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ABSTRACT. The aim of the present paper is to describe all the left cells L of the affine Weyl groups
Es with a(L) < 11. We find a representative set of those left cells which occur as the vertices
of the corresponding left cell graphs. The main technical tools are the algorithm designed by the
first-named author and the various right primitive pairs. Some interesting empirical phenomenon is
observed concerning isomorphic left cell graphs in different two-sided cells of FEg.

Let W be a Coxeter group with S its Coxeter generator set. In [10], Kazhdan and Lusztig
introduced the concept of left, right and two-sided cells in W in order to construct representations
of W and the associated Hecke algebra H. Later Lusztig raised a theme in [14] for the description
of all the cells in an affine Weyl group W,. Lusztig defined a function a : W — NU {cco} in [16],
which is upper-bounded and is constant on any two-sided cell of W,. Lusztig also introduced
distinguished involutions of W in [17] which play an important role in the representations of W
and H. A remarkable fact is that any left cell of W, contains a unique distinguished involution.

The cells (in particular, the left cells) L of W, have been studied extensively by many people.
They were described explicitly in the following cases:

(i) Wa € {An, B, Ci, Dy, Fy,Go | n > 1,m = 3,4,1 = 2,3,4, k = 4,5} (see [21], [15], [16], [1],
[8], (3], [26], [27], [28], [36], [7]);

(ii) a(L) is either %|<I>\ or < 4, where ® is the root system of the Weyl group associated to
Wa (see [23], [14], [11], [20], [4], [5], [6], [31]);

(i) a(L) = 5,6,7,8 in By (see [12], [34], [35], [37]) and a(L) = 5,6 in Eg (see [9])

(iv) L containing a fully-commutative element of W, (see [29]).
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When either rank(W,) < 4 or in any of the cases (ii)-(iv), all the distinguished involutions
contained in those left cells L were described.

For any k € N, let W) = {w € W, | a(w) = k}. Then Wy, is a union of some two-sided
cells of W,. In the present paper, we shall describe all the left cells in the set W(;) with ¢ < 11
for the affine Weyl group Eg.

The main tool in describing the left cells is Algorithm 3.6, which was designed in [25] and
improved in [28] by the first-named author. We apply it to find a representative set E(2) for
all the left cells (or an lLec.r. set for brevity) of W, in a two-sided cell Q. E(f) is given in terms
of left cell graphs M (x), xz € P(2), for a certain subset P(2) of 2 as follows.

(i) P(€2) € E();

(ii) There exists a bijective map ¢ : E(Q) — UzepyMr(z) (Mp(x) is the vertex set of
M (z)) such that for any y € E(2), ¥(y) is the left cell of W, containing y, and that there
exist a unique = € P(Q2) and a path Ly = ¢(x), L1, ..., L, = ¥(y) in My (x), where {L;_1, L;} is
a string for any 1 <@ <7 (see 2.1).

The main technical difficulty for doing this is in applying Processes B and C since the jointed
relation z—y and the value a(z) for z,y, z € W, are hard to be determined in general. To avoid
this obstruction, we manage to find a number of (right) primitive pairs.

By expressing the elements of the group EG in their alcove forms, we use the computer
programme GAP to execute Algorithm 3.6. However, finding various primitive pairs is a flexible
and technical task, which has to be done by hands. It becomes extremely difficult to draw a
left cell graph when the number of its vertices is beyond one thousand. Hence we can work
out all the left cells L of Eg only with a(L) < 11 by the techniques presented here. All the
remaining left cells L of Fs satisfy a(L) € {12,13,15,16,20, 25,36} by Theorem 1.6. The left
cells of Eg with a(L) = 36 (resp., a(L) = 25) have been completely (resp., partially) described
by the first-named author in [23] (resp., [30]) in an entirely different way. We are seeking some
more techniques for describing the remaining left cells of EG.

Unlike what we did in the rank < 5 cases, E’ﬁ is the lowest rank group we have dealt with so
far for which we have to apply process C to enlarge the set P in order to get an l.c.r. set of E6
in some two-sided cell © (e.g., when Q = W(g), see 4.11). In other words, in the rank < 5 cases,

an l.c.r. set in any two-sided cell of the concerned groups can be obtained by only applying
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processes A and B, while in some two-sided cell (say W(q) for example) of EG, an l.c.r. set can’t
be obtained without applying process C.

An empirical phenomenon is interesting: if €2, ', Q" are three two-sided cells of Eg with Q <
94 5% Q" and a(2) < 11, and if Q, Q" have isomorphic left cell graphs My, M/, respective?;,
then € has a left cell graph M/, satisfying M’ = M. We wonder if such a phenomenon occurs
in general. A direct check shows that this is the case when W, € {Cy, Fy} (see [27], [28]).

The contents of the paper are organized as follows. Sections 1-3 are served as preliminaries,
we collect some concept, terms and known results there. We introduce Kazhdan—Lusztig cells
and affine Weyl groups in Section 1, star operations, primitive pairs and generalized T-invariants
in Section 2, and an algorithm for finding an l.c.r. set in a two-sided cell in Section 3. Then in
Sections 4-5, we concentrate our attention on the affine Weyl groups E’6, where we find out an

l.c.r. set for any two-sided cell 2 of Eg with a(2) < 11 and deduce some related results. All the

left cell graphs are displayed in Appendix.

§1. Kazhdan-Lusztig cells.

1.1. Let N (resp., Z, R, C) be the set of all the non-negative integers (resp., integers, real
numbers, complex numbers). Let W be a Coxeter group with S its distinguished generator
set. Denote by < (resp., [) the Bruhat-Chevalley order (resp., the length function) on W. Let
A = Z[u,u"!] be the ring of all the Laurent polynomials in an indeterminate u with integer
coefficients. The Hecke algebra H of W over A has two A-bases {1, }.ew and {Cytwew

satisfying the following relations

TwTo = T if [(ww') = l(w) + I(w'),
T?=(u ' —uw)Ts+Ty forseS,

and

Cyw =Y u™=WP, (w7,
ysw
where P, ,, € Z[u] satisfies that P, =1, Py, =0if y £ w and deg P, ,, < (1/2)(l(w) —
l(y) —1) if y <w. The P, ,,’s are known as Kazhdan-Lusztig polynomials (see [10]).
1.2. For y,w € W with y < w, denote by u(y,w) or u(w,y) the coefficient of u(1/2)(H(w)=iy)=1)

in P, ,,. The elements y and w are called jointed, written y—uw, if pu(y,w) # 0. To any = € W,
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we associate two subsets of S:
L(z)={seS|sx<z} and R(z)={seS|xzs<x}.

1.3. Let % (resp., %, 5%) be the preorder on W defined as in [10], and let v (resp., ot ﬂz) be
the equivalence relation on W determined by < (resp., <, < ). The corresponding equivalence
classes of W are called left (resp., right, two—sz’dfad) cells 01; I/Ii.Rg (resp., <, <) induces a partial
order on the set of left (resp., right, two-sided) cells of W. ’ e

The following results come from [10, Proposition 2.4]:
(1) Ifx % y in W then R(x) O R(y). In particular, if = Y in W then R(z) = R(y).
(2) Ifx % y in W then L(z) O L(y). In particular, if = ~Y in W then L(z) = L(y).
1.4. Define hy,, . € A by

CoCy = hay,.C.

for any z,y,z € W. In [16], Lusztig defined a function a : W — N U {co} by setting
a(z) = min{k € N | u*h,, . € Z[u], Yo,y € W} for any z € W

with the convention that a(z) = oo if the minimum on the RHS of the above equation does not
exist.

1.5. An affine Weyl group W, is a Coxeter group which can be realized geometrically as follows.
Let G be a connected, reductive algebraic group over C. Fix a maximal torus T of G, let X
be the character group of 7" and let ® C X be the root system of G with A = {ay,...,aq} a
choice of simple root system. Then £ = X ® 7 R is a euclidean space with an inner product( , )
such that the Weyl group (Wy, Sy) of G with respect to T" acts naturally on E and preserves its
inner product, where Sy is the set of simple reflections s; corresponding to the simple roots a,
1 <4 < [. Denote by N the group of all the translations Ty : x — = + A on F with A ranging
over X. Then the semidirect product W, = N x Wy of Wy with N is an affine Weyl group.
Let K be the type dual to the type of G. Then the type of W, is K. In the case where no
danger of confusion causes, W, is denoted simply by its type K. Let w — @ be the canonical
homomorphism from W, to Wy, =2 W,/N.

The following properties of the function a on (W,, S) were proved by Lusztig:
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(1) LgR y = a(x) > a(y). In particular, oY= a(z) = a(y). So we may define the
value a(I") for a left (resp., right, two-sided) cell I" of W, to be the common value a(z) of all the
x €T (see [16]).

(2) a(x) = a(y) and = % y (resp., = % y) = Y ( resp., = ~ y) (see [17]).

(3) Let 0(z) = deg P, , for z € W,, where e is the identity of the group W,. Define
D={weW,|l(w)=26w)+a(w)}.

Then D is a finite set of involutions. Each left (resp., right) cell of W, contains a unique
element of D (called a distinguished involution of W, by Lusztig, see [17]).

(4) For any I C S, let w; be the longest element in the subgroup W of W, generated by I
(note that Wy is always finite). Then w; € D and a(wr) = l(wy) (see [16]).

Let W(;) = {w € W, | a(w) = i} for any i € N. Then the set W(; is a union of some two-sided
cells of W, by (1).

(5) If W(;) contains an element of the form w; for some I C S, then the set {w € W, |
R(w) = I} forms a single left cell of W, (by (1)-(2)).

Call s € S special if the group Ws_ ¢,y has the maximum possible order among all the standard

parabolic subgroups of W, of the form Wy, I C 5. For s € 5, let
Y, = {w e W, | R(w) C {s}}.

Then Lusztig and Xi proved in [19] that
(6) Let s € S be special. Then QN Yj is non-empty and forms a single left cell of W, for any
two-sided cell 2 of W,.

Lusztig also proved that

Theorem 1.6. (see [18, Theorem 4.8]) Let an algebraic group G and an affine Weyl group
W, be as in 1.5. Then there exists a bijective map u — c(u) from the set U(G) of unipotent
conjugacy classes in G to the set Cel(W) of two-sided cells in W which satisfies the equation
a(c(u)) = dim By, where u is any element in u, and dim B, is the dimension of the variety of

all the Borel subgroups of G containing w.

1.7. Keep the notation in 1.5. Let —ag be the highest short root in ®. Denote sg = 54,10
where s, is the reflection in E with respect to ag. Then S = SoU{sg} forms a Coxeter generator

set of W,.
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The alcove form of an element w € W, is, by definition, a ®-tuple (k(w,a))qco over Z
determined by the following conditions.
(a) k(w, —a) = —k(w, ) for any o € P;
(b) k(e,a) = 0 for any « € P;
(c) If w' =ws; (0< i< 1), then
0 if a # +ay;
k(w', o) = k(w, (@)s;) + e(a,i) with e(a,i) =4 —1 if a=ay;
1 if a = —aqy,
where 5; = 5; if 1 <7 <[, and Sy = s4,-
By condition (a), we can also denote the alcove form of w € W, by a ®*-tuple (k(w, @))aca+,
where ®T is the positive root system of ® containing A.

Condition (c) defines a set of operators {s; | 0 < ¢ <[} on the alcove form of w € Wj,:
si: (k(w;a))ace — (k(w; (@)3:) + &(@,))ace-

These operators could be described graphically (see [31] for the type Eg).
For w,w’ € W, w' is called a left extension of w if [(w') = l(w) + [(w'w™1).

Then the following results were shown by the first-named author:

Proposition 1.8. (see [28]) Let w € W,,.
(1) l(w) = Epea+|k(w, )|, where the notation |z| stands for the absolute value of x € Z;
(2) R(w) = {si | k(w, a;) < 0};
(8) w' is a left extension of w if and only if the inequalities k(w', a)k(w, &) = 0 and |k(w', )| >

|k(w,a)| hold for any o € ®+.

§2. Graphs, strings and generalized T-invariants.

In the present section, we assume that (W,, S) is an irreducible affine Weyl group of simply-
laced type, that is, the order o(st) of the product st is not greater than 3 for any s,t € S, or
equivalently, W, is of type ZL DorE.

2.1. Given s # t in S with o(st) = 3, a set of the form {ys,yst} is called a (right) {s,¢}-string
(or a string in short), if R(y) N {s,t} = 0.

We have the following result.
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Proposition 2.2. (see [25]) For s,t € S with o(st) = 3, let {z1,x2} and {y1,y2} be two {s,t}-
strings. Then
(1) 21—y = T2—Y2;

(2) xq fzyl <:>a:2fzy2.

2.3. z is obtained from w by a (right) {s,t}-star operation (or a star operation in short), if
{z,w} is an {s,t}-string. Note that the resulting element x for an {s, ¢}-star operation on w is
always unique whenever it exists.

Two elements x,y € W, form a (right) primitive pair, if there exist two sequences of elements
To=x,%1,...,T, and yo =y, Y1, ...,y in W, such that the following conditions are satisfied:

(a) For every 1 < i < r, there exist some s;,t; € S with o(s;t;) = 3 such that both {x;_1,z;}
and {y;_1,y:} are {s;,t;}-strings.

(b) z;—uy; for some (and then for all, under the condition (a)) 0 <1 < r (see [10]).

(c) Either R(z0) € R(yo) and R(y,) € R(z,), or R(yo) € R(zo) and R(z,) € R(y,) hold.
Proposition 2.4. (see [25)] = ~Y if {x,y} is a primitive pair.

In order to describe the left cells of W,, we need introduce the concept of a left cell graph.
2.5. By a graph M, we mean a set M of vertices together with a set of edges, where each edge
is a two-element subset of M, and each vertex is labeled by some subset of S. A graph is finite
if it contains a finite number of vertices, and is infinite otherwise.

By a path P in a graph M, we mean a sequence of vertices zg, 21, ..., 2, in M with some
r > 0 such that {z;_1, z;} is an edge of M for any 1 < i < r. In this case, we say that the length
of Pisr.

Let M and M’ be two graphs with the vertex sets M and M’ respectively. They are called
isomorphic, written M = M’ if there exists a bijection 1 : M — M’ satisfying that

(a) The labels of n(x) and z are the same for any = € M.

(b) For z,y € M, {z,y} is an edge of M if and only if {n(x),n(y)} is an edge of M’.

This is an equivalence relation on graphs.

2.6. For any x € W,, denote by M(z) the set of all such elements y € W, that there are
T =xg,%1,...,2, =y in W, with some r > 0, where {x;_1,x;} is a string for every 1 <i < r.

Define a graph M (x) associated to an element x € W, as follows. Its vertex set is M (x);



8 Jian-yi Shi, Xi-gou Zhang

its edge set consists of all the two-element subsets in M (z) each of which forms a string; each
y € M(x) is labeled by the set R(y).

A left cell graph M (z) associated to x € W, is by definition a graph, whose vertex set M, (x)
consists of all the left cells T of W, with TN M(z) # (0; T # I in My (x) are jointed by an edge,
if there is an edge {y,y'} of M(x) with y € M(x) NT and y' € M(x) NT’; each T" € My (z) is
labeled by the set R(T") (see 1.5 (1)).

Clearly, both M(z) and M, (z) are connected graphs for any = € W.

2.7. We say that z,2’ € W, have the same (right) generalized T-invariants, if for any path
20 = T,21,...,% in M(x), there is a path z; = 2/, 21,..., 2. in M(z’) with R(z]) = R(z;) for
every 0 < ¢ < r, and if the same condition holds when the roles of x and 2’ are interchanged.

Then the following result is known.

Proposition 2.8. (see [25] [33]) Suppose x Y in We. Then
(a) x,y have the same generalized T-invariants.

(b) Mp(x) = Mr(y).

§3. An algorithm for finding an l.c.r. set of W, in a two-sided cell.

3.1. A subset K C W, is called a representative set for the left cells (or an l.c.r set for brevity)
of W, (resp., of W, in a two-sided cell §2), if |[K NT'| =1 for any left cell I' of W, (resp., of W,
in ), where the notation | X| stands for the cardinality of a set X.

Obviously, the set D (see. 1.5 (3)) is an l.c.r. set of W,. But it is not easy to find the whole
set D of W, directly in general since it may involve the complicated computation of Kazhdan-
Lusztig polynomials. The set D N2 could be found in a relative easier way once an l.c.r. set of
W, in a two-sided cell £ has been given (see Remark 4.15 (2), [31, Section 6] and [13]).

We shall obtain an l.c.r. set E(2) of W, in a two-sided cell €2 from a certain subset P(2) of
Q such that

() P() C B(9);

(ii) There exists a bijective map ¢ : E(Q) — UzepyMr(z) (Mp(x) is the vertex set of
M (z)) such that for any y € E(Q), ¥(y) is the left cell of W, containing y, and that there
exist some element x € P(Q) and some path Ly = ¢(x), L1, ..., L, = ¥(y) in Mg (x), where
{=HL;i_1),v~1(L;)} is a string for any 1 <i < r.
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Note that such an l.c.r. set E(Q2) of W, in § can be easily obtained from the set P(2) and
the corresponding left cell graphs My (z), x € P(2). However, E(Q) is not uniquely determined
by these data in general. It is so if and only if the set U,c p(q)M () is distinguished (see 3.4).

The first-named author designed an algorithm for finding an l.c.r. set of W, in a two-sided

cell, which is based on the following

Theorem 3.2. (see [25, Theorem 3.1]) Let Q be a two-sided cell of W,. Then a non-empty
subset E C Q is an l.c.r. set of W, in Q, if E satisfies the following conditions:
(I)x%yforanya:#y in E;
(2) For any y € W,, if there exists some x € E satisfying that y—=x, R(y) € R(x) and

a(y) = a(x), then there exists some z € E with y ~ 2

3.3. We know that the relations y—= and R(y) € R(x) hold if and only if one of the following
cases occurs:

(1) {z,y} is a string;

(2) y = x - s for some s € S with R(y) 2 R(z), where by the notation a = b- ¢ (a,b,c € W),
we mean a = be and [(a) = I(b) + I(c);

(3) y <z and y—=2 and R(y) 2 R(x).

3.4. A subset P C W, is called distinguished if P # () and x 7L4 y for any = # y in P. For a
two-sided cell 2 of W, and 0 # P C Q, consider the following processes on P (see [25]).

(A) Find a distinguished subset @ of the largest possible cardinality from the set |J,.p M ().
(B)Let B, ={ye W, | y=x-s ¢ M(z) for some s € S with a(y) = a(z)} for any = € P.
Find a distinguished subset @ of the largest possible cardinality from the set P U (UyepBy).
(C) Let Cp = {y € Wao | y < z;5—2;R(y) 2 R(z);a(y) = a(x)} for any 2 € P. Find a
distinguished subset @ of the largest possible cardinality from the set P U (UepCy).

3.5. A subset P of W, is A-saturated (resp., B-saturated, C-saturated), if the Process A (resp.,
B, C) on P cannot produce any element z with z 7L4 x for any = € P.

Clearly, a set of the form | J, . M (z) for any K C W, is always A-saturated.

It follows from Theorem 3.2 that an l.c.r. set of W, in a two-sided cell ) is exactly a
distinguished subset of €2 which is ABC-saturated simultaneously. In order to get such a subset,
we apply the following algorithm.

3.6. Algorithm (see [28, Algorithm 2.7]).
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(1) Find a non-empty subset P of Q (It is usual to take P distinguished and consisting of
elements of the form wy, I C S, whenever it is possible);
(2) Perform Processes A, B and C alternately on P until the resulting distinguished set

cannot be further enlarged by any of these processes.

§4. The left cells of the affine Weyl group Es.

In this section, we shall explicitly describe all the left cells of the affine Weyl group W, = E6
in all the two-sided cells 2 with a(€2) < 11. We shall find an l.c.r. set in virtue of left cell graphs
for each of such two-sided cells by applying Algorithm 3.6 (in the way explained in 3.1). This
will be achieved by expressing the elements of W, in their alcove forms and then in virtue of
the computer programme GAP. The work is hard in applying Process B and is even harder in
applying Process C since it is not easy to determine the joint relations and the a-values for the
related elements in general. To avoid such difficult points, we try to find various primitive pairs.

4.1. The Coxeter graph of the group Eﬁ is as follows.

Fig. 1. The Coxeter graph of Eg

Recall the notation W;) for ¢ > 0 in 1.5. By Theorem 1.6, W(; is a single two-sided cell of
Egific {0,1,2,3,5,7,8,9,10,11,12,13,15, 16,20, 25,36}, and is a union of two two-sided cells
of Eg if i € {4,6} (see [2, Chapter 13]).

For i € N, denote by P(7) the set of all the elements of the form wy in W(;) for some I C S.

For the sake of simplifying the notation, denote by i (bold-faced) the reflection s; correspond-
ing to the vertex in Fig. 1.

4.2. For any i # j in {1,0,6}, let ¢;; be the unique automorphism of Eg which stabilizes the

set S and transposes i and j. For example, we have

(110(0), ¢10(1), ¥10(2), ¥10(3), ¥10(4), ¥10(5), Y10(6)) = (1,0,3,2,4,5,6).
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Then 1);; preserves the value of the function a and the joint relation on elements, i.e., for
z,y,z € Fg, we have a(y(z)) = a(z), and o—y if and only if Vi (x)—ij(y). So 1;; stabilizes
the set W) for any k£ > 0 and permutes the left (respectively, right, two-sided) cells of Eg.
4.3. The two-sided cell W(g consists of a single element: the identity element of the group
Eﬁ. The two-sided cell W(;) consists of all the non-identity elements of Eﬁ each of which has a
unique reduced expression. The set E(W()) = S forms an l.c.r. set of Wy (see [14]). The left
cell graph of W(yy is isomorphic to Graph A (see Appendix).

4.4. Concerning the two-sided cell W(3), we take

P(2) = {14, 15, 16, 12, 10, 32, 30, 35, 36, 40, 46, 25, 26, 05, 06 }.

The graph M (12) is infinite. Take a connected subgraph M’(12) from M (12) as in Graoh B
with the vertex labeled by being the element 12 (see Appendix). Then its vertex set M'(12)

is distinguished by Proposition 2.8, and is also ABC-saturated. So

E(W(Z)) = M/(IZ)

forms an l.c.r. set of W2y by Theorem 3.2 (in the subsequent discussion, we shall frequently
apply Proposition 2.8 and Theorem 3.2 but without mentioning them explicitly).

4.5. Concerning the two-sided cell W(3), we have
P(3) = {131, 343, 424, 454, 202, 565, 146, 140, 150, 152, 162, 160, 352, 350, 362, 360, 460}.

Consider the graph M (131) (see Graph C' in Appendix). Its vertex set M (131) is distinguished,
and is also A-saturated, but not B-saturated. Take x = 131420 € M(131) and 2’ = x -5. We
see from Fig. 2 (a) that {z,z'} forms a primitive pair. Hence 2" € W3y by Proposition 2.2 and
1.5 (1) (in the subsequent discussion, we shall frequently apply Proposition 2.2 and 1.5 (1) to
primitive pairs but without mentioning them explicitly). The graph M (z’) is isomorphic to the
graph M(140) (see Graph D in Appendix). By 1.5 (5) and Proposition 2.3, the sets M (z’) and
M (140) represent the same set of left cells in W3 since both contain a vertex labeled by [140].
The set
E(W(3)) = M(131) U M(140)

is distinguished and also ABC-saturated. Thus it forms an l.c.r. set of W(s).
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z [10] y o] [=] 2 [se]—[as][e0]
2/ [10] 21 [39] 21 [a00][ae] —[5]
(a) (b) (c)

Fig. 2. The primitive pairs {z,2'}, {y, za2}, {2, 243}
4.6. There are two two-sided cells in W4 (see 4.1). Take

P(4) = {1312,1310,1315,1316,3430,3436,4540,4541,2421,2426,

0201,0203,0205,0206,5652,5650,5651,5653,1046 } .

The graph M (1312) is infinite. Take a subgraph M’(1312) in M (13812) with the vertex labeled
by being the element 1312 (see Graph F in Appendix). Then its vertex set M’(1312) is
distinguished, and also ABC-saturated. Let W(14) be the two-sided cell of Eg containing the

element 1312. Then the set

E(W(14)) = M'(1312)

forms an l.c.r. set of W(14).

Since there is no vertex in M’(1312) with the label [1046 ], we have z4; = 1046 ¢ W(14). Let
W(24) be the two-sided cell of Eg containing the element z4;. The graph M(z4;) is displayed as
Graph F' (see Appendix), whose vertex set M(zy;1) is distinguished and also A-saturated, but
not B-saturated. Let y = 241 - 5243 € M(z41) and z42 = y -1. Thus we see from Fig. 2 (b) that
{y, z42} forms a primitive pair. Hence z45 € W(24). The graph M(z42) is displayed as Graph C
(see Appendix). But the set M (z41)UM (z42) is still not B-saturated. Let z = z42-4156 € M (2z42)
and z43 = z -2. Then we see from Fig. 2 (c) that {z, z43} forms a primitive pair. So z43 € W(24).
The graph M (z43) is displayed as Graph D (see Appendix). The set

B(Wy) = Uio M (241)

is distinguished and also ABC-saturated. Thus it forms an l.c.r. set of W(24).
The results in 4.6 were obtained in our previous paper [31].
4.7. The set W5y forms a single two-sided cell of W by 4.1. Take
P(5) = {13125,13126,13105,13106,56512,56510,56523,56530,

02016,02015,02036,02035,34306,24216,45410 }.
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The graph M(13125) is infinite. Take a subgraph M/’ (13125) of M(13125) (see Graph G in

Appendix) whose vertex set

E(W(s)) = M'(13125)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(s).

4.8. There are two two-sided cells in W) by 4.1. Take

P(6) = {w134, Wys56, W24, W234, W245, W345, W1356, W1302, W0256 },

where the notation wj;..., stands for the longest element in the subgroup of E’G generated by
i,j,...,k. The graph M(zg1) with z6; = wig4 is infinite, Take a subgraph M’(z¢1) of M (z1)

(see Graph H in Appendix) whose vertex set
E(W(le)) = M'(z61)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of the two-sided cell W(16)

containing zg1.

Since no vertex in M’ (z61) is labeled by [1356 |, [1320] or [0256 |, the elements zgo = w1356,

263 = W1302, 264 = Wo256 in P(6) are in the two-sided cell W(26) = W) — W(16). The graphs
M(z62), M(z63), M(z64) are displayed as Graphs I, oe(1), 101 (1), respectively (see Appendix),
where the graph ;;(I) is obtained from I by applying the automorphism ;; of Es (see 4.2).

Take & = zg2 -425434120456243 and y = zg2 -425434120456245 in M (z62) and let z =z -1, w = y -6.

i —f 146 ]—f 126 ]—} 160 ]—} 150 ]—} 350 ]—} 340 ]—f 230 ]—} 120 ]—} 140 ]—} 150 ]—} 350 ]—} 360 ]—} 460 ]—J[ 260 l

z l 13.6 l—‘i 146 l—‘i 126 l—‘i 160 l—‘i 150 l_{ 350 l_{ 340 l—‘i 230 l—‘i 120 l—‘i 140 l_{ 150 l_{ 350 l_{ 360 l_{ 460 l
(a)
y _f 146 l_f 126 l_f 160 l_f 150 l_f 350 l_f 450 I_E]_f 250 l_f 260 l_f 460 l_f 360 l_f 350 l_f 150 l_f 140 l_f 120 l

w l 15.6 l_f 146 l_f 126 l_f 160 l_f 150 l_f 350 l_f 450 I_E]_f 250 l_f 260 l_f 460 l_f 360 l_f 350 l_f 150 l_f 140 l
(b)

Fig. 3. The primitive pairs {z, z} and {y,w}
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We see from Fig. 3 (a)-(b) that both {x, z} and {y,w} are primitive pairs. We have M(z) =
M (zg3) (resp., M(w) = M(zg4)) since a(z) = a(zg3) = 6 (resp., a(w) = a(z¢4) = 6) and both

graphs contain a vertex of the label (resp., [1302]). The set

E(W(QG)) = Uj_o M (26:)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(26).
By 4.1, we see that W(;) is a single two-sided cell of Eg for any i > 6 with W, # 0.
4.9. Consider the two-sided cell W7y of W. Take

P(7) = {w13467 W1340, W0246, W0241, W4561, W4560, W2346, W2451,

W3450, W13562, W13560, W13025, W13026, W02561, W02563 }

The graph M(z71) with 277 = w346 is infinite. Take a subgraph M’ (z71) of M(z71) (see Graph
J in Appendix) whose vertex set M’(z71) is distinguished. Let x = 271 - 5464 € M'(z71) and
/

' =z -2. We see from Fig. 4 (a) that {z,2'} forms a primitive pair. Take y = wi34020 in

M (w1340) and y' = y -3. Also, take z = wys6020 in M (wys60) and

X l13.561—t 1461—t 145l—t 135] y llS.ZOI—f 1401—f 142l—f 132] z l20‘561—f 4601—f 246]% 256]

x [ 13:562 |- 146 |{ 145 y’ [ 13;05 |- 140 | 142 2 [ 20;63 | 460 | 246
(a) (b) (c)
Fig. 4. The primitive pairs {z,z'}, {y,v'}, {2, 2’}

z' = z-3. Then by Fig. 4 (b)—(c), both {y,y’'} and {z,2'} are primitive pairs. Since they all
contain an element with the label [1340], the sets M (z71), M (w1340), M (w4s60) represent the
same set of left cells of Fg by 1.5 (5), i.e., for any left cell L of E67 the intersections M (z71) N L,
M (w1340) N L, M (wys60) N L are either all empty or all non-empty. Let 272 = wo2s63, 273 = W13025
and z74 = wisse2. The graph M(z74) is displayed as Graph K (see Appendix), while M (z72),
M(z73) can be obtained from M (z74) by applying o1, ©oe, respectively (We denote them by
Yo1(K), voe(K), respectively). Then the graph M(z') (resp., M(y'), M(z')) is isomorphic
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to M(z72) (resp., M(z73), M(z74)) since both contain a vertex with the label (resp.,

[ 13205 |, [ 13562]). The set

E(W(7)) = M/(Zn) U (U?:QM(ZH))

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(z7).

4.10. Next consider the two-sided cell Wg). Take
P(8) = {w13406, Wa5601, Wo2416 }-
The graph M (zg1) with zg1 = wj3406 is infinite. Take a subgraph M’(zg1) of M(zs1) as Graph

L3 with the vertex labeled by being the element 2g; (see Appendix). Let x = 2g;1 52420 €
M'(zg1) and zg2 = x -5. We see from Fig. 5 (a) that {z, zs2} forms a primitive pair. The graph
M (zs2) is displayed as Graph J (see Appendix). Take y = zgs - 065345 € M (zg2) and zg3 = y -1.

We see from Fig. 5 (b) that {y, zs3} forms a primitive pair. Take z = zg, -23456

v [330] {208 {305 |-{mo | {z) s8]y [ae]—{as]~{oae | {0 ] {05 ] {a]

Z82 l 14.05 ]—f 1205 ]—f 3205 ]—E] Z83 l 14;5 ]—% 346 ]—f 236 ]—f 235 ]—E]
(a) (0)

Fig. 5. The primitive pairs {z, zg2}, {y, 283}

and w = zgy -065234614520425142 in M (2g2). Let 284 = z -1 and zg5 = w -6. We see from Fig. 6
(a)—(b) that both {z, zg4} and {w, zg5} are primitive pairs. The graphs M (zs3), M(zs4), M(zg5)

are displayed as Graphs K, 1os(K), 1o1(K), respectively (see Appendix).

z [4?0]—{ ssol—f 350]—‘ 235 ] w —E]—f 450]—f 350]—‘ 235]

zZ84 l 14’60 ]—f 360 ]—f 350 ]—f 235 ]—E] Z85 —E]—f 450 ]—f 350 ]—f 235 ]—E]
(a) (b)

Fig. 6. The primitive pairs {z, zs4}, {w, 285}

Then the set
E(W(8)) = M/(2:81) U (U?:QM(Z&‘))

is distinguished and also ABC-saturated, thus it forms an l.c.r. set of W(g.
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4.11. Consider the two-sided cell W qg). Take

P(9) = {w130256}-

The graph M(z91) with z91 = wi3025¢ is displayed as Graph L1 (see Appendix). Take z =

291 - 42534 € M(z91) and zg2 = x -3. Then we see from Fig. 7 (a) that {x, z92} forms a primitive

r [ f ) fmw] v 2 [sa0]—{ o0 | {7295 | {33 ] |{z59]

Z92 —f 235 ]—f 236 ]—1 360 ] 293 294 [ 13.40 H~1350 ]—f 1235 ]
(a) (b) (¢)

Fig. 7. The primitive pairs {z, z92}, {y, 203}, {2, 204}

pair. The graph M(zg3) is displayed as Graph L3 (see Appendix). Let y = zg3 -1 € M (z92)
and zg3 = y -2. We see from Fig, 7 (b) that {y, z93} forms a primitive pair. The graph M (zg3)
is displayed as Graph L2 (see Appendix). Take z = zgs - 1404 € M (292) and zgy = z -3. We see
from Fig. 7 (c) that {z, z94} forms a primitive pair. The graph M (zq4) is displayed as Graph J
(see Appendix). The set U}_; M (zg;) is distinguished and AB-saturated, but not C-saturated.
Take

W = Zg1 - 423542365413024- 5- 620, U = 56130245432413024563245024- 3 -1,
Z95 = 291 - 423542365413024 - 620, Z96 = 56130245432413024563245024 - 1,
UV = 291 - 423456453241 -3 0245, 297 = Zg9] +423456453241 - 0245.

in M(zg94). The graphs M (z95), M(z96), M(z97) are displayed as Graphs K, 1os(K), 1o1(K),
respectively (see Appendix). By Fig. 8 (a)—(c), we see that {w, z95}, {u, 206} and {v, z97}) are

all primitive pairs. The set
E(W9)) = UL M (29:)

is distinguished and ABC-saturated, so it forms an lLc.r. set of W(g).
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w [eo {20 |—{ =5 |{as|{as | {15 |{2a] {122 ]{230] {140 ]{ 240 [{ 50 235 [ aa]

e ) ) P ) o T e B E T E ) e BT o X B e X e B
(a)
O o O e E ) S E e E e P P E e B e ET e E T Y

206 [330] {33835 {3 |{z5]{ 30 ]{a0 | {z50]{za0]{ w0 {500 {350 ] {30 ] 2]
(b)
v 236 l_f 360 l_f 350 l_f 340 l_f 140 l_f 1350 l_f 1360 l_f 1362 l_f 1346 l

zZ97 l 1;5 l—f 1246 l—f 236 l—f 360 l—f 350 l—f 340 l—f 140 l—f 1350 l—f 1360 l_f 1362 l_‘ 146 l
(©)

Fig. 8. The primitive pairs {w, 295}, {u, 296}, {v, 297}

4.12. In the two-sided cell Wy, take

P(10) = {w1345, w1342, W0243, W0245, W3456, W2456 | -

The graph M(z10,1) with 2191 = w1342 is displayed as Graph P (see [32 Fig. 19]). Its vertex

set M (z10,1) is not B-saturated. Take

T = 210,1 054652543, Y = Z10,1 -05465342403541324534,
Z = 210,1 '05465342405253413542, W = 210,1 "543204146412454624234132463,

U = Z10,1 "02456452434153520451424

in M(Zl(),l). Let 210,2 = X *0, 210,3 = Y *0, Z10,4 = 2 4, 210,5 = W ‘0, Z10,6 = U *6.
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T | 12'46 F{ 236 | 8460 | 1460 |{ 13206 | 18205 | { 140 |{ 124 | 125 |{ 235 ]

21072 l 12‘046 l—f 2360 l_{ 3460 l_{ 1460 l—‘i 13206 l—f 13205 l—‘i 140 l_{ 124 l_{ 125 l_{ 235 I_E]
(a)
y [t |{2a]-{zs]{sw0]{ sw0]{ om0 | {0 |{ rome]{amse] 2

210,3 [10]{ 38| {21] {28 ] {s10] {110] {550 | { 3500] {1520 {36] 104
(b) (¢)
w —{ 124 ]—{ 125 ]—f 126 ]—f 236 ]—f 246 ] u —{ 450 ]—f 350 ]—f 235 ]

210,5 —f 124 ]—{ 125 ]—{ 126 ]—f 236 ] 210,6 [ 2;16 ]—f 450 ]—f 350 ]—f 235 ]—E]
(d) (e)

Fig. 9. The primitive pairs {33‘, 21072}, {y, 21073}, {Z, 21074}, {w, 210,5}, {u, 210,6}

The graphs M(z10,2), M(210,3), M(210,4), M(210,5) and M(z106) are displayed as Graphs L3,
J, K, os(K), o1 (K), respectively (see Appendix). From the graphs in Fig. 9 (a)-(e), we see

that {z, z10,2}, {¥, 2103}, {#, 2104}, {w, 2105} and {u, z10,6} are all primitive pairs. The set
BE(Waoy) = UiZ1 M (210,1)

is distinguished and also ABC-saturated, hence it forms an lLc.r. set of W(y¢).

4.13. In the two-sided cell W(;1), take

P(11) = {w13450, W13426, W02436, W02451, W34560, W24561 }-

The graph M (z11,1) with 2111 = wi3426 is displayed as Graph @ (see [32, Fig. 20]). Its vertex

set M (z11,1) is not B-saturated. Take

T = 211,1 - 02543, W = 211,1 - 02453423404635434513424032354653450,

Y = Z11,1 - 54324146402145426423416243453, 2 = 2111 * 5432414625420425434213254652145

in M(z11,1). Let 2110 =26, 2113 =y -0, 211,4 = 2 -0, 211 5 = w -1. From Fig. 10 (a)—(d),
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T l 34.10 H 350 ]—f 235 ] y l 14‘15 r——[ 125 ]—f 235 ]

211,2 l 34(.50 ]—f 350 ]—f 235 ]—E] 211,3 l 14‘50 ]—f 125 ]—f 235 ]ﬂ
(a) (b)
2 [as}—(as){zae]{aso | {zos ] {2a] ~ w [as}—[ss]{st0]{zss){zss]{a1]

2114 | 4;30 | 25 | 246 || 236 |{ 285 | —{ 4| 2115 | 14;5 | 35 | a6 || 236 |{ 285 | —{ 4]
(©) (d)

Fig. 10. The primitive pairs {$,21172}, {y, 211,3}, {Z, 21174}, {w,211’5}

we see that {z,2112}, {y,211,3}, {#, 2114} and {w, z11 5} are all primitive pairs. The graphs
M(z11,2), M(z115), M(z11,3), M(z11,4) are displayed as Graphs L1, K, ¢s(K), 1o1(K), re-
spectively (see Appendix). We may check that the set

BE(Way)) = UZ1 M (211,1)

is distinguished and also ABC-saturated, hence it forms an lL.c.r. set of W(yy).

§5. Summary of our results.

5.1. Keep the notation in 1.5-1.6 with G the reductive algebraic group of type FEg. For a
unipotent class u of G, let ¢(u) be the corresponding two-sided cell of Es. Denote by n(c(u))
the number of left cells of Fg contained in c(u) and by E(c(u)) an Le.r. set of Eg in ¢(u). Then
the l.c.r. sets for the two-sided cells of Eg obtained in Section 4 can be displayed into Table 1
below, where the unipotent conjugacy classes of G are parameterized as in [2, Chapter 13].
5.2. Consider the graphs displayed in Table 2. We have My (z) & M(x) for z ¢ Z =
{12,1312,138125, 261, 271, 281 }; while for any x € =, the graph M(x) is infinite. Owing to its larger
size, we divide the graph H into two parts H1 and H2. The graphs P and () are too large to
be displayed in the paper, which can be found in the website of the first-named author (see [32,
Figs. 19-20]). We denote by n(M) the cardinality of the vertex set M of a graph M. By 4.1,
4.5 and 4.7, we see that the automorphism ;; of Eg (see 4.2) stabilizes each two-sided cell € of
Es. So ;; gives rise to a permutation on the left cells of Eg in Q and further to a permutation
on the left-cell graphs in €). Indeed, 1);; stabilizes all the left-cell graphs of Es except for those

in Table 3, where 1);; transposes two members in each pair.
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Unipotent class of G | c¢(u) | n(c(u)) E(c(u))
E6 W(O) 1 {6}
Eg(a1) Wa, 7 S
D5 W(Q) 27 M/(12)
Es(as) Wis) 57 M (131) U M (140)
As W(14) 162 M’ (1312)
D5(CL1) W(24) 72 U?:l M(Z4i)
Ay + Ay Wis) 216 M’ (13125)
A4 W(16) 432 M/<261)
Dy Wi 270 Ut o M (26;)
D4(CL1> W(7) 540 M/(Z71) U (U?ZQM(ZH))
Ag + A1 W(g) 675 M/(Zgl) U (U?:2M(Zgi))
2A2 + Al W(g) 720 Uzle(Zgi)
A3 W(IO) 1890 U?le(ZIO,i)
Ay + 24, Wan | 2160 Uiy M (211,)
Table 1
Graphs M Left-cell graphs isomorphic to M n(M)
M (e) 1
A ML(I) 7
B My (12) 27
C My (131), Mp(z42) 21
D M (140), M (243) 36
E M (1312) 162
F ML(Z41) 15
G M, (13125) 216
H ML(Z61) 432
I ML(ZGQ) 90
Yoe (1) M (263) 90
Yo1(1) My (264) 90
J M (z71), Mp(282), Mr(294), Mr(210,3) 300
K M (274), Mp(z83), Mp(295), Mp(2104), Mr(2z115) | 80
Yos (K) My (z73), Mp(284), Mr(296), Mr(2105), Mr(z11,3) | 80
o1 (K) My (z72), Mr(285), MrL(207), Mr(2106); Mr(2114) | 80
L1 My (201), ML(Zn,z) 10
L2 ML(Zgg) 35
L3 ML(Zgl), ML(ZQQ), ML(Z]_()Q) 135
P ML(ZIO,I) 1215
Q Mp(z11,1) 1910
Table 2

5.3. In Table 4, we list the position of L(z) as a vertex of the left-cell graph M (z), where L(z)

is the left cell of E6 containing the element z. In the most cases, such a position is determined
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uniquely by the label of the vertex L(z); when there exist some other vertices of M, (z) sharing
the same label as L(z), we need some additional data to distinguish L(z) from the others: either
the label of some adjacent vertex, or the label of some distance-2 vertex. Hence, by “ ,
distance 2 to 7, we mean that the vertex L(z1¢,3) of My (210,3) is labeled by and that
there is a path of length 2 connecting L(z10,3) and a vertex labeled by (see 2.5). Also, by

“[1450], adjacent to 7. we mean that the vertex L(zs2) of My (zs2) is labeled by
and that there is a vertex of M (zg2) labeled by adjacent to L(zgz).

Transposed by 119 Transposed by 14 Transposed by gg
M (262), Mr(264) M (263), Mr(264) M (262), Mr(263)
My (z72), MrL(274) My (2zr2), Mr(273) My (273), Mr(274)
My (2z83), Mrp(285) My (z84), Mp(285) My (2z83), Mr(284)
M (295), Mr(297) M (296), Mr(297) M (295), Mr(296)
M (2103), ML(z104) | MrL(2104), ML(2105) | ML(210,3), ML(210,5)
ML(ZH 3), ML(Z11,4) ML(ZU 3), ML(Z11,5) ML(ZII 4), ML(211,5)
Table 3
z Position of L(z) in M(2) z Position of L(z) in Mp(2)
261 | 134 262 1356
263 1230 Z64 2560
Z71 1346 Z72 23560
273 12350 274 12356
281 13460 zg2 | [1450], adjacent to | 1250 |
283 145 284 | 1460 |, adjacent to | 360 |
285 246 291 [ 123560 |
292 [34], adjacent to [235 | 293 [124]
294 | 1340 | 295 | 460 |, adjacent to [ 246 |
296 [ 146 |, adjacent to [ 145 | 297 [125], adjacent to [1246 |
2101 | 1234 | 210,2 | 12460 |
z10.3 | | 450/, distance 2 to[s60| | 2104 | 124
210,5 ’ 340 ‘ 210,6 ’ 246 ‘
2111 | 12346 | 2112 | 3460 |
211,3 | 1450 | 211,4 | 450 |
211,5 ’ 145 ‘
Table 4

5.4. As above, let n(£2) denote the number of left cells of Eg in any two-sided cell 2. According
to the result of the first-named author in [23], we have n(Wsg)) = |[Wo| = 273%5 each left cell
in W36y forms a single sign type in the sense of [22]. In [30], the first-named author proved
the inequality n(W(25)) < [Wo|/2 and conjectured that the equality should hold. The numbers
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n(Wy) with k € {12,13,15,16,20} haven’t yet been calculated so far. We conjecture that
n(Wao)) = [Wol/4.

5.5. In [31, Section 6], we described all the distinguished involutions d of Es with a(d) < 4.
Based on our results on the left cells I" of EG with 5 < a(I") < 11 and the result of the first-named
author in [24, Proposition 5.12], Z. X. Liu found all the distinguished involutions d of Eg with
5 < a(d) < 11 in her Master thesis [13] by applying the same techniques as that in [31].

5.6. From Table 2, we see that in Fg, if Q,, Q" are three two-sided cells with Q < /' < Q”
and a(2) < 11, and if ©, Q" have left cell graphs M, M/, respectively with M, ;R Zfihen
Y has a left cell graph M/ satisfying M’ = M. We wonder if this is still the case without

the restrictive condition of a(€2) < 11, or further, if it holds in general. A direct check shows

that this is the case when W, = Cy, Fy (see [27], [28]).
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