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Abstract. The aim of the present paper is to describe all the left cells L of the affine Weyl groups
eE6 with a(L) 6 11. We find a representative set of those left cells which occur as the vertices

of the corresponding left cell graphs. The main technical tools are the algorithm designed by the

first-named author and the various right primitive pairs. Some interesting empirical phenomenon is

observed concerning isomorphic left cell graphs in different two-sided cells of eE6.

Let W be a Coxeter group with S its Coxeter generator set. In [10], Kazhdan and Lusztig

introduced the concept of left, right and two-sided cells in W in order to construct representations

of W and the associated Hecke algebra H. Later Lusztig raised a theme in [14] for the description

of all the cells in an affine Weyl group Wa. Lusztig defined a function a : W → N∪ {∞} in [16],

which is upper-bounded and is constant on any two-sided cell of Wa. Lusztig also introduced

distinguished involutions of W in [17] which play an important role in the representations of W

and H. A remarkable fact is that any left cell of Wa contains a unique distinguished involution.

The cells (in particular, the left cells) L of Wa have been studied extensively by many people.

They were described explicitly in the following cases:

(i) Wa ∈ {Ãn, B̃m, C̃l, D̃k, F̃4, G̃2 | n > 1,m = 3, 4, l = 2, 3, 4, k = 4, 5} (see [21], [15], [16], [1],

[8], [3], [26], [27], [28], [36], [7]);

(ii) a(L) is either 1
2 |Φ| or 6 4, where Φ is the root system of the Weyl group associated to

Wa (see [23], [14], [11], [20], [4], [5], [6], [31]);

(iii) a(L) = 5, 6, 7, 8 in Ẽ7 (see [12], [34], [35], [37]) and a(L) = 5, 6 in Ẽ8 (see [9])

(iv) L containing a fully-commutative element of Wa (see [29]).
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When either rank(Wa) 6 4 or in any of the cases (ii)-(iv), all the distinguished involutions

contained in those left cells L were described.

For any k ∈ N, let W(k) = {w ∈ Wa | a(w) = k}. Then W(k) is a union of some two-sided

cells of Wa. In the present paper, we shall describe all the left cells in the set W(i) with i 6 11

for the affine Weyl group Ẽ6.

The main tool in describing the left cells is Algorithm 3.6, which was designed in [25] and

improved in [28] by the first-named author. We apply it to find a representative set E(Ω) for

all the left cells (or an l.c.r. set for brevity) of Wa in a two-sided cell Ω. E(Ω) is given in terms

of left cell graphs ML(x), x ∈ P (Ω), for a certain subset P (Ω) of Ω as follows.

(i) P (Ω) ⊆ E(Ω);

(ii) There exists a bijective map ψ : E(Ω) → ∪x∈P (Ω)ML(x) (ML(x) is the vertex set of

ML(x)) such that for any y ∈ E(Ω), ψ(y) is the left cell of Wa containing y, and that there

exist a unique x ∈ P (Ω) and a path L0 = ψ(x), L1, ..., Lr = ψ(y) in ML(x), where {Li−1, Li} is

a string for any 1 6 i 6 r (see 2.1).

The main technical difficulty for doing this is in applying Processes B and C since the jointed

relation x—–y and the value a(z) for x, y, z ∈ Wa are hard to be determined in general. To avoid

this obstruction, we manage to find a number of (right) primitive pairs.

By expressing the elements of the group Ẽ6 in their alcove forms, we use the computer

programme GAP to execute Algorithm 3.6. However, finding various primitive pairs is a flexible

and technical task, which has to be done by hands. It becomes extremely difficult to draw a

left cell graph when the number of its vertices is beyond one thousand. Hence we can work

out all the left cells L of Ẽ6 only with a(L) 6 11 by the techniques presented here. All the

remaining left cells L of Ẽ6 satisfy a(L) ∈ {12, 13, 15, 16, 20, 25, 36} by Theorem 1.6. The left

cells of Ẽ6 with a(L) = 36 (resp., a(L) = 25) have been completely (resp., partially) described

by the first-named author in [23] (resp., [30]) in an entirely different way. We are seeking some

more techniques for describing the remaining left cells of Ẽ6.

Unlike what we did in the rank 6 5 cases, Ẽ6 is the lowest rank group we have dealt with so

far for which we have to apply process C to enlarge the set P in order to get an l.c.r. set of Ẽ6

in some two-sided cell Ω (e.g., when Ω = W(9), see 4.11). In other words, in the rank 6 5 cases,

an l.c.r. set in any two-sided cell of the concerned groups can be obtained by only applying
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processes A and B, while in some two-sided cell (say W(9) for example) of Ẽ6, an l.c.r. set can’t

be obtained without applying process C.

An empirical phenomenon is interesting: if Ω,Ω′,Ω′′ are three two-sided cells of Ẽ6 with Ω 6
LR

Ω′ 6
LR

Ω′′ and a(Ω) 6 11, and if Ω,Ω′′ have isomorphic left cell graphs ML,M′′
L, respectively,

then Ω′ has a left cell graph M′
L satisfying M′

L
∼= ML. We wonder if such a phenomenon occurs

in general. A direct check shows that this is the case when Wa ∈ {C̃4, F̃4} (see [27], [28]).

The contents of the paper are organized as follows. Sections 1–3 are served as preliminaries,

we collect some concept, terms and known results there. We introduce Kazhdan–Lusztig cells

and affine Weyl groups in Section 1, star operations, primitive pairs and generalized τ -invariants

in Section 2, and an algorithm for finding an l.c.r. set in a two-sided cell in Section 3. Then in

Sections 4-5, we concentrate our attention on the affine Weyl groups Ẽ6, where we find out an

l.c.r. set for any two-sided cell Ω of Ẽ6 with a(Ω) 6 11 and deduce some related results. All the

left cell graphs are displayed in Appendix.

§1. Kazhdan-Lusztig cells.

1.1. Let N (resp., Z, R, C) be the set of all the non-negative integers (resp., integers, real

numbers, complex numbers). Let W be a Coxeter group with S its distinguished generator

set. Denote by 6 (resp., l) the Bruhat-Chevalley order (resp., the length function) on W . Let

A = Z[u, u−1] be the ring of all the Laurent polynomials in an indeterminate u with integer

coefficients. The Hecke algebra H of W over A has two A-bases {Tx}x∈W and {Cw}w∈W

satisfying the following relations

TwTw′ = Tww′ if l(ww′) = l(w) + l(w′),

T 2
s = (u−1 − u)Ts + T1 for s ∈ S,

and

Cw =
∑
y6w

ul(w)−l(y)Py,w(u−2)Ty,

where Py,w ∈ Z[u] satisfies that Pw,w = 1, Py,w = 0 if y 66 w and deg Py,w 6 (1/2)(l(w) −

l(y) − 1) if y < w. The Py,w’s are known as Kazhdan-Lusztig polynomials (see [10]).

1.2. For y, w ∈ W with y < w, denote by µ(y, w) or µ(w, y) the coefficient of u(1/2)(l(w)−l(y)−1)

in Py,w. The elements y and w are called jointed, written y—–w, if µ(y, w) 6= 0. To any x ∈ W ,
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we associate two subsets of S:

L(x) = {s ∈ S | sx < x} and R(x) = {s ∈ S | xs < x}.

1.3. Let 6
L

(resp., 6
R

, 6
LR

) be the preorder on W defined as in [10], and let ∼
L

(resp., ∼
R

, ∼
LR

) be

the equivalence relation on W determined by 6
L

(resp., 6
R

, 6
LR

). The corresponding equivalence

classes of W are called left (resp., right, two-sided) cells of W . 6
L

(resp., 6
R

, 6
LR

) induces a partial

order on the set of left (resp., right, two-sided) cells of W .

The following results come from [10, Proposition 2.4]:

(1) If x 6
L

y in W then R(x) ⊇ R(y). In particular, if x ∼
L

y in W then R(x) = R(y).

(2) If x 6
R

y in W then L(x) ⊇ L(y). In particular, if x ∼
R

y in W then L(x) = L(y).

1.4. Define hx,y,z ∈ A by

CxCy =
∑

z

hx,y,zCz

for any x, y, z ∈ W . In [16], Lusztig defined a function a : W → N ∪ {∞} by setting

a(z) = min{k ∈ N | ukhx,y,z ∈ Z[u], ∀x, y ∈ W} for any z ∈ W

with the convention that a(z) = ∞ if the minimum on the RHS of the above equation does not

exist.

1.5. An affine Weyl group Wa is a Coxeter group which can be realized geometrically as follows.

Let G be a connected, reductive algebraic group over C. Fix a maximal torus T of G, let X

be the character group of T and let Φ ⊂ X be the root system of G with ∆ = {α1, ..., αl} a

choice of simple root system. Then E = X ⊗Z R is a euclidean space with an inner product〈 , 〉

such that the Weyl group (W0, S0) of G with respect to T acts naturally on E and preserves its

inner product, where S0 is the set of simple reflections si corresponding to the simple roots αi,

1 6 i 6 l. Denote by N the group of all the translations Tλ : x 7→ x + λ on E with λ ranging

over X. Then the semidirect product Wa = N o W0 of W0 with N is an affine Weyl group.

Let K be the type dual to the type of G. Then the type of Wa is K̃. In the case where no

danger of confusion causes, Wa is denoted simply by its type K̃. Let w 7→ w̄ be the canonical

homomorphism from Wa to W0
∼= Wa/N .

The following properties of the function a on (Wa, S) were proved by Lusztig:
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(1) x 6
LR

y =⇒ a(x) > a(y). In particular, x ∼
LR

y =⇒ a(x) = a(y). So we may define the

value a(Γ) for a left (resp., right, two-sided) cell Γ of Wa to be the common value a(x) of all the

x ∈ Γ (see [16]).

(2) a(x) = a(y) and x 6
L

y (resp., x 6
R

y) =⇒ x ∼
L

y ( resp., x ∼
R

y) (see [17]).

(3) Let δ(z) = deg Pe,z for z ∈ Wa, where e is the identity of the group Wa. Define

D = {w ∈ Wa | l(w) = 2δ(w) + a(w)}.

Then D is a finite set of involutions. Each left (resp., right) cell of Wa contains a unique

element of D (called a distinguished involution of Wa by Lusztig, see [17]).

(4) For any I ( S, let wI be the longest element in the subgroup WI of Wa generated by I

(note that WI is always finite). Then wI ∈ D and a(wI) = l(wI) (see [16]).

Let W(i) = {w ∈ Wa | a(w) = i} for any i ∈ N. Then the set W(i) is a union of some two-sided

cells of Wa by (1).

(5) If W(i) contains an element of the form wI for some I ⊂ S, then the set {w ∈ W(i) |

R(w) = I} forms a single left cell of Wa (by (1)–(2)).

Call s ∈ S special if the group WS−{s} has the maximum possible order among all the standard

parabolic subgroups of Wa of the form WI , I ( S. For s ∈ S, let

Ys = {w ∈ Wa | R(w) ⊆ {s}}.

Then Lusztig and Xi proved in [19] that

(6) Let s ∈ S be special. Then Ω∩ Ys is non-empty and forms a single left cell of Wa for any

two-sided cell Ω of Wa.

Lusztig also proved that

Theorem 1.6. (see [18, Theorem 4.8]) Let an algebraic group G and an affine Weyl group

Wa be as in 1.5. Then there exists a bijective map u 7→ c(u) from the set U(G) of unipotent

conjugacy classes in G to the set Cell(W ) of two-sided cells in W which satisfies the equation

a(c(u)) = dimBu, where u is any element in u, and dimBu is the dimension of the variety of

all the Borel subgroups of G containing u.

1.7. Keep the notation in 1.5. Let −α0 be the highest short root in Φ. Denote s0 = sα0T−α0 ,

where sα0 is the reflection in E with respect to α0. Then S = S0∪{s0} forms a Coxeter generator

set of Wa.
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The alcove form of an element w ∈ Wa is, by definition, a Φ-tuple (k(w,α))α∈Φ over Z

determined by the following conditions.

(a) k(w,−α) = −k(w,α) for any α ∈ Φ;

(b) k(e, α) = 0 for any α ∈ Φ;

(c) If w′ = wsi (0 6 i 6 l), then

k(w′, α) = k(w, (α)si) + ε(α, i) with ε(α, i) =


0 if α 6= ±αi;
−1 if α = αi;
1 if α = −αi,

where si = si if 1 6 i 6 l, and s0 = sα0 .

By condition (a), we can also denote the alcove form of w ∈ Wa by a Φ+-tuple (k(w,α))α∈Φ+ ,

where Φ+ is the positive root system of Φ containing ∆.

Condition (c) defines a set of operators {si | 0 6 i 6 l} on the alcove form of w ∈ Wa:

si : (k(w;α))α∈Φ 7−→ (k(w; (α)si) + ε(α, i))α∈Φ.

These operators could be described graphically (see [31] for the type Ẽ6).

For w,w′ ∈ Wa, w′ is called a left extension of w if l(w′) = l(w) + l(w′w−1).

Then the following results were shown by the first-named author:

Proposition 1.8. (see [28]) Let w ∈ Wa.

(1) l(w) = Σα∈Φ+ |k(w,α)|, where the notation |x| stands for the absolute value of x ∈ Z;

(2) R(w) = {si | k(w,αi) < 0};

(3) w′ is a left extension of w if and only if the inequalities k(w′, α)k(w,α) > 0 and |k(w′, α)| >

|k(w,α)| hold for any α ∈ Φ+.

§2. Graphs, strings and generalized τ-invariants.

In the present section, we assume that (Wa, S) is an irreducible affine Weyl group of simply-

laced type, that is, the order o(st) of the product st is not greater than 3 for any s, t ∈ S, or

equivalently, Wa is of type Ã, D̃ or Ẽ.

2.1. Given s 6= t in S with o(st) = 3, a set of the form {ys, yst} is called a (right) {s, t}-string

(or a string in short), if R(y) ∩ {s, t} = ∅.

We have the following result.
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Proposition 2.2. (see [25]) For s, t ∈ S with o(st) = 3, let {x1, x2} and {y1, y2} be two {s, t}-

strings. Then

(1) x1—–y1 ⇐⇒ x2—–y2;

(2) x1 ∼
L

y1 ⇐⇒ x2 ∼
L

y2.

2.3. x is obtained from w by a (right) {s, t}-star operation (or a star operation in short), if

{x,w} is an {s, t}-string. Note that the resulting element x for an {s, t}-star operation on w is

always unique whenever it exists.

Two elements x, y ∈ Wa form a (right) primitive pair, if there exist two sequences of elements

x0 = x, x1, . . . , xr and y0 = y, y1, . . . , yr in Wa such that the following conditions are satisfied:

(a) For every 1 6 i 6 r, there exist some si, ti ∈ S with o(siti) = 3 such that both {xi−1, xi}

and {yi−1, yi} are {si, ti}-strings.

(b) xi—–yi for some (and then for all, under the condition (a)) 0 6 i 6 r (see [10]).

(c) Either R(x0) * R(y0) and R(yr) * R(xr), or R(y0) * R(x0) and R(xr) * R(yr) hold.

Proposition 2.4. (see [25)] x ∼
R

y if {x, y} is a primitive pair.

In order to describe the left cells of Wa, we need introduce the concept of a left cell graph.

2.5. By a graph M, we mean a set M of vertices together with a set of edges, where each edge

is a two-element subset of M , and each vertex is labeled by some subset of S. A graph is finite

if it contains a finite number of vertices, and is infinite otherwise.

By a path P in a graph M, we mean a sequence of vertices z0, z1, . . . , zr in M with some

r > 0 such that {zi−1, zi} is an edge of M for any 1 6 i 6 r. In this case, we say that the length

of P is r.

Let M and M′ be two graphs with the vertex sets M and M ′ respectively. They are called

isomorphic, written M ∼= M′, if there exists a bijection η : M −→ M ′ satisfying that

(a) The labels of η(x) and x are the same for any x ∈ M .

(b) For x, y ∈ M , {x, y} is an edge of M if and only if {η(x), η(y)} is an edge of M′.

This is an equivalence relation on graphs.

2.6. For any x ∈ Wa, denote by M(x) the set of all such elements y ∈ Wa that there are

x = x0, x1, . . . , xr = y in Wa with some r > 0, where {xi−1, xi} is a string for every 1 6 i 6 r.

Define a graph M(x) associated to an element x ∈ Wa as follows. Its vertex set is M(x);
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its edge set consists of all the two-element subsets in M(x) each of which forms a string; each

y ∈ M(x) is labeled by the set R(y).

A left cell graph ML(x) associated to x ∈ Wa is by definition a graph, whose vertex set ML(x)

consists of all the left cells Γ of Wa with Γ∩M(x) 6= ∅; Γ 6= Γ′ in ML(x) are jointed by an edge,

if there is an edge {y, y′} of M(x) with y ∈ M(x) ∩ Γ and y′ ∈ M(x) ∩ Γ′; each Γ ∈ ML(x) is

labeled by the set R(Γ) (see 1.5 (1)).

Clearly, both M(x) and ML(x) are connected graphs for any x ∈ W .

2.7. We say that x, x′ ∈ Wa have the same (right) generalized τ -invariants, if for any path

z0 = x, z1, . . . , zr in M(x), there is a path z′0 = x′, z′1, . . . , z
′
r in M(x′) with R(z′i) = R(zi) for

every 0 6 i 6 r, and if the same condition holds when the roles of x and x′ are interchanged.

Then the following result is known.

Proposition 2.8. (see [25] [33]) Suppose x ∼
L

y in Wa. Then

(a) x, y have the same generalized τ -invariants.

(b) ML(x) ∼= ML(y).

§3. An algorithm for finding an l.c.r. set of Wa in a two-sided cell.

3.1. A subset K ⊂ Wa is called a representative set for the left cells (or an l.c.r set for brevity)

of Wa (resp., of Wa in a two-sided cell Ω), if |K ∩ Γ| = 1 for any left cell Γ of Wa (resp., of Wa

in Ω), where the notation |X| stands for the cardinality of a set X.

Obviously, the set D (see. 1.5 (3)) is an l.c.r. set of Wa. But it is not easy to find the whole

set D of Wa directly in general since it may involve the complicated computation of Kazhdan-

Lusztig polynomials. The set D ∩ Ω could be found in a relative easier way once an l.c.r. set of

Wa in a two-sided cell Ω has been given (see Remark 4.15 (2), [31, Section 6] and [13]).

We shall obtain an l.c.r. set E(Ω) of Wa in a two-sided cell Ω from a certain subset P (Ω) of

Ω such that

(i) P (Ω) ⊆ E(Ω);

(ii) There exists a bijective map ψ : E(Ω) → ∪x∈P (Ω)ML(x) (ML(x) is the vertex set of

ML(x)) such that for any y ∈ E(Ω), ψ(y) is the left cell of Wa containing y, and that there

exist some element x ∈ P (Ω) and some path L0 = ψ(x), L1, ..., Lr = ψ(y) in ML(x), where

{ψ−1(Li−1), ψ−1(Li)} is a string for any 1 6 i 6 r.



Some left cells in the affine Weyl groups Ẽ6 9

Note that such an l.c.r. set E(Ω) of Wa in Ω can be easily obtained from the set P (Ω) and

the corresponding left cell graphs ML(x), x ∈ P (Ω). However, E(Ω) is not uniquely determined

by these data in general. It is so if and only if the set ∪x∈P (Ω)M(x) is distinguished (see 3.4).

The first-named author designed an algorithm for finding an l.c.r. set of Wa in a two-sided

cell, which is based on the following

Theorem 3.2. (see [25, Theorem 3.1]) Let Ω be a two-sided cell of Wa. Then a non-empty

subset E ⊂ Ω is an l.c.r. set of Wa in Ω, if E satisfies the following conditions:

(1) x 6∼
L

y for any x 6= y in E;

(2) For any y ∈ Wa, if there exists some x ∈ E satisfying that y—–x, R(y) * R(x) and

a(y) = a(x), then there exists some z ∈ E with y ∼
L

z.

3.3. We know that the relations y—–x and R(y) * R(x) hold if and only if one of the following

cases occurs:

(1) {x, y} is a string;

(2) y = x · s for some s ∈ S with R(y) % R(x), where by the notation a = b · c (a, b, c ∈ Wa),

we mean a = bc and l(a) = l(b) + l(c);

(3) y < x and y—–x and R(y) % R(x).

3.4. A subset P ⊂ Wa is called distinguished if P 6= ∅ and x 6∼
L

y for any x 6= y in P . For a

two-sided cell Ω of Wa and ∅ 6= P ⊆ Ω, consider the following processes on P (see [25]).

(A) Find a distinguished subset Q of the largest possible cardinality from the set
⋃

x∈P M(x).

(B) Let Bx = {y ∈ Wa | y = x · s /∈ M(x) for some s ∈ S with a(y) = a(x)} for any x ∈ P .

Find a distinguished subset Q of the largest possible cardinality from the set P ∪ (∪x∈P Bx).

(C) Let Cx = {y ∈ Wa | y < x; y—–x;R(y) % R(x);a(y) = a(x)} for any x ∈ P . Find a

distinguished subset Q of the largest possible cardinality from the set P ∪ (∪x∈P Cx).

3.5. A subset P of Wa is A-saturated (resp., B-saturated, C-saturated), if the Process A (resp.,

B, C) on P cannot produce any element z with z 6∼
L

x for any x ∈ P .

Clearly, a set of the form
⋃

x∈K M(x) for any K ⊆ Wa is always A-saturated.

It follows from Theorem 3.2 that an l.c.r. set of Wa in a two-sided cell Ω is exactly a

distinguished subset of Ω which is ABC-saturated simultaneously. In order to get such a subset,

we apply the following algorithm.

3.6. Algorithm (see [28, Algorithm 2.7]).
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(1) Find a non-empty subset P of Ω (It is usual to take P distinguished and consisting of

elements of the form wI , I ⊂ S, whenever it is possible);

(2) Perform Processes A, B and C alternately on P until the resulting distinguished set

cannot be further enlarged by any of these processes.

§4. The left cells of the affine Weyl group Ẽ6.

In this section, we shall explicitly describe all the left cells of the affine Weyl group Wa = Ẽ6

in all the two-sided cells Ω with a(Ω) 6 11. We shall find an l.c.r. set in virtue of left cell graphs

for each of such two-sided cells by applying Algorithm 3.6 (in the way explained in 3.1). This

will be achieved by expressing the elements of Wa in their alcove forms and then in virtue of

the computer programme GAP. The work is hard in applying Process B and is even harder in

applying Process C since it is not easy to determine the joint relations and the a-values for the

related elements in general. To avoid such difficult points, we try to find various primitive pairs.

4.1. The Coxeter graph of the group Ẽ6 is as follows.

0

2

3 6541

Fig. 1. The Coxeter graph of Ẽ6

Recall the notation W(i) for i > 0 in 1.5. By Theorem 1.6, W(i) is a single two-sided cell of

Ẽ6 if i ∈ {0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 20, 25, 36}, and is a union of two two-sided cells

of Ẽ6 if i ∈ {4, 6} (see [2, Chapter 13]).

For i ∈ N, denote by P (i) the set of all the elements of the form wI in W(i) for some I ⊂ S.

For the sake of simplifying the notation, denote by i (bold-faced) the reflection si correspond-

ing to the vertex in Fig. 1.

4.2. For any i 6= j in {1, 0, 6}, let ψij be the unique automorphism of Ẽ6 which stabilizes the

set S and transposes i and j . For example, we have

(ψ10(0), ψ10(1), ψ10(2), ψ10(3), ψ10(4), ψ10(5), ψ10(6)) = (1,0,3,2,4,5,6).
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Then ψij preserves the value of the function a and the joint relation on elements, i.e., for

x, y, z ∈ Ẽ6, we have a(ψ(z)) = a(z), and x—–y if and only if ψij(x)—–ψij(y). So ψij stabilizes

the set W(k) for any k > 0 and permutes the left (respectively, right, two-sided) cells of Ẽ6.

4.3. The two-sided cell W(0) consists of a single element: the identity element of the group

Ẽ6. The two-sided cell W(1) consists of all the non-identity elements of Ẽ6 each of which has a

unique reduced expression. The set E(W(1)) = S forms an l.c.r. set of W(1) (see [14]). The left

cell graph of W(1) is isomorphic to Graph A (see Appendix).

4.4. Concerning the two-sided cell W(2), we take

P (2) = {14, 15, 16, 12, 10, 32, 30, 35, 36, 40, 46, 25, 26, 05, 06}.

The graph M(12) is infinite. Take a connected subgraph M′(12) from M(12) as in Graoh B

with the vertex labeled by 12 being the element 12 (see Appendix). Then its vertex set M ′(12)

is distinguished by Proposition 2.8, and is also ABC-saturated. So

E(W(2)) = M ′(12)

forms an l.c.r. set of W(2) by Theorem 3.2 (in the subsequent discussion, we shall frequently

apply Proposition 2.8 and Theorem 3.2 but without mentioning them explicitly).

4.5. Concerning the two-sided cell W(3), we have

P (3) = {131, 343, 424, 454, 202, 565, 146, 140, 150, 152, 162, 160, 352, 350, 362, 360, 460}.

Consider the graph M(131) (see Graph C in Appendix). Its vertex set M(131) is distinguished,

and is also A-saturated, but not B-saturated. Take x = 131420 ∈ M(131) and x′ = x ·5. We

see from Fig. 2 (a) that {x, x′} forms a primitive pair. Hence x′ ∈ W(3) by Proposition 2.2 and

1.5 (1) (in the subsequent discussion, we shall frequently apply Proposition 2.2 and 1.5 (1) to

primitive pairs but without mentioning them explicitly). The graph M(x′) is isomorphic to the

graph M(140) (see Graph D in Appendix). By 1.5 (5) and Proposition 2.3, the sets M(x′) and

M(140) represent the same set of left cells in W(3) since both contain a vertex labeled by 140 .

The set

E(W(3)) = M(131) ∪ M(140)

is distinguished and also ABC-saturated. Thus it forms an l.c.r. set of W(3).
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x 10 —– 12 —– 14 —– 13
......

x′
150 —– 125 —– 14 —– 3

y 3 —– 14 —– 125
......

z42 13 —– 14 —– 15

z 36 —– 46 —– 56
......

z43 236 —– 46 —– 5

(a) (b) (c)

Fig. 2. The primitive pairs {x, x′}, {y, z42}, {z, z43}

4.6. There are two two-sided cells in W(4) (see 4.1). Take

P (4) = { 1312,1310,1315,1316,3430,3436,4540,4541,2421,2426,

0201,0203,0205,0206,5652,5650,5651,5653,1046 }.

The graph M(1312) is infinite. Take a subgraph M′(1312) in M(1312) with the vertex labeled

by 1312 being the element 1312 (see Graph E in Appendix). Then its vertex set M′(1312) is

distinguished, and also ABC-saturated. Let W 1
(4) be the two-sided cell of Ẽ6 containing the

element 1312. Then the set

E(W 1
(4)) = M ′(1312)

forms an l.c.r. set of W 1
(4).

Since there is no vertex in M′(1312) with the label 1046 , we have z41 = 1046 /∈ W 1
(4). Let

W 2
(4) be the two-sided cell of Ẽ6 containing the element z41. The graph M(z41) is displayed as

Graph F (see Appendix), whose vertex set M(z41) is distinguished and also A-saturated, but

not B-saturated. Let y = z41 · 5243 ∈ M(z41) and z42 = y ·1. Thus we see from Fig. 2 (b) that

{y, z42} forms a primitive pair. Hence z42 ∈ W 2
(4). The graph M(z42) is displayed as Graph C

(see Appendix). But the set M(z41)∪M(z42) is still not B-saturated. Let z = z42 ·4156 ∈ M(z42)

and z43 = z ·2. Then we see from Fig. 2 (c) that {z, z43} forms a primitive pair. So z43 ∈ W 2
(4).

The graph M(z43) is displayed as Graph D (see Appendix). The set

E(W 2
(4)) = ∪3

i=1M(z4i)

is distinguished and also ABC-saturated. Thus it forms an l.c.r. set of W 2
(4).

The results in 4.6 were obtained in our previous paper [31].

4.7. The set W(5) forms a single two-sided cell of W by 4.1. Take

P (5) = { 13125,13126,13105,13106,56512,56510,56523,56530,

02016,02015,02036,02035,34306,24216,45410 }.
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The graph M(13125) is infinite. Take a subgraph M′(13125) of M(13125) (see Graph G in

Appendix) whose vertex set

E(W(5)) = M ′(13125)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(5).

4.8. There are two two-sided cells in W(6) by 4.1. Take

P (6) = {w134, w456, w024, w234, w245, w345, w1356, w1302, w0256 },

where the notation wij···k stands for the longest element in the subgroup of Ẽ6 generated by

i, j, ...,k. The graph M(z61) with z61 = w134 is infinite, Take a subgraph M′(z61) of M(z61)

(see Graph H in Appendix) whose vertex set

E(W 1
(6)) = M ′(z61)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of the two-sided cell W 1
(6)

containing z61.

Since no vertex in M′(z61) is labeled by 1356 , 1320 or 0256 , the elements z62 = w1356,

z63 = w1302, z64 = w0256 in P (6) are in the two-sided cell W 2
(6) = W(6) − W 1

(6). The graphs

M(z62), M(z63), M(z64) are displayed as Graphs I, ψ06(I), ψ01(I), respectively (see Appendix),

where the graph ψij(I) is obtained from I by applying the automorphism ψij of Ẽ6 (see 4.2).

Take x = z62 ·425434120456243 and y = z62 ·425434120456245 in M(z62) and let z = x ·1, w = y ·6.

x 36 −− 146 −− 126 −− 160 −− 150 −− 350 −− 340 −− 23 −− 24 −− 40 −− 230 −− 120 −− 140 −− 150 −− 350 −− 360 −− 460 −− 260
......

z 136 −− 146 −− 126 −− 160 −− 150 −− 350 −− 340 −− 23 −− 24 −− 40 −− 230 −− 120 −− 140 −− 150 −− 350 −− 360 −− 460 −− 26

(a)

y 15 −− 146 −− 126 −− 160 −− 150 −− 350 −− 450 −− 25 −− 24 −− 40 −− 250 −− 260 −− 460 −− 360 −− 350 −− 150 −− 140 −− 120
......

w 156 −− 146 −− 126 −− 160 −− 150 −− 350 −− 450 −− 25 −− 24 −− 40 −− 250 −− 260 −− 460 −− 360 −− 350 −− 150 −− 140 −− 12

(b)

Fig. 3. The primitive pairs {x, z} and {y, w}
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We see from Fig. 3 (a)–(b) that both {x, z} and {y, w} are primitive pairs. We have M(z) ∼=

M(z63) (resp., M(w) ∼= M(z64)) since a(z) = a(z63) = 6 (resp., a(w) = a(z64) = 6) and both

graphs contain a vertex of the label 0256 (resp., 1302 ). The set

E(W 2
(6)) = ∪4

i=2M(z6i)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W 2
(6).

By 4.1, we see that W(i) is a single two-sided cell of Ẽ6 for any i > 6 with W(i) 6= ∅.

4.9. Consider the two-sided cell W(7) of W . Take

P (7) = {w1346, w1340, w0246, w0241, w4561, w4560, w2346, w2451,

w3450, w13562, w13560, w13025, w13026, w02561, w02563 }.

The graph M(z71) with z71 = w1346 is infinite. Take a subgraph M′(z71) of M(z71) (see Graph

J in Appendix) whose vertex set M ′(z71) is distinguished. Let x = z71 · 5464 ∈ M ′(z71) and

x′ = x ·2. We see from Fig. 4 (a) that {x, x′} forms a primitive pair. Take y = w134020 in

M(w1340) and y′ = y ·3. Also, take z = w456020 in M(w4560) and

x 1356 −− 146 −− 145 −− 135
......

x′
13562 −− 146 −− 145 −−− 35

y 1320 −− 140 −− 142 −− 132
......

y′
13205 −− 140 −− 142 −−− 32

z 2056 −− 460 −− 246 −− 256
......

z′ 20563 −− 460 −− 246 −−− 25

(a) (b) (c)

Fig. 4. The primitive pairs {x, x′}, {y, y′}, {z, z′}

z′ = z ·3. Then by Fig. 4 (b)–(c), both {y, y′} and {z, z′} are primitive pairs. Since they all

contain an element with the label 1340 , the sets M(z71), M(w1340), M(w4560) represent the

same set of left cells of Ẽ6 by 1.5 (5), i.e., for any left cell L of Ẽ6, the intersections M(z71)∩L,

M(w1340)∩L, M(w4560)∩L are either all empty or all non-empty. Let z72 = w02563, z73 = w13025

and z74 = w13562. The graph M(z74) is displayed as Graph K (see Appendix), while M(z72),

M(z73) can be obtained from M(z74) by applying ψ01, ψ06, respectively (We denote them by

ψ01(K), ψ06(K), respectively). Then the graph M(z′) (resp., M(y′), M(x′)) is isomorphic
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to M(z72) (resp., M(z73), M(z74)) since both contain a vertex with the label 20563 (resp.,

13205 , 13562 ). The set

E(W(7)) = M ′(z71) ∪
(
∪4

i=2M(z7i)
)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(7).

4.10. Next consider the two-sided cell W(8). Take
P (8) = {w13406, w45601, w02416}.

The graph M(z81) with z81 = w13406 is infinite. Take a subgraph M′(z81) of M(z81) as Graph

L3 with the vertex labeled by 13460 being the element z81 (see Appendix). Let x = z81 ·52420 ∈

M ′(z81) and z82 = x ·5. We see from Fig. 5 (a) that {x, z82} forms a primitive pair. The graph

M(z82) is displayed as Graph J (see Appendix). Take y = z82 · 065345 ∈ M(z82) and z83 = y ·1.

We see from Fig. 5 (b) that {y, z83} forms a primitive pair. Take z = z82 ·23456

x 140 −−− 1205 −− 3205 −− 40 −− 42 −− 235
......

z82 1405 −− 1205 −− 3205 −− 40 −− 42 −− 25

y 45 −−− 35 −− 346 −− 236 −− 235 −− 34
......

z83 145 −− 35 −− 346 −− 236 −− 235 −− 4

(a) (b)

Fig. 5. The primitive pairs {x, z82}, {y, z83}

and w = z82 ·065234614520425142 in M(z82). Let z84 = z ·1 and z85 = w ·6. We see from Fig. 6

(a)–(b) that both {z, z84} and {w, z85} are primitive pairs. The graphs M(z83), M(z84), M(z85)

are displayed as Graphs K, ψ06(K), ψ01(K), respectively (see Appendix).

z 460 −−− 360 −− 350 −− 235 −− 45
......

z84 1460 −− 360 −− 350 −− 235 −−− 4

w 24 −−− 25 −− 450 −− 350 −− 235 −− 45
......

z85 246 −− 25 −− 450 −− 350 −− 235 −−− 4

(a) (b)

Fig. 6. The primitive pairs {z, z84}, {w, z85}

Then the set

E(W(8)) = M ′(z81) ∪
(
∪5

i=2M(z8i)
)

is distinguished and also ABC-saturated, thus it forms an l.c.r. set of W(8).
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4.11. Consider the two-sided cell W(9). Take

P (9) = {w130256}.

The graph M(z91) with z91 = w130256 is displayed as Graph L1 (see Appendix). Take x =

z91 · 42534 ∈ M(z91) and z92 = x ·3. Then we see from Fig. 7 (a) that {x, z92} forms a primitive

x 4 −−− 235 −− 236 −− 3460
......

z92 34 −− 235 −− 236 −−− 360

y 14 —– 1325
......

z93 124 —– 125

z 140 −−− 1350 −− 1235 −− 14 −− 34 −− 235
......

z94 1340 −−1350 −− 1235 −− 14 −− 34 −−− 35

(a) (b) (c)

Fig. 7. The primitive pairs {x, z92}, {y, z93}, {z, z94}

pair. The graph M(z92) is displayed as Graph L3 (see Appendix). Let y = z92 · 1 ∈ M(z92)

and z93 = y ·2. We see from Fig, 7 (b) that {y, z93} forms a primitive pair. The graph M(z93)

is displayed as Graph L2 (see Appendix). Take z = z92 · 1404 ∈ M(z92) and z94 = z ·3. We see

from Fig. 7 (c) that {z, z94} forms a primitive pair. The graph M(z94) is displayed as Graph J

(see Appendix). The set ∪4
i=1M(z9i) is distinguished and AB-saturated, but not C-saturated.

Take

w = z91 · 423542365413024· 5· 620, u = 56130245432413024563245024· 3 ·1,

z95 = z91 · 423542365413024 · 620, z96 = 56130245432413024563245024 · 1,

v = z91 · 423456453241 ·3· 0245, z97 = z91 ·423456453241 · 0245.

in M(z94). The graphs M(z95), M(z96), M(z97) are displayed as Graphs K, ψ06(K), ψ01(K),

respectively (see Appendix). By Fig. 8 (a)–(c), we see that {w, z95}, {u, z96} and {v, z97}) are

all primitive pairs. The set

E(W(9)) = ∪7
i=1M(z9i)

is distinguished and ABC-saturated, so it forms an l.c.r. set of W(9).
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w 60 −−− 26 −−− 25 −− 45 −− 35 −− 15 −− 14 −− 132 −− 130 −− 140 −− 340 −− 350 −− 235 −− 34
......

z95 460 −− 246 −− 25 −− 45 −− 35 −− 15 −− 14 −− 132 −− 130 −− 140 −− 340 −− 350 −− 235 −−− 4

(a)

u 16 −−− 15 −−− 35 −− 34 −− 23 −− 30 −− 40 −− 250 −− 260 −− 460 −− 360 −− 350 −− 40 −− 20
......

z96 146 −− 145 −− 35 −− 34 −− 23 −− 30 −− 40 −− 250 −− 260 −− 460 −− 360 −− 350 −− 40 −−− 2

(b)

v 5 —– 46 —– 236 −− 360 −− 350 −− 340 −− 140 −− 1350 −− 1360 −− 1362 −− 1346
......

z97 125 −− 1246 −− 236 −− 360 −− 350 −− 340 −− 140 −− 1350 −− 1360 −− 1362 −−− 146

(c)

Fig. 8. The primitive pairs {w, z95}, {u, z96}, {v, z97}

4.12. In the two-sided cell W(10), take

P (10) = {w1345, w1342, w0243, w0245, w3456, w2456}.

The graph M(z10,1) with z10,1 = w1342 is displayed as Graph P (see [32 Fig. 19]). Its vertex

set M(z10,1) is not B-saturated. Take

x = z10,1 ·054652543, y = z10,1 ·05465342403541324534,

z = z10,1 ·05465342405253413542, w = z10,1 ·543204146412454624234132463,

u = z10,1 ·02456452434153520451424

in M(z10,1). Let z10,2 = x ·0, z10,3 = y ·0, z10,4 = z ·4, z10,5 = w ·0, z10,6 = u ·6.
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x 1246 −−− 236 −−− 3460 −− 1460 −− 13206 −− 13205 −− 140 −− 124 −− 125 −− 235 −− 24
......

z10,2 12046 −− 2360 −− 3460 −− 1460 −− 13206 −− 13205 −− 140 −− 124 −− 125 −− 235 −−− 4

(a)

y 45 −−− 25 −− 24 −− 23 −− 340 −− 140 −− 1350 −− 1360 −− 1326 −− 1346
......

z10,3 450 −− 25 −− 24 −− 23 −− 340 −− 140 −− 1350 −− 1360 −− 1326 −−− 146

z 12 −−− 140 −− 340
......

z10,4 124 −− 140 −−− 30

(b) (c)

w 34 −−− 23 −− 124 −− 125 −− 126 −− 236 −− 246
......

z10,5 340 −− 23 −− 124 −− 125 −− 126 −− 236 −−− 46

u 24 −−− 25 −− 450 −− 350 −− 235 −− 45
......

z10,6 246 −− 25 −− 450 −− 350 −− 235 −−− 4

(d) (e)

Fig. 9. The primitive pairs {x, z10,2}, {y, z10,3}, {z, z10,4}, {w, z10,5}, {u, z10,6}

The graphs M(z10,2), M(z10,3), M(z10,4), M(z10,5) and M(z10,6) are displayed as Graphs L3,

J , K, ψ06(K), ψ01(K), respectively (see Appendix). From the graphs in Fig. 9 (a)-(e), we see

that {x, z10,2}, {y, z10,3}, {z, z10,4}, {w, z10,5} and {u, z10,6} are all primitive pairs. The set

E(W(10)) = ∪6
i=1M(z10,i)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(10).

4.13. In the two-sided cell W(11), take

P (11) = {w13450, w13426, w02436, w02451, w34560, w24561}.

The graph M(z11,1) with z11,1 = w13426 is displayed as Graph Q (see [32, Fig. 20]). Its vertex

set M(z11,1) is not B-saturated. Take

x = z11,1 · 02543, w = z11,1 · 02453423404635434513424032354653450,

y = z11,1 · 54324146402145426423416243453, z = z11,1 · 5432414625420425434213254652145

in M(z11,1). Let z11,2 = x ·6, z11,3 = y ·0, z11,4 = z ·0, z11,5 = w ·1. From Fig. 10 (a)–(d),
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x 340 −−− 350 −− 235 −− 34
......

z11,2 3460 −− 350 −− 235 −−− 4

y 145 −−− 125 −− 235 −− 45
......

z11,3 1450 −− 125 −− 235 −−− 4

(a) (b)

z 45 −−− 25 −− 246 −− 236 −− 235 −− 24
......

z11,4 450 −− 25 −− 246 −− 236 −− 235 −−− 4

w 45 −−− 35 −− 346 −− 236 −− 235 −− 34
......

z11,5 145 −− 35 −− 346 −− 236 −− 235 −−− 4

(c) (d)

Fig. 10. The primitive pairs {x, z11,2}, {y, z11,3}, {z, z11,4}, {w, z11,5}

we see that {x, z11,2}, {y, z11,3}, {z, z11,4} and {w, z11,5} are all primitive pairs. The graphs

M(z11,2), M(z11,5), M(z11,3), M(z11,4) are displayed as Graphs L1, K, ψ06(K), ψ01(K), re-

spectively (see Appendix). We may check that the set

E(W(11)) = ∪5
i=1M(z11,i)

is distinguished and also ABC-saturated, hence it forms an l.c.r. set of W(11).

§5. Summary of our results.

5.1. Keep the notation in 1.5–1.6 with G the reductive algebraic group of type E6. For a

unipotent class u of G, let c(u) be the corresponding two-sided cell of Ẽ6. Denote by n(c(u))

the number of left cells of Ẽ6 contained in c(u) and by E(c(u)) an l.c.r. set of Ẽ6 in c(u). Then

the l.c.r. sets for the two-sided cells of Ẽ6 obtained in Section 4 can be displayed into Table 1

below, where the unipotent conjugacy classes of G are parameterized as in [2, Chapter 13].

5.2. Consider the graphs displayed in Table 2. We have ML(x) ∼= M(x) for x /∈ Ξ :=

{12,1312,13125, z61, z71, z81}; while for any x ∈ Ξ, the graph M(x) is infinite. Owing to its larger

size, we divide the graph H into two parts H1 and H2. The graphs P and Q are too large to

be displayed in the paper, which can be found in the website of the first-named author (see [32,

Figs. 19-20]). We denote by n(M) the cardinality of the vertex set M of a graph M. By 4.1,

4.5 and 4.7, we see that the automorphism ψij of Ẽ6 (see 4.2) stabilizes each two-sided cell Ω of

Ẽ6. So ψij gives rise to a permutation on the left cells of Ẽ6 in Ω and further to a permutation

on the left-cell graphs in Ω. Indeed, ψij stabilizes all the left-cell graphs of Ẽ6 except for those

in Table 3, where ψij transposes two members in each pair.
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Unipotent class of G c(u) n(c(u)) E(c(u))
E6 W(0) 1 {e}

E6(a1) W(1) 7 S
D5 W(2) 27 M ′(12)

E6(a3) W(3) 57 M(131) ∪ M(140)
A5 W 1

(4) 162 M ′(1312)
D5(a1) W 2

(4) 72 ∪3
i=1M(z4i)

A4 + A1 W(5) 216 M ′(13125)
A4 W 1

(6) 432 M ′(z61)
D4 W 2

(6) 270 ∪4
i=2M(z6i)

D4(a1) W(7) 540 M ′(z71) ∪ (∪4
i=2M(z7i))

A3 + A1 W(8) 675 M ′(z81) ∪ (∪5
i=2M(z8i))

2A2 + A1 W(9) 720 ∪7
i=1M(z9i)

A3 W(10) 1890 ∪6
i=1M(z10,i)

A2 + 2A1 W(11) 2160 ∪5
i=1M(z11,i)

Table 1

Graphs M Left-cell graphs isomorphic to M n(M)
∅ ML(e) 1
A ML(1) 7
B ML(12) 27
C ML(131), ML(z42) 21
D ML(140), ML(z43) 36
E ML(1312) 162
F ML(z41) 15
G ML(13125) 216
H ML(z61) 432
I ML(z62) 90

ψ06(I) ML(z63) 90
ψ01(I) ML(z64) 90

J ML(z71), ML(z82), ML(z94), ML(z10,3) 300
K ML(z74), ML(z83), ML(z95), ML(z10,4), ML(z11,5) 80

ψ06(K) ML(z73), ML(z84), ML(z96), ML(z10,5), ML(z11,3) 80
ψ01(K) ML(z72), ML(z85), ML(z97), ML(z10,6), ML(z11,4) 80

L1 ML(z91), ML(z11,2) 10
L2 ML(z93) 35
L3 ML(z81), ML(z92), ML(z10,2) 135
P ML(z10,1) 1215
Q ML(z11,1) 1910

Table 2

5.3. In Table 4, we list the position of L(z) as a vertex of the left-cell graph ML(z), where L(z)

is the left cell of Ẽ6 containing the element z. In the most cases, such a position is determined
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uniquely by the label of the vertex L(z); when there exist some other vertices of ML(z) sharing

the same label as L(z), we need some additional data to distinguish L(z) from the others: either

the label of some adjacent vertex, or the label of some distance-2 vertex. Hence, by “ 450 ,

distance 2 to 560 ”, we mean that the vertex L(z10,3) of ML(z10,3) is labeled by 450 and that

there is a path of length 2 connecting L(z10,3) and a vertex labeled by 560 (see 2.5). Also, by

“ 1450 , adjacent to 1250 ”, we mean that the vertex L(z82) of ML(z82) is labeled by 1450

and that there is a vertex of ML(z82) labeled by 1250 adjacent to L(z82).

Transposed by ψ10 Transposed by ψ16 Transposed by ψ06

ML(z62), ML(z64) ML(z63), ML(z64) ML(z62), ML(z63)
ML(z72), ML(z74) ML(z72), ML(z73) ML(z73), ML(z74)
ML(z83), ML(z85) ML(z84), ML(z85) ML(z83), ML(z84)
ML(z95), ML(z97) ML(z96), ML(z97) ML(z95), ML(z96)

ML(z10,3), ML(z10,4) ML(z10,4), ML(z10,5) ML(z10,3), ML(z10,5)
ML(z11,3), ML(z11,4) ML(z11,3), ML(z11,5) ML(z11,4), ML(z11,5)

Table 3

z Position of L(z) in ML(z) z Position of L(z) in ML(z)
z61 134 z62 1356

z63 1230 z64 2560

z71 1346 z72 23560

z73 12350 z74 12356

z81 13460 z82 1450 , adjacent to 1250

z83 145 z84 1460 , adjacent to 360

z85 246 z91 123560

z92 34 , adjacent to 235 z93 124

z94 1340 z95 460 , adjacent to 246

z96 146 , adjacent to 145 z97 125 , adjacent to 1246

z10,1 1234 z10,2 12460

z10.3 450 , distance 2 to 560 z10,4 124

z10,5 340 z10,6 246

z11,1 12346 z11,2 3460

z11,3 1450 z11,4 450

z11,5 145

Table 4

5.4. As above, let n(Ω) denote the number of left cells of Ẽ6 in any two-sided cell Ω. According

to the result of the first-named author in [23], we have n(W(36)) = |W0| = 27345 each left cell

in W(36) forms a single sign type in the sense of [22]. In [30], the first-named author proved

the inequality n(W(25)) 6 |W0|/2 and conjectured that the equality should hold. The numbers
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n(W(k)) with k ∈ {12, 13, 15, 16, 20} haven’t yet been calculated so far. We conjecture that

n(W(20)) = |W0|/4.

5.5. In [31, Section 6], we described all the distinguished involutions d of Ẽ6 with a(d) 6 4.

Based on our results on the left cells Γ of Ẽ6 with 5 6 a(Γ) 6 11 and the result of the first-named

author in [24, Proposition 5.12], Z. X. Liu found all the distinguished involutions d of Ẽ6 with

5 6 a(d) 6 11 in her Master thesis [13] by applying the same techniques as that in [31].

5.6. From Table 2, we see that in Ẽ6, if Ω,Ω′,Ω′′ are three two-sided cells with Ω 6
LR

Ω′ 6
LR

Ω′′

and a(Ω) 6 11, and if Ω,Ω′′ have left cell graphs ML,M′′
L, respectively with ML

∼= M′′
L, then

Ω′ has a left cell graph M′
L satisfying M′

L
∼= ML. We wonder if this is still the case without

the restrictive condition of a(Ω) 6 11, or further, if it holds in general. A direct check shows

that this is the case when Wa = C̃4, F̃4 (see [27], [28]).
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in part H1 is
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1

in part H2.
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