THE CELLS IN THE WEIGHTED COXETER GROUP (én,@'m)

JIAN-YI SHI

Department of Mathematics
East China Normal University
Shanghai, 200241, P.R.China

ABSTRACT. The affine Weyl _group (C’n, S) can be realized as the fixed point set of
the affine Weyl group (Am, Sm) m € {2n — 1,2n,2n + 1}, under a certain group
automorphism oy, n. Let Km be the length function of Am The present paper is to
give a combinatorial description for all the left cells of A,,, which have non-empty
intersection with én Then we use this description to deduce some formulae for the
number of left cells of the weighted Coxeter group (C~’n, Zm) in the set E) associated
to any partition A of m + 1.

60. Introduction.

0.1. Let Z (respectively, N, P) be the set of all integers (respectively, non-negative
integers, positive integers). The affine Weyl group (5’n, S) can be realized as the
fixed point set of the affine Weyl group (A, Sp), m € {2n—1,2n,2n+ 1}, under
a certain automorphism «,, , with am,n(Sm) Sm, where Sm7 S are the Coxeter
generator sets of ﬁm, én, respectively. The restriction to C,, of the length function
Zm of Zm is a weight function of én It is known that there is a surjective map
Y from A,, to the set A1 of partitions of m + 1 which induces a bijection from
the set of two-sided cells of A, to Apyq (see [6], [3]). For any i < j in N, denote
[i,7] == {i,i+1,...,j} and denote [1,4] simply by [i]. Let Ey := ¢~1(A\) N C,, for
A € Apy1. In the paper [7], we described all the cells of the weighted Coxeter
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group (6’n, an—l) corresponding to the partitions k12°~¥ and h2122~P=2 for all
k € [2n] and h € [2,2n — 2] and also all the cells of the weighted Coxeter group
(Cs, 05).

0.2. Denote by AV the dual partition of A € A, 11 (see 1.8). Let Km+1 be the set
of all compositions of m + 1 (see 2.1). There is a natural surjective map ¢ from
the set Km+1 to Apg1 (see 2.1). Call a = (ay,aq,...,a,) € Km+1 symmetric, if
a; = ap41—; for any i € [r]. Let C,,4+1 be the set of all tabloids of rank m 4 1 (see
2.2). We can define an equivalence relation ~ on C,,+1 (see 2.13). There exists
a bijective map from the set Il of left cells of A,, to the set of ~-equivalence
classes of C,, 11 (see [6, Subsection 19.4]). There exists a natural surjective map &

from C,,+1 to Km+1 (see 2.2).

0.3. In the present paper, we prove that a left cell I' of Avm has a non-empty
intersection with 6’n if and only if the ~-equivalence class of C,,11 corresponding
to I'is (m, n)-selfdual (see 2.13-2.14, Lemma 2.15 and Theorem 3.1). By this result,
we can deduce some formulae for the number 7,,11_2,(a) of left cells of (én,Zm)
in the set E¢(q)v for any a € INXmH. More precisely, we give a close formula for the
number 7,,+1-2,(a) if a € Kmﬂ is symmetric (Theorem 3.3). For an arbitrary
a = (a,as,...,a,) € Km+1, we have Yp,41_92,(a) = ’Yo(al)’)/m+1_2n(ag)(7) for
some symmetric a1 = (@i, Giy, ..., Qiy,) € Ay, and some ay = (aj,,ajy,...na;,) €
Km+1_2l, aj, > aj, > --->aj; >0, with some [ € N, where (7) = l,(+ll), and
{in,71 | h €10,2p],l € [0,¢]} = [r] and the notation vx(b), k € {0, 1,2}, stands for
the numbers of (m,n)-selfdual tabloids T with £(T) = b over an (m, n)-selfdual
subset of [m+1] containing exactly k (m, n)-selfdual elements (see 3.6 and Theorem
3.7). Hence to calculate the number 7,112, (a), we are reduced to the case where
a = (a,as,...,a,) € Km+1_2l satisfies a1 > ao > --- > a, and [ € N. We get a
close formula for 7,,+1-2,(a) in the case of r = 2 (see Propositions 4.7-4.9 and
Corollary 4.12). Then in the case of = 3, we describe the (m, n)-selfdual tabloids
in £71(a) (see Proposition 4.15).

0.4. The contents of the paper are organized as follows. In Section 1, we collect
some concepts and known results concerning cells of the weighted Coxeter groups

(A’m,Zm) and (@u Zm) Then we introduce the tabloids of rank m + 1 in Section
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2. In Section 3, we characterize all the tabloids parameterizing the left cells of
(Cp,lr) and give some formulae for the number of left cells of (Cy, £,) in the set
E) for any A € A,,41. Finally, we deduce some more formulae for those numbers

and describe the (m,n)-selfdual tabloids in some special cases in Section 4.

§1. The weighted Coxeter groups (A,,, () and (Cp, lp,).

In this section, we collect some concepts and results concerning the weighted

Coxeter groups (Am, lm) and (Cy, ).
1.1. Let (W, S) be a Coxeter system with ¢ its length function and < the Bruhat-
Chevalley ordering on W. An expression w = s189--- s, € W with s; € S is called
reduced if r = £(w). Call L : W — Z a weight function on W if L(zy) = L(x)+L(y)
for any z,y € W with {(zy) = ¢(z) + ¢(y). Hence L(s) = L(t) for any s,t € S
conjugate in W. Call (W, L) is a weighted Coxeter group.

A weighted Coxeter group (W, L) is called in the split case if L = /.

Suppose that there exists a group automorphism « : W — W with «(5) = S.
Let We = {w € W | a(w) = w}. For any a-orbit J in S, let w; € W be the
longest element in the subgroup W; of W generated by J whenever W is finite.
Let S, be the set of elements w; with J ranging over all such a-orbits in S. Then
(W%, S,) is a Coxeter group and the restriction to W of the length function ¢ of
W is a weight function on W®. The weighted Coxeter group (W®,¢) is called in
the quasi-split case.

1.2. Let < (respectively, <, <) be the preorder on a weighted Coxeter group
(W, L) deﬁLned in [5]. The };qu];\}/%alence relation associated to this preorder is de-
noted by > (respectively, s ﬂ%) The corresponding equivalence classes in W are
called left cells (respectively, right cells, two-sided cells) of W.

1.3. Lusztig introduced a subset D of a weighted Coxeter group (W, L) (see [5,
Chapter 14]). When (W, L) is a Weyl or affine Weyl group which is either in the
split case or in the quasi-split case, Lusztig proved that the set D consists of certain
involutive elements w (hence w? = 1) and that each left (respectively, right) cell
of W contains exactly one element in D (see [5, Chapters 14-16]). The elements
of D were called distinguished involutions when (W, L) is in the split case (see [4]).

1.4. The group ,Z[m, m > 1, can be realized as the following permutation group
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on the set Z (see [2, Subsection 3.6] and [6, Subsection 4.1)]:

gm:{w:Z—>Z

m—+1 m—+1
(¢+m+1)w:(¢)w+m+1,2(i)w: Zi}.

i=1
The Coxeter generator set Sp, = {s; | i € [0, m]} of A,, is given by

t, ift#£4,i+1 (mod m+ 1),
(t)s; =< t+1, ift=i (mod m + 1),
t—1, ift=i+1 (modm+1),

for t € Z and i € [0,m]. Any w € A,, can be realized as a Z x Z monomial
matrix A, = (aij)ijez, where a;; is 1 if j = (i)w and 0 otherwise. The row
(respectively, column) indices of A,, increase from top to bottom (respectively,
from left to right).

1.5. For m € {2n — 1,2n,2n + 1}, let a; - A, — A, be the group automor-
phism determined by o, n(si) = san—; if m = 2n — 1 and aum n (i) = S2n41-i if
m € {2n,2n + 1} for i € [0,m], where we stipulate $;4,41 = s; for any i € Z.
In terms of matrix form, for any w € gm, the matrix A, , () can be obtained
from the matrix A,, by rotating with the angle 7 around the point (n + %, n + %)
(respectively, (n+1,n+ 1)) if m = 2n — 1 (respectively, m € {2n,2n + 1}), where
we identify A, with a plane and identify the positions (i, j), i,j € Z, of A,, with
the corresponding integer lattice points. Then «,, ,, gives rise to a permutation on
the set IT!  (respectively, II" , IIf ) of left cells (respectively, right cells, two-sided
cells) of A,,. Also, amn(D) =D by the definition of the set D in [5, Chapter 14].
1.6. The affine Weyl group C,, can be realized as the fixed point set of ;[m,
m € {2n — 1,2n,2n + 1}, under the automorphism ay, ,, hence can be described

as follows.
Con ={w:Z — Z| (i+m+1)w = (i)w+m+1, (Dw+(€mpn—1)w = €mn, Vi € L},

where €, , is 1 if m € {2n—1,2n} and 0 if m = 2n+1. The Coxeter generator set

S = {t; | i € [0,n]} of C,, is given by setting t; = s;59n,_; for i € [n—1], to = s and
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tn = spif m=2n—1;t; = 8;S9p41—; for i € [n—1], tg = s¢ and t,, = $pSn115y if
m = 2n; t; = S;jSont1—; fori € [n—1], tg = s08150 and t,, = S, Sp418, if m = 2n+1.
In terms of matrix, an element w € gm is in én if and only if the matrix form A,,
of w is centrally symmetric at the points (gn+1,gn+1) if m = 2n—1 and, at the
points ((2n+1)g+ 3, (2n+1)g+ 1) and (2n+1)g+ (n+1),(2n+1)g+ (n+1))
if m = 2n and, at the points ((n + 1)g, (n + 1)q) if m = 2n + 1, where ¢ ranges
over Z
1.7. By a partition of [ € P, we mean an r-tuple A := (A1, A2, ..., \,) with Ay >
--->2 X, in P and 2221 A = [ for some r € P. Call \; a part of \. We sometimes
denote A by jll‘ljg2 .- jkm (boldfaced) with j; > jo > -+ > j,, if j; is a part of A
with multiplicity k; > 1. Let A; be the set of all partitions of [.

Fixw € A,,. For any ¢ # j in [m+1], we write i <, j, if there exist some p, q € Z
such that both p(m+1)+i > g(m+1)+jand (p(m+1)+i)w < (glm—+1)+jw
hold. This defines a partial order <,, on the set [m + 1]. i # j in [m + 1] is said
w-comparable if either i <, j or j <y, 7, and w-uncomparable otherwise.

A sequence aq,asg, ...,a, in [m+ 1] is called a w-chain, if a1 <y az <y -+ <
a,. Sometimes we identify a w-chain aq,as,...,a, with the corresponding set
{a1,as,...,a,}. For any k > 1, a k-w-chain-family is by definition a union X =
U, X; of k w-chains X1, X, ..., X} in [m + 1]. Let dj be the maximally possi-
ble cardinal of a k-w-chain-family for any £ > 1. Then there exists some r > 1
such that dy < ds < --- < d, =m+ 1. Let \y = d; and Agq41 = dgq1 — dj for
k € [r—1]. Then \;y > Ay > --- > A\, by a result of C. Greene in [1]. Hence
w — P(w) := (A1, Ag, ..., A) defines a map from the set A, to Apia-

A subset E of [m + 1] is called a w-antichain, if the elements of E are pairwise
w-uncomparable.

1.8. Let Zm be the length function for the Coxeter group (gm,gm). By the
definition in 1.1, we see that the weighted Coxeter group (Xm, Zm) is in the split
case, while (C,, {,,) is in the quasi-split case.

For any A = (A1,..., A\r) € Ay, define AV = (A, ..., \)) € A,q1 by setting
A =#{kelr]| \ > j} for any j > 1, call \Y the dual partition of .

Lemma 1.9. (1) Regarding C,, as a subset of A,,, m € {2n—1,2n,2n+1}. For
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any x,y € 6n, we have x Y n én iof and only if x Y n gm (see [5, Lemma
16.14]).

(2) The set p=L(\) forms a two-sided cell of A, for any X € Apyr (see [3,
Theorem 6] and [6, Theorem 17.4)).

By Lemma 1.9 (1), we can just use the notation x >y for z,y € 6’n without
indicating whether the relation refers to EW m € {2n —1,2n,2n + 1}, or én

For any A € A, 11, denote E) := én NyY=L(N).

In the remaining part of the paper, when we mention the number m, we always

assume m € {2n — 1,2n,2n + 1} unless otherwise specified.

§2. Tabloids of rank m + 1.

In the present section, we introduce the concept of tabloids of rank m + 1 which
will be used to parametrize the left cells of ,Z[m and of én.
2.1. By a composition of m + 1, we mean an r-tuple a = (aq,as,...,a,) with
ai,...,ar,r € P and 2;1 a; = m-+ 1. Let /~\m+1 be the set of all compositions
of m + 1. Clearly, A1 C Km+1. For any a = (a1,as9,...,a,) € INXmH, let
11,12, ..., be a permutation of 1,2,...,r with a;, > a;, > --- > a;.. Denote
((a) = (a;,, iy, .., a;, ). This defines a surjective map ( : Kmﬂ — N1
2.2. A (generalized) tabloid of rank m + 1 is, by definition, an r-tuple T =
(Ty,Ts, ..., T;) with some r € N such that [m + 1] is a disjoint union of some non-
empty subsets T}, j € [r]. We have &(T) := (|1, T2, ..., | T}]) € Apy1, where |T]
denotes the cardinal of the set T;. Let C,,+1 be the set of all tabloids of rank m+1.
Then & : Cpp1 — /NXmH is a surjective map. Let k = (€ : Cppp1 — A1
2.3. For any i € Z, define (i) € [m + 1] by the condition (i) = ¢ (mod m +1). Let
Q) be the set of all w € ﬁm such that there is some T = (11,75, ...,T,) € Chnt1
satisfying that

(i) If i < j in [r], then {(a)w™!) <, ((b)w™?) for any a € T; and b € Tj;

(ii) ((T;)w™!) is a maximal w-antichain in [m + 1] for any i € [r].

Clearly, the tabloid T is determined entirely by w € €2, denote T by T'(w). The
map T : Q@ — C,,41 is surjective by [6, Proposition 19.1.2]. By a result of C.
Greene in [1], we have k(T (w)) = ¥(w)".
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Lemma 2.4. (see [6, Proposition 19.1.2 and Lemma 19.4.6]) Suppose that y,w €
Q satisfy E(T(y)) = (T (w)). Then y ~w if and only if T(y) = T(w).

2.5. By Lemma 2.4, it makes sense to write T > T’ in C,;, 41 if there exist some
x,y € ) satisfying x Y and T'(x) = T and T'(y) = T’. This defines an equivalence
relation on C,, 1.

Fix w € A,, and let A = (w). Take any a € (~1(\Y). There exists some y € {2
with y ~w and £(T(y)) = a. The tabloid T'(y) is uniquely determined by the
element w and the composition a of m+1, denote it by Ta(w) (see [6, Propositions
19.1.2, 19.4.7 and 19.4.8)).

Lemma 2.6. (see [6, Propositions 19.4.7-19.4.8]) In the above setup, T, gives
rise to a surjective map from the set »~*(\) to £~1(a), which induces a bijection
(again denoted by T,) from the set 114 of left cells of A, in P H(\) to £71(a).

2.7. For further discussion on the left cells of gm and CN'n, let us recall some more
concepts involving tabloids of rank m+1 (see [6, Chapter 20]). Let k € P. Arrange
the numbers 1,2, ...,k on a circle in clockwise order, hence ¢ + 1 is the successor of
t for any t € [k — 1] and 1 is the successor of k. We call such a circle the k-circle.

For example, the following is the 8-circle.

2
Figure 1

For z # y in [k], we denote by 2y the arc of the k-circle which, starting with the
number z and moving clockwise, ends with the number y. For Z C [k], let Z,, be
the set of all elements of Z on zy. Take the 8-circle in Figure 1 as an example, let
Z ={1,2,3,4,6}, x =2, y = 5. Then Z,, = {2,3,4} and Z,, = {1,2,6}.
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Let X ={a; |j€tar <--<a}landY ={b; | j€[r],by <--- <b} be
two subsets of [k] with X NY = and ¢t < r.

(i) Define a subset Hy (X) = {c1,...,c;} of Y such that ¢;, € Y is given recur-
rently by the condition |(Y — {c1,....,¢h—1})ayc,| = 1 for any h € [t].

(ii) Define a subset Ly (X) = {d1,...,d;} of Y such that dj, € Y is given recur-
rently by the condition (Y — {d1,...,dh—1})dpar,,_n| = 1 for any h € [t].

By the definition, we see that the sets Hy (X) and Ly (X) depend only on the
relative positions of the elements of X UY on the k-circle, but neither on k£ € P nor
on any element in [k] — X UY. In particular, Hy (X) = Ly (X) =Y if | X| = |Y].

The following result can be checked directly from the above definition.

Lemma 2.8. Fiz k € P. Ifn is a permutation on [k] such that n(i+1) =n(i) —1
mod k) for any i € [k] (hence the order of the numbers 1,2,....k on the k-circle
are reversed by ) then n(Hy (X)) = Ly (n(X)) and n(Ly (X)) = Hy(1(X))
for any X, Y C [k] with |Y| > |X]| and Y N X = 0.

Take the 8-circle in Figure 1 as an example. Let X = {1,4} and Y = {2,6,7}.
Then Hy (X) = {2,6} and Ly (X) = {2,7}. Define  : [8§] — [8] by setting n(i) =
9 i for any i € [8]. Then n(Hy (X)) = (3,7} = Liz.1({5.8)) = Lygr) (n(X)).

The following results describe the sets Hy (X) and Ly (X)) in more intrinsic way.

Lemma 2.9. (see [6, Lemmas 20.1.2-20.1.3]) Fiz k € P and take X,Y C [k] such
that X NY =0 and | X| < |Y|. Then for anyy € Y, we have
(a) y € Hy(X) if and only if there exists some x € X satisfying |Yyy| = | Xayl.
(b) y € Ly (X) if and only if there exists some x € X satisfying |Yyz| = | Xyal.

2.10. For i,j € [m + 1], we say that j is the (m,n)-dual of i, denote j = i, if
either m =2n—1landi+j=2n+1,orm € {2n,2n+ 1} and i +j = 2n + 2
mod 2n + 2); in this case, we also have i = j, and call 7,7 an (m,n)-dual pair.
Denote E = {i | i € E} for any E C [m + 1] (The notation 7, E for i € [m+ 1] and
E C [m+ 1] will cause no confusion in the context since the pair (m,n) is fixed in
each case).

For any i € [m + 1], we have i = i if and only if either m = 2n and i = n + 1,

orm=2n+1and i € {n+ 1,2n + 2}. When the equivalent conditions hold, 4

(
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with itself forms an (m,n)-dual pair, call i an (m,n)-selfdual element. Hence the
number of (m, n)-selfdual elements in [m + 1] is m + 1 — 2n.

Next result shows that for any Y C [m + 1], the operations Hy and Ly on
X C [m+ 1] with | X| < |Y] and X NY = () are inverse to each other in some

sense.

Lemma 2.11. Let X, Y C [m+ 1] satisfy | X| <|Y] and X NY = 0.

(a) Let Y = Hy(X) and X' = X U(Y — Hy(X)). Then X = Lx/(Y') and
Y =Y'U(X' — Ly (Y")).

(b) Let Y' = Ly (X) and X" = X U (Y — Ly(X)) . Then X = Hx»(Y") and
Y =Y"U (X" — Hxr(Y")).

(c) Hy (X) = Ly#(X) and Ly (X) = Hy(X).

Proof. (a) and (b) are just the results in [6, Proposition 20.1.4]. Then (c) follows
by Lemma 2.8. [

Recall the relation ' on Cm+1 defined in 2.5.

Proposition 2.12. (see [6, Proposition 20.2.2 and Corollary 20.2.3]) Let T =
(Th,...,Tt) € Copy1 and j € [t — 1].
(a) If |T;] < |Tj4a], let

(212.1) T =(Ty, ... Ty, T; U (Tys1 — Hr,,,(T})), Hr,, (T5), Tji, oy T2)
then T ~ T'.
L
(b) If |Tj| = |Tj11l, let
(212.2) T = (Ty,... Ty_1, L, (Tj11), Tjp1 U (Tj — L, (Tj51)), Tjias -, T).

Then T ~ T”.
L

2.13. Let T, T, T” € C,,41 be given as in (2.12.1)-(2.12.2). We say that T’
(respectively, T") is obtained from T by a {j, j+1}-transformation. This definition
does not cause any confusion since T (respectively, T”) is defined only when |T7;| <

|Tj+1| (respectively, |Tj| > |Tj+1]). Note that if |T;| = |T;41| then TV = T" = T.
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Fix E with ) # E C [m+1]. Let Cg be the set of all tabloids T = (T3, T, ..., )
with £ = U;_;T; (hence Cpy1 = Cpmy1))-

For any T, T € Cg, written T ~ T’, if there exists a sequence Ty = T, T4q,...,
T, = T’ in Cg such that for every i € [r], T; can be obtained from T;_; by
an {h;, h; + 1}-transformation for some integer h;. This defines an equivalence
relation on the set Cg.

Let | = |E| and &g(T) := (|11, | 1o, ..., |T)|) for any T = (13,715, ...,T,) € Cg.
Then &g : Cp — /NXZ is a surjective map.

2.14. Take E with ) # E C [m + 1] and E = E. Denote T = (11,15, ..., T,) and
TP = (T,,...,T»,Ty) for any T = (11, T5,...,T,) € Cg. Then T, T°P € Cr. We
say that T € Cg is (m,n)-selfdual, it T ~ T.

Denote a°® = (ay, ...,as,a1) for a = (a1, as,...,a,) € Km“. Call a symmetric,

if a°? = a.

When m € {2n — 1,2n + 1}, define a map 7,,11 : [m + 1] — [m + 1] by

, i+ e [H]
1 (f) = { i—mE e [ 1 1),
Then for any 4, j € [m+1], we have that 7,41 (i) = Tyy1 (i), that i is (m, n)-selfdual
if and only if so is 7,,41(7), and that on the (m + 1)-circle, j is the successor of i
if and only if 7,,,41(j) is the successor of 7,11 (7).
Define 7,,41(T) to be the tabloid obtained from T by replacing each ¢ € [m+1]
by Tp41(2) for any T € Cppp1.

Lemma 2.15. Let T, T € Cp11.

(1) T ~ T’ if and only if T ~ T’.

(2) When a € A,y y is symmetric, T € £(a) is (m,n)-selfdual if and only if
T =T.

(8) If T = T/, then T is (m,n)-selfdual if and only if so is T .

(4) When (m,n) € {(2n —1,n), 2n+1,n)}, T is (m,n)-selfdual if and only if

50 is Tm+1(T).

Proof. (1) follows by Proposition 2.12, Lemmas 2.4 and 2.6. For (2), by the

assumption of a being symmetric, we have & (TOP) = a for any T € £7%(a). So
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T " ~ T if and only if T~ = T by (1) and Lemma 2.4. This implies (2). For
(3), let T = (T3, T3,...,T,). We may assume without loss of generality that T’ is
obtained from T by an {4, i+ 1}-transformation for some i € [r—1]. Then T * can
be obtained from T’ by an {r — i,r + 1 — i}-transformation by Lemma 2.11 (c).
This implies that T ~ T " if and only if T/ ~ T""". Hence (3) follows. Finally, (4)

follows by the properties of the map 7,,+1 mentioned proceeding the lemma. [

By Lemma 2.15 (3), we can call an ~-equivalence class of C,,11 (m,n)-selfdual

if some (hence all) tabloid in this class is (m, n)-selfdual.

§3. A formula for the number of left cells of 6n in the set £\, A € A 11

In the present section, we first characterize all the tabloids of rank m + 1 which
correspond to the left cells of én Applying this result, we deduce a formula for
the number of left cells of 5'71 in the set Fy for any A € A, 11.

Theorem 3.1. Let A\ € Ayyqq and a € (T1(AY). Then for any T' € II4 (see
Lemma 2.6), we have T N C,, # 0 if and only if Ta(T) is (m,n)-selfdual.

Proof. The automorphism o := oy, », of gm stabilizes the set 2 (see 1.5 and 2.3).
We have T'(a(w)) = WOP for any w € Q (see the matrix description for the
action of & on Ay, in 1.5). This implies Ther (a(T)) = Ta(L)  for any T’ € I14.
Hence by Lemmas 2.6, 2.15 and Proposition 2.12, we see that

(%) (") =T <= T4(T) is (m,n)-selfdual.

First assume I'NC, # 0. Then o(I') NT # @, hence o(T") = T since both T and
a(T") are left cells of A,,. This implies that Tx(T') is (m, n)-selfdual by (x). Next
assume that T,(I") is (m,n)-selfdual. Then «(I') = I" by (%). Recall the set D
mentioned in 1.3. The set I' D consists of a single element (say d) by 1.3. Then
a(d) € a(T') N D by the fact a(D) = D (see 1.5). This implies d = a(d) by the
facts () =T and T ND| =1, ie,d eI NC,. Hence TNC, 0. O

3.2. Suppose that ) # E C [m +1] and E = E. For any b € K‘E‘, let v (b)
be the number of all (m,n)-selfdual tabloids in ¢;'(b) (see 2.13). Under the
conditions assumed on E, we see that the number vg(b) depends only on |F| and

the number of (m,n)-selfdual elements contained in E, but not on a particular
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choice of a subset F in [m + 1]. Since |E| is determined by b, we may write yg(b)
by vk (b) if the number of (m,n)-selfdual elements contained in E is k.

Note that the number of (m,n)-selfdual elements in [m 4 1] is m + 1 — 2n (see
2.10).

We have not yet found any efficient way to calculate the number 7, (a) in general.
However, there is a simple formula for 7,,11_2,(a) when a € Kmﬂ is symmetric
(see 2.14).

Theorem 3.3. Suppose that a = (ai,...,a,) € Api1 is symmetric with r €
{21,21 + 1} for some l € N. Then

(3.3.1)
0, ifm=2n+1 andr = 2,
n!

I ]
<n_Zk:1 ak) =y !

Ym+1-2n(a) = ga1t--tar , if otherwise,

Proof. Any (m,n)-selfdual tabloid T = (T1,Ts,...,T,) € £ (a) is determined
entirely by its first [ components if r € {2[,2] + 1} with [ € N by the facts that
T; = Tri1—; for any i € [I] and that Tj41 = [m + 1] — Uizl(Ti U T;) is a union of
some (m,n)-dual pairs (see 2.10) if r = 2l + 1 is odd. If m = 2n+ 1 and r = 2I
then the (m,n)-selfdual elements n+ 1,2n + 2 can not be in T; for any i € [2[] and
hence Yy, +1-2n(a) = 0. If m = 2n then the number r must be odd as m+1 is odd.
If r =20+ 1 is odd then any (m,n)-selfdual elements, whenever they exist, must
be in Tj4;. Since the elements of Ué:l T; are pairwise not (m,n)-dual and none of
them is (m,n)-selfdual, the number of the choices for T is 2% ((Z) Recurrently,

when 77,75, ...,T,—1 have been chosen for h € [I], the number of the choices for
Tp is 270 ("7 79 =1) This proves the formula (3.3.1). O

ahp

When m = 2n — 1 and r = 2[, we have n = a; + - - - + a;, hence (3.3.1) becomes

n!
n
2 l—'.
Hk:1 ag-

Next result gives a necessary and sufficient condition on A € A,,;1 that there

(3.3.2) Yo(a) =

is some symmetric a in (71(\Y).
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Lemma 3.4. Let A= (A1,..., \r) € Apyq-
(1) There exists some symmetric a in (" (\Y) if and only if X satisfies the
condition (3.4.1) below.
(3.4.1) X; is odd and \; is even for some k € [0,7] and anyi,j, 1 <i <k <j<r.
(2) When the condition (3.4.1) holds, the set Ex is empty if and only if m =
2n+1 and k = 0.

Proof. The proof for (1) is straightforward. Then (2) follows by (1) and Theorem
33. O

Example 3.5. Let A\ = 97642. Then \V = 524232212, The composition
a=(54,3,1,2,1,3,4,5) € ("1(\V) is symmetric.
3.6. Assume that A € A,,;1 satisfies the condition (3.4.1). By Theorems 3.1, 3.3
and Lemmas 3.4, 2.6, we see that for any symmetric a € (71(\Y), the number
of left cells of 5n in E) is equal to 7,,4+1-2n(a), which can be computed by the
formula (3.3.1).
Next we consider the number of left cells of 5n in E for an arbitrary A € A, 41.
For any A € Ayq1, let AV = b¥*bX2 ... bk Write k; = 21; + p; for any i € [r],
where [; € N and p; € {0,1}. Define ¢; < g2 < -+ < @y in N by the condition
{g; |7 €]} ={i €r]|p; =1} for some u € N. Take a € ("(\V) as follows.
(3.6.1)
A= (b1, ooy b1, B2y coey By ooy by ooy By By B s oves B By s By evey by o b2, b o B1).
—_—— e — —_—— N —

I lo lr lr lo I

Define

(3.6.2)
a; = (bl, ...,bl,bg, ...,bg, ...,br, ...,br,br, ...7br, ...,bQ, ...,bg,bl, ...,bl).
——— N—— ——— N — e N——
l]_ l2 lT lr l2 ll
(3.6.3)
as = (bgy, gy -5 bg,,)-

We have

Theorem 3.7. Let A\ € A1 be given as in 3.6, and let a € /N\mH, a; € /N\gl
and ag € Km+1_2l be obtained from X as in (3.6.1)-(5.6.3), respectively, where
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= 2;1 lzbz Then

(3.7.1) Ym+1-2n(a) = (7) Yo(a1)Ym+1-2n(az).

Proof. Let p=3"._, l;. For any

T = (T17T2a '-'7Tpa Tp+17 "'7Tp+u7Tp+u+17 ---7T2:D+u) € 5_1(a)’
let

Tl = (Tl,TQ, ---,Tpan+u+17Tp+u—|—27 ---7T2p—|—u) and T2 = (Tp+1,Tp+2, ---yTp—l—u)

and E = [m+ 1] — Ufi;HTi- Then |E| = 21 and T; € ¢,'(a;) and Ty €
§[;L1+1]_E(a2). We see by Lemma 2.15 that T is (m, n)-selfdual if and only if both

T, and Ty are (m,n)-selfdual. When the equivalent conditions hold, we have
E = E again by Lemma 2.15. For any k € [n], denote by [m + 1]o, the set of all
E C [m + 1] with |E| = 2k and E = E such that E contains no (m,n)-selfdual
element. For any F € [m + 1]y, let C% be the set of all (m, n)-selfdual

T = (11,75, .. Ty, Ty Ty s Tt s Topyn) € €1()

with £ = [m + 1] — f;r;L_H T!. Then

n
Ym+t1—2n(@) = |[m + 1o - |CH| = (l) |IC%|  for any fixed E € [m + 1].

T — (T1,T2) is a bijective map from the set C% to the Cartesian product

al ao
Cy % C[mJr1

&' (ay), f[_mlH]_E(ag), respectively. This proves the formula (3.7.1) by the facts

az

| where C3', C[m

+1]—p are the sets of all (m,n)-selfdual tabloids in

Yo(ar) = |CE'| and ymi1-2n(az) = [Cpn 4y pl for any B € [m +1]y. O

¢4. Enumeration of some special tabloids in C,, 1.

For any a € Ay, let Ca 1 be the set of all (m,n)-selfdual tabloids T in
¢ *(a). We want to formulate the number ,,41-2,(a) := |C2_;|. By Theorems
3.3 and 3.7, it is enough to consider the case where a = (a1, as,...,a,) € Km+1
satisfies a1 > as > - -+ > a, for some r > 1.

First consider the case of r = 2.
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Lemma 4.1. Let T = (Y, X) € Cyp41 satisfy |Y| > | X|. Then T is (m,n)-selfdual
if and only if Ly (X) =X and Y — Ly (X) =Y — Ly (X).
Proof. Let X' = Ly (X) and Y/ = X U(Y — Ly(X)). Then (¥, X) ~ (X',Y"). So
T is (m,n)-selfdual <= X' =X andY' =Y
— Ly(X)=Xand XU(Y - Ly (X)) =Y

— Ly(X)=XandY — Ly (X) =Y — Ly(X).
The last equivalence follows by the facts that

Y =Ly(X)U(Y —Ly(X)) and XU (Y — Ly (X)) =X UY — Ly (X). O

4.2. First assume m = 2n — 1. Hence m+1 —2n =0 and i := 2n + 1 — i for any
i € [2n]. Define an admissible subsequence (3’ in each of the following sequences

Bi; (note that f3;; has even number of terms in [2n]).

(a) Consider the sequence 8,4 : n,n—1,...,¢q+1,¢+ 1,...,n — 1,n for any
q € [0,n —1]. A subsequence 3 : iy,12,...,i, of B, , is called admissible, if the
following two conditions hold:

(al) r =n — q and iy, # iy for any h, k € [n — q;

(a2) Let 5" : j1,72, ..., jn—q be the subsequence of (3, ;, complement to 5’ (i.e.,
{in,jn | h € [n—q|} = Bn,q identifying the sequences with the corresponding sets).
Then the term j, occurs after i; in the sequence (3, 4 for any h € [n — g].

Let A,, 4 be the set of all admissible subsequences of 3, ; and let d,, 4 := |A,, 4|.
Denote 3,0, An0, 0n,0 simply by 8,, A, d,, respectively. Clearly, the equation
0n.q = On—q holds for any ¢ € [0,n — 1].

(b) For any i < j in [n] with j — i odd, denote by 3;; (respectively, B5;) the

sequence i + 1,7+ 2,...,j — 1 (respectively, j — 1,7 — 2,...,i + 1). A subsequence

B : hi,ho, ..., hy of B;; (respectively, ;) is called admissible, if r = % and if,
let 3" : ki, kg, ..., kizi-1 be the subsequence of 3;; (respectively, #;;) complement
2

to 3, then k; occurs after h; in f3;; (respectively, 8;;) for any [ € [%}

It is well known that the number of admissible subsequences in 3;; (respectively,
L

1\

formula for the number §,, of admissible subsequences in 3,.

) is Ciiz1, where C 1= ) is the I-th Catalan number. The following is a
2
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Proposition 4.3. §, := (LZJ) for any n € P, where |x| stands for the largest
2

integer not greater than x for any x € Q.

To show Proposition 4.3, we need some preparation. Let ﬁ,'%q: 115,02, vy In—g

be a subsequence of 3, , satisfying the condition 4.2 (al). Let p(3, ,) be the

largest k € [0,n — q] with iy,19, ..., 9% a subsequence of n,n —1,...,q+ 1. Denote
01,12, Ip(gy ) DY ﬁr’f’)q. Then £, , is entirely determined by ﬁ,f&?q.

Let 3 : iy, 12, ..., i, be a subsequence of 3, satisfying the condition 4.2 (al). For
any q € [0,n—1], let 3;, , be obtained from 3’ by removing all the terms in 3, and
let 3, , be the subsequence of 3, , complement to 3, , (see 4.2 (a2)), where we

stipulate 3y to be the empty sequence. Then the following result can be checked

easily:

Lemma 4.4. Let 3 :i1,i0,...,1, be a subsequence of 3, satisfying the condition
4.2 (al).
(1) The following three conditions on 3’ are equivalent:

(a) 5" is admissible in Gy ;

(b) By, , is admissible in By 4 for every q € [0,n —1];

(c) p(B") = 5 and the term jy, occurs after iy in By for every h € [p(B')], where
B": 1,72, ey Jn 15 the subsequence of B, complement to 3’ (see 4.2 (a2)).

(2) For q € [0,n — 1], if B, , is admissible in B, 4, then p(B, ,) = p(B,,), in

n,q
n—gq

particular, p(B,, ,) = “5*.

4.5. Proof of Proposition 4.3. Consider the set A,. We may assume n > 1, for
otherwise the result is obvious. By Lemma 4.4 (1), we see that 3, ; € A, 1 for any
B € A,. On the other hand, for any A: i1,72,...,0,—1 in A, 1, let A7 (respectively,
A1) be obtained from A by inserting the term 1 (respectively, 1) immediately after
ip(x)- Then A1 is always in A,,, while A; is not in A, if and only if p(\) < %. Since
p(A) = 251 by the condition A € A,, ; and Lemma 4.4 (2), this implies that A; is
not in A,, if and only if n is odd (say n =2+ 1) and p(\) = 1. When n = 2]+ 1,
let A7 | be the set of all such subsequences \: i1, ia,...,4; of #,n —1,...,3,2 that,
if \': j1, 52, ..., j; is the subsequence of fi,n — 1, ..., 3,2 complement to ), then the

term j; occurs after the term i; for every h € [[]. Then |A] ;| is equal to the
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number of all A € A, ; with A\; ¢ A,. It is well known that [A] ;| = C; (the
[-th Catalan number). So by applying induction on n > 1 and by the fact that

On1 = 0p—1, we have

B { Sp1+ (G —C1)=2(3) =5 () =", ifn=20+11s odd,

20,1 = 2(2l 1) = (QZZ), if n = 2[ is even.

Our result is proved. [

Remark 4.6. The result in Proposition 4.3 can be extended to a more general
case. Let B : Gy ig—1, .0 i1,01,02,...,9 (respectively, B : i1,%9,...,%¢, g, it—1, .0y 1)
satisfy 1 < i1 < ig < -+ < i < n. A subsequence (' : ji,jo, ..., jr of B (respec-
tively, 3) is called admissible, if the following conditions are satisfied:

(i) r =t and jj, # ji for any h, k € [t];

(ii) Let 8" : ji, 45, ..., 7+ be the subsequence of 3 (respectively, 3) complement
to 4. Then j, occurs after j, in 3 (respectively, 3) for any h € [t].

By the same way as that for Proposition 4.3, one can prove that the number of
admissible subsequences of 3 (respectively, 3) is equal to (Lé J)'

The following is a formula for the number vy(a) with a € As, having exactly

two different parts.

Proposition 4.7. Fora= (n+t,n —t) with t € [n — 1], we have

41y @@= Y (f‘_”J>(h‘1)Hc

hi,ha,..., h:eN
1<hi<ho< - <hi<n
hi+1—hi odd Vi

where Cy is the l-th Catalan number for any | € N.

Proof. Let T = (Y, X) € C3,. By the condition of T being (2n — 1,n)-selfdual,
we have Ly (X) ={icY |i¢ Y} and Y — Ly (X) = {h1,ha, ..., h¢, he, ..., ho, hy}
with some 1 < hy < ho < --- < hy < n by Lemma 4.1. According to the definition
of the set Ly (X), we get the following results by Lemma 2.9 (b).
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(i) For any j € [t — 1], let Yy 410,01 = {hj1,hjo, ..., hjn, } be with h; <
hj1 < hja < -+ < hjn; < hjy1, then hji,hjo, ..., hj,, is an admissible sub-
a1 2 hy 4+ 1,k + 2, ki — 1 (hence hj 1 — hy is odd and
n; = M b 4.2 (b)) and Yh +1 1 h 1 [hj + 1,hj+1 — 1] — th—|—1,hj+1—1-

sequence of By, n

Write Y ——7 57 {hjl, Loy e }Wlthh <hjy <hly <o <hj, < hjir
Then h;n e h;Q, h’1 is an adm1851ble subsequence of hj 1 —1,...,h; +2,h; + 1.

(ii) Let Y, sy = {hi1, heay ooy Ben, } be with 37 1 hyp, hya, .oy By, & subse-
quence of B, n : he + 1, hy +2,...,n,n,n —1,...,hy + 1. Then §’ is admissible in
Bhn-

(iii) Let Ym,hl—l = {ho1, ho2, ---s hon, } be with 3’ : ho1, hoa, ..., hon, a sub-
sequence of By p, : hi —1,hy —2,...,1,1,2,...,hy — 1. Then ' is admissible in
B,k -

(iv) Ly (X) = (Uje[t 1] (Yh‘+1 hip—1UY——g j+1—1L,h; +1>>UYht+1 htHUYm,hﬁr
Conversely, fix hy,ho,....,hy e Pwitht e Pand 1 < hy < ho < --- < h; <n

and h; 1 — h; odd for all i € [t — 1]. Take an admissible subsequence ﬁj in Bh, n,.,
for any j € [t — 1]. Also, take an admissible subsequence [3; (respectively, /() in
Bh,.n (vespectively, 81 p,). For j € [t — 1], let 3] be the subsequence of B, ,,,
complement to 3} and let /3;-, be the subsequence of Bmz such that JL = ﬁ_;’ by
regarding the sequences as the corresponding sets. Let Y be the union of the sets
{hi,hy | 1 €[t]}, B, B, and B, ﬁ? with j € [t — 1], regarding the sequences as the
corresponding sets. Let X = [2n] — Y. Then (Y, X) € C3,, by Lemma 4.1.

By 4.2 (b) and Proposition 4.3, we see that the numbers of admissible subse-
quences in Bp; n,..s J € [t — 1], Buyn, Bin, are Chj+1;}Lj—1, (LTITQEJ), (L]ZiTillJ),
respectively. This implies the formula (4.7.1). O

We can get the corresponding results in the case of m € {2n,2n 4 1} similarly

by noting that the number of (m,n)-selfdual elements in [m + 1] is m + 1 — 2n.

Proposition 4.8. Fora= (n+1+t,n—t) witht € [0,n — 1], we have

(481)  mla)= ) (f‘l) Hc% -

1<hi<ho<---<hiy1=n+1
h7_'+1 *h,i odd Vi
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with the convention that v1((n + 1,n)) = (L J)

Proposition 4.9. Fora= (n+1+t,n+1—1t) with t € [n], we have

t
(4.9.1) v2(a) = Z HCM
2
hi,ha,..., ht+1 eN =1

0=hi1<ho<:--<htt1=n+1
hi+1—hi odd Vi

From Theorem 3.3 and Propositions 4.7-4.9, we see that for k£ € P with 2k <
m + 1, the set Fokym+1-2x is empty if and only if m = 2n + 1 and 2k = m + 1.
Example 4.10. (1) In Proposition 4.7, take n = 5 and t = 2, then a = (7, 3)
and ((a)¥ = 231%. The pairs (hy, he) occurring in the summation of (4.7.1) are
(1,2),(2,3),(3,4),(4,5),(1,4), (2,5). Theno(a) = (3)+ )+ () +(3)+1+1 = 12,
which is just the number of left cells of 55 in the set Egs1a4. The set C§, consists
of the following tabloids:

{3,4,5} U {1,2,9,10}, {6,7,8}), {3,4,6} U {1,2,9,10},{5,7,8)}),

{3,5,7} U {1,2,9,10},{4,6,8}),

{5,9,10} U {3,4,7,8},{1,2,6}),

= ( )
= ({4,5,10} U {2,3,8,9},{1,6,7}),
= ( )
(

= ( )
= ( )
= ({4,6,10} U {2,3,8,9},{1,5,7}),
({1,5,9} U {3,4,7,8},{2,6,10}), Ts=({8,9,10} U {4,5,6,7},{1,2,3}),
= ( )

{1,8,9} U {4,5,6,7},{2,3,10}), Ti0=({2,8,10} U{4,5,6,7},{1,3,9}),
Ty, = ({2,5,8} U{1,4,7,10},{3,6,9}), T2 = ({3,7,10} U{2,5,6,9},{1,4,8}).
(2) In Proposition 4.8, take n = 5 and ¢t = 2, then a = (8,3) and ((a)" = 2315,
The triples (h1, ha, hg) occurring in the summation of (4.8.1) are (4, 5,6), (2, 5,6), (2, 3,6).
Then v1(a) = (i’) +1+1 =5, which is just the number of left cells of C5 in the
set Fas15. The set C3 consists of the following tabloids:

= ({4,7,11} U{2,3,6,9,10},{1,5,8}),
T, = ({3,8,11} U{2,5,6,7,10},{1,4,9}),
T3 = ({9,10,11} U {4,5,6,7,8},{1,2,3}),
Ty = ({1,9,10} U {4,5,6,7,8},{2,3,11}),
Ts = ({2,9,11} U {4,5,6,7,8},{1,3,10}).
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(3) In Proposition 4.9, take n = 5 and ¢t = 2, then a = (8,4) and ((a)" = 2414,
The triples (hq, ho, hg) occurring in the summation of (4.9.1) are (0, 1, 6), (0, 3,6), (0, 5, 6).
Then 72(a) = 2+ 1+ 2 = 5, which is just the number of left cells of Cs in the set
E5aq4. The set C3, consists of the following tabloids:

T, = ({2,3,7,81 U{1,6,11,12}, {4,5,9,10}),
T, = ({2,4,7,9} U {1,6,11,12},{3,5,8,10}),
Ty = ({1,4,7,10} U {3,6,9,12},{2,5,8,11}),
T, = ({1,2,8,9} U {5,6,7,12},{3,4,10,11}),

Ts = ({1,3,8,10} U {5,6,7,12}, {2,4,9,11}).
Remark 4.11. (1) From Propositions 4.7-4.9, we can get a formula of the number
Ym+1—2n(@) for any a = (r,s) with r,s € Pand r+s € [m+1] (see 3.2). Note that
here we allow the case r < s. For, if r = s then a is symmetric, hence 7,,4+1-2,(a)
is known by Theorem 3.3; if r < s then 7, 11-_2,(2) = Ymt1-2,(a°P).

We also allow the case r+s < m+1. When m+1—2n € {0,2}, we have r+s = 2p
and r—s = 2q for some p,q € Z. If r > s, then the formula of the number ~q((r, s))
(respectively, v2((r,s))) can be obtained from (4.7.1) (respectively, (4.9.1)) by
replacing n, t by p, q (respectively, p — 1, q), respectively. When m + 1 —2n =1,
we have r +s =2p+ 1 and r — s = 2¢ + 1 for some p,q € Z. If r > s, then the
formula of the number ~, ((r, s)) can be obtained from (4.8.1) by replacing n, t by
P, q, respectively.

(2) The results in Propositions 4.7-4.9 can be extended to a more general case.
Let A = (204,213, ...,20,,2l,41 + 1,...,2l; + 1) € A,y for some rt,l; € N with
r € [t —1] and i € [t] (Comparing with the partitions in Lemma 3.4). Then
a= (a1, az,....a;,_1,t,7,a;,_1,...,a2,a1) € (1(A\Y) for some 1 < a; <as <+ <

aj,—1. Then the following is a formula of the number 7,,+1_2,(a).
Corollary 4.12. In the setup of 4.11 (2), we have

(4.12.1)

!
— 9a1t-ta -1 n

'7m—|—1—2n(a) T fym+1_2n((t,7’)).

(n—ap —-—ap—1)! Hilz_ll a;!

Proof. Let a1 = (a1,a9,...,a;,—-1,a1,-1, ..., a2,a1) and ag = (t,7). Then v,,4+1-2n(a) =
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Yo(a1)Ym41—2n(az)( " ) by Theorem 3.7. Since

a1+-Fap —1
n n!
”Yo(a1>( ) - T g,
ap+ -+ ay (n—ar = —a, )LL) as!

by Theorem 3.3, this proves the formula (4.12.1). O

4.13. Let T = (11,Ts,...,T,) and T = (17,13, ....,T)) in Cp41 satisfy |T1| >
|To| > -+ > |T| and |T]| < |T3| < --- < |T)| and T/ ~ T. Then |T/| = |T}4+1_
for any ¢ € [r]. The tabloid T is (m,n)-selfdual if and only if T’ is (m, n)-selfdual
if and only if T/ = T, 1, for any i € [r]. When the equivalent conditions hold,
define a partition T; = T;;UT;oU---UT} 41—, for any j € [r] such that the sets
T/ := TjpUTjU---UTyy, for j € [r] and h € [r + 1 — j] satisfy the condition
Ly, (T]',) = T} for any h € [r — j].

4.14. Let us describe (m,n)-selfdual T = (11, T, T3) € Cpy1 with [Th] > |To| >
|T5|. Define the partitions Ty = T11UT12UT3 and Tp = T51UTse and T3 = T3y as
those in 4.13 with r = 3. Define

X = (T11,T51 UT12 U T3, T35 UTsy) and Y := (Th U T2, To1 UTee UTis,T31).

Then X is obtained from T by a {2,3}-transformation followed by a {1,2}-
transformation, while Y is obtained from T by a {1, 2}-transformation (see 2.13).
So X ~ T ~ Y. We see by Lemma 2.15 that both X and Y are (m,n)-
selfdual and that Y = X °. This implies that Ty, = Ty; and Thy = T2 and
Ti3U Ty = Tpy UTi3. Denote E° = {i € E | i € E} and E' = E — E° for any
E C[m+1]. Then Tly = TJ, and T’ = (T11, TS UT12 UT}, Ts1 UTo UTS, UTY,).

Hence we have

Proposition 4.15. For any a = (a1, a2,a3) € Km+1 with a1 > as > as, a tabloid
T € ¢~ Y(a) is (m,n)-selfdual if and only if T = (T} UT1oUTy3, To1UTho,T11) for
some T11, T2, T13,To1 C [m + 1] satisfying the following conditions:
(i) Tir = Loy, ump0ms (121);
(i) TiiUTh2 = Ly, ur0mys (T UTh2);
(iii) Toy = Ly, oz (Th1) and T UTYy = L
(iv) TYy = Tty = 0 and Ty = Ty,

To1 UT12UT13 (Tl 1 ) 2
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Example 4.16. Let (m,n) = (15,8) and a = (8,5,3). Then

{12,13,14} U {7,8} U {2,6,11},{1,15,16} U {9, 10}, {3,4,5}),

T = ( )
T, = ({4,12,14} U {2,11} U {8,9,10},{1,7,16} U {6,15},{3,5,13}),
Tll = ({4, 9, 6} U {157 16} U {37 10, 14}, {7, 8, 9} U {1, 2}, {11, 12, 13}),
T, = ({4,6,12} U {3,10} U {1,2,16},{8,9,15} U {7, 14}, {5, 11, 13})

are four tabloids in C3y with T, = 716(T;) for i = 1,2 (see 2.14).

Question 4.17. Can one find a close formula of the number 7,,41_2,(a) for any

a=(ay,...,a) EKmH withay >--->a,andr >37

1.
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