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Abstract. The affine Weyl group ( eCn, S) can be realized as the fixed point set of the

affine Weyl group ( eA2n−1, eS) under a certain group automorphism α with α( eS) = eS.

Let eℓ be the length function of eA2n−1. The main results of the paper are to prove the

left-connectedness of any left cell of the weighted Coxeter group ( eCn, eℓ) in the set Eλ

for any nice λ ∈ Λ2n, to prove all the partitions (2n − k, k) with 1 6 k 6 n being nice

and to describe all the cells of ( eCn, eℓ) in the set E(2n−k,k).

§0. Introduction.

0.1. This is a continuation for the study of Kazhdan-Lusztig cells in the weighted

Coxeter group (C̃n, ℓ̃) in my previous paper [10].

Let Z (respectively, N, P) be the set of all integers (respectively, non-negative

integers, positive integers). For any i 6 j in Z, denote by [i, j] the set {i, i+ 1, ..., j}.

Denote [1, j], [0, j] simply by [j], (j] respectively. Let W be a Coxeter group with

S the Coxeter generator set. Lusztig defined a weighted function L on W , called

(W,L) a weighted Coxeter group (see 1.1) and extended the concepts of left, right

and two-sided cells from an ordinary Coxeter group to a weighted Coxeter group (see

[3], [7]). Each cell of (W,L) provides a representation of (W,L) and the associated

Hecke algebra. It is a big project for the explicit description of cells in any weighted

Coxeter group.

Key words and phrases. Affine Weyl group; weighted Coxeter group; quasi-split case; cells,

partitions..
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0.2. For any n > 1, consider the affine Weyl group Ã2n−1 with the Coxeter generator

set S̃ = {si | i ∈ (2n − 1]}, where s2i = 1, sisj = sjsi if j 6≡ i ± 1 (mod 2n) and

sisi+1si = si+1sisi+1 for any i, j ∈ (2n − 1] (we stipulate s2n = s0). Let ℓ̃2n−1 be

the length function of (Ã2n−1, S̃).

Let α be the group automorphism of Ã2n−1 determined by setting α(si) = s2n−i

for i ∈ (2n−1]. Then the affine Weyl group C̃n can be realized as the fixed point set of

Ã2n−1 under α with the Coxeter generator set S = {ti | i ∈ (n]}, where ti = sis2n−i

for any i ∈ [n− 1], t0 = s0 and tn = sn. The restriction to C̃n of ℓ̃2n−1 is a weighted

function on (C̃n, S). Hence (C̃n, ℓ̃2n−1) forms a weighted Coxeter group.

It is known that there is a surjective map ψ from Ã2n−1 to the set Λ2n of partitions

of 2n which induces a bijection from the set of two-sided cells of Ã2n−1 to Λ2n (see

[6, Theorem 6] and [8, Theorem 17.4 and Proposition 5.15]). Let Eλ := ψ−1(λ)∩ C̃n

for λ ∈ Λ2n.

0.3. In our previous paper [10], we described all the cells of the weighted Coxeter

group (C̃n, ℓ̃2n−1) in the sets Ek12n−k and Eh212n−h−2 for all k ∈ [2n] and h ∈

[2, 2n−2] and also all the cells of the weighted Coxeter group (C̃3, ℓ̃5). In the present

paper, we define two kinds of partitions in Λ2n, called a dual-symmetrizable partition

and a nice partition respectively (see 3.13). We prove that any nice partition must be

dual-symmetrizable (see Lemma 3.5) and conjecture that the converse should also be

true (see Conjecture 3.14). We prove that any left cell of C̃n in Eλ is left-connected

if λ ∈ Λ2n is nice (Theorem 3.15). We give some detailed investigation on the set

E(2n−k,k) for any k ∈ [n]. We prove that all the partitions (2n−k, k), k ∈ [n], are nice

(see Theorem 4.12), that the set E(2n−k,k) is two-sided-connected and forms a single

two-sided cell of C̃n (see Theorem 4.13), and that the number of left cells contained

in E(2n−k,k) is 2n−mn! if k = 2m is even and 2n−m−1n! if k = 2m + 1 is odd (see

Theorem 4.12).

0.4. The most difficulty part in proving our results is to show the left-connectedness

of a left cell in Eλ for our considered partition λ. The set Ω (see 3.2) plays a crucial

role in our proof. Each w ∈ Ω determines a tabloid T (w). Any w ∈ C̃n∩Ω determines

a 2n-self-dual tabloid (see Lemma 3.5). Fix a left cell Γ of C̃n. We first prove that

the set Γ ∩ Ω is contained in some left-connected component of Eψ(Γ) (see Theorem

3.12). This implies that any left cell of Eλ is left-connected for any nice λ ∈ Λ2n
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(see Theorem 3.15). We prove by a step-by-step reduction in Section 4 that any

partition of the form (2n − k, k), k ∈ [n], is nice (see Lemma 4.11). This proves

the left-connectedness for any left cell of C̃n in E(2n−k,k). Then the number of left

cells of C̃n contained in E(2n−k,k) can be obtained simply by counting the number

of all the 2n-self-dual tabloids corresponding to a fixed symmetric composition a

with ζ(a)∨ = (2n − k, k) (see Theorem 4.12). We conclude that E(2n−k,k) forms a

single two-sided cell of C̃n by showing the two-sided-connectedness of E(2n−k,k) (see

Theorem 4.13).

It is shown that the composition a := ξ(T (w)) is symmetric for any w ∈ Ω ∩ C̃n.

Conjecture 3.14 states that if λ ∈ Λ2n is such that there is some symmetric compo-

sition a of 2n satisfying λ = ζ(a)∨, then λ is nice. We expect that our arguments in

Section 4 could be extended to verify this conjecture.

We would like to mention that the successive star-operations applied in Sections

3-4 (e.g., the elements w′, y so obtained from w in (3.11.4) and 4.4 respectively) are

essentially the iterated star operations defined in [8, Chapter 8]. This is a general-

ization of Robinson-Schensted inserting algorithm on the symmetric group (see [8,

Section 21.2]) and is one of powerful tools in getting our results.

0.5. The contents of the paper are organized as follows. In Section 1, we collect some

concepts and known results concerning cells of a weighted Coxeter group. Then we

concentrate ourselves to the weighted Coxeter group (C̃n, ℓ̃2n−1) in Section 2, many

useful results and technical tools are provided there. In Section 3, we study the

properties for the set Ω∩ C̃n and prove that any left cell of C̃n in Eλ is left-connected

if λ ∈ Λ2n is nice. Finally, we study all the cells of C̃n in E(2n−k,k) for any k ∈ [n] in

Section 4.

§1. Cells in Coxeter groups.

In this section, we collect some concepts and results concerning cells of a weighted

Coxeter group, all but Lemma 1.5 follow Lusztig in [7], while Lemma 1.5 is a result

in [10].

1.1. Let (W,S) be a Coxeter system with ℓ its length function and 6 the Bruhat-

Chevalley ordering on W . An expression w = s1s2 · · · sr ∈ W with si ∈ S is called

reduced if r = ℓ(w). By a weight function on W , we mean a map L : W −→ Z

satisfying that L(s) = L(t) for any s, t ∈ S conjugate in W and that L(w) = L(s1) +
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L(s2) + · · ·+L(sr) for any reduced expression w = s1s2 · · · sr in W . Call (W,L) is a

weighted Coxeter group.

We say that a weighted Coxeter group (W,L) is in the split case if L = ℓ.

Suppose that there exists a group automorphism α of W with α(S) = S. Let

Wα = {w ∈ W | α(w) = w}. For any α-orbit J on S, let wJ be the longest element

in the subgroup WJ of W generated by J . Let Sα be the set of elements wJ with J

ranging over all α-orbits on S. Then (Wα, Sα) is a Coxeter group and the restriction

to Wα of the length function ℓ is a weight function on Wα. We say that the weighted

Coxeter group (Wα, ℓ) is in the quasi-split case.

1.2. Let 6
L

(respectively, 6
R

, 6
LR

) be the preorder on a weighted Coxeter group (W,L)

defined in [7]. The equivalence relation associated to this preorder is denoted by ∼
L

(respectively, ∼
R

, ∼
LR

). The corresponding equivalence classes in W are called left cells

(respectively, right cells, two-sided cells) of W .

1.3. For w ∈ W , define L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.

If y, w ∈ W satisfy y 6
L
w (respectively, y 6

R
w), then R(y) ⊇ R(w) (respectively,

L(y) ⊇ L(w)). In particular, if y ∼
L
w (respectively, y ∼

R
w), then R(y) = R(w)

(respectively, L(y) = L(w)) (see [7, Lemma 8.6]).

1.4. In [7, Chapter 13], Lusztig defined a function a : W −→ N ∪ {∞} in terms of

structural coefficients of the Hecke algebra associated to (W,L).

In [7, Chapters 14-16], Lusztig proved the following results when W is either a

finite or an affine Coxeter group and when (W,L) is either in the split case or in the

quasi-split case.

(1) y 6
LR

w in W implies a(w) 6 a(y). Hence y ∼
LR

w in W implies a(w) = a(y).

(2) If w, y ∈ W satisfy a(w) = a(y) and y 6
L
w (respectively, y 6

R
w, y 6

LR
w) then

y ∼
L
w (respectively, y ∼

R
w, y ∼

LR
w).

For any X ⊂W , denote X−1 := {x−1 | x ∈ X}.

Lemma 1.5. (see [10, Lemma 1.7]) Suppose that W is either a finite or an affine

Coxeter group and that (W,L) is either in the split case or in the quasi-split case.

Let E be a non-empty subset of W satisfying the following conditions:

(a) There exists some k ∈ N with a(x) = k for any x ∈ E;

(b) E is a union of some left cells of W ;

(c) E−1 = E.
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Then E is a union of some two-sided cells of W .

§2. The affine Weyl groups Ã2n−1 and C̃n.

From now on, we restrict our attention to the weighted Coxeter groups (Ã2n−1, ℓ̃)

and (C̃n, ℓ̃), where ℓ̃ = ℓ̃2n−1 is the length function of the affine Weyl group Ã2n−1.

2.1. The affine Weyl group Ã2n−1 can be realized as the following permutation group

on the set Z (see [5, Subsection 3.6] and [8, Subsection 4.1)]:

Ã2n−1 =

{
w : Z −→ Z

∣∣∣∣∣(i+ 2n)w = (i)w + 2n,
2n∑

i=1

(i)w =
2n∑

i=1

i

}
.

The Coxeter generator set S̃ = {si | i ∈ (2n− 1]} of Ã2n−1 is given by

(t)si =






t, if t 6≡ i, i+ 1 ( mod 2n),

t+ 1, if t ≡ i ( mod 2n),

t− 1, if t ≡ i+ 1 ( mod 2n),

for any t ∈ Z and i ∈ (2n − 1]. Any w ∈ Ã2n−1 can be realized as a Z-indexed

monomial matrix Aw = (aij)i,j∈Z, where aij is 1 if j = (i)w and 0 if otherwise. The

row (respectively, column) indices of Aw increase from top to bottom (respectively,

from left to right). We can conveniently use some familiar operations in linear algebra

on the matrixAw. For example, the matrixAw−1 is just the transposition ofAw; while

Asiw (respectively, Awsi
) can be obtained from Aw by transposing the (2nq + i)th

and the (2nq + i+ 1)th rows (respectively, columns) for all q ∈ Z.

Let α be the group automorphism of Ã2n−1 determined by α(si) = s2n−i for

i ∈ (2n − 1]. In terms of matrix form, for any w ∈ Ã2n−1, the matrix Aα(w) can

be obtained from the matrix Aw by rotating with the angle π around the point

(qn+ 1
2
, qn+ 1

2
) for any q ∈ Z, where we identify Aw with a plane and the positions

(i, j), i, j ∈ Z, of Aw are identified with the corresponding integer lattice points.

The automorphism α gives rise to a permutation on the set Πl (respectively, Πr,

Πt) of left cells (respectively, right cells, two-sided cells) of Ã2n−1.

The affine Weyl group C̃n can be realized as the fixed point set of Ã2n−1 under α,

which can also be described as a permutation group on Z as follows.

C̃n = {w : Z −→ Z | (i+ 2n)w = (i)w + 2n, (i)w + (1 − i)w = 1, ∀ i ∈ Z}
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with the Coxeter generator set S = {ti | i ∈ (n]}, where ti = sis2n−i for i ∈ [n− 1],

t0 = s0 and tn = sn. For the sake of convenience, we define si and tj for any i, j ∈ Z

by setting s2qn+b to be sb and t2pn±a to be ta for any p, q ∈ Z and b ∈ (2n− 1] and

a ∈ (n]. In terms of matrix, an element w ∈ Ã2n−1 is in C̃n if and only if the matrix

form Aw of w is centrally symmetric at the point (qn+ 1
2
, qn+ 1

2
) for any q ∈ Z.

Let ℓ̃, ℓ be the length functions on the Coxeter systems (Ã2n−1, S̃), (C̃n, S), respec-

tively. For any x ∈ Ã2n−1 and k ∈ Z, let mk(x) = #{i ∈ Z | i < k and (i)x > (k)x}.

Then the formulae for the functions ℓ̃ and ℓ are as follows.

Lemma 2.2. (see [10, Proposition 2.4]) For any w ∈ Ã2n−1 and x ∈ C̃n, we have

(1) ℓ̃(w) =
∑

16i<j62n

∣∣∣∣
⌊

(j)w − (i)w

2n

⌋∣∣∣∣ =
∑2n
k=1mk(w);

(2) ℓ(x) = 1
2 (ℓ̃(x) +m1(x) +mn+1(x)),

where ⌊a⌋ is the largest integer not larger than a, and |a| is the absolute value of a

for any a ∈ Q.

2.3. Fix m ∈ P. By a partition of m, we mean an r-tuple λ := (λ1, λ2, ..., λr) of

weakly decreasing positive integers λ1 > · · · > λr with
∑r

k=1 λk = m for some r ∈ P.

λi is called a part of λ. Let Λm be the set of all partitions of m.

For any λ = (λ1, ..., λr) ∈ Λm, define λ∨ = (µ1, ..., µλ1
) by setting µj = #{k ∈ [r] |

λk > j} for any j ∈ [λ1], call λ∨ the dual partition of λ.

For any λ = (λ1, λ2, ..., λr) and µ = (µ1, µ2, ..., µt) in Λm, we write λ 6 µ if

λ1 + · · ·+ λk 6 µ1 + · · ·+ µk for any 1 6 k 6 min{r, t}. This defines a partial order

on Λm. In particular, λ 6 µ if and only if µ∨ 6 λ∨.

2.4. Let P = (E,�) be a partial ordered set (or a poset in short) with the cardinal

|E| of the set E being m ∈ P. By a chain (respectively, antichain) in P , we mean a

sequence a1, a2, ..., ar in E satisfying a1 ≺ a2 ≺ · · · ≺ ar (respectively, neither ai ≺ aj

nor aj ≺ ai holds for any i 6= j in [r]). We usually identify a chain (respectively,

antichain) a1, a2, ..., ar in E with the corresponding subset {a1, a2, ..., ar}. Fix k ∈

[m]. By a k-chain-family of P , we mean a subset X =
⋃k

i=1Xi of E with Xi a chain

for any i ∈ [k]. Let dk(P ) be the maximally possible cardinal of a k-chain-family

in P . Then there is some t ∈ [m] with d1(P ) < d2(P ) < · · · < dt(P ) = m. Let

λ1(P ) = d1(P ) and λk(P ) = dk(P ) − dk−1(P ) for any k ∈ [2, t]. Then ψ(P ) :=

(λ1(P ), λ2(P ), ..., λt(P )) ∈ Λm by a result of C. Greene in [2].
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Fix w ∈ Ã2n−1. For any i 6= j in [2n], we write i ≺w j, if there exist some p, q ∈ Z

such that both inequalities 2pn+ i > 2qn+ j and (2pn+ i)w < (2qn+ j)w hold. In

the matrix form of w, this means that the position (2qn+ j, (2qn+ j)w) is located at

the northeastern of the position (2pn+ i, (2pn+ i)w). This determines a poset Pw :=

([2n],�w). A chain (respectively, an antichain) in Pw is called a w-chain (respectively,

a w-antichain). We have that ψ(w) := (λ1(Pw), λ2(Pw), ..., λr(Pw)) ∈ Λ2n and that

w 7→ ψ(w) is a surjective map from the set Ã2n−1 to Λ2n by [8, Corollary 5.13].

i 6= j in [2n] are called w-comparable if either i ≺w j or j ≺w i, and w-uncomparable

if otherwise. It is easily seen that i < j in [2n] are w-uncomparable if and only if

(i)w < (j)w < (i)w + 2n.

For any a ∈ Z, denote by 〈a〉 the unique integer in [2n] satisfying a ≡ 〈a〉 (mod 2n).

In the subsequent discussion, we sometimes use the notation i ≺w j, the phrase of i, j

being “ w-comparable ” or “ w-uncomparable ” for some i, j ∈ Z, which just mean

that 〈i〉 and 〈j〉 satisfy the corresponding relation.

2.5. Let ℓ̃, ℓ be the length functions on the Coxeter systems (Ã2n−1, S̃), (C̃n, S), re-

spectively. By the definition in 1.1, we see that the weighted Coxeter group (Ã2n−1, ℓ̃)

is in the split case, while (C̃n, ℓ̃) is in the quasi-split case (see [7, Lemma 16.2]).

Let 6, 6C be the Bruhat-Chevalley orders on the Coxeter systems (Ã2n−1, S̃),

(C̃n, S), respectively. Since the condition x 6C y is equivalent to x 6 y for any

x, y ∈ C̃n, it will cause no confusion if we use the notation 6 in the place of 6C .

Hence from now on we shall use 6 for both 6 and 6C .

Let L̃(x) = {s ∈ S̃ | sx < x} and R̃(x) = {s ∈ S̃ | xs < x} for x ∈ Ã2n−1 and let

L(y) = {t ∈ S | ty < y} and R(y) = {t ∈ S | yt < y} for y ∈ C̃n.

Lemma 2.6. (see [10, Corollary 2.6]) For any x ∈ C̃n and i ∈ (n],

si ∈ L̃(x) ⇐⇒ s2n−i ∈ L̃(x) ⇐⇒ ti ∈ L(x)

⇐⇒ (i)x > (i+ 1)x ⇐⇒ (2n+ 1 − i)x < (2n− i)x,

si ∈ R̃(x) ⇐⇒ s2n−i ∈ R̃(x) ⇐⇒ ti ∈ R(x)

⇐⇒ (i)x−1 > (i+ 1)x−1 ⇐⇒ (2n+ 1 − i)x−1 < (2n− i)x−1

If x ∈ Ã2n−1 and s ∈ L̃(x) and t ∈ R̃(x) then ψ(sx), ψ(xt) 6 ψ(x) by [8, Lemma

5.5 and Corollary 5.6]. This implies by Lemma 2.6 that if x ∈ C̃n and s ∈ L(x) and

t ∈ R(x) then ψ(sx), ψ(xt) 6 ψ(x).
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Lemma 2.7. Let x, y ∈ C̃n and x′, y′ ∈ Ã2n−1.

(1) x ∼
L
y (respectively, x ∼

R
y) in C̃n if and only if x ∼

L
y (respectively, x ∼

R
y) in

Ã2n−1 (see [7, Lemma 16.14]).

(2) x′ 6
LR

y′ if and only if ψ(y′) 6 ψ(x′). The set ψ−1(λ) forms a two-sided cell of

Ã2n−1 for any λ ∈ Λ2n (see [6, Theorem 6] and [8, Theorem 17.4] and [9, Theorem

B]).

By Lemma 2.7 (1), we can just use the notation x ∼
L
y (respectively, x ∼

R
y) for

x, y ∈ C̃n without indicating whether the relation refers to Ã2n−1 or C̃n.

2.8. A non-empty subset E of an affine Weyl group W = (W,S) is called left-

connected, (respectively, right-connected) if for any x, y ∈ E, there exists a sequence

x0 = x, x1, ..., xr = y in E such that xi−1x
−1
i ∈ S (respectively, x−1

i xi−1 ∈ S) for

every i ∈ [r]. E is called two-sided-connected if for any x, y ∈ E, there exists a

sequence x0 = x, x1, ..., xr = y in E such that either xi−1x
−1
i or x−1

i xi−1 is in S for

every i ∈ [r].

Geometrically, the elements of an affine Weyl group W can be identified with the

alcoves of a certain euclidean space V (see [4]). Thus a left-connected set of W is

just such an alcove set E in V that for any A,A′ ∈ E, there is a sequence A0 =

A,A1, ..., Ar = A′ in E, where Ai−1 and Ai share a common facet of codimension 1

in V for any i ∈ [r].

Let F ⊆ E in W . Call F a left-connected component of E, if F is a maximal

left-connected subset of E. One can define a right-connected component and a two-

sided-connected component of E similarly.

For any λ ∈ Λ2n, denote Eλ := C̃n ∩ ψ−1(λ).

Lemma 2.9. (see [10, Lemma 2.18]) Let λ ∈ Λ2n.

(1) Any left- (respectively, right-, two-sided-) connected component of ψ−1(λ) is

contained in some left (respectively, right, two-sided) cell of Ã2n−1.

(2) Any left- (respectively, right-, two-sided-) connected component of Eλ is con-

tained in some left (respectively, right, two-sided) cell of C̃n.

(3) The set Eλ is either empty or a union of some two-sided cells of C̃n.

Corollary 2.10. (see [10, Corollary 2.19]) Let x, y, x′, y′ ∈ Ã2n−1 satisfy x, y ∈ Eλ

and x′, y′ ∈ ψ−1(λ) for some λ ∈ Λ2n.
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(1) If ℓ(y) = ℓ(x) + ℓ(yx−1) then x, y are in the same left-connected component of

Eλ and hence x ∼
L
y.

(2) If ℓ(y) = ℓ(x) + ℓ(x−1y) then x, y are in the same right-connected component

of Eλ and hence x ∼
R
y.

(3) If ℓ̃(y′) = ℓ̃(x′)+ ℓ̃(y′x′
−1

) then x′, y′ are in the same left-connected component

of ψ−1(λ) and hence x′ ∼
L
y′.

(4) If ℓ̃(y′) = ℓ̃(x′)+ℓ̃(x′
−1
y′) then x′, y′ are in the same right-connected component

of ψ−1(λ) and hence x′ ∼
R
y′.

2.11 i, j ∈ [2n] are called 2n-dual, if i + j = 2n + 1; in this case, we denote j = ī

(hence i = j̄ also). Fix w ∈ C̃n. i ∈ [2n] is called w-wild if i and ī are w-comparable

and w-tame if otherwise. i ∈ [2n] is called a w-wild head (respectively, a w-tame

head), if i is w-wild (respectively, w-tame) with (̄i)w < (i)w. In this case, call ī a

w-wild tail (respectively, a w-tame tail). In the subsequent discussion, we sometimes

say that some i ∈ Z is w-wild or w-tame, which just means that the integer 〈i〉 is

such.

The results in Lemmas 2.12-2.13 below can be checked easily:

Lemma 2.12. (see [10, Lemma 3.2]) Fix w ∈ C̃n. Let i, j, k ∈ [2n].

(i) j ≺w k if and only if k̄ ≺w j̄;

Now suppose that j 6= k are w-wild heads and i is w-tame.

(ii) j̄ ≺w k if and only if j̄, k are w-comparable.

(iii) If j̄, k are w-uncomparable then so are j, k (respectively, j̄, k̄);

(iv) i and k are w-comparable if and only if i ≺w k.

(v) {j, i, j̄} is a w-chain if and only if j is w-comparable with both i and ī;

(vi) {j, k, j̄, k̄} is a w-chain if and only if j, k are w-comparable.

Lemma 2.13. Let w ∈ C̃n and t > 1.

(1) Let j1 ≺w j2 ≺w · · · ≺w jt be a w-chain and let h 6 l in [t].

(1a) If jh is a w-wild head, then jl is a w-wild head.

(1b) If jl is a w-wild tail, then jh is a w-wild tail.

(1c) If both jh and jl are w-tame, then jc with c ∈ [h, l] either all are w-tame

heads, or all are w-tame tails.
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(2) Let i1, i2, ..., i2m ∈ [a+ 1, a+ 2m] satisfy (i1)w < (i2)w < · · · < (i2m)w for some

m ∈ [n] with a ∈ {−m,n−m}.

(2a) ih is either a w-wild tail or a w-tame integer for any h ∈ [m].

(2b) il is either a w-wild head or a w-tame integer for any l ∈ [m+ 1, 2m].

(2c) 〈i2m+1−h〉 = 〈ih〉 for any h ∈ [2m].

§3. The set Ω.

In the present section, we define a set Ω of certain finite posets, which includes a

subset of Ã2n−1 under a certain identification. We characterize the elements of Ω in

C̃n (see Lemma 3.5). The main result of the section is to show that for any λ ∈ Λ2n

and any left cell Γ of C̃n in the set Eλ, the set Γ ∩Ω is either empty or contained in

some left-connected component of Eλ (see Theorem 3.12). This further implies that

for any nice partition λ ∈ Λ2n, any left cell of C̃n in Eλ is left-connected (see 3.13

and Theorem 3.15).

3.1. Fix m ∈ P. A generalized tabloid (or a tabloid in short) of rank m is, by

definition, an r-tuple T = (T1, T2, ..., Tr) with some r ∈ P such that Tj , j ∈ [r], are

pairwise disjoint subsets of P with
∑r

i=1 |Ti| = m. By a composition of m, we mean

an r-tuple (a1, a2, ..., ar) with some a1, ..., ar, r ∈ P such that
∑r

i=1 ai = m. Let Λ̃m

be the set of all compositions of m. We have ξ(T) := (|T1|, |T2|, ..., |Tr|) ∈ Λ̃m. Let

Cm be the set of all tabloids of rank m.

For any a = (a1, ..., ar) ∈ Λ̃m, let i1, i2, ..., ir be a permutation of 1, 2, ..., r such

that ai1 > ai2 > · · · > air . Then ζ(a) := (ai1 , ai2 , ..., air) ∈ Λm. Clearly, both

ξ : Cm −→ Λ̃m and ζ : Λ̃m −→ Λm are surjective maps.

3.2. Let Ωm be the set of all posets P = (E,�) with E ⊂ P and |E| = m such that

there is a set partition E = E1∪̇E2∪̇ · · · ∪̇Er satisfying:

(i) a ≺ b for any a ∈ Ei and b ∈ Ej with i < j in [r];

(ii) Ei is a maximal antichain in E for any i ∈ [r].

Define T (P ) := (E1, E2, ..., Er). Then T (P ) ∈ Cm.

Denote Ω =
⋃
m∈P

Ωm. By a result of C. Greene in [2], we see that the partition

ζξ(T (P )) is the dual of ψ(P ) for any P ∈ Ω.

By identifying any w ∈ Ã2n−1 with the poset Pw−1 := ([2n],≺w−1), we can regard

w as an element of Ω2n and further of Ω if Pw−1 ∈ Ω2n.

In the most cases of the subsequent discussion, when we mention an element w of
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Ω, we mean that w is an element in Ã2n−1, or even in C̃n, with Pw−1 ∈ Ω2n.

The following known result will be crucial in subsequent discussion.

Lemma 3.3. (see [8, Lemma 19.4.6 and Propositions 19.4.7-19.4.8])

(1) Suppose that y, w ∈ Ã2n−1 ∩ Ω satisfy ξ(T (y)) = ξ(T (w)). Then y ∼
L
w if and

only if T (y) = T (w).

(2) For any a ∈ Λ̃2n, let λ = ζ(a)∨. Then there exists a bijective map from the

set Πl
λ of all left cells of Ã2n−1 in ψ−1(λ) to the set ξ−1(a).

3.4. Fix m ∈ [2n]. Denote aop = (ar, ..., a2, a1) for a = (a1, a2, ..., ar) ∈ Λ̃m. Call a

symmetric, if aop = a.

Denote E = {̄i | i ∈ E} for any E ⊆ [2n] (see 2.11). Denote T = (T1, T2, ..., Tr)

and Top = (Tr, ..., T2, T1) for any T = (T1, T2, ..., Tr) ∈ Cm. Then T,Top ∈ Cm. We

say that T ∈ Cm is 2n-self-dual, if T
op

= T.

If T ∈ Cm is 2n-self-dual then the composition ξ(T) is symmetric.

Lemma 3.5. (1) The tabloid T (w) is 2n-self-dual for any w ∈ Ω ∩ C̃n.

(2) For any 2n-self-dual T ∈ C2n, there exists some w ∈ Ω∩ C̃n satisfying T (w) =

T.

(3) If T = (T1, T2, ..., Tr) ∈ C2n is 2n-self-dual with r = 2m + 1 odd, then |Tm+1|

is even.

Proof. Let w ∈ C̃n and E,E′ ⊂ [2n]. Denote E ≺w E
′, if a ≺w a

′ for any a ∈ E and

any a′ ∈ E′. We see by Lemma 2.12 that E is a w-antichain if and only if such is

E and that E ≺w E′ if and only if E′ ≺w E. Fix w ∈ Ω ∩ C̃n. We see that all the

w−1-tame integers in [2n] are pairwise w−1-uncomparable and hence form a single

w−1-antichain whenever they exist. We also see that the elements in any maximal

w−1-antichain of [2n] are either all w−1-wild heads, or all w−1-wild tails, or all w−1-

tame integers. This implies by Lemma 2.12 that T (w) is 2n-self-dual, (1) is proved.

Given any 2n-self-dual T ∈ C2n. We want to find some w ∈ Ω ∩ C̃n with T (w) = T.

Write T = (T1, T2, ..., Tr) with Ti = {ai1, ai2, ..., aini
} for any i ∈ [r], where ni = |Ti|

and ai1 < ai2 < · · · < aini
. Then by the assumption of T being 2n-self-dual, we

have nr+1−i = ni and ar+1−i,ni+1−j = aij for any i ∈ [r] and any j ∈ [ni]. Assume

r ∈ {2m, 2m+ 1} with some m ∈ N. Denote δh :=
∑r

i=h ni for h ∈ [r + 1] with the

convention that δr+1 = 0. Define w ∈ Ã2n−1 by setting, for any l ∈ [2n],
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(l)w=






ahj − 2n(m+ 1 − h), if l = δh+1 + j with h ∈ [m] and j ∈ [nh],

ah,nh+1−j + 2n(m+ 1 − h), if l = δr+2−h + j with h ∈ [m] and j ∈ [nh],

am+1,j, if r=2m+1 and l=δm+2+j with j∈ [nm+1].

It is easy to check that the element w is in the set Ω ∩ C̃n and satisfies T (w) = T.

This proves (2). Finally, (3) follows by the fact that Tm+1 = Tm+1 and ī 6= i for any

i ∈ [2n]. �

By the results in [8, Subsection 19.4], we see that for any w ∈ Ã2n−1, there always

exists some y ∈ Ω ∩ Ã2n−1 satisfying y ∼
L
w. Comparing with this, for any w′ ∈ C̃n,

there does not always exist any y′ ∈ Ω∩ C̃n satisfying y′ ∼
L
w′. For, there might exist

no any symmetric a ∈ Λ̃2n satisfying ζ(a)∨ = ψ(w′).

3.6. For any w ∈ C̃n and ti ∈ L(w), the relation ψ(tiw) 6 ψ(w) holds in general

by Lemmas 2.6 and 2.7. By [8, Lemma 5.8], we have ψ(tiw) = ψ(w) if one of the

following cases occurs:

(a) i ∈ [2, n−1] and, either (i)w < (i−1)w < (i+1)w or (i+1)w < (i−1)w < (i)w;

(b) i ∈ [n−2] and, either (i)w < (i+2)w < (i+1)w or (i+1)w < (i+2)w < (i)w;

(c) i = 0 and, either (1)w < (2)w < (0)w or (0)w < (2)w < (1)w;

(d) i = n and, either (n)w < (n− 1)w < (n+1)w or (n+ 1)w < (n− 1)w < (n)w;

(e) |(i)w − (i+ 1)w| > 2n.

The transformation w 7→ tiw is called a left star operation on w in any of the cases

(a)-(d). j 7→ (j)ti is a poset isomorphism from ([2n],≺tiw) to ([2n],≺w) in the case

(e). Hence tiw and w are in the same left-connected component of Eψ(w) in any of

the cases (a)-(e).

Let X and Y be two subsets of Z. We write X < Y (respectively, X <w Y ,

X ≺w Y ) if i < j (respectively, (i)w < (j)w, i ≺w j) for any i ∈ X and any j ∈ Y .

In the case of X <w Y , denote dw(X, Y ) := min{(j)w − (i)w | i ∈ X, j ∈ Y }. Now

assume X, Y ⊂ [a+1, a+2n] for some a ∈ Z. The relation X ≺w Y implies X <w Y ,

but the converse is not true in general. However, in either of the cases (i)-(ii) below:

(i) dw(X, Y ) > 2n;

(ii) X > Y .

the relation X <w Y in [a+ 1, a+ 2n] does imply X ≺w Y .
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For any w ∈ C̃n, denote by Kw the left-connected component of Eψ(w) containing

w.

Lemma 3.7. Let w ∈ Eλ for some λ ∈ Λ2n. Assume that E1, E2 ⊂ [2n] satisfy the

conditions (1)-(2) below.

(1) m := |E2| > 0 and E1∪̇E2 = [2n] such that all elements of E2 are w-wild

heads.

(2) E1 ≺w E2.

If m < n, then for any p ∈ N, there exists some wp ∈ Kw satisfying the condition

(a) below.

(a) 〈([m])wp〉 = 〈(E2)w〉 and [m+1, 2n] ≺wp
[m] with 2np < dwp

([m+1, 2n], [m]) <

2n(p+ 1).

If m = n, then for any p ∈ N, there exists some wp ∈ Kw satisfying one of the

conditions (a′)-(b′) below.

(a′) 〈([n])wp〉 = 〈(E2)w〉 and [n+ 1, 2n] ≺wp
[n] with 4np < dwp

([n+ 1, 2n], [n]) <

(4p+ 2)n.

(b′) 〈([n+1, 2n])wp〉 = 〈(E2)w〉 and [n] ≺wp
[n+1, 2n] with 4pn+2n < dwp

([n], [n+

1, 2n]) < 4n(p+ 1).

Proof. We have m 6 n and E2 ⊆ E1 by the assumption (1) on E2. To show our

result, we need only to deal with the case of p = 0.

First assume m < n. Let E′
1 = E1 − E2. Then |E′

1| = 2(n − m) > 0 is even

and E′
1 = E′

1 and dw(E1, E2) = dw(E′
1, E2). Write dw(E′

1, E2) = 2nq + r with some

q ∈ N and r ∈ [2n− 1] (note that 2n ∤ dw(E′
1, E2)). There are uniquely determined

order-preserving bijections τ : E2 −→ [m] and τ ′ : E′
1 −→ [m + 1, 2n − m]. Let

w0 ∈ C̃n be given by the requirements that (τ(j))w0 = (j)w − 2nq for any j ∈ E2

and (τ ′(h))w0 = (h)w for any h ∈ E′
1, where we do not display the values (l)w0 for

l ∈ [2n−m+ 1, 2n] since they are determined by the equations (τ(l))w0 = (τ(l))w0

for any l ∈ E2 (similar treatment for those in the remaining part of the section).

Then it is easily seen that w0 can be obtained from w by successively left-multiplying

some ti’s in the case of 3.6 (e) (meaning that w0 = tjatja−1
· · · tj1w for some a ∈ N

and some jh ∈ (n] such that |(jh)xh−1 − (jh + 1)xh−1| > 2n for every h ∈ [a], where

xh := tjhtjh−1
· · · tj1w for any h ∈ (a]) and hence w0 ∈ Kw. Clearly, w0 satisfies the

condition (a) in the case of p = 0.
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Next assume m = n. Then E1 = E2. Write dw(E2, E2) = 4nq + r with some

q ∈ N and r ∈ [4n − 1]. When r ∈ [2n − 1], let τ : E2 −→ [n] be the uniquely

determined order-preserving bijection and let w0 ∈ C̃n be given by the requirements

that (τ(j))w0 = (j)w−2nq for any j ∈ E2. When r ∈ [2n+1, 4n−1], let τ ′ : E2 −→

[n+ 1, 2n] be the uniquely determined order-preserving bijection and let w0 ∈ C̃n be

given by the requirements that (τ ′(j))w0 = (j)w−2nq for any j ∈ E2. In either case,

w0 can be obtained from w by successively left-multiplying some ti’s in the case of

3.6 (e), hence w0 ∈ Kw. Clearly, w0 satisfies the condition (a′) or (b′) in the case of

p = 0. �

3.8. Let w ∈ Eλ for some λ ∈ Λ2n. Assume that E1, E2, E3 ⊂ [2n] satisfy the

conditions (i)-(iii) below.

(i) E1∪̇E2∪̇E3∪̇E2∪̇E3 = [2n] such that E2∪̇E3 consists of some w-wild heads in

[2n], where the case E1 = ∅ and/or E3 = ∅ is allowed;

(ii) If E1 6= ∅ then E1 ≺w E2 ≺w E3; if E1 = ∅ then E2 ≺w E2 ≺w E3;

(iii) E2 = {a1, a2, ..., ar} is a w-antichain with a1 < a2 < · · · < ar for some r > 1.

Let |Ei| = mi for i ∈ [3]. Denote E′
3 = [m3], E

′
2 = [m3 + 1, m3 + m2] and E′

1 =

[m3+m2+1, 2n−m3−m2]. There are uniquely determined order-preserving bijections

τi : Ei −→ E′
i, i ∈ [3]. Let w1 ∈ C̃n be given by the requirements that (τi(j))w1 =

(j)w for any i ∈ [3] and j ∈ Ei. Then w1 can be obtained from w by successively

left-multiplying some ti’s in the case of 3.6 (e). We see that w1 is in Kw and satisfies

the conditions (i′)-(iii′) below.

(i′) E′
1∪̇E

′
2∪̇E

′
3∪̇E

′
2∪̇E

′
3 = [2n] such that E′

2∪̇E
′
3 consists of some w1-wild heads

in [2n], where the case E′
1 = ∅ and/or E′

3 = ∅ is allowed;

(ii′) If E′
1 6= ∅ then E′

1 > E′
2 > E′

3 and E′
1 <w1

E′
2 <w1

E′
3; if E′

1 = ∅ then

E′
2 > E′

2 > E′
3 and E′

2 <w1
E′

2 <w1
E′

3;

(iii′) E′
2 = {a+ 1, a+ 2, ..., a+ r} is a w1-antichain with a = |E′

3|.

Let w2 = ta+2n · · · ta+r+1ta+rw1 (see 2.1). Then for any l ∈ [2n], we have

(3.8.1) (l)w2 =





(l)w1, if l /∈ E′
2 ∪ E

′
2,

(l − 1)w1, if l ∈ [a+ 2, a+ r],

(a+ r)w1 − 2n, if l = a+ 1.

From (3.8.1), we have ((a + 1)w2, (a + 2)w2, ..., (a+ r)w2) = ((a + r)w1 − 2n, (a +

1)w1, (a+2)w1, ..., (a+r−1)w1). Comparing with the sequences of the column indexes
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modulo 2n for the entries 1 in the (a+1)th, (a+2)th,..., (a+ r)th rows of the matrix

forms of w1, w2, it looks likely that the sequence 〈(a+1)w1〉, 〈(a+2)w1〉, ..., 〈(a+r)w1〉

is cyclicly permuted to 〈(a+ r)w1〉, 〈(a+ 1)w1〉, 〈(a+ 2)w1〉, ..., 〈(a+ r− 1)w1〉 as w1

is transformed to w2. We have E′
1 <w2

E′
2 <w2

E′
3 if

(3.8.2) E′
1 6= ∅ and dw1

(E′
1, E

′
2) > 2n− (a+ r)w1 + (a+ 1)w1.

and E′
2 <w2

E′
2 <w2

E′
3 if

(3.8.3) E′
1 = ∅ and (a+ r)w1 > 3n.

When (3.8.2) (respectively, (3.8.3)) holds, we have dw2
(E′

1, E
′
2) < dw1

(E′
1, E

′
2) (re-

spectively, dw2
(E′

2, E
′
2) < dw1

(E′
2, E

′
2)) and dw2

(E′
2, E

′
3) > dw1

(E′
2, E

′
3) and that

w2 ∈ Kw1
since w2 can be obtained from w1 by successively left-multiplying some

ti’s in the case of 3.6 (e).

Call each of the transformations w1 7→ w2 and w2 7→ w1 an admissible E′
2-move if

one of the conditions (3.8.2) and (3.8.3) holds. More precisely, call the transformation

w1 7→ w2 a back admissible E′
2-move, and w2 7→ w1 a forward admissible E′

2-move.

By successively applying back (respectively, forward) admissible E′
2-moves on w1

whenever they are applicable, we can “ move ” the entries 1 in the ith rows for all

i ∈ E′
2 ∪ E′

2 close to (respectively, away from) the point (n + 1
2 , n + 1

2), but with

the entries 1 in the jth rows for all j ∈ [2n] − E′
2 ∪ E

′
2 fixed, such that the resulting

element w3 is in Kw1
and satisfies the conditions (i′)-(iii′) above with w3 in the place

of w1.

3.9. Let w ∈ Ω ∩ Eλ for some λ ∈ Λ2n. Then T (w) = (T1, T2, ..., Tr) ∈ C2n and

ξ(T (w)) = a := (a1, a2, ..., ar) ∈ Λ̃2n with a symmetric and with Ti = Tr+1−i for any

i ∈ [r] by Lemma 3.5. Let Ei = [ar+ar−1 + · · ·+ai+1 +1, ar+ar−1 + · · ·+ai+1 +ai]

for i ∈ [r] with the convention that Er = [ar]. Assume

(3.9.1) E1 <w E2 <w · · · <w Er and 〈(Ei)w〉 = Ti for any i ∈ [r].

If r = 2m is even, then Ei is a maximal w-antichain consisting of some w-wild heads

for any i ∈ [m+ 1, 2m]. If r = 2m + 1 is odd, then Em+1 is a maximal w-antichain

consisting of all w-tame integers in [2n] and satisfies Em+1 = Em+1, and Ei is a

maximal w-antichain consisting of some w-wild heads for any i ∈ [m+ 2, 2m+ 1].
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An element w ∈ Ω ∩ C̃n is called standard if w with T (w) = (T1, ..., Tr) and

ξ(T (w)) = (a1, ..., ar) satisfies the condition (3.9.1). A standard element w of Ω∩ C̃n

is called minimal if there is no any back admissibleEi-move, i ∈
[⌈
r+2
2

⌉
, r

]
, applicable

to w, where the notation ⌈x⌉ stands for the smallest integer not smaller that x for

any rational number x. It is easily seen that for any 2n-self-dual T ∈ C2n, there

exists a unique minimal standard element in T−1(T) ∩ C̃n.

Lemma 3.10. Let w, y ∈ C̃n.

(1) If y is obtained from w by some admissible E-moves with E ranging over some

maximal w-antichains of [2n] each of those w-antichains consists of some w-wild

heads, then w and y are in the same left-connected component of Eψ(w).

(2) If w, y ∈ Ω ∩ Eλ with T (w) = T (y) for some λ ∈ Λ2n, then w, y are in the

same left-connected component of Eλ.

Proof. (1) follows by the definition of an admissible E-move. Now consider (2). By

successively left-multiplying some ti’s in the case of 3.6 (e) and some back admissible

moves on w, y, we can transform w, y to some standard minimal elements w′, y′ in

Ω ∩ Eλ, respectively. Hence w′ ∈ Kw and y′ ∈ Ky by 3.6 and 3.8. Since T (w′) =

T (w) = T (y) = T (y′), we have w′ = y′ by 3.9. This proves (2). �

Let a = (a1, a2, ..., ar) ∈ Λ̃2n be symmetric and let a′ = (a′1, a
′
2, ..., a

′
r) be defined

by setting

a′l =





al, if l /∈ [r] − {j, j + 1, r − j, r + 1 − j},

al+1, if l ∈ {j, r − j},

al−1, if l ∈ {j + 1, r + 1 − j}.

for some j ∈
[
⌈ r

2
⌉ + 1, r − 1

]
with aj 6= aj+1. Then a′ is also symmetric.

We say that a and a′ can be obtained from each other by a simple neighboring-

terms-transposition. Let λ = ζ(a)∨.

Clearly, any two symmetric b,b′ ∈ Λ̃2n with ζ(b) = ζ(b′) can be obtained from

one to the other by a sequence of simple neighboring-terms-transpositions.

Lemma 3.11. In the above setup, there are some w,w′′ ∈ Ω∩C̃n such that ξ(T (w)) =

a, that ξ(T (w′′)) = a′ and that w′′ ∈ Kw.

Proof. We may assume aj < aj+1 without loss of generality. By Lemma 3.5, we
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may take some w ∈ Eλ ∩ Ω with T (w) = (T1, ..., Tr) such that there are some

E1, E2, E3, E4 ⊂ [2n] satisfying the conditions (i)-(iii) below.

(i) E1∪̇E2∪̇E3∪̇E4∪̇E2∪̇E3∪̇E4 = [2n] with E2∪̇E3∪̇E4 consisting of some w-wild

heads in [2n], where E1 = ∅ if and only if j = r/2 and, E4 = ∅ if and only if j = r−1;

(ii) If E1 6= ∅ then E1 > E2 > E3 > E4 and E1 <w E2 <w E3 <w E4 and

dw(Ei, Ei+1) > 2n for any i ∈ [3], where we regard dw(E3, E4) > 2n as an empty

condition if E4 = ∅. If E1 = ∅ then E2 > E2 > E3 > E4 and E2 <w E2 <w E3 <w E4

and dw(E2, E2), dw(E2, E3), dw(E3, E4) > 2n;

(iii) E2 = {a + u + 1, a + u + 2, ..., a+ u + v} and E3 = {a + 1, a + 2, ..., a+ u}

with v = aj, u = aj+1 and a =
∑r

k=j+2 ak = |E4| and

(3.11.1) Tj = {〈(a+ u+ i)w〉 | i ∈ [v]} and Tj+1 = {〈(a+ j)w〉 | j ∈ [u]}.

Since both E2 and E3 are w-antichains and satisfy the conditions (i)-(iii), we have

that

(iv) (a + u + 1)w < (a + 1)w < (a + 2)w < · · · < (a + u)w < (a + 1)w + 2n and

(a+ u+ 1)w < (a+ u+ 2)w < · · · < (a+ u+ v)w < (a+ u+ 1)w + 2n.

Let Q = (E1 ∪E4 ∪E4,≺w). By 3.2, we have

(v) Q ∈ Ω and

(3.11.2) T (Q) = (T1, ..., T̂r−j, T̂r−j+1, ..., T̂j, T̂j+1, ..., Tr),

where the notation T̂i stands for the deletion of the component Ti.

Define the set ∆(a; j) of all the elements w ∈ C̃n with E1, E2, E3, E4 ⊂ [2n]

satisfying the above conditions (i),(iii)-(v) together with the condition (ii′) below.

(ii′) If E1 6= ∅ then E1 > E2 > E3 > E4 and E1 <w E2 and E3 <w E4 and

dw(Ei, Ei+1) > 2n for any i ∈ {1, 3}, where we regard dw(E3, E4) > 2n as an empty

condition if E4 = ∅. If E1 = ∅ then E2 > E2 > E3 > E4 and E2 <w E2 and

E3 <w E4 and dw(E2, E2), dw(E3, E4) > 2n.

Since the condition (ii) implies (ii′), any w ∈ Eλ ∩ Ω satisfying the conditions

(i)-(v) belongs to the set ∆(a; j).

For any w ∈ ∆(a; j), consider the poset P ′
w := (E2 ∪ E3,≺w). We have that

ψ(w) 6 λ, that ψ(P ′
w) 6 2v1u−v (see 3.2), and that
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(3.11.2) ψ(w) = λ if and only if ψ(P ′
w) = 2v1u−v.

Define a sequence ξw : ia+u+1, ia+u+2, ..., ia+u+v in the set [a+1, a+u] recurrently

as follows. Let ia+u+1 = a+ 1. Now take p ∈ [2, v] and assume that all the ia+u+l’s

with l ∈ [p − 1] have been defined. Define ia+u+p to be the smallest k ∈ [a + 1, a+

u]− {ia+u+l | l ∈ [p− 1]} with (a+ u+ p)w < (k)w. The sequence ξw does not exist

in general.

(3.11.3) The sequence ξw exists if and only if ψ(P ′
w) = 2v1u−v.

For w ∈ ∆(a; j) with ψ(P ′
w) = 2v1u−v (hence ψ(w) = λ by (3.11.2)), define

w′ ∈ C̃n by the requirements that for any l ∈ [2n],

(3.11.4) (l)w′ =





(l)w, if l /∈ E2 ∪ E3 ∪ E2 ∪ E3,

(ia+u+p)w, if l = a+ p for some p ∈ [v],

(l − v)w, if l − v ∈ [a+ 1, a+ u] − {ia+u+p | p ∈ [v]},

(a+ u+ p)w, if l − v = ia+u+p for some p ∈ [v].

Then w′ can be obtained from w by successively applying some left star operations.

More precisely, denote tb,c,j := tb+1tb+2 · · · t̂j · · · tb+c for any j ∈ [b+ 1, b+ c], b ∈ Z

and c ∈ P, where the notation t̂j means the omission of the factor tj . Then

w′ = ta+v−1,u,ia+u+v+v−1 · · · ta+1,u,ia+u+2+1ta,u,ia+u+1
w.

So w′ ∈ Kw by 3.6 and hence w′ ∼
L
w by Lemma 2.10.

Let E′
2 = {a+v+1, a+v+2, ..., a+v+u} and E′

3 = {a+1, a+2, ..., a+v}. Then

(a+v+1)w′ < (a+v+2)w′ < · · · < (a+v+u)w′ and (a+1)w′ < (a+2)w′ < · · · <

(a+ v)w′ < (a+ 1)w′ + 2n. Hence E′
3 is a w′-antichain. If E′

2 is also a w′-antichain

(i.e., (a+ v + u)w′ < (a+ v + 1)w′ + 2n), then define w′′ ∈ C̃n by the requirements

that for any l ∈ [2n],

(l)w′′ =

{
(l)w′, if l ∈ E1 ∪ E′

2 ∪ E
′
2,

(l)w′ + 2n, if l ∈ E′
3 ∪ E4.

Then ψ(w′′) = ψ(w′) and ℓ(w′′) = ℓ(w′) + ℓ(w′′w′−1
) by Lemma 2.2. We have

w′′ ∈ Ω with ξ(T (w′′)) = a′. Now assume that E′
2 is not a w′-antichain. Since

v < u, we have a + p /∈ {ia+u+l | l ∈ [v]} for some p ∈ [u]. Take such an integer
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a + p with p largest possible. By the construction of the sequence ξw, we have

((a + v + 1)w′, (a+ v + u)w′) = ((a + u+ 1)w, (a+ p)w) and 2n < (a + v + u)w′ −

(a+ v + 1)w′ = (a+ p)w − (a+ u+ 1)w by our assumption on E′
2. We claim that

(3.11.5) p = u.

For otherwise, we would have p < u and ia+u+v = a+ u. By the construction of the

sequence ξw, this would imply (a+u+v)w > (a+p)w and further (a+u+v)w−(a+

u + 1)w > 2n, contradicting the assumption that E2 is a w-antichain. The claim is

proved. Let w1 = ta+2nta+2n−1 · · · ta+uw and y = t2nt2n−1 · · · ta+uw. Then we have

that for any l ∈ [2n],

(3.11.6) (l)w1 =





(l)w, if l /∈ E3 ∪ E3,

(l − 1)w, if l ∈ [a+ 2, a+ u],

(a+ u)w − 2n, if l = a+ 1.

and that ℓ(y) = ℓ(w) − ℓ(wy−1) = ℓ(w1) − ℓ(w1y
−1) by Lemma 2.6. Then w1 is in

∆(a; j), which can be obtained from y by successively left-multiplying some ti’s in the

case of 3.6 (e) and so w1 ∈ Ky. We can define a sequence ξw1
: i′a+u+1, i

′
a+u+2, ..., i

′
a+u+v

from the poset P ′
w1

= (E2∪E3,�w1
) in the same way as ξw from P ′

w = (E2∪E3,�w).

We claim that ξw1
does exist. For, we have i′a+u+1 = a + 1 since (a + 1)w1 =

(a+u)w−2n > (a+u+1)w = (a+u+1)w1. This implies that i′a+u+q 6 ia+u+q +1

for any q ∈ [2, v] by the construction of the sequence ξw1
and by the facts that

(a + l)w1 = (a + l − 1)w and (a + u +m)w1 = (a + u +m)w for any l ∈ [2, u] and

m ∈ [v]. So the sequence ξw1
does exist by (3.11.5). The claim is proved.

By (3.11.3), the above claim implies ψ(P ′
w1

) = 2v1u−v and further ψ(w1) = λ by

(3.11.2). Since y ∈ Kw by Corollary 2.10, this implies w1 ∈ Kw.

We define w′
1, w

′′
1 from w1 in the same way as w′, w′′ from w. If E′

2 is a w′
1-

antichain, then w′′
1 is in Ω ∩ Kw and satisfies ξ(T (w′′

1 )) = a′. If E′
2 is not a w′

1-

antichain, then we can find some w2 ∈ ∆(a; j) ∩Kw from w1 in the same way as w1

from w. By applying induction on (a+ u)w − (a + u + 1)w > 0 and by noting that

(a+u)w−(a+u+1)w > (a+u)w1−(a+u+1)w1 > (a+u)w2−(a+u+1)w2 > · · · > 0,

we can eventually find some wq, q > 1, in ∆(a; j)∩Kw and define w′
q, w

′′
q from wq in

the same way as w′, w′′ from w such that the set E′
2 is w′

q-antichain and that w′′
q is

in Ω ∩Kw and satisfies ξ(T (w′′
q )) = a′. So our proof is complete. �
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Theorem 3.12. Let Γ be a left cell of C̃n.

(1) The set Γ ∩ Ω is non- empty if and only if there is some symmetric a ∈ Λ̃2n

such that ζ(a)∨ = ψ(Γ).

(2) The set Γ ∩ Ω is contained in some left-connected component of Eψ(Γ) if it is

non-empty.

Proof. The assertion (1) follows by Lemmas 2.7, 3.3 and 3.5. For (2), take any

w, y ∈ Γ ∩ Ω. Then the compositions a := ξ(T (w)) and a′ := ξ(T (y)) are both

symmetric and satisfy ζ(a) = ζ(a′) by Lemmas 2.7 and 3.5. Hence a′ can be obtained

from a by successively applying some simple neighboring-terms-transpositions (see

the definition preceding Lemma 3.11). So y ∈ Kw by Lemmas 2.7, 3.3, 3.10 (2) and

3.11. The assertion (2) is proved. �

3.13. A partition λ ∈ Λ2n is called dual-symmetrizable, if there exists some symmet-

ric a ∈ Λ̃2n satisfying ζ(a)∨ = λ, and called nice if Ω ∩Kw 6= ∅ for any w ∈ Eλ. By

Lemma 3.5, we see that any nice λ ∈ Λ2n is dual-symmetrizable.

We conjecture that the converse also holds.

Conjecture 3.14. Any dual-symmetrizable λ ∈ Λ2n is nice.

Theorem 3.15. Let λ ∈ Λ2n be nice. Then any left cell of C̃n in Eλ is left-connected.

Proof. Let Γ be a left cell of C̃n in Eλ. We must show that any w,w′ ∈ Γ are in the

same left-connected component of Γ. Since λ is nice, we can take some y ∈ Ω ∩Kw

and y′ ∈ Ω ∩ Kw′ . Then y, y′ ∈ Ω ∩ Γ by Lemma 2.9. This implies that y, y′ are

in the same left-connected component of Γ by Theorem 3.12 and Lemma 2.9. Our

result follows. �

§4. The cells of C̃n in the set E(2n−k,k).

In the present section, we shall study the cells of C̃n in the set E(2n−k,k) for any

k ∈ [n]. The main results are Theorems 4.12 and 4.13. The crucial step in the section

is to prove that Conjecture 3.14 holds in the case of λ = (2n− k, k).

First we give a brief description for the elements in E(2n−k,k).

Lemma 4.1. Let k ∈ [n] and w ∈ C̃n.

(1) w is in E(2n−k,k) if and only if the following two conditions hold:

(1a) The maximal length of a w-chain in [2n] is 2n− k;
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(1b) Any maximal w-antichain in [2n] has the cardinal 6 2.

(2) Let w ∈ E(2n−k,k) be such that the set E of all the w-tame heads in [2n] is non-

empty. Then both E and E are w-chains. The set F of all the w-wild heads in [2n]

can be partitioned into at most two parts, say F1 and F2, such that the elements of

F1 ∪E ∪ F2 are pairwise not 2n-dual and comprise a w-chain of length n.

Proof. The implication “ =⇒ ” in (1) is obvious. For the implication “ ⇐= ” in (1),

let ψ(w) = λ = (λ1, ..., λr) ∈ Λ2n. Then the condition (1a) implies λ1 = 2n− k. We

have r > 2 by the assumption k ∈ [n] and r 6 2 by the condition (1b). Hence r = 2

and λ2 = 2n− (2n− k) = k. So (1) is proved. Then (2) follows by Lemma 2.12 and

by the facts that any i ∈ E is w-uncomparable with any j ∈ E and that [2n] can be

partitioned into exactly two w-chains. �

Denote by whw(γ) (respectively, tmw(γ), wtw(γ)) the number of w-wild heads

(respectively, w-tame integers, w-wild tails) in a w-chain γ for any w ∈ C̃n.

Given w ∈ Eλ with λ = (λ1, λ2, ..., λt) ∈ Λ2n and λ1 < 2n. In 4.2-4.6, we shall

transform the element w in several steps, each step proceeds by successively left-

multiplying some ti’s, most of them being in the cases of 3.6 (a)-(e), such that all

the intermediate elements, including the resulting element w′, are in the set Kw and

that w′ has some special form. For the sake of simplifying the notation, we denote

some intermediate elements again by w from time to time.

4.2. Since w ∈ Eλ, we can choose some w-chain γ : j1, j2, ..., jλ1
in Z with j1 < j2 <

· · · < jλ1
. Let r = whw(γ)+tmw(γ). We see by Lemma 2.13 that for any a ∈ [λ1], ja

is a w-wild tail if and only if a ∈ [r+1, λ1]. We may assume the following conditions

(4.2a)-(4.2b) on the w-chain γ at the beginning.

(4.2a) whw(γ) > wtw(γ).

For otherwise, whw(γ) < wtw(γ). Then we replace γ by γ, the latter is obtained

from γ by replacing each term d of γ by its 2n-dual d := 2n + 1 − d and then by

reversing the order of the resulting terms. Since d is a w-wild head (respectively, a

w-wild tail) if and only if d is a w-wild tail (respectively, a w-wild head), we see that

γ is a w-chain and satisfies whw(γ) = wtw(γ) > whw(γ) = wtw(γ).

By (4.2a), we have
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(4.2.1) r ∈

[⌈
λ1

2

⌉
, n

]

since r = whw(γ) + tmw(γ).

(4.2b) 0 < ja+1 − ja < 2n for any a ∈ [λ1 − 1].

For otherwise, say ja+1−ja > 2n for some a ∈ [λ1−1]. Let γ′ : j′1, j
′
2, ..., j

′
λ1

be the

sequence j1 + 2n, j2 + 2n, ..., ja + 2n, ja+1, ..., jλ1
. Then γ′ is also a w-chain with an

additional property that j′λ1
−j′1 < jλ1

−j1. By applying induction on jλ1
−j1 > λ1−1,

we can eventually get a w-chain γ′′ : j′′1 , j
′′
2 , ..., j

′′
λ1

satisfying 0 < j′′a+1−j
′′
a < 2n for any

a ∈ [λ1−1]. By our construction, we have whw(γ′′) = whw(γ) and wtw(γ′′) = wtw(γ),

so the validity of (4.2a) on γ implies that on γ′′.

4.3. Now we want to transform w to some w′ ∈ Kw such that there exist some w′-

chain γ′ : i1, i2, ..., iλ1
in Z and some r′ ∈ [λ1] satisfying the conditions (4.3a)-(4.3b)

below.

(4.3a) ia+1 − ia = 1 for any a ∈ [r′ − 1];

(4.3b) r′ := whw′(γ′) + tmw′(γ′) > r > ⌈λ1

2
⌉.

If r = 1 then we take w′ to be w and hence there is nothing to do. Now assume that

r > 1 and that there is some a ∈ [r−1] with ja+1−ja > 1. We may take such a number

a smallest possible. Consider the number ja + 1. We have either (ja + 1)w > (ja)w

or (ja + 1)w < (ja+1)w (that is, we never have (ja+1)w < (ja + 1)w < (ja)w) by the

assumption of w ∈ Eλ. When (ja + 1)w > (ja)w, let b be the smallest integer in [a]

with (jb)w < (ja+1)w. Let y = tj1tj2 · · · t̂jb · · · tjaw, where the notation t̂ means the

omission of the factor t. Then y is obtained from w by successively applying certain

left star operations and hence y ∈ Kw, where there is a y-chain of length λ1 with

j1 +1, j2 +1, ..., ja+1, ja+1 as its first a+1 terms. When (ja+1)w < (ja+1)w, there

are two possibilities:

(1) 〈ja + 1〉 = 〈ja〉;

(2) 〈ja + 1〉 6= 〈ja〉.

In the case (1), we see that ja + i, i ∈ [a], are all w-wild tails with 〈ja + i〉 =

〈ja+1−i〉, hence ja+1 − ja > a. Let J = {tj1 , tj2 , ..., tja} and I = J − {tja} and

y = wJwIw. If ja+1 is a w-wild head, then we have (ja)w−(ja+1)w > 2n by the facts
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(ja+1)w− 1
2 ((ja)w+(ja+1)w) > n and (ja)w > (ja+1)w. So, if (ja)w−(ja+1)w < 2n

then ja+1 must be w-tame, in this case, let H1 be the set of all the w-tame integers

in [ja + 1, ja + n] and let H2 be the set of all the w-tame integers in [ja − n+ 1, ja].

Then each of H1 and H2 forms a w-chain and the equality 〈H2〉 = 〈H1〉 holds by the

assumption w ∈ E(2n−k,k) and by Lemma 4.1(2), where we define 〈H〉 := {〈h〉 | h ∈

H} and H ′ = {h′ | h′ ∈ H ′} for any H ⊂ Z and H ′ ⊆ [2n]. By Lemmas 4.1 (2) and

2.12, we see that there is some w-chain j′1, j
′
2, ..., j

′
a′−1, ja, ja+1, j

′
a′+2, ..., j

′
n of length

n whose terms are pairwise not 2n-dual modulo 2n and j′1, j
′
2, ..., j

′
a′−1, ja are all w-

wild heads and H1 = {ja+1, j
′
a′+2, ..., j

′
a′+c} and j′a′+c+1, ..., j

′
n are all w-wild tails,

where c = |H1|. So in either case, we have ℓ(y) = ℓ(w) − ℓ(wJwI) and y ∈ E(2n−k,k)

by Lemmas 2.6 and 4.1, hence y ∈ Kw by Corollary 2.10, such that there exists a

y-chain γ′ of length 2n−k with the first a+1 terms being j1 +a, j2+a, ..., ja+a, ja+1

and with why(γ
′) + tmy(γ

′) > r. Note that in the case of (ja)w − (ja + 1)w < 2n,

we can obtain y = wJwIw from w by successively left-multiplying some ti’s, though

not all in the case of 3.6 (a)-(e), but still having y ∈ Kw, as shown above.

In the case (2), there exists some i ∈ [ja+2, ja+1] such that (ja+1)w > (ja+2)w >

· · · > (i − 1)w < (i)w (since (ja+1)w > (ja + 1)w by the assumption). Let h be the

smallest integer in [j1, i− 1] with (h)w < (i)w and let y = tj1tj1+1 · · · t̂h · · · ti−1w. In

this case, y is obtained from w by successively applying certain left star operations,

hence y ∈ Kw and there is a y-chain γ′ of length 2n− k with why(γ
′) + tmy(γ

′) > r

and with the first a + 1 terms being j1 + 1, j2 + 1, ..., ja + 1, ja+1 if i < ja+1 and

j1 + 1, j2 + 1, ..., ja + 1, h+ 1 if i = ja+1. By applying induction first on a > 1 and

then on ja+1 − ja > 1, we can eventually get a required element w′ in Kw.

4.4. By the result in 4.3, we may assume that w ∈ E(2n−k,k) has a w-chain γ :

j1, j2, ..., j2n−k satisfying (4.2a) and ja+1 − ja = 1 for any a ∈ [r − 1], where r =

whw(γ)+tmw(γ). Let c ∈ P be the smallest number satisfying 〈jr+c+1〉 = 〈jr + c〉.

We want to transform w to some w′ ∈ Kw such that there exists some w′-chain

γ′ of length 2n − k with the first r terms being j1 + c, j2 + c, ..., jr + c and with

r = whw′(γ′) + tmw′(γ′). If c = 0 then we can take w′ to be w. Now assume c > 0.

If (jr + 1)w > (jr)w then jr + 1 is either a w-wild head or a w-tame integer. Let

i be the smallest integer in [r] with (ji)w < (jr + 1)w. Let y = tj1tj2 · · · t̂ji · · · tjrw.

Then y is obtained from w by successively applying certain left star operations (hence
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y ∈ Kw) and there exists some y-chain β of length 2n−k with the first r terms being

j1 + 1, j2 + 1, ..., jr + 1 and with r = why(β) + tmy(β). If (jr + 1)w < (jr)w, then

there are two possibilities:

(1) There exists some a ∈ [c] such that (jr)w > (jr + 1)w > · · · > (jr + a− 1)w <

(jr + a)w;

(2) (jr)w > (jr + 1)w > · · · > (jr + c)w.

In the case (1), let j be the smallest number in [j1, jr + a − 1] such that (j)w <

(jr + a)w. Let y = tj1tj2 · · · t̂j · · · tjr+a−1w.

In the case (2), we claim that (jr + c + 1)w > (jr + c − 1)w. To show this, we

need only to prove that (jr + c + 1)w > (jr)w under the assumption in (2). For

otherwise, (jr + c+1)w < (jr)w. Then j1, j2, ..., jr, jr+ c+1, jr+ c+2, ..., jr+2c+ r

is a w-chain of length 2r + c. Since w ∈ E(2n−k,k), we have 2r + c 6 2n − k. But

r > 1
2
(2n−k) by (4.2.1), a contradiction. This proves that (jr+c+1)w > (jr+c−1)w.

Let j be the smallest number in [j1, jr + c − 1] such that (j)w < (jr + c + 1)w. Let

y = tj1tj2 · · · t̂j · · · tjr+c−1tjr+cw. Then y is obtained from w by successively applying

some left star operations (hence y ∈ Kw) and there exists some y-chain whose first r

terms are j1 +1, j2 +1, ..., jr+1 none of them is a y-wild tail. By applying induction

on c > 0, we can eventually get a required element w′.

4.5. By the result in 4.4, we may assume that w ∈ E(2n−k,k) has a w-chain γ of

length 2n− k satisfying (4.2a), together with the following conditions:

(i) the first r terms of γ are a + 1, a + 2, ..., a + r for some a ∈ Z, where r =

whw(γ) + tmw(γ) ∈
[
⌈2n−k

2 ⌉, n
]
;

(ii) a+ r + 1 = a+ r;

Clearly, the w-chain a+1, a+2, ..., a+r is the longest one among all w-chains with a+r

the last term. Moreover, (a+1, a+2, ..., a+r) could be either (n+1−r, n+2−r, ..., n)

or (2n+ 1 − r, 2n+ 2 − r, ..., 2n). By the symmetry, we may assume without loss of

generality that

(iii) (a+ 1, a+ 2, ..., a+ r) = (n+ 1 − r, n+ 2 − r, ..., n).

So we have that

(4.5.1) n+1− r, n+2− r, ..., n forms a w-chain, the longest one among all w-chains

with n the last term.

Let us describe the w-chain γ. We have 2n − k 6 2r by (4.2.1). If n + 1 −
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r, n+ 2 − r, ..., n are all w-wild heads then 2n− k = 2r and the w-chain γ could be

n + 1 − r, n + 2 − r, ..., n, n+ 1, ..., n+ r. Now assume 2n − k < 2r. Hence n is a

w-tame tail. We have r 6 2n− k in general since r, k ∈ [n] by (4.2.1). The equality

r = 2n − k holds if and only if r = k = n and w = wJ with J = {t1, t2, ..., tn−1}.

Now assume r < 2n− k.

We claim that (2r + 1 + k − n)w < (n)w < (2r + k − n)w. We have (n)w <

(2r + k − n)w by the assumption that the length of the longest w-chain is 2n − k.

If (2r + 1 + k − n)w > (n)w then let j be the largest number in [2r + 1 + k −

n, n + r] with (j)w > (n)w. Let j′i = 2n + 1 − ji for any i ∈ [r + 1, 2n − k].

Then (j′r+1)w > (n + 1)w > (2n + 1 − j)w by the fact (j)w > (n)w > (jr+1)w. So

j′2n−k, j
′
2n−k−1, ..., j

′
r+1, 2n+1−j, 2n+2−j, ..., n forms a w-chain of length n+j−k−r

which is greater than r, contradicting (4.5.1). The claim is proved.

So far we have proved that any x ∈ E(2n−k,k) can be transformed into X(2n−k,k) ∩

Kx, where X(2n−k,k) is the set of all w ∈ E(2n−k,k) with the w-chain γ in (4.5.2) or

(4.5.3) for some r ∈ [⌈2n−k
2 ⌉, n].

n+ 1 − r, n+ 2 − r, ..., n, 2r + 1 + k − n, 2r + 2 + k − n, ..., n+ r.(4.5.2)

1 − r, 2 − r, ..., 0, 2r + 1 + k − 2n, 2r + 2 + k − 2n, ..., r.(4.5.3)

4.6. Fix w ∈ X(2n−k,k) with a w-chain γ as in (4.5.2). Then (3n− 2r − k + 1)w <

(n+1)w < (3n−2r−k)w by the fact (2r+1+k−n)w < (n)w < (2r+k−n)w. Denote

q(w) := (n+1)−(3n−2r−k+1) = 2r+k−2n which is in N. Suppose q(w) > 1. Then n

is a w-tame tail and 3n−2r−k+1 < n. Let w1 = tn+1−rtn+2−r · · · t̂3n−2r−k+1 · · · tnw.

Then w1 is obtained from w by successively applying some left star operations, hence

w1 ∈ Kw. There is a w1-chain in (4.6.1) below.

(4.6.1) n+ 2 − r, n+ 3 − r, ..., n, 2r− 1 + k − n, 2r + k − n, ..., n+ r − 1.

Clearly, (4.6.1) can be obtained from (4.5.2) by replacing r by r − 1. Hence w1 ∈

X(2n−k,k) with q(w1) = 2(r − 1) + k − 2n = q(w) − 2 < q(w). If q(w1) > 1, then we

can find some w2 ∈ X(2n−k,k) ∩ Kw1
from w1 by the same way as w1 from w such

that q(w2) < q(w1). Recurrently, we can eventually find wa ∈ X(2n−k,k) ∩Kw with

some a ∈ P such that q(wa) ∈ {0, 1}.

For w ∈ X(2n−k,k) with a w-chain γ as in (4.5.2), if q(w) = 0, then k = 2m is even

and r = n − m; if q(w) = 1, then k = 2m + 1 is odd and r = n − m. Hence, by
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symmetry between (4.5.2) and (4.5.3), we have proved that any x ∈ E(2n−k,k) can be

transformed into Y(2n−k,k) ∩Kx, where Y(2n−k,k) is the set of all w ∈ E(2n−k,k) with

the w-chain γ in one of (4.6.2)-(4.6.5) below.

m+ 1, m+ 2, ..., n, n+ 1, n+ 2, ..., 2n−m.(4.6.2)

m+ 1 − n, m+ 2 − n, ..., 0, 1, 2, ..., n−m.(4.6.3)

m+ 1, m+ 2, ..., n, n+ 2, n+ 3, ..., 2n−m.(4.6.4)

m+ 1 − n, m+ 2 − n, ..., 0, 2, 3, ..., n−m.(4.6.5)

4.7. By the processes in 4.2-4.6, we transform any x ∈ E(2n−k,k) to some w ∈ Kx

such that there is a w-chain γ : j1, j2, ..., j2n−k which is either in one of (4.6.2) and

(4.6.4) and satisfies (2r + k + 1 − n)w < (n)w < (2r + k − n)w, or in one of (4.6.3)

and (4.6.5) and satisfies (2r+k+1)w < (2n)w < (2r+k)w, where k ∈ {2m, 2m+1}

and r = n−m ∈
[
⌈2n−k

2
⌉, n

]
. Let i1, i2, ..., i2n−2r be in [r+1−n, n−r] (respectively,

in [r + 1, 2n− r]) satisfy the relation

(4.7.1) (i1)w > (i2)w > · · · > (i2n−2r)w.

Now we define a sequence l1, l2, ..., l2n−2r in [2n−k] as follows. Let l1 be the smallest

integer a in [2n − k] such that 0 < (ja)w − (i1)w < 2n. Recurrently, suppose that

we have defined all the integers l1, l2, .., lh for some h ∈ [2n − 2r]. If h < 2n − 2r

then we define lh+1 to be the smallest integer b in [2n− k] − {lc | c ∈ [h]} such that

0 < (jb)w − (ih+1)w < 2n.

Lemma 4.8. Let w ∈ E(2n−k,k) be with a w-chain γ in one of (4.6.2)-(4.6.5). Then

in the setup of 4.7, the integers l1, l2, ..., l2n−2r are well defined and satisfy the relation

l1 < l2 < · · · < l2n−2r.

Proof. By the assumption of w ∈ E(2n−k,k), we see that

(4.8.1) there exists some ah ∈ [2n− k] satisfying 0 < (jah
)w − (ih)w < 2n for any

h ∈ [2n− 2r].

The existence of the integer l1 follows by (4.8.1). Now assume that h ∈ [2, 2n−2r]

and that we have found all the integers l1, l2, ..., lh−1 and have proved the relation

l1 < l2 < · · · < lh−1. By the definition of the la’s, we see that

(4.8.2) for any a ∈ [h− 1] with la > 1, we have either that (jla−1)w − (ia)w > 2n,
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or that 0 < (jla−1)w − (ia)w < 2n and la−1 = la − 1.

By repeatedly applying (4.8.2), we get that

(4.8.3) for any a ∈ [h−1] with la > 1, there exists some b ∈ [a] such that lc−1 = lc−1

and 0 < (jlc−1)w − (ic)w < 2n for any c ∈ [b + 1, a] and (jlb−1)w − (ib)w > 2n

whenever lb > 1.

We claim that

(4.8.4) there must exist some a ∈ [lh−1 +1, 2n−k] such that 0 < (ja)w− (ih)w < 2n.

For otherwise, there would exist some c ∈ [lh−1, 2n−k] such that (jb)w−(ih)w > 2n

for any b ∈ [lh−1 + 1, c] and (jd)w− (ih)w < 0 for any d ∈ [c+ 1, 2n− k]. By (4.8.1),

we must have c = lh−1 and 0 < (jlh−1
)w − (ih)w < 2n. So by (4.8.3), there exists

some e ∈ [lh−1] such that ld − 1 = ld−1 and 0 < (jld−1)w − (id)w < 2n for any

d ∈ [e + 1, lh−1] and (jle−1)w − (ie)w > 2n whenever le > 1. In this case, we claim

that

(4.8.5) ih > ih−1 > · · · > ie.

For otherwise, there would exist some f ∈ [e, h − 1] with if > if+1. Then

{if , if+1, jlf} would form a w-antichain, contradicting the assumption ofw ∈ E(2n−k,k)

by Lemma 4.1. The claim (4.8.5) is proved. By (4.8.5) together with the validity for

one of (4.6.2)-(4.6.5), we see that

j1, j2, ..., jle−1, ie, ie+1, ..., ih−1, ih, jlh−1+1, jlh−1+2, ..., j2n−k

forms a w-chain of length 2n+ 1− k, contradicting the assumption of w ∈ E(2n−k,k).

This proves the claim (4.8.4). Hence the existence of the integer lh follows by (4.8.4)

immediately. Clearly, lh > lh−1. So our result follows by induction. �

4.9. Let w ∈ E(2n−k,k) be provided with the w-chain γ of the form in one of (4.6.2)-

(4.6.5). By symmetry, we need only to consider the case where γ is in (4.6.2) or

(4.6.4). In the setup of 4.7, let [r + 1 − n, n− r] = E1 ∪ E0 ∪ E−1, where E1 = {j ∈

[r+1−n, n−r] | j is a w-wild head}, E−1 = {j ∈ [r+1−n, n−r] | j is a w-wild tail}

and E0 = {j ∈ [r + 1 − n, n − r] | j is w-tame}. We have 〈E−1〉 = 〈E1〉 and

〈E0〉 = 〈E0〉.

Lemma 4.10. Let w ∈ E(2n−k,k) be with the w-chain γ in (4.6.2) or (4.6.4). Then

in the setup of 4.7 and 4.9, jla is a w-wild head for any ia ∈ E1.

Proof. The following two facts about the element w can be checked easily.
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(i) (jla)w > (ia)w > 0 for any ia ∈ E1.

(ii) For any b ∈ [2n− k], the integer jb is a w-wild head if and only if either that

jb < n, or that jb = n and γ is in (4.6.2).

By the fact (i), to show our result, we need only to consider the case where

(ia)w ∈ [n] for some ia ∈ E1. If (n)w ∈ [n] (i.e., the w-chain γ is in (4.6.4)), then any

ia ∈ E1 with (ia)w ∈ [n] is w-uncomparable with n + 1, hence n ≺w ia by Lemmas

4.1 (2) and 2.12 (iv). This implies jla < n and so jla is a w-wild head by the fact (ii).

Now assume (n)w /∈ [n] (i.e., the w-chain γ is in (4.6.2)). Hence (n)w > n. If

(n)w > 2n, then (n + 1)w 6 0, hence n + 1 ≺w ia for any ia ∈ E1 by the fact (i).

This implies that jla 6 n and hence jla is a w-wild head for any ia ∈ E1 by the fact

(ii).

Now assume (n)w ∈ [n+ 1, 2n]. Hence n is a w-wild head.

If E0 6= ∅, then we claim that n + 1 ≺w ia for any ia ∈ E1. For, any element

of E0 ∩ [n − r] is w-uncomparable with n. This implies by Lemma 4.1 (2) that

n is w-comparable with any element of 〈E0 ∩ [r + 1 − n, 0]〉, hence ib ≺w n for any

ib ∈ 〈E0∩ [r+1−n, 0]〉 by Lemma 2.12 (iv). But this is equivalent to that n+1 ≺w ib

for any ib ∈ E0∩ [n−r] by Lemma 2.12 (i). For any ia ∈ E1, if (ia)w < (n)w, then ia

is w-uncomparable with n by the fact (i) and the assumption of (n)w ∈ [n+1, 2n], so

ia must be w-comparable with any element of E0 ∩ [n− r] by Lemma 4.1 (2), hence

ib ≺w ia for any ib ∈ E0 ∩ [n− r] by Lemma 2.12 (iv), and further n+ 1 ≺w ia. The

claim is proved. We see from this claim that jla 6 n for any ia ∈ E1 and hence jla

is a w-wild head by the fact (ii).

Now assume E0 = ∅. Suppose that there exists some ia ∈ E1 such that jla is not

a w-wild head. Then jla > n by the assumption of (n)w ∈ [n + 1, 2n]. We have

(ia)w > 0 by the fact (i). So ia is w-uncomparable with n again by the assumption

of (n)w ∈ [n + 1, 2n] and the fact n − ia ∈ [2n − 1]. By the definition of the lb’s

in 4.7 and by the fact (4.8.3), we see that n = jlc for some c < a and that there

exists some d ∈ [c] such that le − 1 = le−1 and 0 < (jle−1)w − (ie)w < 2n for any

e ∈ [d+ 1, a] and (jld−1)w − (id)w > 2n whenever ld > 1. By the same argument as

that for the claim (4.8.5) with a, d in the place of h, e respectively, we can show that

ia > ia−1 > · · · > id, hence the sequence

j1, j2, ..., jld−1, id, id+1, ..., ic, ic+1, ..., ia, ia, ..., ic+1, ic, ..., id+1, id, jld−1, ..., j2, j1
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forms a w-chain of length 2r + 2(a− c) = 2n− k + 2(a− c) > 2n− k, contradicting

the assumption of w ∈ E(2n−k,k).

This proves our result. �

Lemma 4.11. Let w ∈ E(2n−k,k) be with the w-chain γ in one of (4.6.2)- (4.6.5).

Then Ω ∩Kw 6= ∅.

Proof. By symmetry, we need only to consider the case where the w-chain γ is in

(4.6.2) or (4.6.4). Keep the setup of 4.7 and 4.9 for w. Define y ∈ C̃n by the

requirements that (ja)y = (ja)w + 2nqa for any a ∈ [r] and (ib)y = (ib)w + 2nqlb

for any b ∈ [2n − 2r] with ib a w-wild head and (ic)y = (ic)w for any c ∈ [2n− 2r]

with ic w-tame, where q1, q2, ..., qr is a strictly decreasing sequence of integers with

qr > 0 if k is even and qr = 0 if k is odd. By Lemmas 2.2 and 4.10, we have

ℓ(y) = ℓ(w) + ℓ(yw−1) and y ∈ E(2n−k,k). Hence y ∈ Kw by Corollary 2.10 (1). If

there is no w-tame integer in i1, i2, ..., i2n−2r, then y ∈ Ω by our construction, the

result is proved in this case.

Now assume that there are some w-tame integers in i1, i2, ..., i2n−2r. In this case,

we see from the proof of Lemma 4.10 that there exists some c ∈ [n− r− 1] such that

ia is a w-wild head for any a ∈ [c] and that ib is a w-tame tail for any b ∈ [c+1, n−r]

and that ie is either a w-tame head or a w-wild tail for any e ∈ [n− r + 1, 2n− 2r].

Let τ be the bijective map from the set E := {ia, jb | a ∈ [n− r], b ∈ [r]} to the set

[n] such that if k is even then

(τ(j1), τ(j2), ..., τ(jl1−1), τ(i1), τ(jl1), τ(jl1+1), τ(jl1+2), ..., τ(jl2−1), τ(i2), τ(jl2),

τ(jl2+1), ..., τ(jlc−1), τ(ic), τ(jlc), τ(jlc+1), ..., τ(jr), τ(ic + 1), τ(ic + 2), ..., τ(in−r))

=(1, 2, ..., n).

and that if k is odd then

(τ(j1), τ(j2), ..., τ(jl1−1), τ(i1), τ(jl1), τ(jl1+1), τ(jl1+2), ..., τ(jl2−1), τ(i2), τ(jl2), τ(jl2+1),

..., τ(jlc−1), τ(ic), τ(jlc), τ(jlc+1), ..., τ(jr−1), τ(ic + 1), τ(ic + 2), ..., τ(in−r), τ(jr))

=(1, 2, ..., n).

Define z ∈ C̃n by the requirement that (τ(a))z = (a)y for any a ∈ E. Then z can

be obtained from y by successively left-multiplying some ti’s in the case of 3.6 (e).
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Hence z ∈ Ky. There is some h ∈ [n] such that h−1 is a z-wild head whenever h > 1

and that h, h+ 1, ..., n are all z-tame tails and form a z-chain. When n− h = 2p is

even, define x ∈ C̃n by the requirement that ((1)x, (2)x, ..., (n)x) is equal to

((1)z + 2np, (2)z + 2np, ..., (h− 1)z + 2np, (h)z + 2np, (n+ 1)z + 2np,

(h+ 1)z + 2n(p− 1), (n+ 2)z + 2n(p− 1), (h+ 2)z + 2n(p− 2),

(n+ 3)z + 2n(p− 2), ..., (h+ p− 1)z + 2n, (n+ p)z + 2n, (h+ p)z).

When n−h = 2p−1 is odd, define x ∈ C̃n by the requirement that ((1)x, (2)x, ..., (n)x)

is equal to

((1)z + 2np, (2)z + 2np, ..., (h− 1)z + 2np, (h)z + 2np, (n+ 1)z + 2np,

(h+ 1)z + 2n(p− 1), (n+ 2)z + 2n(p− 1), (h+ 2)z + 2n(p− 2),

(n+ 3)z + 2n(p− 2), ..., (h+ p− 1)z + 2n, (n+ p)z + 2n).

We see by Lemma 2.2 that ℓ(x) = ℓ(z) + ℓ(xz−1) and that x ∈ E(2n−k,k). Hence

x ∈ Kz by Corollary 2.10 (1).

In either case, we have x ∈ Ω ∩Kw, hence Ω ∩Kw 6= ∅. �

Theorem 4.12. (1) Any left cell of C̃n in E(2n−k,k) is left-connected.

(2) The number of left cells of C̃n in E(2n−k,k) is 2n−mn! if k = 2m is even and

2n−m−1n! if k = 2m+ 1 is odd.

Proof. (1) Let Γ be a left cell of C̃n in E(2n−k,k). Take any w,w′ ∈ Γ. By 1.4 (2), we

see that the left-connected component of Γ containing w is just the set Kw. Hence

we need only to show that w′ ∈ Kw. By the processes (4.2)-(4.6) and Lemma 4.11,

we can find some y ∈ Ω ∩Kw and y′ ∈ Ω ∩Kw′ . Since y ∼
L
w ∼

L
w′ ∼

L
y′ by Lemma

2.9, we have y′ ∈ Ky by Theorem 3.12. This implies w′ ∈ Kw, as required.

(2) Fix a symmetric a = (a1, a2, ..., a2n−k) ∈ Λ̃2n with ζ(a)∨ = (2n − k, k). By

Lemmas 3.5, 3.3 and 2.7, we see that the number of left cells of C̃n in E(2n−k,k) is

equal to the number of 2n-self-dual T ∈ C2n with ξ(T) = a.

Denote q := ⌊2n−k
2 ⌋. Any 2n-self-dual tabloid T = (T1, T2, ..., T2n−k) ∈ ξ−1(a) is

determined entirely by its first q components by the facts that Ti = T2n−k+1−i for

any i ∈ [q] and that Tq+1 = [2n] −
⋃q

i=1(Ti ∪ Ti) is a union of some 2n-dual pairs

if k = 2m + 1 is odd. Since the elements of
⋃q

i=1 Ti are pairwise not 2n-dual, the
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number of the choices for T1 is 2a1

(
n
a1

)
. Recurrently, when T1, T2, ..., Th−1 have been

chosen for h ∈ [q], the number of the choices for Th is 2ah
(
n−a1−···−ah−1

ah

)
. So our

result follows by the following two facts: (i) Among a1, a2, ..., aq, the number 2 occurs

m times, while 1 occurs q−m times; (ii) The sum a1 + · · ·+aq is equal to n if k = 2m

and n− 1 if k = 2m+ 1. �

Theorem 4.13. The set E(2n−k,k) is two-sided-connected and forms a single two-

sided cell of C̃n for any k ∈ [n].

Proof. Let

w0 =

{
wS−{tm}, if k = 2m is even,

wJwIwK , if k = 2m+ 1 is odd.

where K = S − {t0}, I = K − {tn−1} and J = I − {tm, tn}. Then w0 ∈ E(2n−k,k).

Let Z(2n−k,k) = {w0 ·x ∈ E(2n−k,k) | x ∈ C̃n}. Clearly, Z(2n−k,k) is a right-connected

subset of E(2n−k,k). Let a = (a1, a2, ..., a2n−k) ∈ Λ̃2n be such that ai = a2n+1−k−i = 1

and aj = 2 for i ∈ [n − 2m] and j ∈ [n − 2m + 1, n] if k = 2m is even and that

ai = a2n+1−k−i = 1 and aj = 2 for i ∈ [n− 2m− 1] and j ∈ [n− 2m,n] if k = 2m+1

is odd. Clearly, a is symmetric with ζ(a)∨ = (2n− k, k).

By Theorem 4.12 and Lemmas 2.7, 3.3, 3.5, to show our result, we need only to find

some w ∈ Z(2n−k,k) ∩Ω with T (w) = T for any 2n-self-dual T = (T1, T2, ..., T2n−k) ∈

C2n with ξ(T) = a.

A 2n-self-dual T = (T1, ..., T2n−k) ∈ ξ−1(a) is determined uniquely by the part

(Tn−m+1, Tn−m+2, ..., T2n−2m) if k = 2m and by (Tn−m, Tn−m+1, ..., T2n−2m−1) if k =

2m+ 1. We define an element w of C̃n for a given 2n-self-dual T = (T1, ..., T2n−k) ∈

ξ−1(a) as follows.

First assume that k = 2m and that (Tn−m+1, Tn−m+2, ..., T2n−2m) is equal to

({cn−m+1, dn−m+1}, {cn−m+2, dn−m+2}, ..., {cn, dn}, {dn+1}, {dn+2}, ..., {d2n−2m}),

where ci < di in [2n] for any i ∈ [n − m + 1, n]. Then we define w ∈ C̃n by the

requirement that
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((n)w, (n− 1)w, (n− 2)w, (n− 3)w, (n− 4)w, (n− 5)w, ...,

(n− 2m+ 2)w, (n− 2m+ 1)w, (n− 2m)w, (n− 2m− 1)w, ..., (1)w)

= (dn−m+1 + 2n, dn−m+2 + 2n · 2, dn−m+3 + 2n · 3, ..., dn + 2nm,

dn+1 + 2n(m+ 1), dn+2 + 2n(m+ 2), ..., d2n−2m + 2n(n−m),

cn−m+1 + 2n, cn−m+2 + 2n · 2, cn−m+3 + 2n · 3, ..., cn + 2nm)

Next assume that k = 2m+ 1 and that (Tn−m, Tn−m+1, ..., T2n−2m−1) is equal to

({cn−m, dn−m}, {cn−m+1, dn−m+1}, ..., {cn, dn}, {dn+1}, {dn+2}, ..., {d2n−2m−1}),

where ci < di for any i ∈ [n −m,n]; in particular, dn−m = cn−m ∈ [n] by Lemma

3.5. Then we define w ∈ C̃n by the requirement that

((n)w, (n− 1)w, (n− 2)w, (n− 3)w, (n− 4)w, (n− 5)w, ...,

(n− 2m+ 2)w, (n− 2m+ 1)w, (n− 2m)w, (n− 2m− 1)w, ..., (1)w)

=(cn−m, dn−m+1 + 2n, dn−m+2 + 2n · 2, dn−m+3 + 2n · 3, ..., dn + 2nm,

dn+1 + 2n(m+ 1), dn+2 + 2n(m+ 2), ..., d2n−2m−1 + 2n(n−m− 1),

cn−m+1 + 2n, cn−m+2 + 2n · 2, cn−m+3 + 2n · 3, ..., cn + 2nm)

In either case, we have w ∈ Z(2n−k,k)∩Ω with T (w) = T. Hence our result follows. �

Remark 4.14. In dealing with the case (1) of 4.3, we have to apply Lemma 4.1 (2),

hence all the results in the present section are only valid for the set E(2n−k,k). If one

can deduce some results for all the nice partitions of 2n which could replace Lemma

4.1 (2) in our proof, then this would be a good progress in approaching Conjecture

3.14.
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