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Abstract. The aim of the present paper is to describe all the left cells of a-value 4 in the affine

Weyl groups eEi (i = 6, 7, 8). We find a representative set of those left cells which occur as the
vertex set of the corresponding left cell graphs by applying Shi’s algorithm. Then we find all the
distinguished involutions in those left cells. We show that those left cells are left-connected, verifying
a conjecture of Lusztig in our case.

§0. Introduction.

Let W be a Coxeter group with S its distinguished generator set. In [9], Kazhdan and Lusztig

introduced the concept of left, right and two-sided cells in W in order to construct representations

of W and the associated Hecke algebra H. When W is either a Weyl group or an affine Weyl

group, Lusztig further introduced the function a : W → N ∪ {∞} which is constant on any

two-sided cell of W , and then Lusztig introduced a special kind of elements, called distinguished

involutions in W , and proved that each left cell of W contains a unique distinguished involution

(see [15]). Distinguished involutions play an important role in the representation theory of W

and H. Thus this yields a big project to describe all the left cells of a Coxeter group W , and

to find all the distinguished involutions of W when W is either a Weyl group or an affine Weyl

group.

The left cells L in the affine Weyl groups W have been described explicitly in the following

cases:

(i) W = Ãn, n > 1 (see [19], [13]);

(ii) The rank of W is 6 4 (see [2], [7], [8], [14], [26], [27], [28], [33]);
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(iii) a(L) is either 1
2 |Φ| or 6 3, where Φ is the root system of the Weyl group associated to

W (see [21], [22], [10], [11], [18]);

(iv) W ∈ {B̃l, C̃m, D̃n | l > 3,m > 2, n > 4} and a(L) = 4 (see [4], [5], [6]);

(v) L contains a fully-commutative element of W (see [29], [30]).

In the cases where either (iv)–(v) or a(L) = 1
2 |Φ|, all the distinguished involutions contained

in those left cells L have been described.

From now on, we always assume that W is an irreducible affine Weyl group unless otherwise

specified. For any k ∈ N, let W(k) = {w ∈ W | a(w) = k}. Then W(k) is a union of some

two-sided cells of W . In the present paper, we shall describe all the left cells and find all the

distinguished involutions in the set W(4) for W = Ẽi, i = 6, 7, 8.

The main tool in describing the left cells is Algorithm 3.4, which was constructed by Shi in

[25]. We apply it to find a representative set for all the left cells (or an l.c.r. set for brevity)

in a two-sided cell of W and construct the corresponding left cell graphs. Then we find all the

distinguished involutions contained in these left cells by virtue of these left cell graphs and some

results in [24], [31]. The distinguished involutions will be displayed as the vertex set in certain

graphs, the latter are closely related to the corresponding left cell graphs.

A subset K of W is left-connected, if for any x, y ∈ K, there exists a sequence of elements

x0 = x, x1, ..., xr = y in K with some r > 0 such that xi−1x
−1
i ∈ S for 1 6 i 6 r. Lusztig

conjectured in [1] that if W is an affine Weyl group then any left cell L of W is left-connected. The

conjecture is supported by all the existing data. In W = Ẽ6, Ẽ7, Ẽ8, define E(4) = {w ∈ W(4) |
a(sw) < a(w), ∀ s ∈ L(w)} and Emin(4) = {w ∈ W(4) | `(w) 6 `(y) ∀ y ∈ W with y ∼

L
w}.

Then by Proposition 6.2 (a special case of the result in [31, Proposition 2.6]), any element z of

E(4) has the expression z = wJ ·x for some x ∈ W and J ⊂ S with `(wJ) = 4. We show that any

distinguished involution d of W in W(4) has the form d = x−1 ·wJ · x for any z = wJ · x ∈ E(4)

with z ∼
L

d and J = L(z) (see Theorem 6.6). The crucial step in showing this is Lemma 6.4,

where we get the equality E(4) = Emin(4) by practically finding out the sets E(4) and then

by observing that the condition x ∼
L

y in E(4) implies `(x) = `(y) (see 6.3). Theorem 6.6 and

Lemma 6.4 are used to prove the left-connectedness of any left cell L of W in W(4) (see Theorem

6.12), verifying the conjecture of Lusztig in our case.

The contents of the paper are organized as follows. Sections 1–4 are served as preliminaries,
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we collect some concepts, terms and known results there. We introduce Kazhdan–Lusztig cells in

Section 1, star operations, primitive pairs and generalized τ -invariants in Section 2, an algorithm

for finding an l.c.r. set in a two-sided cell in Section 3, and alcove form of an element in Section 4.

Then in Sections 5–6, we concentrate our attention on the affine Weyl groups W = Ẽi, i = 6, 7, 8.

In Section 5, we find an l.c.r. set of any two-sided cell of W in the set W(4) and construct all

the corresponding left cell graphs. In Section 6, we find all the distinguished involutions of W

in W(4) and showed that all the left cells of W in W(4) are left-connected under the assumption

of Proposition 6.2, the latter is shown in Section 7. In Appendix, we draw some graphs, from

which we can get all the left cell graphs and all the distinguished involutions of Ẽ6 in W(4); we

also list the elements of Ẽ6 in Emin(4).

§1. Cells.

1.1. Let W be a Coxeter group with S its distinguished generator set. Let ≤ be the Bruhat

order on W : the notation y 6 w in W means that there exist some reduced forms w = s1s2 . . . sl

and y = si1si2 . . . sit with si ∈ S such that i1, i2, . . . , it is a subsequence of 1, 2, . . . , l. For

w ∈ W , we denote by `(w) the length of w.

1.2. Let A = Z[u, u−1] be the ring of all Laurent polynomials in an indeterminate u with

integer coefficients. The Hecke algebra H of W over A has two sets of A-bases {Tx | x ∈ W}
and {Cw | w ∈ W} which satisfy the relation

(1.2.1)
{

TwTw′ = Tww′ , if `(ww′) = `(w) + `(w′);
(Ts − u−1)(Ts + u) = 0, for s ∈ S,

and

(1.2.2) Cw =
∑

y6w

u`(w)−`(y)Py,w(u−2)Ty,

where Py,w ∈ Z[u] satisfies that Pw,w = 1, Py,w = 0 if y 66 w and deg Py,w 6 (1/2)(`(w) −
`(y)− 1) if y < w. The Py,w’s are called Kazhdan-Lusztig polynomials (see [9]).

1.3. For y,w ∈ W with `(y) < `(w), we denote by µ(y, w) or µ(w, y) the coefficient of

u(1/2)(`(w)−`(y)−1) in Py,w. Written y—–w, if µ(y, w) 6= 0. To any x ∈ W , we associate two

subsets of S:
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L(x) = {s ∈ S|sx < x} and R(x) = {s ∈ S|xs < x}.

The following relations hold: for any x ∈ W and s ∈ S,

(1.3.1) CsCx =





(u−1 + u)Cx, s ∈ L(x);∑
y––x
sy<y

µ(x, y)Cy, s /∈ L(x);

and

(1.3.2) CxCs =





(u−1 + u)Cx, s ∈ R(x);∑
y––x
ys<y

µ(x, y)Cy, s /∈ R(x);

where each of the summations on the RHS of (1.3.1) and (1.3.2) contains finite terms. Moreover,

{Cs|s ∈ S} forms a generator set of the algebra H over A.

1.4. For any x, y, z ∈ W , set hx,y,z ∈ A by

CxCy =
∑

z

hx,y,zCz.

Following Lusztig in [12, Chapter 5], denote x 6
L

y (resp. x 6
R

y), if there exists some w ∈ W

with hw,y,x 6= 0. Denote x 6
LR

y, if there exists some w ∈ W with x 6
L

w 6
R

y (or equivalently, if

there exists some w′ ∈ W with x 6
R

w′ 6
L

y). Write x ∼
L

y (resp. x ∼
R

y, x ∼
LR

y), if the relation

x 6
L

y 6
L

x (resp. x 6
R

y 6
R

x, x 6
LR

y 6
LR

x) holds. These are equivalence relations on W , and

the equivalence classes of W with respect to ∼
L

(resp. ∼
R

, ∼
LR

) are called the left ( resp. right,

two-sided) cells of W . The preorder 6
L

(resp. 6
R

, 6
LR

) on elements of W induces a partial order

on the left (resp., right, two-sided) cells of W .

1.5. From now on, we always assume that W is an irreducible affine Weyl group unless otherwise

specified. It is well known that for x, y, z ∈ W , hx,y,z has non-negative coefficients as a Laurent

polynomial in u and that there exists some N ∈ N with uNhx,y,z ∈ Z[u] for any x, y, z ∈ W (see

[14]). So we can define a function a : W → N by

(1.5.1) a(z) = min{k ∈ N | ukhx,y,z ∈ Z[u], ∀ x, y ∈ W} for z ∈ W.

The following are some known properties of the a-function:
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(1) If x 6
LR

y then a(x) > a(y). In particular, x ∼
LR

y implies a(x) = a(y). So we may define

the a-value a(Γ) on a left (resp. right, two-sided) cell Γ of W to be a(x) for any x ∈ Γ (see [14]).

(2) a(wJ) = `(wJ) for any J ⊆ S with WJ finite, where WJ is the subgroup of W generated

by J and wJ is the longest element in WJ .

(3) For x, y, w ∈ W , we use the notation w = x·y to mean that w = xy and `(w) = `(x)+`(y),

call w a left (resp., right) extension of y (resp., x). In this case, we have w 6
L

y, w 6
R

x and

a(w) > a(x), a(y).

(4) If a(x) = a(y) and x 6
L

y (resp. x 6
R

y) then x ∼
L

y ( resp. x ∼
R

y) (see [15]).

(5) Let δ(z) = deg Pe,z for z ∈ W , where e is the identity of the group W . Then the inequality

(1.5.2) `(z)− 2δ(z)− a(z) > 0

holds for any z ∈ W . For i ∈ N, define

(1.5.3) Di = {w ∈ W |`(w)− 2δ(w)− a(w) = i}

Then Lusztig proved in [15] that D0 is a finite set of involutions (called distinguished involution

by Lusztig in [15]) and that each left (resp. right) cell of W contains a unique element of D0.

For any x ∈ W , we have hx−1,x,d 6= 0 for d ∈ D0 with d ∼
L

x.

Let W(i) = {w ∈ W |a(w) = i} for any nonnegative integer i. Then by (1), W(i) is a union of

some two-sided cells of W .

(6) If W(i) contains an element of the form wI for some I ⊆ S, then {w ∈ W(i)|R(w) = I}
forms a single left cell of W .

1.6. We say that s ∈ S is special if the subgroup of W generated by S \ {s} has maximally

possible order. For s ∈ S, let

Ys = {w ∈ W |R(w) j {s}}.

Then the following result is due to Lusztig and Xi.

Theorem. (see [17]) Let s ∈ S be special. Then for any two-sided cell Ω of W , Ω∩ Ys consists

of exactly one left cell.
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1.7. Let W be an irreducible affine Weyl group of type X̃. Let G be the connected reductive

algebraic group over C of type X∨,where X∨ is the dual of X. Then the following result is due

to Lusztig.

Theorem. (see [16, Theorem 4.8]) There exists a bijection u 7→ c(u) from the set U(G) of

unipotent conjugacy classes in G to the set Cell(W ) of two-sided cells in W satisfying a(c(u)) =

dimBu, where u is any element in u, and dimBu is the dimension of the variety Bu of Borel

subgroups of G containing u.

1.8. According to Theorem 1.7 and [3, Chapter 13], we see that the number of two-sided cells

of W in the set W(4) is 2 if W = Ẽi, i = 6, 7, 8.

§2. Star operations, primitive pairs and generalized τ-invariants.

The three concepts in the title are useful tools in finding an l.c.r. set of W and in the

description of left cells of W .

2.1. Now assume that (W,S) is an irreducible affine Weyl group of simply-laced type. That is,

for any s 6= t in S, the order o(st) of the product st is not greater than 3, or equivalently, W is

of type Ã, D̃ or Ẽ.

Given s 6= t in S with o(st) = 3, a set of the form {ys, yst} is called a right {s, t}-string (or

just called a right string), if R(y) ∩ {s, t} = ∅.
An element x is obtained from w by a right {s, t}-star operation (or a right star operation

for brevity), if x,w are two neighboring terms in a right {s, t}-string. Note that the resulting

element x of a right {s, t}-star operation on w is always unique.

Two elements x, y ∈ W form a right primitive pair, if there exist two sequences of elements

x0 = x, x1, . . . , xr and y0 = y, y1, . . . , yr in W such that the following conditions are satisfied.

(a) For each 1 6 i 6 r, there exist some si, ti ∈ S with o(siti) = 3 such that both {xi−1, xi}
and {yi−1, yi} are right {si, ti}-strings.

(b) xi—–yi for some (and then for all) 0 6 i 6 r.

(c) Either R(x) * R(y) and R(yr) * R(xr), or R(y) * R(x) and R(xr) * R(yr) hold.

Similarly, we can define a left {s, t}-string, a left {s, t}-star operation on an element, and a

left primitive pair.

Note that elements in a right (resp., left) string form a right (resp., left) primitive pair.
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The following result is well known.

Lemma. (see [23, Section 3]) If x, y is a right (resp., left) primitive pair, then x ∼
R

y (resp.,

x ∼
L

y).

2.2. For each element x ∈ W , we denote by M(x) the set of all elements y such that there is a

sequence of elements x = x0, x1, . . . , xr = y in W with some r > 0, where {xi−1, xi} is a right

string for each 1 6 i 6 r.

2.3. By a graph M, we mean that a set M of vertices together with a set of edges, where each

edge is a two-element subset of M , and each vertex is labelled by some subset of S.

Let M and M′ be two graphs with the vertex sets M and M ′ respectively. They are isomor-

phic, written M∼= M′, if there exists a bijective map η from M to M ′ satisfying the following

conditions.

(a) The label of x is the same as that of η(x) for any x ∈ M .

(b) For x, y ∈ M , {x, y} is an edge of M if and only if {η(x), η(y)} is an edge of M′.

This defines an equivalence relation on graphs.

2.4. We define a graph M(x) associated to an element x ∈ W as follows. Its vertex set is

M(x) and its edge set consists of all the pairs {y, z} in M(x) which form a right string. Each

vertex y ∈ M(x) is labelled by the set R(y). Clearly, for any x ∈ W , the graph M(x) is always

connected.

A left cell graph associated to an element x ∈ W , written ML(x), is by definition a graph,

whose vertex set ML(x) consists of all the left cells Γ of W with Γ ∩M(x) 6= ∅. Two vertices

Γ, Γ′ ∈ ML(x) are joined by an edge, if there are two elements y ∈ M(x)∩Γ and y′ ∈ M(x)∩Γ′

with {y, y′} an edge of M(x). Each vertex Γ of ML(x) is labelled by the common label of the

elements in M(x) ∩ Γ. Clearly, the graph ML(x) is always connected.

For example, there are three vertices labelled by 350 (meaning that the corresponding left

cells L satisfy R(L) = {3,5,0}) in Figure A: Denote the one at the northeast by L. Then the

vertex L is joined with four other vertices by edges, corresponding to the right {4,5}-, {3,4}-,
{1,3}-, {0,2}- and {5,6}-star operations, respectively. The edge joining with the vertex labelled

by 40 corresponds to two star operations: {3,4}- and {4,5}-, while any of the other three edges

corresponds to just one star operation.

2.5. By a path in the graph M(x), we mean a sequence of vertices z0, z1, . . . , zr in M(x) such
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that {zi−1, zi} is an edge of M(x) for any 1 6 i 6 r. Two elements x, x′ ∈ W have the same

generalized τ -invariants, if for any path z0 = x, z1, ..., zr in M(x), there is a path z′0 = x′, z′1, ..., z
′
r

in M(x′) with R(z′i) = R(zi) for any 0 6 i 6 r, and if the same condition holds when the roles

of x and x′ are interchanged.

Then we have the following known result.

Proposition 2.6. (a) Any x, y ∈ W with x ∼
L

y have the same generalized τ -invariants.

(b) For x ∼
L

y in W , the left cell graphs ML(x) and ML(y) are isomorphic.

Remark 2.7. 2.1–2.5 are due to Shi (see [25]), while 2.6 is due to Vogan (see [32]).

§3. An algorithm for finding an l.c.r. set in a two-sided cell.

A subset K ⊂ W is called a representative set of left cells (or an l.c.r. set for brevity) in W

(resp., in a two-sided cell Ω of W ), if |K ∩ Γ| = 1 for any left cell Γ in W (resp., in Ω), where

the notation |X| stands for the cardinality of a set X.

Obviously, the set D0 (see 1.5 (5)) is an l.c.r. set of W . In this section, we state an algorithm

for finding an l.c.r. set (not necessarily contained in D0) in a two-sided cell of W , which was

first introduced by Shi in [25].

The algorithm is based on the following

Theorem 3.1. (see [25]) Let Ω be a two-sided cell of W . Then N , ∅ 6= N ⊂ Ω, is an l.c.r. set

in Ω, if N satisfies the following conditions:

(1) x 6∼
L

y for any x 6= y in N ;

(2) Let y ∈ W . Suppose that there exists an element x ∈ N such that y—–x,R(y) " R(x)

and a(y) = a(x). Then there exists some z ∈ N with y ∼
L

z.

3.2. A subset P ⊂ W is said to be distinguished if P 6= ∅ and x 6∼
L

y for any x 6= y in P . Assume

that P is a subset of Ω. We introduce the following processes (see [25]).

(A) Find a largest possible subset Q from the set ∪x∈P M(x) with Q distinguished.

(B) For each x ∈ P , set

Bx = {y ∈ W |y−1x ∈ S,R(y) % R(x), a(y) = a(x)}

and B = P ∪ (∪x∈P Bx). Take a largest possible subset Q from B with Q distinguished.
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(C) For each x ∈ P , set

Cx = {y ∈ W |y < x, y—–x,R(y) % R(x), a(y) = a(x)}

and define C = P ∪ (∪x∈P Cx). Take a largest possible subset Q from C with Q distinguished.

3.3. A subset P of W is A-saturated (resp., B-saturated, C-saturated), if Process (A) (resp.,

(B), (C)) on P cannot produce any element z satisfying z 6∼
L

x for any x ∈ P .

Clearly, a set of the form ∪x∈KM(x) for any K ⊆ W is always A-saturated.

It follows from Theorem 3.1 that an l.c.r. set of W in a two-sided cell Ω is exactly a dis-

tinguished subset of Ω which is ABC-saturated. In order to get such a subset, we need the

following algorithm on a set P 6= ∅.
Algorithm 3.4. (see [25])

(1) Find a non-empty subset P of Ω (we take P to be distinguished to avoid unnecessary

complication whenever possible);

(2) Perform Processes (A), (B) and (C) alternately on P until the resulting distinguished set

cannot be further enlarged by any of these three processes.

In applying Algorithm 3.4 on a two-sided cell Ω, it is convenient to take the starting set P

to consist of some elements of the form wJ , J ⊆ S, in Ω whenever such kind of elements are

available.

§4. Alcove form of an element.

Alcove form is a useful expression of an element w in an affine Weyl group W from which

one can easily read out the length `(w) and the set R(w) (see Proposition 4.4). In our running

Algorithm 3.4 in Sections 5 and 6, all the elements will be expressed in their alcove forms. Alcove

form was originally introduced by Shi in [19], [20].

4.1. An affine Weyl group W has the following geometric realization. Let G be a connected,

adjoint reductive algebraic group over C. Fix a maximal torus T of G. Let X be the character

group of T and let Φ be the root system in X with ∆ = {α1, ..., αl}, Φ+ a choice of simple

root system and the corresponding positive root system, respectively. Then E = X ⊗Z R is a

euclidean space with an inner product 〈 , 〉 such that the Weyl group (W0, S0) of G with respect

to T acts naturally on E and preserves its inner product, where S0 is the set of simple reflections

si := sαi , 1 6 i 6 l. We denote by N the group of all translations Tλ (λ ∈ X) on E: Tλ sends
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x to x + λ. Then the semidirect product W = N oW0 is called an affine Weyl group. Let K

be the dual of the type of G. Then the type of W is K̃. Sometimes we denote W simply by K̃

when no danger of confusion. There is a canonical homomorphism from W to W0: w 7→ w̄.

Let −α0 be the highest short root in Φ. We define s0 = sα0T−α0 , where sα0 is the reflection

corresponding to α0. Then the generator set of W can be taken as S = S0 ∪ {s0}.
4.2. The alcove form of an element w ∈ W is, by definition, a Φ-tuple (k(w,α))α∈Φ over Z

subject to the following conditions.

(a) k(w,−α) = −k(w,α) for any α ∈ Φ;

(b) k(e, α) = 0 for any α ∈ Φ, where e is the identity element of W ;

(c) If w′ = wsi (0 6 i 6 l), then

k(w′, α) = k(w, (α)s̄i) + ε(α, i)

with

ε(α, i) =





0 if α 6= ±αi;
−1 if α = αi;
1 if α = −αi,

where s̄i = si if 1 6 i 6 l, and s̄0 = sα0 .

By condition (a), we can also denote the alcove form of w ∈ W by a Φ+-tuple (k(w, α))α∈Φ+ .

4.3. Condition 4.2.(c) defines a set of operators {si|0 6 i 6 l} on the alcove forms of elements

of W :

si : (kα)α∈Φ 7→ (k(α)s̄i
+ ε(α, i))α∈Φ.

The following result of Shi describes the functions `(w) and R(w) for any w ∈ W .

Proposition 4.4. (see [20]) Let w be an element in an affine Weyl group W .

(1) `(w) = Σα∈Φ+ |k(w,α)|, where the notation |x| stands for the absolute value of x;

(2) R(w) = {si|k(w, αi) < 0}.

4.5. The Coxeter diagrams of the affine Weyl groups Ẽi (i = 6, 7, 8) are as follows.



Left cells in the affine Weyl groups 11
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3 6541
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Ẽ6 Ẽ7 Ẽ8

Let us explain how to use alcove forms of elements in the study of left cells of an affine Weyl

group W by taking W = Ẽ6 as an example. The alcove form of any w ∈ Ẽ6 consists of 36 integer

entries indexed by positive roots of the root system Φ(E6). We arrange them in a fixed order as

in Figure 1. The notation b
acdef stands for the root aα1 + bα2 + cα3 + dα4 + eα5 + fα6, where

α1, ..., α6 are simple roots in Φ(E6) whose labels coincide with those in the Coxeter graph Γ(E6).

By Proposition 4.4, the set R(w) can be easily read out from the alcove form of w, for example,

s1 (resp., s0) is in R(w) if and only if a′ < 0 (resp., u > 0). Also, by 4.3, the relation between

the alcove forms of w and ws is displayed graphically, where we take s = s1, s0 in Figure 1 as

examples. w is in a right {s1, s3}- (resp., {s0, s2}-) string if and only if exactly
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Figure 1.

one of the entries a′, b′ (resp., a,−u) is negative. In this case, ws1, resp., ws3, (resp., ws0, resp.,

ws2,) is obtained from w by a right {s1, s3}- (resp., {s0, s2}-) star operation if and only if the

integers f ′, a′, resp., b′, f ′, (resp., −u,−t, resp., a,−t,) are either both negative or both not.

Hence one can successively apply various right star operations on the alcove form of w to get

the graph M(w), in particular, its vertex set M(w). Such a process can be run by a computer
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programme in GAP. The results in 1.5 (1), (6), Theorem 1.6 and Proposition 2.6 will be useful

tools in checking the relation x ∼
L

y or x 6∼
L

y in M(w). In applying Processes B and C, one

need find various primitive pairs {x, y}. This can be done by chasing the trace on the graphs

M(x) and M(y), the latter could be worked out in terms of alcove forms of elements again by

4.3 and Proposition 4.4. We refer the readers to any of [25], [26], [27], [28] for applying the

above method in the groups C̃4, D̃4 and F̃4.

Similar for the case of Ẽ7, Ẽ8.

§5. An l.c.r. set in W(4).

5.1. In the present section, we concentrate our attention on the groups W = Ẽi, i = 6, 7, 8.

We find an l.c.r. set for any two-sided cell of W in W(4) and construct all the corresponding

left cell graphs by running a computer programme in GAP in terms of alcove forms of elements.

Owing to the limitation of the space, we only sketch the major steps with the most technical

details omitted. Also, we only draw out the resulting left cell graphs and certain small graphs,

the latter will be used to show the primitivity for certain pairs of elements, while many other

graphs occurring in the intermediate steps (e.g. M(x), M′(x), etc) will often be omitted.

From now on, we use the boldfaced letter i to denote the simple reflection si corresponding

to the vertex of the Coxeter diagram labelled by i (see 4.5).

5.2. For the group W = Ẽ6, there are two two-sided cells in W(4) (see 1.8). All the elements of

the form wJ , J ⊆ S, in W(4) are as follows:

1312, 1310, 1315, 1316, 3430, 3436, 4540, 4541, 4241, 4246,

2021, 2023, 2025, 2026, 5652, 5650, 5651, 5653, 1046.

Let Ω(6, 1) be the two-sided cell of Ẽ6 containing x = 1312. Take P = {x} (here and later,

the notation P is always used as a starting set in applying Algorithm 3.4 for finding an l.c.r.

set of the related two-sided cell). The graph M(x) contains infinite number of vertices. Take a

subgraph M′(x) of M(x) with the vertex labelled by 123 being the element 1312, such that the

restriction to M ′(x) of the natural map η : M(x) → ML(x) with η(y) = Ly for any y ∈ M(x)

is bijective. Here Lx is the left cell of W containing x, M ′(x) is the vertex set of M′(x), and
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ML(x) is the vertex set of the left cell graph ML(x), the latter is displayed as in Figure A but

with all the edge labels forgotten (see 2.4 and Appendix). It can be checked that the set

(5.2.1) M1 := M ′(x)

is distinguished, and also ABC-saturated. Hence M1 forms an l.c.r. set in Ω(6, 1).

Since there is no element w in M1 with R(w) = {1,0,4,6}, the element y = 1046 is not in

Ω(6, 1). Consider the two-sided cell Ω(6, 2) containing y. Take P = {y}. The graph M(y)

(or rather, the left cell graph ML(y)) is as in Figure B but with all the edge labels forgotten

(see Appendix). The vertex set M(y) of M(y) is distinguished and A-saturated, but is not

B-saturated. Take y0 = y5243 ∈ M(y) and z = y01. Consider the pair {y0, z}. We have

R(y0) = {3} and R(z) = {1,3}. Let y′0 = y03, y′′0 = y′04, z′ = z4 and z′′ = z′5. Then

y′0, y
′′
0 ∈ M(y) with R(y′0) = {1,4} and R(y′′0 ) = {1,2,5}. Also, z′, z′′ ∈ M(z) with R(z′) = {1,4}

and R(z′′) = {1,5}. This implies that {y0, z} forms a right primitive pair (see 2.1 and Figure 1

(a)).

14 15
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13

1

4

54

33 125
0 0
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z z"z’

y’y
0

(a)

36 46 56

236 46 5

z z’ z"

z z’ z"0 0 0

2

43

4 5

(b)

Figure 1

Hence z ∈ Ω(6, 2) by Lemma 2.1. The graph M(z) (or rather, the left cell graph ML(z)) is

as in Figure C but with all the edge labels forgotten (see Appendix). The set M(y) ∪M(z) is

distinguished, but is still not B-saturated. Consider the pair {z0, z1} with z0 = z4156 ∈ M(z)

and z1 = z02. We have R(z0) = {3,6} and R(z1) = {2,3,6}. Let z′0 = z03, z′′0 = z′04, z′1 = z14 and

z′′1 = z′15. Then z′0, z
′′
0 ∈ M(z) with R(z′0) = {4,6} and R(z′′0 ) = {5,6}. Also, z′1, z

′′
1 ∈ M(z1) with

R(z′1) = {4,6} and R(z′′1 ) = {5}. This implies that {z0, z1} is a right primitive pair (see Figure

1 (b)). So z1 ∈ Ω(6, 2) by Lemma 2.1. The graph M(z1) (or rather, the left cell graph ML(z1))

is as in Figure D but with all the edge labels forgotten (see Appendix). It can be checked that

the set M(y) ∪M(z) ∪M(z1) is distinguished and is also ABC-saturated. Thus
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(5.2.2) M2 := M(y) ∪M(z) ∪M(z1)

forms an l.c.r. set of Ω(6, 2).

Now we obtain the following

Theorem 5.3. In the affine Weyl group Ẽ6, there are two two-sided cells Ω(6, 1) and Ω(6, 2)

in the set W(4), where Ω(6, 1) consists of 162 left cells with M1 in (5.2.1) as an l.c.r. set, and

Ω(6, 2) consists of 72 left cells with M2 in (5.2.2) as an l.c.r. set.

5.4. For the affine Weyl group Ẽ7, there are two two-sided cells in W(4) (see 1.8). All the

elements of the form wJ , J ⊆ S, in W(4) are as follows.

1014, 1012, 1015, 1016, 1017, 1312, 1315, 1316, 1317, 3430, 3436, 3437,

4240, 4241, 4246, 4247, 4540, 4541, 4547, 5652, 5653, 5651, 5650, 6764,

6762, 6763, 6761, 6760, 0325, 0326, 0327, 2357, 1257, 0257, 0357.

Let Ω(7, 1) be the two-sided cell of Ẽ7 containing the element t1 = 2350. Take P = {t1}. The

set M(t1) is distinguished and A-saturated, but is not B-saturated. Take y0 = t116745342654310

and z0 = y07. Then y0 ∈ M(t1). The elements y0, z0 form a right primitive pair, as shown

in Figure 2 (a), where the vertices on the top (resp., bottom) line are y0, y1, ..., y12 (resp.,

z0, z1, ..., z12) (from left to right). We see that z12 can be obtained from z0 by the same sequence

of right star operations as y12 from y0 and that R(z0) = {7,0} * {0} = R(y0) and R(y12) =

{2,3,7,0} * {2,3,7} = R(z12).

367 357 157 147 127

36 357 157 147 127 2370
56 3 4 1

56 3 2 3

5

237

7

0y

zz0 5

y

(a)

235

2357

236
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6 4

6 4

7

u0
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(b)

Figure 2

This implies M(z0) ⊂ Ω(7, 1).
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Since there exists a vertex in M(z0) with label 2357 , we have t2 := 2357 ∈ Ω(7, 1). The

set M(t1) ∪ M(t2) is distinguished and A-saturated, but is still not B-saturated. Take u0 =

t256734275134 ∈ M(t2) and v0 = u07. Then u0, v0 form a right primitive pair, as shown in Figure

2 (b).

We have t3 := 1014 ∈ Ω(7, 1) since M(v0) ⊂ Ω(7, 1) and there exists a vertex in M(v0)

labelled by 014 . The set

(5.4.1) M3 := M(t1) ∪M(t2) ∪M(t3)

is distinguished and is also ABC-saturated. Hence it forms an l.c.r. set of Ω(7, 1).

Since there is no element w in M3 with R(w) = {0,3,5,7}, the element t4 := 0357 is not in

Ω(7, 1). So Ω(7, 2) := W(4)\Ω(7, 1) is the two-sided cell of Ẽ7 containing t4. Take P = {t4}. The

set M(t4) is still not B-saturated. Consider the pair {t5, t6} with t5 = t44625134 ∈ M(t4) and

t6 = t52. We have R(t5) = {4} and R(t6) = {2,4}. Let t′5 = t54 and t′6 = t65. Then t′5 ∈ M(t4)

with R(t′5) = {2,3,5}. Also, t′6 ∈ M(t6) with R(t′6) = {2,5}. This implies that {t5, t6} forms a

right primitive pair (see Figure 3).

235 4 24 25
5 5t t’6t’ t6

24 5

Figure 3

So M(t6) ⊂ Ω(7, 2). The set M(t4) ∪M(t6) is still not B-saturated. Consider the pair {t7, t8}
with t7 = t63 ∈ M(t6) and t8 = t75. We have R(t7) = {2,3} and R(t8) = {2,3,5}. Let

t′7 = t72 ∈ M(t6) and t′8 = t84 ∈ M(t8). Then R(t′7) = {3,4} and R(t′8) = {4}. This implies that

{t7, t8} forms a right primitive pair. The set

(5.4.2) M4 := M(t4) ∪M(t6) ∪M(t8)

is distinguished, and is also ABC-saturated. Hence it forms an l.c.r. set of Ω(7, 2). Thus we

get the following
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Theorem 5.5. In the affine Weyl group Ẽ7, there are two two-sided cells Ω(7, 1) and Ω(7, 2),

where Ω(7, 1) contains 232 left cells with M3 in (5.4.1) as an l.c.r. set, and Ω(7, 2) contains 126

left cells with M4 in (5.4.2) as an l.c.r. set.

Here and later, see website: http://www.math.ecnu.edu.cn/∼jyshi for all the left cell graphs

of the groups Ẽ7 and Ẽ8 in W(4).

5.6. For the affine Weyl group Ẽ8, there are also two two-sided cells in W(4) (see 1.8). All the

elements of form wJ , J ⊆ S, in W(4) are as follows.

1312, 1315, 1316, 1317, 1318, 1310, 3436, 3437, 3438, 3430, 4241, 4246, 4247, 4248, 4240,

4541, 4547, 4548, 4540, 5652, 5653, 5651, 5650, 5658, 6764, 6762, 6763, 6761, 6760, 7871,

7872, 7873, 7874, 7875, 8081, 8083, 8082, 8084, 8085, 8086, 1257, 1258, 1250, 1468, 1460,

1268, 1260, 1270, 1470, 1570, 2357, 2358, 2350, 3570, 2368, 2360, 3270, 2570.

Let Ω(8, 1) be the two-sided cell of Ẽ8 containing u1 := 1312. Take P = {u1}. Let o1 :=

u14534243124642514 ∈ M(u1) and o′1 = o17. Then {o1, o
′
1} form a right primitive pair (see Figure

4 (a) ). Let u2 = 1570. Then M(u2) = M(o′1) since M(o′1) has a vertex labelled by 1570 . Hence

M(u2) ⊂ Ω(8, 1). The set

(5.6.1) M5 := M(u1) ∪M(u2)

is distinguished, and also ABC-saturated. So it forms an l.c.r. set of Ω(8, 1).

Since there is no element w in M5 with R(w) = {0,2,5,7}, we see that u3 := 0257 is not in

Ω(8, 1). So u3 must be in the two-sided cell Ω(8, 2) = W(4) \ Ω(8, 1). Take P = {u3}. The

set M(u3) is not B-saturated. Take u4 := u36843514726534 ∈ M(u3), u′4 = u44, u5 = u42

and u6 = u53. Then R(u4) = {4}, R(u′4) = {2,3,5}, R(u5) = {2,4} and R(u6) = {2,3}. This

implies that {u4, u5} forms a right primitive pair (see Figure 4 (b)). So u5 ∈ Ω(8, 2). The

set M(u3) ∪ M(u5) is still not B-saturated. Take u′6 = u62, u7 = u65 and u′7 = u74. Then

R(u′6) = {3,4}, R(u7) = {2,3,5}, R(u′7) = {4}. This implies that {u6, u7} form a
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right primitive pair (see Figure 4 (b)). So u7 ∈ Ω(8, 2). The set

(5.6.2) M6 := M(u3) ∪M(u5) ∪M(u7)

is distinguished, and is also ABC-saturated. Hence it forms an l.c.r. set of Ω(8, 2). So we get

Theorem 5.7. In the affine Weyl group Ẽ8, there are two two-sided cells Ω(8, 1) and Ω(8, 2),

where Ω(8, 1) contains 366 left cells with M5 in (5.6.1) as an l.c.r. set, and Ω(8, 2) contains 240

left cells with M6 in (5.6.2) as an l.c.r. set.

Remark 5.8. By an easy observation on all the left cell graphs of Ẽi, i = 6, 7, 8, in W(4), we

see that each of the two-sided cells Ω(i, 2), i = 6, 7, 8, contains a unique element of the form wJ

with `(wJ) = 4. They are w0146 in Ω(6, 2), w0357 in Ω(7, 2) and w0257 in Ω(8, 2).

§6. The distinguished involutions in W(4).

In this section, we describe the distinguished involutions of W in the set W(4) for W = Ẽi,

i = 6, 7, 8 (see 1.5 and Theorem 6.6). As a consequence, we show that any left cell of W in W(4)

is left-connected, verifying a conjecture of Lusztig in our case (see Corollary 6.11).

First we state two results. The first result is an easy consequence of [24, Proposition 5.12]:

Lemma 6.1. Suppose that s, t ∈ S satisfy o(st) = 3 and that x ∈ W is in D0 with |L(x) ∩
{s, t}| = 1. If y is obtained from x by a right {s, t}-star operation followed by a left {s, t}-star
operation, then y is also a distinguished involution of W .

The second result is a special case of [31, Proposition 2.6]

Proposition 6.2. Let W be an affine Weyl group of type Ẽ6, Ẽ7 or Ẽ8. Then any w ∈ W(4)

has an expression of the form w = x ·wJ · y for some x, y ∈ W and some J ⊆ S with `(wJ) = 4.
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We assume Proposition 6.2 in the present section and give its proof in Section 7.

6.3. Define E(4) = {w ∈ W(4) | a(sw) < a(w), ∀ s ∈ L(w)}. For any left cell L of W , define two

sets E(L) = {w ∈ L | a(sw) < a(w), ∀ s ∈ L(w)} and Emin(L) = {w ∈ L | `(x) > `(w), ∀ x ∈
L}. By 1.5 (3)-(4), the relations Emin(L) ⊆ E(L) and E(4) =

∐
L E(L) always hold, where L

in the last expression ranges over all the left cells of W in W(4).

By Proposition 6.2, we see that any w ∈ E(4) has the form w = wJ · y for some y ∈ W and

some J ⊂ S with `(wJ) = 4. Consider the following process:

(i) Let X0 be the set of all the elements of the form wJ for some J ⊂ S with `(wJ) = 4.

(ii) Let k > 0. Suppose that the sets Xj have been defined for any 0 6 j < k. Define

Xk = {xs | x ∈ Xk−1, s ∈ S \ R(x), xs ∈ E(4)}.
By practically applying the above process in each of the groups Ẽi, i = 6, 7, 8, we see that

there exists some m ∈ N such that Xj 6= ∅ and Xh = ∅ for any 0 6 j 6 m < h. This produces

the set E(4) = ∪m
i=0Xi (as an example, we list the elements of E(4) for W = Ẽ6 in Appendix).

Note that checking the including relation xs ∈ E(4) for x ∈ Xk−1 and s ∈ S \ R(x) needs some

technical skills in determining the a-values. Once the set E(4) is obtained, one can easily check

the equality E(4) = Emin(4) by observing the fact that any x ∼
L

y in E(4) satisfy `(x) = `(y),

the latter need make use of our left cell graphs and the results in 1.5 (1), (6), Theorem 1.6 and

Proposition 2.6. So we have

Lemma 6.4. Let W be one of the groups Ẽ6, Ẽ7, Ẽ8.

(1) There exists some m > 0 such that |Xj | 6= ∅ and Xh = ∅ for any 0 6 j 6 m < h and that

E(4) = ∪m
i=0Xi.

(2) E(L) = Emin(L) for any left cell L of W in W(4).

6.5. For any x, y ∈ W , write CxCy =
∑

z hx,y,zCz. Shi showed in [22, Proposition 2.3] that

there exists a unique element (denoted by λ(x, y)) in W such that hx,y,λ(x,y) 6= 0 and that any

z ∈ W with hx,y,z 6= 0 satisfies the relation z 6 λ(x, y). In [22, Proposition 2.3], Shi also

described the element λ(x, y) in either way below.

(i) Take any reduced expression x = srsr−1 · · · s1 of x with si ∈ S. Define a sequence of

elements x0 = y, x1, ..., xr in W such that for 1 6 i 6 r, xi = xi−1 if sixi−1 < xi−1, and

xi = sixi−1 if sixi−1 > xi−1. Then λ(x, y) = xr. In particular, λ(x, y) is a left extension of y

(see 1.5 (3)).
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(ii) Take any reduced expression y = t1t2 · · · tu of y with ti ∈ S. Define a sequence of elements

y0 = x, y1, ..., yu in W such that for 1 6 i 6 u, yi = yi−1 if yi−1ti < yi−1, and yi = yi−1ti if

yi−1ti > yi−1. Then λ(x, y) = yu. In particular, λ(x, y) is a right extension of x (see 1.5 (3)).

In particular, the element λ(x−1, x) is an involution for any x ∈ W .

By a result of Lusztig in [15, Theorem 1.10], we have

(6.5.1) d 6 λ(x−1, x) for any x ∈ W and d ∈ D0 with x ∼
L

d.

For an irreducible Weyl or affine Weyl group W , Shi conjectured that any distinguished

involution of W has the form d = λ(z−1, z) for any z ∈ Emin(Ld), where Ld is the left cell of

W containing d (see [22, Conjecture 8.10]). The following result supports the conjecture in our

case.

Theorem 6.6. Let W be as in Lemma 6.4. Then any distinguished involution of W in W(4)

has the form d = λ(z−1, z) = z′−1 ·wJ · z′ for any z = wJ · z′ ∈ E(Ld) with J = L(z) and some

z′ ∈ W .

Proof. The proof follows the line of that in [31, Theorem A (3)].

Let d be a distinguished involution of W in W(4). By Lemma 6.4, we have an expression of

the form d = x ·wJ · y for some x, y ∈ W and J ⊆ S with `(wJ ) = 4. Choose such an expression

with `(y) smallest possible. Then wJ · y ∼
L

d by 1.5 (2)–(4). We also have `(x) > `(y) since both

d and wJ are involutions. Hence

(6.6.1) `(d) > 2`(y) + 4.

We claim that the element wJ · y is in Emin(4). For, take any z ∈ Emin(4) with z ∼
L

d. By

Lemma 6.4, we have an expression z = wI · z′ for some z′ ∈ W and I ⊆ S with `(wI) = 4. By

6.5 (in particular, (6.5.1)), we have λ(z−1, z) = λ(z′−1
, wI · z′) > d and hence

(6.6.2) `(d) 6 `(λ(z−1, z)) = `(λ(z′−1
, wI · z′)) 6 2`(z′) + `(wI) = 2`(z′) + 4

Since wJ · y ∼
L

d ∼
L

z, this implies that

(6.6.3) 2`(y) + 4 > 2`(z′) + 4 > `(d) > 2`(y) + 4
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by (6.6.1)–(6.6.2). So all the equalities in (6.6.3) should hold. Hence wJ · y is in the set Emin(4),

as claimed. This further implies that d = λ(z−1, z) = z′−1 ·wI · z′ for any z = wI · z′ ∈ Emin(4),

proving our assertion. ¤

Remark 6.7. Owing to the limitation of the space, we only list the elements of Emin(4) for

the group W = Ẽ6 (see Appendix). We are pleased to provide the similar data for the groups

W = Ẽ7, Ẽ8 upon request. Here we would like to indicate the following fact: the set Emin(L)

consists of

(i) a unique element if L ⊂ Ω(i, 2) for some i = 6, 7, 8;

(ii) at most 4 elements if L ⊂ Ω(i, 1) for some i = 6, 7, 8. e.g., for L being the vertex 126 at

the northwest of Figure A, the set Emin(L) consists of four elements z1 =13104562, z2 =34310562,

z3 =45431062 and z4 =56543102. We have dL = λ(z−1
j , zj) = 2654·1310·4562 for any 1 6 j 6 4.

6.8. By Lemma 6.1, we can find out all the distinguished involutions in the left cells occurring

as vertices in any left cell graph M of W in W(4) via the following process.

(i) Find out the distinguished involution dL in at least one of these left cells, say L.

(ii) For any other left cell L′ occurring as a vertex in M, let L0 = L,L1, ..., Lr = L′ be a

sequence of vertices in M such that for 1 6 i 6 r, Li can be obtained from Li−1 by a right

{shi , ski}-star operation for some shi , ski ∈ S with o(shiski) = 3. Then by Lemma 6.1, the

distinguished involution dL′ in L′ can be obtained from dL by successively applying the left

{sh1 , sk1}-, {sh2 , sk2}-, ......, {shr , skr}-star operations followed by the corresponding sequence

of right star operations.

If M contains some vertices of labels J ⊂ S with `(wJ) = 4 (e.g., when M is in one of Figures

A, B), then we can take all such vertices as L in (i). We have dL = wJ with J = R(L). If we are

not in the case, then by Theorem 6.6, the calculation in step (i) can be carried out as follows.

Take some x ∈ W with the left cell Lx occurring as a vertex in the graph M (e.g., x can be

taken from the l.c.r. set of M in Section 5). Finding out a left retraction (say z) of x in E(4),

the distinguished involution d in Lx is equal to λ(z−1, z) by Theorem 6.6.

An alternative way for finding out all the distinguished involutions in W(4) is based on the

computational results claimed in 6.3 and by applying Theorem 6.6.

The advantage for the first way to find out distinguished involutions is that the results can

be displayed explicitly via graphs.
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6.9. By Theorems 5.3, 5.5 and 5.7, there are 15 left cell graphs in total for the set W(4) of

the groups Ẽi, i = 6, 7, 8. We apply the method described in 6.8 to find out 15 distinguished

involutions (one for each left cell graph) as follows.

fA = 1312, fB = 1460, fC = 13425fB52431, fD = 26154fC45162, fE =2350,

fF = 2357, fG = 1014, fH = 3570, fI = 24352146fH64125342, fJ = 53fI35,

fK = 1570, fL = 1312, fM = 2570, fN = 26154fM45162, fO = 53fN35.

where fA, fB , fC , fD ∈ Ẽ6, fE , fF , fG, fH , fI , fJ ∈ Ẽ7 and fK , fL, fM , fN , fO ∈ Ẽ8.

6.10. Consider the graphs in Figures A–D of Appendix, which describe all the distinguished

involutions in the left cells of Ẽ6 in W(4). For any of these graphs (say M), we find out the

distinguished involution dL in at least one left cell L occurring as a vertex of M (e.g., the

elements fA, fB , fC , fD in 6.9, which are in Figures A–D respectively). In particular, when M
contains some vertices L with R(L) = J satisfying `(wJ ) = 4, we have dL = wJ . Then for any

other vertex L′ in M, the distinguished involution dL′ in L′ can be found out in the following

way. Let L0 = L,L1, ..., Lr = L′ be a sequence of vertices in M such that for 1 6 i 6 r,

the vertices Li−1, Li are joined by an edge labelled with hiki (note that when hi = ki ——

which happens in most of the cases —— we abbreviate hiki to ki in the graphs). Then we

have dL′ = hrhr−1 · · ·h1 · dL · k1 · · ·kr−1kr, where hi,ki are the Coxeter generators of Ẽ6

corresponding to hi, ki. For example, the distinguished involution in the vertex L = 045 of

Figure A is dL = 0454, while the distinguished involution in the left-most vertex L′ = 13 of

Figure A is dL′ = 314342 · dL · 243413. It can be easily checked that dL′ is independent of the

choice of the vertex sequence from L to L′.

The corresponding graphs for the groups Ẽ7, Ẽ8 in W(4) can be found at website:

http://www.math.ecnu.edu.cn/∼jyshi

6.11. A subset K of W is left-connected (resp., right-connected), if for any x, y ∈ K, there exists

a sequence of elements x0 = x, x1, ..., xr = y in K with some r > 0 such that xi−1x
−1
i ∈ S (resp.,

x−1
i−1xi ∈ S) for 1 6 i 6 r.

By Lemma 6.4 (1), we see that the subset E(4) of Ẽi for any i = 6, 7, 8 is right-connected.

Lusztig conjectured in [1] that if W is an affine Weyl group then any left cell L of W is
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left-connected. The conjecture is supported by all the existing data. Now we can use Theorem

6.6 to prove the following

Theorem 6.12. Let W = Ẽi, i = 6, 7, 8. Then any left cell L of W in W(4) is left-connected.

Proof. Following the line of the proof for [31, Theorem A (4)], we prove our result as follows.

Let dL be the distinguished involution of W in L. For any w ∈ L, there exist a sequence

of elements x0 = w, x1, ..., xr = w′ in Ld with some w′ ∈ E(L) such that xi−1x
−1
i ∈ S and

`(xi) = `(xi−1)− 1 for 1 6 i 6 r. By Lemma 6.4, we have w′ ∈ Emin(Ld). By Theorem 6.6, we

have dL = λ(w′−1
, w′), which is a left extension of w′ by 6.5 (i). So there exist a sequence of

elements y0 = w′, y1, ..., yt = dL in L such that yi−1y
−1
i ∈ S and `(yi) = `(yi−1)+1 for 1 6 i 6 t.

This implies that L is left-connected. ¤

§7. Proof of Proposition 6.2.

In the present section, we assume that W is one of the affine Weyl groups Ẽi, i = 6, 7, 8 and

w ∈ W(4) with J = L(w). Let Γ be the Coxeter graph of W . We want to show Proposition 6.2.

To do this, we need the following three lemmas.

Lemma 7.1. If J = {s, r} and `(wJ ) = 2, then either sw ∼
L

w or rw ∼
L

w holds.

Lemma 7.2. If J = {s, r, u} and `(wJ) = 3, then there exists some v ∈ J with vw ∼
L

w.

Lemma 7.3. If J = {s, t} and `(wJ) = 3, then either sw ∼
L

w or tw ∼
L

w holds..

Now we show Proposition 6.2 by assuming Lemmas 7.1–7.3.

7.4. Proof of Proposition 6.2. Write

w = wJ · y with J = L(w) and some y ∈ W.

By the assumption of w ∈ W(4) and 1.5 (1)–(3), we have 1 6 `(wJ) 6 4. If `(wJ ) = 4, then we

are done. If `(wJ ) = 1, say J = {s}, then any t ∈ L(sw) must satisfy st 6= ts. Hence sw can

be obtained from w by a left {s, t}-star operation and so sw ∼
L

w by Lemma 2.1. If `(wJ) = 2

(resp., `(wJ) = 3), then vw ∼
L

w for some v ∈ J by Lemma 7.1 (resp., by Lemmas 7.2–7.3).

Then Proposition 6.2 follows by applying induction on `(w) > 4. ¤

It remains to show Lemmas 7.1–7.3. We need the following result in proving Lemmas 7.1–7.3.
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Lemma 7.5. Let w ∈ W(4) be with J = L(w) and `(wJ) < 4. Set I = L(wJw). Then I 6= ∅.
Write w = wJ · wI · w1 for some w1 ∈ W . Then vw ∼

L
w for some v ∈ J if one of the following

cases occurs:

(1) There exist some element t ∈ I such that s is the unique element in J satisfying st 6= ts

and that sr = rs for any r ∈ J .

(2) J = {s, r} and t 6= u in I with sr 6= rs and with r, t, u pairwise commutative (hence

st 6= ts and su 6= us).

(3) There exist some t ∈ I and some r 6= s in J with sr = rs, st 6= ts, rt 6= tr and r ∈ L(w1)

such that t, r commutes with all the elements in I \ {t}.
(4) J = {s, r} and t ∈ I with sr 6= rs, s ∈ L(w1), st 6= ts and rt = tr such that t, s commute

with all the elements in I \ {t}.
(5) J = {s, r, u}, I = {t} and J ∩ L(w1) 6= ∅ with |J | = 3 and `(wJ) = 3.

Proof. This can be checked directly. ¤

7.6. Proof of Lemma 7.1. By the assumption of a(w) > 2, we can write w = srt · w1 for some

t ∈ L(srw) and some 1 6= w1 ∈ W with Γ having a subgraph as in Figure 5 (a).

s t r

(a)

s

r
t c tc−1 1t t

(b)

Figure 5

Clearly, t /∈ L(w1). We claim that ut 6= tu for any u ∈ L(w1). For otherwise, there would exist

some u ∈ L(w1) with tu = ut. Then su 6= us and ru 6= ur by the assumption of L(w) = {s, r}.
But then Γ has a circle with s, r, t, u its four vertices, contradicting the assumption on the type

of W . Next we claim L(w1) ∩ {s, r} 6= ∅. For otherwise, by the assumption on the type of W

and by the first claim, t would be the branching node of Γ and w1 = t1t2 · · · tc for some c ∈ N
with Γ having a subgraph as in Figure 5 (b). But then we have a(w) = 2, contradicting the

assumption of a(w) = 4. Now that L(w1) ∩ {s, r} 6= ∅. We may assume s ∈ L(w1) for the sake

of definiteness. Then rw ∼
L

w by Lemma 7.5 (3). This proves our result. ¤

7.7. Proof of Lemma 7.2. Let I = L(wJw). Then I ∩ J = ∅ and w = wJ · wI · w1 for some
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w1 ∈ W . By Lemma 7.5 (1), we need only consider the case where there exist at least two α 6= β

in J with o(tα) = o(tβ) = 3 for any t ∈ I. Thus by the assumption on the type of W , we have

|I| 6 2 and tv = vt in the case of I = {t, v}.
(1) First assume |I| = 1. Say I = {t}. Then w = srut · w1 with w1 6= 1 by the assumption of

a(w) = 4. By relabelling s, r, u if necessary, Γ has a subgraph displayed as in Figure 6 (a) or

(b):

s

u

rt s t r

u

(a) (b)

Figure 6.

We claim J ∩L(w1) 6= ∅. For otherwise, J ∩L(w1) = ∅. Then any v ∈ L(w1) satisfies tv 6= vt

by the assumption |I| = 1. Hence by the assumption on the type of W , we have w1 = t1t2 · · · tc
and u = tk for some 1 < k 6 c with Γ having a subgraph as in Figure 5 (b) . But then we have

a(w) = 3, contradicting our assumption of a(w) = 4. The claim is proved. So our result follows

by Lemma 7.5 (5).

ts v ru ts v ru

y

ts v ru

y

ts v ru

y’

y

ts v ru

y

ts v ru

y

(a) (b) (c)

(f)(e)(d)

Figure 7.

(2) Next assume |I| = 2, say I = {t, v}. Then tv = vt. By Lemma 7.5 (1) and the assumption

on the type of W , we need only consider the case where Γ has a subgraph as in Figure 7 (a).

Write w = sru · tv · w1 for some w1 ∈ W . Then w1 6= 1 by the assumption of a(w) = 4.
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Any x ∈ L(w1) satisfies either tx 6= xt or vx 6= xv by the assumption |I| = 2. By Lemma 7.5

(3), we need only consider the case where L(w1) ∩ {s, r} = ∅. If u /∈ L(w1), then by relabelling

s, t, u, v, r if necessary, we have L(w1) = {y} with Γ having a subgraph as in Figure 7 (d) by the

assumption on the type of W . Then w1 ∈ {y1, y1y2} with Γ having a subgraph as one of those

in Figure 8.

s

r v u t y y1

(a)

s

r v u t y y1 y2

(b)

Figure 8.

which would imply a(w) = 3, contradicting the assumption of a(w) = 4.

It remains to consider the case of u ∈ L(w1).

Then w = sur · tv · u · w2 for some w2 ∈ W . Clearly, w2 6= 1 by the assumption of a(w) = 4.

We also have L(w2) ∩ {s, u, r} = ∅ by the assumption of L(w1) ∩ {s, r} = ∅. If t ∈ L(w2), then

w = sur · tv · ut · w3 = rv · suvtu · w3 for some w3 ∈ W . Then rw can be obtained from w by a

left {r, v}-star operation and hence rw ∼
L

w. By symmetry, if v ∈ L(w2) then we can show that

sw ∼
L

w.

Now assume L(w2) ∩ {s, u, r, t, v} = ∅ and y ∈ L(w2). By symmetry, we need only consider

the case where Γ has one of the subgraphs in Figure 7 (b)–(e). In the case of Figure 7 (b), we

have w = y · sur · tv · u · w3 for some w3 ∈ W . Hence {y, s, u, r} ⊆ L(w), contradicting the

assumption L(w) = {s, u, r}. In the case of Figure 7 (c), we have w = sy · rutvu · w3 for some

w3 ∈ W . The element sw can be obtained from w by a left {s, y}-star operation. Hence sw ∼
L

w.

By the assumption on the type of W , Γ can’t simultaneously have a subgraph in Figure 7 (d)

for some y ∈ L(w2) and a subgraph in Figure 7 (e) for another y ∈ L(w2).

Now assume that we are in the case of Figure 7 (d) for some y ∈ L(w2) but not in the case

of Figure 7 (b)–(c) for any y ∈ L(w2). Then w = sur · tv · u · y · w3 for some 1 6= w3 ∈ W ,

where any z ∈ L(w3) satisfies zy 6= yz. Then any x ∈ L(w3) is either t or a node in the branch

Γy of Γ with respect to t. In this case, if t 
 w3, then by Lemma 7.5 and by the assumption

on the type of W , we see that w3 ∈ {y1, y1y2}, with Γ having a subgraph as one of those in

Figure 8. which would imply a(w) = 3, contradicting the assumption of a(w) = 4. If t 6 w3,
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then we may write w = sur · tvuy · z · t · w4 for some z, w4 ∈ W with t 
 z. We may take such

an expression with `(z) smallest possible. Then R(z) ⊆ {s, u, y}. We also have L(yz) ⊆ {y}
by the assumptions that all x ∈ L(z) ⊆ L(w3) satisfy xy 6= yx, that t 
 z and that Γ has no

subgraph in Figure 7 (b) for any y ∈ L(w2). This implies that all x ∈ S with x 6 yz are the

nodes in the branch Γy of Γ with respect to t, forcing z = 1 and hence w = sur · tvuyt ·w4 with

w4 6= 1 by the assumption of a(w) = 4. By the assumption that all x ∈ L(w3) = L(tw4) satisfy

xy 6= yx, we have L(w4) ⊆ {u, s, y, y1}, where y1 ∈ S satisfies y1 6= t and yy1 6= y1y whenever

it exists. If u ∈ L(w4), then w = sur · tv · uytu · w5 = ysurvtyut · w5 for some w5 ∈ W , which

implies L(w) ⊇ {s, u, r, y}, contradicting the assumption of L(w) = {s, u, r}. If y ∈ L(w4), then

w = sur · tv · uyty · w5 = rvuvstuyt · w5 for some w5 ∈ W , hence rw can be obtained from w

by a right {r, v}-star operation. If L(w4) ⊆ {s, y1}, then one of the following cases must occur

(note the assumption of a(w) = 4 and hence w4 6= 1 in particular):

(i) w = sur · tv · uyt · st · w5 for some w5 ∈ W ;

(ii) w = sur · tv · uyt · y1yt · w5 for some w5 ∈ W ;

(iii) w = sur · tv · uyt · sy1y2y · w5 for some w5 ∈ W (see Figure 8 (b) for y2);

(iv) w = sur ·tv ·uyt ·sy1 ·w5 for some w5 ∈ W with L(w5) ⊆ {y} (hence w is not in the case (iii))

and L(sy1w5) = {s, y1} such that w is not in the case (ii) (hence w 6= sur · tv · uyt · sy1yts · w5

for any w5 ∈ W ).

Note that one may find one more possible case where w = sur · tv · uyt · y1y2yy1 · w5 for

some w5 ∈ W with Γ having a subgraph as in Figure 8 (b). Since a(w) = 4, we must have

L(w5) ∩ {s, t} 6= ∅ by the assumption of L(w4) ⊆ {s, y1} and that on the type of W , hence it

reduces to the case (ii) or (iii).

Case (i) implies that w = u·tst·rvuyts·w5, hence uw can be obtained from w by a right {t, u}-
star operation. Case (ii) implies that w = y1sur · tv · uyy1ty ·w5 and hence L(w) ⊇ {s, u, r, y1},
contradicting the assumption of L(w) = {s, u, r}. In the case (iii), we have W = Ẽ7. It can

be shown that w, uw form a primitive pair and hence uw ∼
L

w by Lemma 1.8. Finally, in the

case (iv), it can be shown that w = sur · tv · uyt · sy1ytuvr · w6, where w6 ∈ {r1, r1r2} with

r1, r2 ∈ S \ {v} satisfying rr1 6= r1r and r1r2 6= r2r1 if W = Ẽ8, and w6 = 1 if otherwise, hence

a(w) = 3, contradicting the assumption of a(w) = 4.

Hence the result is proved in the case of Figure 7 (d).
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Next assume that we are in the case of Figure 7 (e) for some y ∈ L(w2) but not in the case

of Figure 7 (b)–(d) for any y ∈ L(w2). Then w = srutvuy · w3 for some 1 6= w3 ∈ W with any

z ∈ L(w3) satisfying zy 6= yz. We claim u 6 w3. For otherwise, we would have w3 = y′ with

W = Ẽ6 as in Figure 7 (f). But this would imply a(w) = 3, a contradiction. Hence we must

have u 6 w3. Write w = srutvuy · z · u · z′ for some z, z′ ∈ W , where u 
 z, and `(z) is smallest

possible with this property. Then R(z) ⊆ {t, v, y}, and L(yz) = {y}, forcing z = 1. We have

w = srutvuyu · z′ = uy · srutvuy · z′. Hence uw can be obtained from w by a left {u, y}-star

operation. So uw ∼
L

w. ¤

7.8. Proof of Lemma 7.3. Write w = sts · w1 for some 1 6= w1 ∈ W . Then any r ∈ I := L(w1)

satisfies that either tr 6= rt, sr = rs, or tr = rt, sr 6= rs and that ru = ur for any r, u ∈ I by

the assumption on the type of W . If `(wI) > 3 then one can check easily that either tw, w, or

sw, w form a primitive pair. Now assume `(wI) 6 2. Then by re-labelling s, t if necessary, Γ

has a subgraph as in Figure 9 (a) if I = {r}, and as in Figure 9 (b) or (c) if I = {r, v} with

`(wI) = 2.

t

(d)

rs t
r

r

rc1
s r

(a)

s t rv

(b)

c+2

c+1

(c)
s rt

v

Figure 9.

First assume s, t 
 w1. By the assumption of a(w) = 4 and Lemma 7.5, we see (by re-

labelling s, t if necessary) that in the case of either (a) or (b) in Figure 9, w1 has an expression

w1 = r1r2 · · · rcrc+1rc+2 · w2 for some w2 ∈ W and ri ∈ S, 1 6 i 6 c + 2, with Γ having a

subgraph as in Figure 9 (d) (hence r1 = r in the case of Figure 9 (a), and r1 ∈ {r, v} in the

case of Figure 9 (b)). Then either sw, w, or tw,w form a primitive pair. We have an expression

w1 = sts · rv · w2 with some w2 ∈ W in the case of Figure 9 (c). Again, sw, w form a primitive

pair.

Next assume either s 6 w1 or t 6 w1. By re-labelling s, t if necessary, we may write w =

sts · x · t · y with some x, y ∈ W , where s, t 
 x, and `(x) is smallest possible with this property.

Then x 6= 1. Any z ∈ R(x) satisfies tz 6= zt. We have L(x) = {r} if t is not a branching node of
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Γ (hence Γ has a subgraph as in Figure 9 (a) or (b)), and L(x) ⊆ {r, v} if t is a branching node of

Γ as in Figure 9 (c). When |L(x)| = 1, we have either x = r, or x = r1r2 · · · rcrc+1rc+2rc · · · r2r1

with Γ having a subgraph as in Figure 9 (d), where r1 = r. When L(x) = {r, v}, we have

w = sts · rv · w2 with some w2 ∈ W . If x = r then tw can be obtained from w by a right

{t, r}-star operation, In any of the other cases, the elements sw,w form a primitive pair. ¤

Remark 7.9. The arguments given in this section actually show that the conclusion of Propo-

sition 6.2 is valid for W being any Coxeter group of type Ei or Ẽi, i = 6, 7, 8. The conclusion

of Proposition 6.2 can be further extended to the case where the group W is any Weyl or affine

Weyl group of simply-laced type (i.e., types A, D, E, Ã, D̃ and Ẽ), and the element w ∈ W

satisfies a(w) 6 6 (see [31]). Of course, the proof in this more general case need be refined.

Appendix.

We display certain graphs for the group Ẽ6 in Figures A–D. These graphs are mainly for the

description of all the distinguished involutions in the left cells of Ẽ6 in W(4) (see 6.10 for the

explanation of the graphs).

By forgetting the labels of all the edges, these graphs become the left cell graphs of Ẽ6 in

the set W(4) (i.e., the ones of the form ML(x) for some x ∈ W(4)). In this case, each vertex (or

rather, each box) in the graphs represents a left cell, say L, inside the box, we record the set

R(L). For example, we have R(L) = {1,3} if L is the left-most vertex 13 in Figure A. Two

vertices, say L,L′, are joined by an edge, if the left cell L′ can be obtained from L (and vice

versa) by a right star operation. For example, in Figure A, the left-most vertex 13 is joined with

a vertex 14 by an edge since the corresponding left cells can be obtained from each other by a

right {3,4}-star operation. The sets Mk, k = 1, 2, in (5.2.1)–(5.2.2) can be obtained from those

left cell graphs easily. For example, we have the element 1312 in the set M1 which corresponds

to the vertex 123 in Figure A. Now the element in M1 corresponding to the right-most vertex

02 in Figure A should be 131243542042, which is obtained from 1312 by using the path:

123 —— 14 —— 34 —— 35 —— 45 —— 25 —— 05 —— 04 —— 02

and hence by applying the following right star operations in turn: {3,4} (or {2,4}), {1,3}, {4,5},
{3,4}, {2,4}, {0,2}, {4,5}, {2,4}.
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The corresponding graphs for the groups Ẽ7, Ẽ8 can be found at website:

http://www.math.ecnu.edu.cn/∼jyshi
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The following is the list of certain choosing elements in E(4) (= Emin(4)) for W = Ẽ6, the

elements are grouped according to the left cell L they lie in, while the left cells L are represented

by R(L) and are arranged in the row order from top to bottom and also from left to right in

each row according to their positions in the corresponding left cell graph ML. Any element

of E(4) not occurring in the list can be obtained from some element in the list by some graph

automorphism of Ẽ6.

ML in Figure A (The choosing elements belonging to certain left cells at northwest):

56 : 2023456245, 4032452645, 4540324565, 5654032456;

16 : 20234562431, 40324526431, 45403245631, 02504234561;

36 : 2023456243, 4032452643, 4540324563, 0250423456;

46 : 202345624, 403245264, 454032456; 26 : 20234562, 40324526;

06 : 2023456; 24 : 202342, 043424; 04 : 20234; 023 : 2023;

35 : 202345243, 043424543, 045432453, 020542345; 45 : 20234524, 04342454, 04543245;

25 : 2023452, 0434245; 05 : 202345; 23 : 34302; 12 : 131042, 343102;

034 : 3430; 014 : 13104, 34310; 013 : 1310; 035 : 34305, 45430;

015 : 131045, 343105, 454310; 4 : 3430524, 4543024; 235 : 343052, 454302;

125 : 3430521, 4543021, 1310452; 14 : 34305214, 45430214, 13104524;

3 : 343052143, 454302143, 131045243; 016 : 1310456, 3431056, 4543106, 5654310;

126 : 13104562, 34310562, 45431062, 56543102;



32 Jian-yi Shi, Xi-gou Zhang

146 : 131045624, 343105624, 454310624, 565431024;

36 : 1310456243, 3431056243, 4543106243, 5654310243;

35 : 13104562435, 34310562435, 45431062435, 56543102435;

4 : 131045624354, 243105624354, 454310624354, 565431024354;

2 : 1310456243542, 2431056243542, 4543106243542, 5654310243542;

0 : 13104562435420, 24310562435420, 45431062435420, 56543102435420.

From the above list, we see that, for example, the left cell labelled by 56 contains four elements

of E(4) (listed immediately after the notation 56 :); there are two left cells in the list, both

labelled by 4 , the first (resp., second) one lies in the same column as 56 (resp., 0 ) in Figure

A, which contains two (resp., four) elements of E(4). For the elements of E(4) belonging to

the left cells in Figure A but not in the above list, we can describe them by applying certain

graph automorphisms of Ẽ6. For example, the left cell labelled by 56 at northeast of Figure A

contains four elements of E(4), which can be obtained from those in the line of 56 in the list

by applying the graph automorphism ψ01 of Ẽ6, where ψ01 interchanges 0 and 1.

ML in Figure B (The choosing elements belonging to certain left cells at north and northwest):

2 : 01463542; 04 : 0146354; 035 : 014635; 036 : 01463;

0146 : 0146; 4 : 01463524; 235 : 0146352.

ML in Figure C (The choosing elements belonging to certain left cells at north):

13 : 014625431; 14 : 0146254314; 15 : 01462543145; 16 : 014625431456;

34 : 014625434; 35 : 0146254345; 36 : 01462543456.

ML in Figure D (The choosing elements belonging to certain left cells at southeast):

016 : 01462543456210; 4 : 014625434524; 235 : 01462543452;

236 : 014625434562; 126 : 0146254345621; 0 : 0146254345621435420;

46 : 0146254345624; 146 : 01462543456214; 15 : 014625434562145;

2 : 014625434562143542; 5 : 01462543456245; 35 : 0146254345621435;

4 : 01462543456214354.

We see that any left cell occurring as a vertex of the left cell graph ML in Figure B, C or D

contains a unique element of E(4).
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