eg in their alcove forms, we use the computer
programme GAP to execute Algorithm 3.6. However, finding various primitive pairs is a
flexible and ingenious task, which has to be done by hands. Since the rank of Eg is higher
(compare with the rank 4 cases in [23], [24], [25]), we only work out all the left cells L of
E¢ with a(L) < 12 so far.

Unlike what we did in the lower rank cases, Eﬁ is the first group we have dealt with so
far for which we have to apply process C to enlarge the set P in order to get an l.c.r. set of
Eg in some two-sided cell Q) (e.g., when Q = Wigy, see 4.11).

The contents of the paper are organized as follows. Sections 1-3 are served as preliminar-
ies, we collect some concept, terms and known results there. We introduce Kazhdan—Lusztig
cells and affine Weyl groups in Section 1, star operations, primitive pairs and generalized 7-
invariants in Section 2, and an algorithm for finding an lL.c.r. set in a two-sided cell in Section
3. Then in Sections 4, we concentrate our attention on the affine Weyl groups W, = Es. we

find an l.c.r. set for any two-sided cell  of W, with a(2) < 12 in terms of left cell graphs.

1. Preliminaries

1.1. Let N (resp., Z, R, C) be the set of all the non-negative integers (resp., integers,
real numbers, complex numbers). Let W be a Coxeter group with S its distinguished
generator set. Denote by < (resp., [) the Bruhat-Chevalley order (resp., the length function)
on W. Let A = Z[u,u""] be the ring of all the Laurent polynomials in an indeterminate u
with integer coefficients. The Hecke algebra H of W over A has two A-bases {T, }zew and

{Cy }wew satisfying the following relations
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TwTo = T, if l(ww') = l(w) + l(w'),
(Ts —u ) (Ts+u) =0, forsels,

and

Cp = Z WM p ()T,

ysw

where P, ,, € Z[u] satisfies that Py, ,, =1, Py, =0if y £ w and deg P, ., < (1/2)({(w) —
l(y) —1) if y < w. The P, ,,’s are called Kazhdan-Lusztig polynomials (see [8]).

1.2. For y,w € W with I(y) < I(w), denote by u(y,w) or pu(w,y) the coefficient of
w1/ Uw)=lw)=1) jp P, . The elements y and w are called jointed, written y — w, if

w(y,w) #0. To any x € W, we associate two subsets of S:
L(xz)={seS|sx<z} and R(z)={seS|zs<x}.

1.3. Let < (resp., <, <) be the preorder on W defined as in [8], and let > (resp., %
L R LR
127%) be the equivalence relation on W determined by < (resp., <, <). The corresponding
L R LR
equivalence classes of W are called left (resp., right, two-sided) cells of W. < (resp., <, <)
L R LR

induces a partial order on the set of left (resp., right, two-sided) cells of W.
1.4. Define h,, . € A by
ColCy = huy.C.
for any x,y,z € W. In [12], Lusztig defined a function a : W — N U {oo} by setting
a(z) = min{k € N | u*h,, . € Z[u], YVz,y € W} for any z € W

with the convention that a(z) = oo if the minimum on the RHS of the above equation does

not exist.

1.5. An affine Weyl group W, is a Coxeter group which can be realized geometrically
as follows. Let G be a connected, reductive algebraic group over C. Fix a maximal torus
T of G, let X be the character group of T" and let & C X be the root system of G with
A = {ai,...,a;} a choice of simple root system. Then E = X ®z R is a euclidean space
with an inner product( , ) such that the Weyl group (Wp, Sp) of G with respect to T acts
naturally on F and preserves its inner product, where Sy is the set of simple reflections
s; corresponding to the simple roots «;, 1 < ¢ < [. Denote by N the group of all the
translations Ty : © +— x + X on E with A ranging over X. Then the semidirect product
W, = N x Wy of Wy with N is an affine Weyl group. Let K be the type dual to the type

of G. Then the type of W, is K. In the case where no danger of confusion causes, W, is
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denoted simply by its type K. Let w — @ be the canonical homomorphism from W, to
Wy = W, /N.

The following properties of the function a on (W,,S) were proved by Lusztig:

(1) LgR y = a(x) > a(y). In particular, = Sy = a(x) = a(y). So we may define
the value a(T") for a left (resp., right, two-sided) cell I of W, to be the common value a(x)
of all the z € T (see [12]).

(2) a(z) = a(y) and x % y (resp., % y) == 7Y ( resp., ~ y) (see [13]).

(3) Let 6(z) = deg P, for z € W,, where e is the identity of the group W,. Define

D={weW,|l(w)=2§(w)+ a(w)}

Then D is a finite set of involutions. Each left (resp., right) cell of W, contains a unique
element of D (called a distinguished involution of W,)(see [13]).

(4) For any I C S, let w; be the longest element in the subgroup W of W, generated
by I (note that W7 is always finite). Then w; € D and a(wy) = l(wy) (see [12]).

Let W) = {w € W, | a(w) = i} for any i € N. Then the set WW(;) is a union of some
two-sided cells of W, by (1).

(5) If W(;y contains an element of the form wy for some I C S, then the set {w € W |
R(w) = I} forms a single left cell of W, by (1)—(2).

Call s € S special if the group Wg\ (51 has the maximum possible order among all the
standard parabolic subgroups of W, of the form Wy, I C S. For s € S, let

Y ={we W, | R(w) C{s}}.

Then Lusztig and Xi proved the following
(6) Let s € S be special. Then Q NY; is non-empty and forms a single left cell of W,
for any two-sided cell © of W, (see [15]).

Lusztig also proved the following

1.6. Theorem. (see [14]) Let an algebraic group G and an affine Weyl group W,
be as in 1.5. Then there exists a bijective map u — c(u) from the set U(G) of unipotent
conjugacy classes in G to the set Cell(W) of two-sided cells in W which satisfies the equation
a(c(u)) = dim B,,, where u is any element in u, and dim B,, is the dimension of the variety

of all the Borel subgroups of G containing u.
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1.7. Keep the notation in 1.5. Let —ag be the highest short root in ®. Denote
80 = SagT—ay, Where s, is the reflection in E with respect to ag. Then S = SoU{so} forms
a Coxeter generator set of W,,.

The alcove form of an element w € W, is, by definition, a ®-tuple (k(w, a))qce over Z
determined by the following conditions.

(a) k(w, —a) = —k(w, a) for any « € ®;

(b) k(e,) = 0 for any o € ®, where e is the identity element of W;

(¢) If w' = ws; (0< i< 1), then

k(w', o) = k(w, (a)3;) + &(a, 1)

with
0 if a # tay;
elayi) =< -1  if a = ay;
1 if = — g,
where 5, = s; if 1 <4 <[, and 59 = $q,-

By condition (a), we can also denote the alcove form of w € W, by a ®T-tuple
(k(w, @))qeap+, where ®T is the positive root system of ® containing A.

Condition (c) defines a set of operators {s; | 0 < <1} on the alcove forms of elements

w of Wy:

sit (k(w;))ace — (k(w; (@)5i) + (@, i))aca-
These operators could be described graphically (see [22]).
For w,w’ € Wy, w' is called a left extension of w if [(w') = l(w) + [(w'w™1).

Then the following results were shown by Shi:

1.8. Proposition. (see [18]) Let w € W,.

(1) l(w) = Zpeq+|k(w, )|, where the notation |x| stands for the absolute value of x € Z;
(2) Rw) = {si | k(w, az) <0};

(3) w’ is a left extension of w if and only if the inequalities k(w', a)k(w,a) > 0 and

|k(w', @)| > |k(w,a)| hold for any o € .
2. Graphs, strings and generalized 7-invariants

In the present section, we assume that (W,,S) is an irreducible affine Weyl group of
simply-laced type, that is, the order o(st) of the product st is not greater than 3 for any
s,t € S, or equivalently, W, is of type ﬁ, DorE.
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2.1. Given s # t in S with o(st) = 3, a set of the form {ys,yst} is called a (right)
{s,t}-string (or a string in short), if R(y) N {s,t} = 0.
We have the following result.

2.2. Proposition. (see [22]) For s,t € S with o(st) = 3, let {x1, 22} and {y1,y2} be
two {s,t}-strings. Then
(1) 21 — y1 <= 22 — ya;

(2) 1 fzyl < X2 'Z‘yg.

2.3. z is obtained from w by a (right) {s,t}-star operation (or a star operation in
short), if {z,w} is an {s,t}-string. Note that the resulting element x for an {s,¢}-star
operation on w is always unique whenever it exists.

Two elements z,y € W, form a (right) primitive pair, if there exist two sequences of
elements xg = x,x1,...,2, and yg =y, y1,...,yr in W, such that the following conditions
are satisfied:

(a) For every 1 < i < r, there exist some s;,t; € S with o(s;t;) = 3 such that both
{zi_1,2;} and {y;—1,y;} are {s;,t;}-strings.

(b) &; — y; for some (and then for all, under the condition (a)) 0 < i < r (see [8]).

(c) Either R(z) € R(y) and R(y,) € R(z,), or R(y) € R(z) and R(z,) € R(y,) hold.

2.4. Proposition. (see [22]) ~Y if {x,y} is a primitive pair.
In order to describe the left cells of W,, we need introduce the concept of a left cell

graph.

2.5. By a graph M, we mean a set M of vertices together with a set of edges, where
each edge is a two-element subset of M, and each vertex is labelled by some subset of S. A
graph is finite if it contains finite number of vertices, and is infinite if otherwise.

By a path P in a graph M, we mean a sequence of vertices zg, z1,...,2, in M with
some r > 0 such that {z;_1,2;} is an edge of M for any 1 < i < r. In this case, we say that
the length of P is r.

Let M and M’ be two graphs with the vertex sets M and M’ respectively. They
are called isomorphic, written M = M’ if there exists a bijective map n from M to M’
satisfying the following conditions.

(a) The label of n(z) is the same as that of « for any = € M.

(b) For z,y € M, {x,y} is an edge of M if and only if {n(z),n(y)} is an edge of M’.

This is an equivalence relation on graphs.
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2.6. For any © € W,, denote by M (z) the set of all the elements y € W, such that
there is a sequence of elements x = xg,z1,...,2, = y in W, with some r > 0, where
{zi—1,x;} is a string for every 1 < i < 7.

Define a graph M (x) associated to an element © € W, as follows. Its vertex set is M (z);
its edge set consists of all the two-element subsets in M (x) each of which forms a string;
each vertex y € M(z) is labelled by the set R(y).

A left cell graph associated to an element x € W, written My (), is by definition a
graph, whose vertex set M, (z) consists of all the left cells T' of W, with I' N M (z) # 0; two
vertices I', TV € M, (z) are jointed by an edge, if there are two elements y € M(x) N T and
y' € M(xz)NT" with {y,y'} an edge of M(x); each vertex I' of M (z) is labelled by the set
R(T) (see 1.5 (1)).

Clearly, for any « € W, both graphs M(z) and M (z) are connected.

2.7. Two elements z,2’ € W, are said to have the same generalized T-invariants, if
for any path zg = z,21,...,2, in M(x), there is a path z{, = a/,2{,...,2z. in M(2') with

T

R(%) = R(z;) for every 0 < ¢ < r, and if the same condition holds when the roles of z and
2’ are interchanged.

Then we have the following known result.

2.8. Proposition. (see [22][30]) (a) Ifz Y in W, then x,y have the same generalized
T-invariants.

(b) If x Y in Wy, then the left cell graphs My (x) and My (y) are isomorphic.

3. An algorithm for finding an l.c.r. set of W, in a two-sided cell

3.1. A subset K C W, is called a representative set for the left cells (or an lLc.r set
for brevity) of W, (resp., of W, in a two-sided cell Q), if |[K NT'| = 1 for any left cell I of
W, (resp., of W, in ), where the notation | X| stands for the cardinality of a set X.

Obviously, the set D (see. 1.5 (3)) is an Lc.r. set of W,. But it is not easy to find the
whole set D of W, explicitly in general since it may involve the complicated computation of
Kazhdan-Lusztig polynomials.

We shall obtain an l.c.r. set E(Q) of W, in a two-sided cell ) in terms of left cell graphs
My (z), z € P(Q), for a certain subset P(Q) of Q as follows.

(i) P(2) € B(Q);

(ii) There exists a bijective map ¢ : E(Q2) — Uzep)Mr(z) (Mp(z) is the vertex set
of My (z)) such that for any y € E(QQ), ¥(y) is the left cell of W, containing y, and that
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there exists a unique z € P(2) and a path Lo = ¢ (x), Ly, ..., L., = ¥(y) in My (z), where
{p=Y(Li—1), v~ (L;)} is a string for any 1 < < 7.

Note that such an l.c.r. set E(Q2) of W, in Q can be easily obtained from the set
P(€Q) and the corresponding left cell graphs My (x), x € P(). However, E(2) is not
uniquely determined by these data in general. It is so if and only if the set U,cp()M () is
distinguished (see 3.4).

Shi constructed an algorithm for finding an l.c.r. set of W, in a two-sided cell, which is

based on the following

3.2. Theorem. (see [22]) Let Q be a two-sided cell of W,. Then a non-empty subset
E CQisanl.cr. set of Wy in Q, if E satisfies the following conditions:

(1)x7¢yf0ranya:7éy n E;

(2) For any y € Wy, if there exists some x € E satisfying that y — z, R(y) € R(x

and a(y) = a(x), then there exists some z € E with y vz

3.3. We know that the relations y — 2 and R(y) € R(x) hold if and only if one of
the following cases occurs:

(1) {z,y} is a string;

(2) y = x - s for some s € S with R(y) 2 R(z), where by the notation a = b - ¢
(a,b,c € W,), we mean a = be and I(a) = I(b) + I(c);

(3)y <z, y — x and R(y) 2 R(x).

3.4. A subset P C W, is called distinguished if P # () and x 7L4 y for any x # y in P.
For a non-empty subset in a two-sided cell 2 of W, consider the following processes
(see [22]).
(A) Find a distinguished subset @ of the largest possible cardinality from the set |, p M ().
(B) Let B, ={ye W, | y=x-s ¢ M(x) for some s € S with a(y) = a(x)} for any
x € P. Find a distinguished subset @ of the largest possible cardinality from the set
B =PU(UzepBy).
(C) Let Co ={y e W, | y <z,y — x,R(y) 2 R(x),a(y) = a(x)} for any z € P. Find a
distinguished subset ) of the largest possible cardinality from the set C' = P U (UpepCy).

3.5. A subset P of W, is A-saturated (resp., B-saturated, C-saturated), if the Process
A (resp., B, C) on P cannot produce any element z with 2 7Lé x for all z € P.

Clearly, a set of the form | J,, M () for any K C W, is always A-saturated.
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It follows from Theorem 3.2 that an l.c.r. set of W, in a two-sided cell 2 is exactly a
distinguished subset of Q which is ABC-saturated simultaneously. In order to get such a

subset, we apply the following algorithm.

3.6. Algorithm. (see [22]).

(1) Find a non-empty subset P of (It is usual to take P distinguished and consisting
of elements of the form w;, I C S, whenever it is possible);

(2) Perform Processes A, B and C alternately on P until the resulting distinguished set

cannot be further enlarged by any of these processes.

4. The left cells of the affine Weyl group Eﬁ

In this section, we shall explicitly describe all the left cells of the affine Weyl group
W, = Eﬁ in all the two-sided cells Q with a(Q) < 12. We shall find an l.c.r. set in terms
of left cell graphs for each of such two-sided cells by applying Algorithm 3.6 (in the way
explained in 3.1). This will be achieved by expressing the elements of W, in their alcove
forms and then in virtue of the computer programme GAP. The work is hard in applying
Process B and is even harder in applying Process C since it is not easy to determine the
joint relations and the a-values for the related elements in general. To avoid these difficult

points, we find various primitive pairs in an ingenious way.

4.1. The Coxeter graph of the group Eg is as follows.

Figure 1.

Recall the notation W;) for i > 0 in 1.5. By Theorem 1.6, W(;) is a single two-sided cell
of Egifi € {0,1,2,3,5,7,8,9,10,11, 12,13, 15, 16, 20, 25, 36}, and is a union of two two-sided
cells of Eg if i € {4,6} (see [2, Chapter 13]).

For i € N, denote by P(i) the set of all the elements in W(;) of the form w; for some
Ics.
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For the sake of simplifying the notation, denote by i (bold-faced) the reflection s; cor-

responding to the vertex in Figure 1.

4.2. For any ¢ # j in {1,0,6}, let 1;; be the unique automorphism of Es which

stabilizes the set S and transposes i and j. For example, we have

(¢10(0),¥10(1), ¥10(2), ¥10(3), ¥10(4), ¥10(5), ¥10(6)) = (1,0,3,2,4,5,6).

Then 1);; preserves the value of the function a and the joint relation on elements, i.e., for
any x,v, z € Eg, we have a(¢)(z)) = a(z), and x — y if and only if ij(x) — 45 (y). Hence
thi; stabilizes the set W) for any k > 0.

4.3. The two-sided cell W g consists of a single element: the identity element of the
group Es. The two-sided cell W1y consists of all the non-identity elements of Eg each of
which has a unique reduced expression. The set E(W()) = S forms an lLc.r. set of Wy,

(see [10]). The left cell graph of W(;) is isomorphic to Fig. A (see Appendix).

4.4. For the two-sided cell W(3), we have

P(2) = {14, 15, 16, 12, 10, 32, 30, 35, 36, 40, 46, 25, 26, 05, 06}.

The graph M (12) is infinite. Take a connected subgraph M’(12) from M (12) as in Fig.
B with the vertex labelled by being the element 12 (see Appendix). Then its vertex set
M’ (12) is distinguished by Proposition 2.9, and is also ABC-saturated. So

E(W)) = M'(12)
forms an l.c.r. set of W3y by Theorem 3.2 (in the subsequent discussion, we shall frequently

apply Proposition 2.9 and Theorem 3.2 but without mentioning them explicitly).

4.5. For the two-sided cell W(3), we have

P(3) = {131, 343, 424, 454, 202, 565, 146, 140, 150, 152, 162, 160, 352, 350, 362, 360, 460}.

Consider the graph M (131) (see Fig. C1 in Appendix). Its vertex set M(131) is distin-
guished, and is also A-saturated, but not B-saturated. Take x = 131420 € M(131) and
r' = x-5. We see from Fig. 2 (a) that {z,2'} forms a primitive pair. Hence z' € W3, by
Proposition 2.2 and 1.5 (1) (in the subsequent discussion, we shall frequently apply Propo-
sition 2.2 and 1.5 (1) to primitive pairs but without mentioning them explicitly). The graph
M(z') is isomorphic to the graph M/(140) (see Fig. C2 in Appendix). By 1.5 (5) and
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Proposition 2.3, the sets M (z') and M (140) represent the same set of left cells in WW(3) since
both contain a vertex labelled by [140. The set

E(Wsy) = M(131) U M (140)

is distinguished and also ABC-saturated. Thus it forms an l.c.r. set of W3.

@ [1g—"1d—[14—[19 y[g # (3 ——]ag —]s9

o[58 — [ @@ s —F
(a) (b) (c)

Figure 2.

4.6. There are two two-sided cells in W) (see 4.1). We have

P(4) = { w132, w130, W15, W136, W340, W346, W50, W451, W241, W246,
W21, W23, W25, W26, W562, W560, W561, W563, W1046 }

where the notation w;;...,, stands for the longest element in the subgroup of EG generated by
i,j,...,k. The graph M (1312) is infinite. Take a subgraph M’(1312) in M(1312) as in Fig.
D with the vertex labelled by being the element 1312 (see Appendix). Then its vertex
set M’(1312) is distinguished, and also ABC-saturated. Let W(14) be the two-sided cell of

EG containing the element 1312. Then the set
E(W(14)) = M'(1312)

forms an l.c.r. set of W(14).

Since there is no vertex in M’(1312) with the label [1046, we have z4; = 1046 ¢ W(14).
Let W(24) be the two-sided cell of Eg containing the element z4;. The graph M(z41) is as
in Fig. E (see Appendix), whose vertex set M(z41) is distinguished and also A-saturated,
but not B-saturated. Let y = 241 - 5248 € M(241) and 249 = y - 1. Thus we see from
Fig. 2 (b) that {y, 242} forms a primitive pair. Hence z49 € W(24). The graph M (z42) is
as in Fig. C1 (see Appendix). But the set M (z41) U M (z42) is still not B-saturated. Let
z = 249 - 4156 € M (z42) and z43 = z - 2. Then we see from Fig. 2 (c) that {z,z43} forms a

primitive pair. So z43 € W(24). The graph M(z43) is as in Fig. C2 (see Appendix). The set
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is distinguished and also ABC-saturated. Thus it forms an l.c.r. set of W(24).

The results in 4.6 were obtained in our previous paper [29].

4.7.  The set W(5) forms a single two-sided cell of W by 4.1. We have

P(5> = { W1325, W1326, W1305, W1306, W5612, W5610, W5623, W5630,

Wo216, Wo215, W02365 W0235, W3406, W2416, W4510 }

The graph M(13125) is infinite. Take a subgraph M’(13125) of M(13125) as in Fig. F (see
Appendix). Its vertex set

E(W(s)) = M'(13125)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of Ws).

4.8. There are two two-sided cells in W) by 4.1. We have

P(6) = {w134, W456, W24, W234, W245, W345, W1356, W1302; W0256 }

The graph M(z¢1) with zg1 = 143143 is infinite, Take a subgraph M’ (z¢1) of M(z61) as in
Fig.s G1-2 (see Appendix). Its vertex set

E(W()) = M'(z61)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of the two-sided cell

W(16) containing zg1.

Since no vertex in M’ (z1) is labelled by [1356], [132d or [0256], the elements zg2 = 131565,

263 = 131202, 264 = 202565 in P(6) are in the two-sided cell W(QG) = W) \W(le)' The graphs
M((zg2), M(z63), M(z64) are as in Fig.s H, os(H), 101 (H), respectively (see Appendix),
where the graph v;;(H) is obtained from H by applying the automorphism 1;; of Es (see
4.2). Take © = zg2 - 425434120456243 and y = zg2 - 425434120456245 in M (zg2) and let z = - 1,

w=1y-6.
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@ [3¢—{149-{126-{169{150 {350 {349 {23~{24{40 {239 {120 {140 {15 {350 {360 {469 {269

= (196 -{126 {126 {160 {150 {550 {540 {23 {23 -{a0) {230 {120 {140 {150 {50 {oq {2 {29
(@)

y [19-{146 {126 {160—{150 {350 {450 {25 {24~{49 {250 {260 {469 {360 {350 {150 {149 {120

w [156-{1a0)-{12-{160) {150 {550 -{a50 {23 {24 {aq{250]{z00]{a01)- {500, {550)- {150 {140 {13
(b)

Figure 3.

We see from Fig. 3 (a)-(b) that both {z,z} and {y,w} are primitive pairs. We have
M(2) = M(z63) (resp., M(w) =2 M(zg4)) since a(z) = a(zg3) = 6 (resp., a(w) = a(z¢4) = 6)

and both graphs contain a vertex of the label 0256 (resp., [1302). The set

4
EW) = | M(z6)

=2

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(26).

By 4.1, we see that W(; is a single two-sided cell of EG for any i > 6 with W,y # 0.

4.9. Consider the two-sided cell W7y of W. We have

P(7) = { W1346, W1340, W0246, W0241, W4561, W4560, W2346, W2451,

W3450, W13562, W13560, W13025, W130265 W025615 W02563 }

The graph M(z71) with 271 = 1431436 is infinite. Take a subgraph M’'(z71) of M(271) as in
Fig. I (see Appendix). Then its vertex set M’(z71) is distinguished. Let z = 277 - 5464 €
M'(z71) and o' = z - 2. We see from Fig. 4 (a) that {z,2'} forms a primitive pair. Take

Yy = 143143020 in M (1431430) and y’ = y - 3. Also, take z = 465465020 in M (4654650) and
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. y :

(a) (b) (c)

Figure 4.

z' = z-3. Then by Fig. 4 (b)—(c), both {y,y’} and {z, 2’} are primitive pairs. Since they all
contain an element with the label [1340], the sets M (z71), M (1431430), M (4654650) represent
the same set of left cells of EG by 1.5 (5), i.e., for any left cell L of 5767 the intersections
M(z71) N L, M(1431430) N L, M (4654650) N L are either all empty or all non-empty. Let
279 = 2025653, 273 = 1312025 and 274 = 1315652. The graphs M (z72), M(273), M(274) are
as in Fig.s o1 (J), oe(J), J, respectively (see Appendix). Then the graph M(z’) (resp.,
M(y'), M(z")) is isomorphic to M(z72) (resp., M(z73), M(274)) since both contain a vertex

with the label (resp., [13208], [13562]). The set

E(Wz)) = M'(2n1) U (U M(Zn))

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(z).
4.10. Next consider the two-sided cell W(g). We have

P(8) = {w13406, Was601, Wo2416 }-

The graph M (zg;) with zg; = 14314360 is infinite. Take a subgraph M’(zg1) of M(zg1) as
in Fig. K1 with the vertex labelled by being the element zg; (see Appendix). Let
x = 2g1-52420 € M'(zg1) and zgo = x-5. We see from Fig. 5 (a) that {z, 2z} forms a primitive
pair. The graph M(zs2) is as in Fig. I (see Appendix). Take y = zg2 - 065345 € M (2s2) and

zg3 = y - 1. We see from Fig. 5 (b) that {y, zs3} forms a primitive pair. Take z = zgo - 23456
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v [rag {1209 {5208 fag 329

2 (12031209 {5209 {20 {23123 2s [1458[o3 5ad-[z5q {233 14

(a) (b)
Figure 5.
and w = zgy - 065234614520425142 in M (zg2). Let 284 = z -1 and 255 = w - 6. We see from

Fig. 6 (a)—(b) that both {z, 234} and {w, zg5} are primitive pairs. The graphs M(zg3),

- [ao0fsod 0o ag w

oo [T w0 (G-
(a) (b)
Figure 6.
M(z84), M(zg5) are as in Fig.s J, vos(J), 101(J), respectively (see Appendix). Then the
set
5
E(W(g)) = M/(Zgl) U (U M(Zgz))
i=2

is distinguished and also ABC-saturated, thus it forms an Lc.r. set of W(g.

4.11. Consider the two-sided cell Wg). We have

P(9) = {wi30256 }-

The graph M(z91) with z9; = 131202565 is as in Fig. K2 (see Appendix). Take x =

z91 - 42534 € M (z91) and zg2 = z - 3. Then we see from Fig. 7 (a) that {z, z92} forms a
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¢33l y[d = (120 {1559 {1238 {1353 {233

292 293 [124 294

(a) (b) (c)

Figure 7.

primitive pair. The graph M (zg2) is as in Fig. K1 (see Appendix). Let y = zg2-1 € M (z92)
and zg3 = y - 2. We see from Fig, 7 (b) that {y, 295} forms a primitive pair. The graph
M(zg3) is as in Fig. K3 (see Appendix). Take z = zgs - 1404 € M (292) and zgq = z - 3. We
see from Fig. 7 (c) that {z,z94} forms a primitive pair. The graph M(zq4) is as in Fig.
I (see Appendix). The set M(z91) U M(z92) U M (293) U M (z94) is distinguished and also
AB-saturated, but is not C-saturated. Take

W = Zg1 + 4235423654130245620, U = 5613024543241302456324502431,
Zgs = 291 - 423542365413024 620, Zgg = 56130245432413024563245024 -1,
VU = Zg1 - 42345645324130245,

297 = Zg1 - 423456453241 0245.

in M(z94). The graphs M(z9s5), M(z96), M(z97) are as in Fig.s J, ¥os(J), o1(J), respec-
tively (see Appendix). By Fig. 8 (a)—(c¢), {w, 295}, {u, 296} and {v, z97}) are all primitive
pairs. The set

E(Wg)) = U M (z9;)

i=1

is distinguished and also ABC-saturated, so it forms an Lc.r. set of W(g).
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w

205 [160-{246){23 {49 -{39{13{19 {153 {150 {120 (o0 -{3sq 2534
(a)

u [16—([19—[35-{34—{24 {3049 {250 {260 {469 {369 {350{4q -2

~259-{4d—7

~{145)-{38{34{23 {39 -{4d—{250 {269{460 {369
(0)

v ({48 (239 {s00 {550 {sa0 {120 {1350 {1500 {1303 {1539

cor [129-{1249 {259 {36935 {30 {130 {1550 {1500 -[1563 19
(c)

Figure 8

4.12. In the two-sided cell W(q), we have

P(10) = {wi345, w1342, W0243, W0245, W3456, W2456 } -

The graph M(z10,1) with z10,1 = 1342134131 is as in the Fig.s L1-10 (see [28]). Its vertex

set M (z10,1) is not B-saturated. Take

T = 210,1 - 054652543, Y = Z10,1 - 05465342403541324534,

Z = Z10,1 - 05465342405253413542, W = 210,1 - 543204146412454624234132463,

U = 210,1 * 02456452434153520451424

in M(z10,1). Let z1p2 =2 -0, 2103 =Yy -0, 2104 = 2 - 4, Z10,5 = W - 0, Z10,6 = U - 6.
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v (1239 —{299—[paon}-{1aoq- {15200 {15203 {120} {124 {123 {2023

Z10,2 | 12;)444{2360‘4{346(4—{146(44{132044{ 13205140124 1252354

(a)

y (13— (282423 [pa0 {140 {1550 {1500 {r726 {r7a0 - (13120 {oag

2105 [350-{23 {2423 -{pa0 {1a0 1900 (1900 {1729 (12§ 10,4 (124149 —fag

(b) (c)

w u (23— (23w om0 {233 a3

105 (3992312129139 fs3d {1 210, [3ao-{a3{asg{asg s34
(d) (¢)
Figure 9.

The graphs M(210,2), M(210,3), M(210,4), M(210,5) and M(z10,6)) are as in Fig.s K1, I,
J, oe(J), o1(J), respectively (see Appendix). From the graphs in Fig. 9 (a)-(e), we see

that {x, 2102}, {y, 2103}, {#, 2104}, {w, z10,5} and {u, 2106} are all primitive pairs. The set

6
E(Wqo)) = U M(z10,:)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(y).
4.13. In the two-sided cell W(;1), we have

P(11) = {wi3450, W13426, W02436, W02451, W34560, W24561 } -

The graph M(z11,1) with 2111 = 13421341316 is as in Fig.s M1-13 (sec [28]). Its vertex set
M (z11,1) is not B-saturated. Take
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T = Z11,1 - 02543, W = Z11,1 * 02453423404635434513424032354653450,

Y = Z11,1 + 54324146402145426423416243453, =2 = Z11,1 * 5432414625420425434213254652145

in M(z11,1). Let z112 =26, 2113 =Y -0, 2114 = 2- 0, 2115 = w - 1. From Fig. 10 (a)—(d),

v y

os [Fa0d-50-23 4 on s (100128 2814
(a) (b)

<[22 w

2114 (45025 {244 {234 {235 —4 2115 [145 {35 {346 {28235 {4
(c) (d)

Figure 10.

we see that {z, 2112}, {y, #11.3}, {2, 211,4} and {w, z11 5} are all primitive pairs. The graphs
M(z11,2), M(z11,3), M(z11,4), M(z115) are as in Fig.s K2, ¥o6(J), ¥o1(J), J, respectively
(see Appendix). We may check that the set

5
E(W(ll)) = U M (211,:)
i=1
is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(yy).

4.14. In the two-sided cell W(;3), we have

P(12) = {wa345}-
Let wp be the longest element in the Weyl group Eg. Then by [2]Chapter 13, we have
z12,1 = wowizse € W(iz). The graph M(z12,1) is as in Fig. N (see Appendix). Take
T = Z121 - 452340, Y = 2121 - 04352 and z = y - 534 in M(212,1) and let 2120 = z - 2,

Z12,3 = Y - 4, 2124 = 2z -2. We see from Fig. 11 (a)-(c) that {z, 2122}, {y, 2123} and
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{#,212,4} are all primitive pairs. The graph M(z122) (resp., M(z12,3), M(z12,4)) is as in
Fig. K2 (resp., K1, K3) (see Appendix). Take w = 2124 -3 € M(z124), 2125 = W - 5;
U = 2125 - 6452435436045321302 € M (2125), Z12,6 = U - 0; U = 212,6 - 546424320542 € M (2126),
Z12,7 = U - 0; T = 2197 - 24142340424624, S = 2127 - 24642540424214 in M (212.7) z128 = t - 2,
z12,0 = t-3, 212,10 = $-5. Then by Fig. 11 (d)-(i), we see that {w, 2125}, {v, 2126}, {u, 2127},
{t,z12,8}, {t, 12,0} and {s, 212,10} are all primitive pairs. The graphs M(z125), M(z12,6),
M(z12,7), M(z12,8), M(z12,9), M(z12,10) are Fig.s I, K1, I, J, 101(J), ¥os(J), respectively
(see Appendix). One can check that the set

10
E(W(12) = U M(Z12,7:)
i=1
is distinguished and also ABC-saturated, so it forms an Lc.r. set of W(g).

x [13560—]1460 {3460 {236 {23524 y [1260—1250 {2350 {40 {24235

2122 |123.56(ﬁ4{1460‘—{346(#4@ 2123 |12'46(j4f125q4f2350]4@
(a) (0)

s w0 g o[iead—{i2q-{i2e5 fiem0{1a0 aag {a5d

Z12,4 Z12,5 2126 l134601.—f1236]—%12354*f1350‘—f1454—%345@
(c) (d) (e)

u [3—{a-{s50-{s0- {140 t

12 [20-{al- {350 {sgaag
() (9)

. ,

212,9 28560 4604503502354 212,10
(h) (4)

Figure 11
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4.15. Keep the notation in 1.5-1.6 with G the reductive algebraic group of type Fjs.
For a unipotent class u of G, let ¢(u) be the corresponding two-sided cell of EG. Denote by
n(c(u)) the number of left cells of Eg contained in c¢(u) and by E(c(u)) an Le.r. set of Eg

in ¢(u). Then the above results can be summarized into the following table.

Unipotent class of G | ¢(u) | n(c(u)) | E(c(u))

Es W |1 {e}

Eg(a1) Way |7 S

Ds W) |27 M'(12)

Es(as) Wy | 57 M (131) U M(140)

As W(14) 162 M'(1312)

D5 (al) W(24) 72 U?:lM(ZM)

As+ A Wy | 216 M’ (13125)

A4 W(l(i) 432 M/(2561>

D4 W(QG) 270 U?:QM(ZGZ')

D4(a1) W(7) 540 M/(Z71) @] (U,L_2M(Z7Z))
As + A W(g) 675 M/(Zgl) U (U1,2M(Zgl))
245 + Ay W(g) 720 UZ:IM(Zgl)

As Wiy | 1890 US_, M (210.:)

Ay + 24, W(H) 2160 U?:lM(ZlLi)

2A2 W(12) 1325 U}QlM(zm,i)

Table 1

where the unipotent conjugacy classes of G are parameterized as in [2, Chapter 13].

For any graph M, denote by n(M) the number of vertices in M. The figures with a
top-left * are large, hence they are not displayed in the paper, which can be found in the

web-side of the first-named author (see [28]).
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Graphs M | Left-cell graphs isomorphic to M n(M)
@ ML( ) 1
A My (1) 7
B My (12) 27
C1 My (131), My (z42) 21
C2 My (140), M, (243) 36
D M (1312) 162
E (241) 15
F ML(13125) 216
G1-2 (261) 432
H (262) 90
Vo6 (H) My (z63) 90
Vo1 (H) M (264) 90
I M (z71), Mp(zs2), Mp(z04), Mp(210,3), Mr(212,5), Mr(z12,7) | 300
Yo6(J) M (273), Mp(284), Mr(2906), Mr(2105), Mr(z11,3), Mr(212,10) | 80
Yo1(J) M (z72), Mp(zs5), Mp(zo7), Mp(z10,6), Mr(211,4), Mp(z12,9) | 80
J M (274), Mrp(283), Mr(295), Mp(z104), Mr(z11,5), Mr(212,8) | 80
K1 M (281), Mr(292), Mr(210,2), Mp(212,3), Mr(212,6) 135
K?2 M (z01), Mr(211,2),Mr(212,2) 10
K3 ML(Zgg), ML(212,4) 35
*L1-10 ML(210’1> 1215
*M1-13 ML(le,l) 1910
N ML(21271> 170
Table 2

In Tables 1-2, we have M (z) = M(x) for any = ¢ F := {12, 1312, 13125, 261, 271, 281 }; While
for any x € F, the graph M(z) is infinite. By 4.1, 4.5 and 4.7, we see that the automorphism
;5 of E'(; (see 4.2) stabilizes each two-sided cell Q of Eﬁ. So 1;; gives rise to a permutation
on the left cells of Fg in € and further a permutation on the left-cell graphs in Q. More
precisely, 1;; stabilizes each of the above left-cell graphs of Eﬁ except for the ones in the

following table, where 9;; transposes two members in each pair.

Transposed by 19 Transposed by 916 Transposed by s

M (262), ML(264) M (z63), Mr(264) M (z62), Mr(263)

ML(Z72) L(274) M (272), M (273) My (273), Mr(274)
M (283), Mr(285) M (284), Mr(285) M (283), Mp(284)
M (295), M (297) M (296), Mr(zo7) M (295), Mr(296)
Mr(z10,3), Mr(z104) | ML(z104), ML(2105) | ML(210,3), ML(210,5)

ML(ZH 3) (2’11,4) ML(Zn,s), ML(Z11,5) ML(211,4)7 ML(Zn,s)

Table 3



In the following table, we list the position for each L(z;;) as a vertex of the left-cell
graph My (z;;), where L(z;;) is the left cell of EG containing the element z;;. In the most
cases, such a position is determined uniquely by the label of the vertex L(z;;); in the case
where there exist some other vertices of My (z;;) sharing the same label as L(z;;), we need

indicate the label of some adjacent vertex in addition, to distinguish L(z;;) from the others.
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where by “ [450, distance 2 to 7, we mean that the vertex L(z10,3) of Mp(z10,3) is
labelled by and that there is a path of length 2 connecting L(z19,3) and a vertex labelled
by (see 2.5). Also, by “[235d, distance 2 to [46d, 7 we mean that the vertex L(z12,5)
of My (z12,5) is labelled by and that there are two paths of length 2, one connecting
L(z12,5) and a vertex labelled by [46d|, and the other connecting L(z125) and a vertex labelled

by [14d.

Zij Position of L(ZU) in ML(Zij) Zij Position of L(ZU) in ML(Zu)
261 @ 262 1356
Z63 1230 264 2560
z271 1346 Z2792 23560
273 12350 274 12356
281 13460 289 1450/, adjacent to [1250
283 145] 284 1460, adjacent to (360
285 246 291 123560
299 34, adjacent to z93 | [124
294 1340 295 | |460, adjacent to [246
206 146, adjacent to zg7 | [129, adjacent to [124d
Z10,1 | [1234 Z10,2 | [12460
z10.3 | [450], distance 2 to 2104 | [124
z10,5 | [349 210,6 | [246
Z11,1 | [12346 Z11,2 | [3460
211,3 1450‘ 211,4 45
211,5 @ 2121 2345|
Z12,2 | 123560 2123 | [12460
Z12,4 | [240 z12,5 | [235q, distance 2 to [460,
212,6 212,7
Z12,8 | [12356 Z12,9 | [23560
212,10 12350
Table 4
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