## THE CELLS IN THE WEIGHTED COXETER GROUP $(\widetilde{C}_n,\widetilde{\ell}_m)$

#### Jian-yi Shi

Department of Mathematics East China Normal University Shanghai, 200241, P.R.China

ABSTRACT. The affine Weyl group  $(\tilde{C}_n, S)$  can be realized as the fixed point set of the affine Weyl group  $(\tilde{A}_m, \tilde{S}_m)$ ,  $m \in \{2n-1, 2n, 2n+1\}$ , under a certain group automorphism  $\alpha_{m,n}$ . Let  $\tilde{\ell}_m$  be the length function of  $\tilde{A}_m$ . The present paper is to give a combinatorial description for all the left cells of  $\tilde{A}_m$  which have non-empty intersection with  $\tilde{C}_n$ . Then we use this description to deduce some formulae for the number of left cells of the weighted Coxeter group  $(\tilde{C}_n, \tilde{\ell}_m)$  in the set  $E_{\lambda}$  associated to any partition  $\lambda$  of m+1.

#### §0. Introduction.

**0.1.** Let  $\mathbb{Z}$  (respectively,  $\mathbb{N}$ ,  $\mathbb{P}$ ) be the set of all integers (respectively, non-negative integers, positive integers). The affine Weyl group  $(\widetilde{C}_n, S)$  can be realized as the fixed point set of the affine Weyl group  $(\widetilde{A}_m, \widetilde{S}_m)$ ,  $m \in \{2n-1, 2n, 2n+1\}$ , under a certain automorphism  $\alpha_{m,n}$  with  $\alpha_{m,n}(\widetilde{S}_m) = \widetilde{S}_m$ , where  $\widetilde{S}_m$ , S are the Coxeter generator sets of  $\widetilde{A}_m$ ,  $\widetilde{C}_n$ , respectively. The restriction to  $\widetilde{C}_n$  of the length function  $\widetilde{\ell}_m$  of  $\widetilde{A}_m$  is a weight function of  $\widetilde{C}_n$ . It is known that there is a surjective map  $\psi$  from  $\widetilde{A}_m$  to the set  $\Lambda_{m+1}$  of partitions of m+1 which induces a bijection from the set of two-sided cells of  $\widetilde{A}_m$  to  $\Lambda_{m+1}$  (see [6], [3]). For any  $i \leq j$  in  $\mathbb{N}$ , denote  $[i,j] := \{i,i+1,...,j\}$  and denote [1,i] simply by [i]. Let  $E_{\lambda} := \psi^{-1}(\lambda) \cap \widetilde{C}_n$  for  $\lambda \in \Lambda_{m+1}$ . In the paper [7], we described all the cells of the weighted Coxeter

 $Key\ words\ and\ phrases.$  affine Weyl group; weighted Coxeter group; quasi-split case; cells; partitions.

Supported by the NSF of China (11131001 and 11471115)

- group  $(\widetilde{C}_n, \widetilde{\ell}_{2n-1})$  corresponding to the partitions  $\mathbf{k1^{2n-k}}$  and  $\mathbf{h21^{2n-h-2}}$  for all  $k \in [2n]$  and  $h \in [2, 2n-2]$  and also all the cells of the weighted Coxeter group  $(\widetilde{C}_3, \widetilde{\ell}_5)$ .
- **0.2.** Denote by  $\lambda^{\vee}$  the dual partition of  $\lambda \in \Lambda_{m+1}$  (see 1.8). Let  $\widetilde{\Lambda}_{m+1}$  be the set of all compositions of m+1 (see 2.1). There is a natural surjective map  $\zeta$  from the set  $\widetilde{\Lambda}_{m+1}$  to  $\Lambda_{m+1}$  (see 2.1). Call  $\mathbf{a} = (a_1, a_2, ..., a_r) \in \widetilde{\Lambda}_{m+1}$  symmetric, if  $a_i = a_{r+1-i}$  for any  $i \in [r]$ . Let  $\mathcal{C}_{m+1}$  be the set of all tabloids of rank m+1 (see 2.2). We can define an equivalence relation  $\approx$  on  $\mathcal{C}_{m+1}$  (see 2.13). There exists a bijective map from the set  $\Pi_m^l$  of left cells of  $\widetilde{A}_m$  to the set of  $\approx$ -equivalence classes of  $\mathcal{C}_{m+1}$  (see [6, Subsection 19.4]). There exists a natural surjective map  $\xi$  from  $\mathcal{C}_{m+1}$  to  $\widetilde{\Lambda}_{m+1}$  (see 2.2).
- **0.3.** In the present paper, we prove that a left cell  $\Gamma$  of  $\widetilde{A}_m$  has a non-empty intersection with  $\widetilde{C}_n$  if and only if the  $\approx$ -equivalence class of  $\mathcal{C}_{m+1}$  corresponding to  $\Gamma$  is (m, n)-selfdual (see 2.13-2.14, Lemma 2.15 and Theorem 3.1). By this result, we can deduce some formulae for the number  $\gamma_{m+1-2n}(\mathbf{a})$  of left cells of  $(\widetilde{C}_n, \widetilde{\ell}_m)$ in the set  $E_{\zeta(\mathbf{a})^{\vee}}$  for any  $\mathbf{a} \in \widetilde{\Lambda}_{m+1}$ . More precisely, we give a close formula for the number  $\gamma_{m+1-2n}(\mathbf{a})$  if  $\mathbf{a} \in \widetilde{\Lambda}_{m+1}$  is symmetric (Theorem 3.3). For an arbitrary  $\mathbf{a} = (a_1, a_2, ..., a_r) \in \widetilde{\Lambda}_{m+1}$ , we have  $\gamma_{m+1-2n}(\mathbf{a}) = \gamma_0(\mathbf{a}_1)\gamma_{m+1-2n}(\mathbf{a}_2)\binom{n}{l}$  for some symmetric  $\mathbf{a}_1 = (a_{i_1}, a_{i_2}, ..., a_{i_{2p}}) \in \widetilde{\Lambda}_{2l}$ , and some  $\mathbf{a}_2 = (a_{j_1}, a_{j_2}, ..., a_{j_q}) \in \widetilde{\Lambda}_{2l}$  $\widetilde{\Lambda}_{m+1-2l}$ ,  $a_{j_1} > a_{j_2} > \cdots > a_{j_q} > 0$ , with some  $l \in \mathbb{N}$ , where  $\binom{n}{l} := \frac{n!}{l!(n-l)!}$  and  $\{i_h, j_l \mid h \in [0, 2p], l \in [0, q]\} = [r]$  and the notation  $\gamma_k(\mathbf{b}), k \in \{0, 1, 2\},$  stands for the numbers of (m, n)-selfdual tabloids **T** with  $\xi(\mathbf{T}) = \mathbf{b}$  over an (m, n)-selfdual subset of [m+1] containing exactly k(m,n)-selfdual elements (see 3.6 and Theorem 3.7). Hence to calculate the number  $\gamma_{m+1-2n}(\mathbf{a})$ , we are reduced to the case where  $\mathbf{a} = (a_1, a_2, ..., a_r) \in \widetilde{\Lambda}_{m+1-2l}$  satisfies  $a_1 > a_2 > \cdots > a_r$  and  $l \in \mathbb{N}$ . We get a close formula for  $\gamma_{m+1-2n}(\mathbf{a})$  in the case of r=2 (see Propositions 4.7-4.9 and Corollary 4.12). Then in the case of r=3, we describe the (m,n)-selfdual tabloids in  $\xi^{-1}(\mathbf{a})$  (see Proposition 4.15).
- **0.4.** The contents of the paper are organized as follows. In Section 1, we collect some concepts and known results concerning cells of the weighted Coxeter groups  $(\widetilde{A}_m, \widetilde{\ell}_m)$  and  $(\widetilde{C}_n, \widetilde{\ell}_m)$ . Then we introduce the tabloids of rank m+1 in Section

2. In Section 3, we characterize all the tabloids parameterizing the left cells of  $(\widetilde{C}_n, \widetilde{\ell}_m)$  and give some formulae for the number of left cells of  $(\widetilde{C}_n, \widetilde{\ell}_m)$  in the set  $E_{\lambda}$  for any  $\lambda \in \Lambda_{m+1}$ . Finally, we deduce some more formulae for those numbers and describe the (m, n)-selfdual tabloids in some special cases in Section 4.

# §1. The weighted Coxeter groups $(\widetilde{A}_m, \widetilde{\ell}_m)$ and $(\widetilde{C}_n, \widetilde{\ell}_m)$ .

In this section, we collect some concepts and results concerning the weighted Coxeter groups  $(\widetilde{A}_m, \widetilde{\ell}_m)$  and  $(\widetilde{C}_n, \widetilde{\ell}_m)$ .

**1.1.** Let (W, S) be a Coxeter system with  $\ell$  its length function and  $\leq$  the Bruhat-Chevalley ordering on W. An expression  $w = s_1 s_2 \cdots s_r \in W$  with  $s_i \in S$  is called reduced if  $r = \ell(w)$ . Call  $L: W \to \mathbb{Z}$  a weight function on W if L(xy) = L(x) + L(y) for any  $x, y \in W$  with  $\ell(xy) = \ell(x) + \ell(y)$ . Hence L(s) = L(t) for any  $s, t \in S$  conjugate in W. Call (W, L) is a weighted Coxeter group.

A weighted Coxeter group (W, L) is called in the *split* case if  $L = \ell$ .

Suppose that there exists a group automorphism  $\alpha: W \longrightarrow W$  with  $\alpha(S) = S$ . Let  $W^{\alpha} = \{w \in W \mid \alpha(w) = w\}$ . For any  $\alpha$ -orbit J in S, let  $w_J \in W^{\alpha}$  be the longest element in the subgroup  $W_J$  of W generated by J whenever  $W_J$  is finite. Let  $S_{\alpha}$  be the set of elements  $w_J$  with J ranging over all such  $\alpha$ -orbits in S. Then  $(W^{\alpha}, S_{\alpha})$  is a Coxeter group and the restriction to  $W^{\alpha}$  of the length function  $\ell$  of W is a weight function on  $W^{\alpha}$ . The weighted Coxeter group  $(W^{\alpha}, \ell)$  is called in the quasi-split case.

- **1.2.** Let  $\leq$  (respectively,  $\leq$ ,  $\leq$ ) be the preorder on a weighted Coxeter group (W,L) defined in [5]. The equivalence relation associated to this preorder is denoted by  $\sim$  (respectively,  $\sim$ ,  $\sim$ ). The corresponding equivalence classes in W are called *left cells* (respectively, right cells, two-sided cells) of W.
- 1.3. Lusztig introduced a subset  $\mathcal{D}$  of a weighted Coxeter group (W, L) (see [5, Chapter 14]). When (W, L) is a Weyl or affine Weyl group which is either in the split case or in the quasi-split case, Lusztig proved that the set  $\mathcal{D}$  consists of certain involutive elements w (hence  $w^2 = 1$ ) and that each left (respectively, right) cell of W contains exactly one element in  $\mathcal{D}$  (see [5, Chapters 14–16]). The elements of  $\mathcal{D}$  were called distinguished involutions when (W, L) is in the split case (see [4]).
- **1.4.** The group  $\widetilde{A}_m$ ,  $m \ge 1$ , can be realized as the following permutation group

on the set  $\mathbb{Z}$  (see [2, Subsection 3.6] and [6, Subsection 4.1)]:

$$\widetilde{A}_m = \left\{ w : \mathbb{Z} \longrightarrow \mathbb{Z} \left| (i+m+1)w = (i)w + m + 1, \sum_{i=1}^{m+1} (i)w = \sum_{i=1}^{m+1} i \right. \right\}.$$

The Coxeter generator set  $\widetilde{S}_m = \{s_i \mid i \in [0, m]\}$  of  $\widetilde{A}_m$  is given by

$$(t)s_i = \begin{cases} t, & \text{if } t \not\equiv i, i+1 \pmod{m+1}, \\ t+1, & \text{if } t \equiv i \pmod{m+1}, \\ t-1, & \text{if } t \equiv i+1 \pmod{m+1}, \end{cases}$$

for  $t \in \mathbb{Z}$  and  $i \in [0, m]$ . Any  $w \in \widetilde{A}_m$  can be realized as a  $\mathbb{Z} \times \mathbb{Z}$  monomial matrix  $A_w = (a_{ij})_{i,j\in\mathbb{Z}}$ , where  $a_{ij}$  is 1 if j = (i)w and 0 otherwise. The row (respectively, column) indices of  $A_w$  increase from top to bottom (respectively, from left to right).

**1.5.** For  $m \in \{2n-1, 2n, 2n+1\}$ , let  $\alpha_{m,n} : \widetilde{A}_m \longrightarrow \widetilde{A}_m$  be the group automorphism determined by  $\alpha_{m,n}(s_i) = s_{2n-i}$  if m = 2n-1 and  $\alpha_{m,n}(s_i) = s_{2n+1-i}$  if  $m \in \{2n, 2n+1\}$  for  $i \in [0, m]$ , where we stipulate  $s_{i+m+1} = s_i$  for any  $i \in \mathbb{Z}$ . In terms of matrix form, for any  $w \in \widetilde{A}_m$ , the matrix  $A_{\alpha_{m,n}(w)}$  can be obtained from the matrix  $A_w$  by rotating with the angle  $\pi$  around the point  $(n+\frac{1}{2},n+\frac{1}{2})$  (respectively, (n+1,n+1)) if m=2n-1 (respectively,  $m \in \{2n,2n+1\}$ ), where we identify  $A_w$  with a plane and identify the positions  $(i,j), i,j \in \mathbb{Z}$ , of  $A_w$  with the corresponding integer lattice points. Then  $\alpha_{m,n}$  gives rise to a permutation on the set  $\Pi_m^l$  (respectively,  $\Pi_m^r$ ,  $\Pi_m^l$ ) of left cells (respectively, right cells, two-sided cells) of  $\widetilde{A}_m$ . Also,  $\alpha_{m,n}(\mathcal{D}) = \mathcal{D}$  by the definition of the set  $\mathcal{D}$  in [5, Chapter 14]. **1.6.** The affine Weyl group  $\widetilde{C}_n$  can be realized as the fixed point set of  $\widetilde{A}_m$ ,  $m \in \{2n-1, 2n, 2n+1\}$ , under the automorphism  $\alpha_{m,n}$ , hence can be described as follows.

$$\widetilde{C}_n = \{w: \mathbb{Z} \longrightarrow \mathbb{Z} \mid (i+m+1)w = (i)w+m+1, (i)w+(\epsilon_{m,n}-i)w = \epsilon_{m,n}, \ \forall \ i \in \mathbb{Z}\},$$

where  $\epsilon_{m,n}$  is 1 if  $m \in \{2n-1, 2n\}$  and 0 if m = 2n+1. The Coxeter generator set  $S = \{t_i \mid i \in [0, n]\}$  of  $\widetilde{C}_n$  is given by setting  $t_i = s_i s_{2n-i}$  for  $i \in [n-1]$ ,  $t_0 = s_0$  and

 $t_n=s_n$  if m=2n-1;  $t_i=s_is_{2n+1-i}$  for  $i\in[n-1]$ ,  $t_0=s_0$  and  $t_n=s_ns_{n+1}s_n$  if m=2n;  $t_i=s_is_{2n+1-i}$  for  $i\in[n-1]$ ,  $t_0=s_0s_1s_0$  and  $t_n=s_ns_{n+1}s_n$  if m=2n+1. In terms of matrix, an element  $w\in\widetilde{A}_m$  is in  $\widetilde{C}_n$  if and only if the matrix form  $A_w$  of w is centrally symmetric at the points  $(qn+\frac{1}{2},qn+\frac{1}{2})$  if m=2n-1 and, at the points  $((2n+1)q+\frac{1}{2},(2n+1)q+\frac{1}{2})$  and ((2n+1)q+(n+1),(2n+1)q+(n+1)) if m=2n and, at the points ((n+1)q,(n+1)q) if m=2n+1, where q ranges over  $\mathbb{Z}$ 

**1.7.** By a partition of  $l \in \mathbb{P}$ , we mean an r-tuple  $\lambda := (\lambda_1, \lambda_2, ..., \lambda_r)$  with  $\lambda_1 \ge \cdots \ge \lambda_r$  in  $\mathbb{P}$  and  $\sum_{k=1}^r \lambda_k = l$  for some  $r \in \mathbb{P}$ . Call  $\lambda_i$  a part of  $\lambda$ . We sometimes denote  $\lambda$  by  $\mathbf{j_1^{k_1} j_2^{k_2} \cdots j_m^{k_m}}$  (boldfaced) with  $j_1 > j_2 > \cdots > j_m$  if  $j_i$  is a part of  $\lambda$  with multiplicity  $k_i \ge 1$ . Let  $\Lambda_l$  be the set of all partitions of l.

Fix  $w \in \widetilde{A}_m$ . For any  $i \neq j$  in [m+1], we write  $i \prec_w j$ , if there exist some  $p, q \in \mathbb{Z}$  such that both p(m+1)+i>q(m+1)+j and (p(m+1)+i)w<(q(m+1)+j)w hold. This defines a partial order  $\leq_w$  on the set [m+1].  $i \neq j$  in [m+1] is said w-comparable if either  $i \prec_w j$  or  $j \prec_w i$ , and w-uncomparable otherwise.

A sequence  $a_1, a_2, ..., a_r$  in [m+1] is called a w-chain, if  $a_1 \prec_w a_2 \prec_w \cdots \prec_w a_r$ . Sometimes we identify a w-chain  $a_1, a_2, ..., a_r$  with the corresponding set  $\{a_1, a_2, ..., a_r\}$ . For any  $k \geqslant 1$ , a k-w-chain-family is by definition a union  $X = \bigcup_{i=1}^k X_i$  of k w-chains  $X_1, X_2, ..., X_k$  in [m+1]. Let  $d_k$  be the maximally possible cardinal of a k-w-chain-family for any  $k \geqslant 1$ . Then there exists some  $r \geqslant 1$  such that  $d_1 < d_2 < \cdots < d_r = m+1$ . Let  $\lambda_1 = d_1$  and  $\lambda_{k+1} = d_{k+1} - d_k$  for  $k \in [r-1]$ . Then  $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_r$  by a result of C. Greene in [1]. Hence  $w \mapsto \psi(w) := (\lambda_1, \lambda_2, ..., \lambda_r)$  defines a map from the set  $\widetilde{A}_m$  to  $\Lambda_{m+1}$ .

A subset E of [m+1] is called a w-antichain, if the elements of E are pairwise w-uncomparable.

**1.8.** Let  $\widetilde{\ell}_m$  be the length function for the Coxeter group  $(\widetilde{A}_m, \widetilde{S}_m)$ . By the definition in 1.1, we see that the weighted Coxeter group  $(\widetilde{A}_m, \widetilde{\ell}_m)$  is in the split case, while  $(\widetilde{C}_n, \widetilde{\ell}_m)$  is in the quasi-split case.

For any  $\lambda = (\lambda_1, ..., \lambda_r) \in \Lambda_{m+1}$ , define  $\lambda^{\vee} = (\lambda_1^{\vee}, ..., \lambda_t^{\vee}) \in \Lambda_{m+1}$  by setting  $\lambda_j^{\vee} = {}^{\#}\{k \in [r] \mid \lambda_k \geqslant j\}$  for any  $j \geqslant 1$ , call  $\lambda^{\vee}$  the dual partition of  $\lambda$ .

**Lemma 1.9.** (1) Regarding  $\widetilde{C}_n$  as a subset of  $\widetilde{A}_m$ ,  $m \in \{2n-1, 2n, 2n+1\}$ . For

any  $x, y \in \widetilde{C}_n$ , we have  $x \sim y$  in  $\widetilde{C}_n$  if and only if  $x \sim y$  in  $\widetilde{A}_m$  (see [5, Lemma 16.14]).

(2) The set  $\psi^{-1}(\lambda)$  forms a two-sided cell of  $\widetilde{A}_m$  for any  $\lambda \in \Lambda_{m+1}$  (see [3, Theorem 6] and [6, Theorem 17.4]).

By Lemma 1.9 (1), we can just use the notation  $x \sim y$  for  $x, y \in \widetilde{C}_n$  without indicating whether the relation refers to  $\widetilde{A}_m$ ,  $m \in \{2n-1, 2n, 2n+1\}$ , or  $\widetilde{C}_n$ .

For any 
$$\lambda \in \Lambda_{m+1}$$
, denote  $E_{\lambda} := \widetilde{C}_n \cap \psi^{-1}(\lambda)$ .

In the remaining part of the paper, when we mention the number m, we always assume  $m \in \{2n-1, 2n, 2n+1\}$  unless otherwise specified.

### $\S 2$ . Tabloids of rank m+1.

In the present section, we introduce the concept of tabloids of rank m+1 which will be used to parametrize the left cells of  $\widetilde{A}_m$  and of  $\widetilde{C}_n$ .

- **2.1.** By a composition of m+1, we mean an r-tuple  $\mathbf{a}=(a_1,a_2,...,a_r)$  with  $a_1,...,a_r,r\in\mathbb{P}$  and  $\sum_{i=1}^r a_i=m+1$ . Let  $\widetilde{\Lambda}_{m+1}$  be the set of all compositions of m+1. Clearly,  $\Lambda_{m+1}\subseteq\widetilde{\Lambda}_{m+1}$ . For any  $\mathbf{a}=(a_1,a_2,...,a_r)\in\widetilde{\Lambda}_{m+1}$ , let  $i_1,i_2,...,i_r$  be a permutation of 1,2,...,r with  $a_{i_1}\geqslant a_{i_2}\geqslant \cdots \geqslant a_{i_r}$ . Denote  $\zeta(\mathbf{a})=(a_{i_1},a_{i_2},...,a_{i_r})$ . This defines a surjective map  $\zeta:\widetilde{\Lambda}_{m+1}\longrightarrow\Lambda_{m+1}$ .
- **2.2.** A (generalized) tabloid of rank m+1 is, by definition, an r-tuple  $\mathbf{T}=(T_1,T_2,...,T_r)$  with some  $r\in\mathbb{N}$  such that [m+1] is a disjoint union of some non-empty subsets  $T_j,\ j\in[r]$ . We have  $\xi(\mathbf{T}):=(|T_1|,|T_2|,...,|T_r|)\in\widetilde{\Lambda}_{m+1}$ , where  $|T_i|$  denotes the cardinal of the set  $T_i$ . Let  $\mathcal{C}_{m+1}$  be the set of all tabloids of rank m+1. Then  $\xi:\mathcal{C}_{m+1}\longrightarrow\widetilde{\Lambda}_{m+1}$  is a surjective map. Let  $\kappa=\zeta\xi:\mathcal{C}_{m+1}\longrightarrow\Lambda_{m+1}$ .
- **2.3.** For any  $i \in \mathbb{Z}$ , define  $\langle i \rangle \in [m+1]$  by the condition  $\langle i \rangle \equiv i \pmod{m+1}$ . Let  $\Omega$  be the set of all  $w \in \widetilde{A}_m$  such that there is some  $\mathbf{T} = (T_1, T_2, ..., T_r) \in \mathcal{C}_{m+1}$  satisfying that
  - (i) If i < j in [r], then  $\langle (a)w^{-1} \rangle \prec_w \langle (b)w^{-1} \rangle$  for any  $a \in T_i$  and  $b \in T_j$ ;
  - (ii)  $\langle (T_i)w^{-1}\rangle$  is a maximal w-antichain in [m+1] for any  $i \in [r]$ .

Clearly, the tabloid **T** is determined entirely by  $w \in \Omega$ , denote **T** by T(w). The map  $T: \Omega \longrightarrow \mathcal{C}_{m+1}$  is surjective by [6, Proposition 19.1.2]. By a result of C. Greene in [1], we have  $\kappa(T(w)) = \psi(w)^{\vee}$ .

**Lemma 2.4.** (see [6, Proposition 19.1.2 and Lemma 19.4.6]) Suppose that  $y, w \in \Omega$  satisfy  $\xi(T(y)) = \xi(T(w))$ . Then  $y \sim_L w$  if and only if T(y) = T(w).

**2.5.** By Lemma 2.4, it makes sense to write  $\mathbf{T} \sim \mathbf{T}'$  in  $\mathcal{C}_{m+1}$  if there exist some  $x, y \in \Omega$  satisfying  $x \sim y$  and  $T(x) = \mathbf{T}$  and  $T(y) = \mathbf{T}'$ . This defines an equivalence relation on  $\mathcal{C}_{m+1}$ .

Fix  $w \in \widetilde{A}_m$  and let  $\lambda = \psi(w)$ . Take any  $\mathbf{a} \in \zeta^{-1}(\lambda^{\vee})$ . There exists some  $y \in \Omega$  with  $y \sim_L w$  and  $\xi(T(y)) = \mathbf{a}$ . The tabloid T(y) is uniquely determined by the element w and the composition  $\mathbf{a}$  of m+1, denote it by  $T_{\mathbf{a}}(w)$  (see [6, Propositions 19.1.2, 19.4.7 and 19.4.8]).

**Lemma 2.6.** (see [6, Propositions 19.4.7-19.4.8]) In the above setup,  $T_{\mathbf{a}}$  gives rise to a surjective map from the set  $\psi^{-1}(\lambda)$  to  $\xi^{-1}(\mathbf{a})$ , which induces a bijection (again denoted by  $T_{\mathbf{a}}$ ) from the set  $\Pi^l_{\lambda}$  of left cells of  $\widetilde{A}_m$  in  $\psi^{-1}(\lambda)$  to  $\xi^{-1}(\mathbf{a})$ .

**2.7.** For further discussion on the left cells of  $\widetilde{A}_m$  and  $\widetilde{C}_n$ , let us recall some more concepts involving tabloids of rank m+1 (see [6, Chapter 20]). Let  $k \in \mathbb{P}$ . Arrange the numbers 1, 2, ..., k on a circle in clockwise order, hence t+1 is the successor of t for any  $t \in [k-1]$  and 1 is the successor of k. We call such a circle the k-circle. For example, the following is the 8-circle.



Figure 1

For  $x \neq y$  in [k], we denote by  $\widehat{xy}$  the arc of the k-circle which, starting with the number x and moving clockwise, ends with the number y. For  $Z \subseteq [k]$ , let  $Z_{xy}$  be the set of all elements of Z on  $\widehat{xy}$ . Take the 8-circle in Figure 1 as an example, let  $Z = \{1, 2, 3, 4, 6\}, x = 2, y = 5$ . Then  $Z_{xy} = \{2, 3, 4\}$  and  $Z_{yx} = \{1, 2, 6\}$ .

Let  $X = \{a_j \mid j \in [t], a_1 < \dots < a_t\}$  and  $Y = \{b_j \mid j \in [r], b_1 < \dots < b_r\}$  be two subsets of [k] with  $X \cap Y = \emptyset$  and  $t \leq r$ .

- (i) Define a subset  $H_Y(X) = \{c_1, ..., c_t\}$  of Y such that  $c_h \in Y$  is given recurrently by the condition  $|(Y \{c_1, ..., c_{h-1}\})_{a_h c_h}| = 1$  for any  $h \in [t]$ .
- (ii) Define a subset  $L_Y(X) = \{d_1, ..., d_t\}$  of Y such that  $d_h \in Y$  is given recurrently by the condition  $|(Y \{d_1, ..., d_{h-1}\})_{d_h a_{t+1-h}}| = 1$  for any  $h \in [t]$ .

By the definition, we see that the sets  $H_Y(X)$  and  $L_Y(X)$  depend only on the relative positions of the elements of  $X \cup Y$  on the k-circle, but neither on  $k \in \mathbb{P}$  nor on any element in  $[k] - X \cup Y$ . In particular,  $H_Y(X) = L_Y(X) = Y$  if |X| = |Y|.

The following result can be checked directly from the above definition.

**Lemma 2.8.** Fix  $k \in \mathbb{P}$ . If  $\eta$  is a permutation on [k] such that  $\eta(i+1) \equiv \eta(i) - 1$  ( mod k) for any  $i \in [k]$  (hence the order of the numbers 1, 2, ..., k on the k-circle are reversed by  $\eta$ ) then  $\eta(H_Y(X)) = L_{\eta(Y)}(\eta(X))$  and  $\eta(L_Y(X)) = H_{\eta(Y)}(\eta(X))$  for any  $X, Y \subseteq [k]$  with  $|Y| \geqslant |X|$  and  $Y \cap X = \emptyset$ .

Take the 8-circle in Figure 1 as an example. Let  $X = \{1,4\}$  and  $Y = \{2,6,7\}$ . Then  $H_Y(X) = \{2,6\}$  and  $L_Y(X) = \{2,7\}$ . Define  $\eta : [8] \longrightarrow [8]$  by setting  $\eta(i) = 9 - i$  for any  $i \in [8]$ . Then  $\eta(H_Y(X)) = \{3,7\} = L_{\{2,3,7\}}(\{5,8\}) = L_{\eta(Y)}(\eta(X))$ . The following results describe the sets  $H_Y(X)$  and  $L_Y(X)$  in more intrinsic way.

**Lemma 2.9.** (see [6, Lemmas 20.1.2-20.1.3]) Fix  $k \in \mathbb{P}$  and take  $X, Y \subseteq [k]$  such that  $X \cap Y = \emptyset$  and  $|X| \leq |Y|$ . Then for any  $y \in Y$ , we have

- (a)  $y \in H_Y(X)$  if and only if there exists some  $x \in X$  satisfying  $|Y_{xy}| = |X_{xy}|$ .
- (b)  $y \in L_Y(X)$  if and only if there exists some  $x \in X$  satisfying  $|Y_{yx}| = |X_{yx}|$ .
- **2.10.** For  $i, j \in [m+1]$ , we say that j is the (m,n)-dual of i, denote  $j = \overline{i}$ , if either m = 2n 1 and i + j = 2n + 1, or  $m \in \{2n, 2n + 1\}$  and  $i + j \equiv 2n + 2$  (mod 2n + 2); in this case, we also have  $i = \overline{j}$ , and call  $i, \overline{i}$  an (m,n)-dual pair. Denote  $\overline{E} = \{\overline{i} \mid i \in E\}$  for any  $E \subseteq [m+1]$  (The notation  $\overline{i}, \overline{E}$  for  $i \in [m+1]$  and  $E \subseteq [m+1]$  will cause no confusion in the context since the pair (m,n) is fixed in each case).

For any  $i \in [m+1]$ , we have  $i = \overline{i}$  if and only if either m = 2n and i = n+1, or m = 2n+1 and  $i \in \{n+1, 2n+2\}$ . When the equivalent conditions hold, i

with itself forms an (m, n)-dual pair, call i an (m, n)-selfdual element. Hence the number of (m, n)-selfdual elements in [m + 1] is m + 1 - 2n.

Next result shows that for any  $Y \subseteq [m+1]$ , the operations  $H_Y$  and  $L_Y$  on  $X \subseteq [m+1]$  with  $|X| \leq |Y|$  and  $X \cap Y = \emptyset$  are inverse to each other in some sense.

**Lemma 2.11.** Let  $X, Y \subseteq [m+1]$  satisfy  $|X| \leqslant |Y|$  and  $X \cap Y = \emptyset$ .

(a) Let 
$$Y' = H_Y(X)$$
 and  $X' = X \cup (Y - H_Y(X))$ . Then  $X = L_{X'}(Y')$  and  $Y = Y' \cup (X' - L_{X'}(Y'))$ .

(b) Let 
$$Y'' = L_Y(X)$$
 and  $X'' = X \cup (Y - L_Y(X))$ . Then  $X = H_{X''}(Y'')$  and  $Y = Y'' \cup (X'' - H_{X''}(Y''))$ .

(c) 
$$\overline{H_Y(X)} = L_{\overline{Y}}(\overline{X})$$
 and  $\overline{L_Y(X)} = H_{\overline{Y}}(\overline{X})$ .

*Proof.* (a) and (b) are just the results in [6, Proposition 20.1.4]. Then (c) follows by Lemma 2.8.  $\Box$ 

Recall the relation  $\sim_L$  on  $\mathcal{C}_{m+1}$  defined in 2.5.

**Proposition 2.12.** (see [6, Proposition 20.2.2 and Corollary 20.2.3]) Let  $\mathbf{T} = (T_1, ..., T_t) \in \mathcal{C}_{m+1}$  and  $j \in [t-1]$ .

(a) If 
$$|T_j| \leq |T_{j+1}|$$
, let

$$(2.12.1) \mathbf{T}' = (T_1, ..., T_{j-1}, T_j \cup (T_{j+1} - H_{T_{j+1}}(T_j)), H_{T_{j+1}}(T_j), T_{j+2}, ..., T_t)$$

then  $\mathbf{T} \sim \mathbf{T}'$ .

(b) If 
$$|T_j| \ge |T_{j+1}|$$
, let

$$(2.12.2) \mathbf{T}'' = (T_1, ..., T_{j-1}, L_{T_j}(T_{j+1}), T_{j+1} \cup (T_j - L_{T_j}(T_{j+1})), T_{j+2}, ..., T_t).$$

Then  $\mathbf{T} \sim \mathbf{T}''$ .

**2.13.** Let  $\mathbf{T}, \mathbf{T}', \mathbf{T}'' \in \mathcal{C}_{m+1}$  be given as in (2.12.1)-(2.12.2). We say that  $\mathbf{T}'$  (respectively,  $\mathbf{T}''$ ) is obtained from  $\mathbf{T}$  by a  $\{j, j+1\}$ -transformation. This definition does not cause any confusion since  $\mathbf{T}'$  (respectively,  $\mathbf{T}''$ ) is defined only when  $|T_j| \leq |T_{j+1}|$  (respectively,  $|T_j| \geq |T_{j+1}|$ ). Note that if  $|T_j| = |T_{j+1}|$  then  $\mathbf{T}' = \mathbf{T}'' = \mathbf{T}$ .

Fix E with  $\emptyset \neq E \subseteq [m+1]$ . Let  $\mathcal{C}_E$  be the set of all tabloids  $\mathbf{T} = (T_1, T_2, ..., T_r)$  with  $E = \dot{\cup}_{i=1}^r T_i$  (hence  $\mathcal{C}_{m+1} = \mathcal{C}_{[m+1]}$ ).

For any  $\mathbf{T}, \mathbf{T}' \in \mathcal{C}_E$ , written  $\mathbf{T} \approx \mathbf{T}'$ , if there exists a sequence  $\mathbf{T}_0 = \mathbf{T}, \mathbf{T}_1,...$ ,  $\mathbf{T}_r = \mathbf{T}'$  in  $\mathcal{C}_E$  such that for every  $i \in [r]$ ,  $\mathbf{T}_i$  can be obtained from  $\mathbf{T}_{i-1}$  by an  $\{h_i, h_i + 1\}$ -transformation for some integer  $h_i$ . This defines an equivalence relation on the set  $\mathcal{C}_E$ .

Let l = |E| and  $\xi_E(\mathbf{T}) := (|T_1|, |T_2|, ..., |T_r|)$  for any  $\mathbf{T} = (T_1, T_2, ..., T_r) \in \mathcal{C}_E$ . Then  $\xi_E : \mathcal{C}_E \longrightarrow \widetilde{\Lambda}_l$  is a surjective map.

**2.14.** Take E with  $\emptyset \neq E \subseteq [m+1]$  and  $\overline{E} = E$ . Denote  $\overline{\mathbf{T}} = (\overline{T_1}, \overline{T_2}, ..., \overline{T_r})$  and  $\mathbf{T}^{\mathrm{op}} = (T_r, ..., T_2, T_1)$  for any  $\mathbf{T} = (T_1, T_2, ..., T_r) \in \mathcal{C}_E$ . Then  $\overline{\mathbf{T}}, \mathbf{T}^{\mathrm{op}} \in \mathcal{C}_E$ . We say that  $\mathbf{T} \in \mathcal{C}_E$  is (m, n)-selfdual, if  $\overline{\mathbf{T}}^{\mathrm{op}} \approx \mathbf{T}$ .

Denote  $\mathbf{a}^{\text{op}} = (a_r, ..., a_2, a_1)$  for  $\mathbf{a} = (a_1, a_2, ..., a_r) \in \widetilde{\Lambda}_{m+1}$ . Call  $\mathbf{a}$  symmetric, if  $\mathbf{a}^{\text{op}} = \mathbf{a}$ .

When  $m \in \{2n - 1, 2n + 1\}$ , define a map  $\tau_{m+1} : [m + 1] \longrightarrow [m + 1]$  by

$$\tau_{m+1}(i) = \begin{cases} i + \frac{m+1}{2}, & \text{if } i \in \left[\frac{m+1}{2}\right], \\ i - \frac{m+1}{2}, & \text{if } i \in \left[\frac{m+1}{2} + 1, m + 1\right]. \end{cases}$$

Then for any  $i, j \in [m+1]$ , we have that  $\tau_{m+1}(\overline{i}) = \overline{\tau_{m+1}(i)}$ , that i is (m, n)-selfdual if and only if so is  $\tau_{m+1}(i)$ , and that on the (m+1)-circle, j is the successor of i if and only if  $\tau_{m+1}(j)$  is the successor of  $\tau_{m+1}(i)$ .

Define  $\tau_{m+1}(\mathbf{T})$  to be the tabloid obtained from  $\mathbf{T}$  by replacing each  $i \in [m+1]$  by  $\tau_{m+1}(i)$  for any  $\mathbf{T} \in \mathcal{C}_{m+1}$ .

Lemma 2.15. Let  $T, T' \in \mathcal{C}_{m+1}$ .

- (1)  $\mathbf{T} \sim \mathbf{T}'$  if and only if  $\mathbf{T} \approx \mathbf{T}'$ .
- (2) When  $\mathbf{a} \in \widetilde{\Lambda}_{m+1}$  is symmetric,  $\mathbf{T} \in \xi^{-1}(\mathbf{a})$  is (m, n)-selfdual if and only if  $\overline{\mathbf{T}}^{\mathrm{op}} = \mathbf{T}$ .
  - (3) If  $T \approx T'$ , then T is (m, n)-selfdual if and only if so is T'.
- (4) When  $(m, n) \in \{(2n 1, n), (2n + 1, n)\}$ , **T** is (m, n)-selfdual if and only if so is  $\tau_{m+1}(\mathbf{T})$ .
- *Proof.* (1) follows by Proposition 2.12, Lemmas 2.4 and 2.6. For (2), by the assumption of **a** being symmetric, we have  $\xi(\overline{\mathbf{T}}^{\text{op}}) = \mathbf{a}$  for any  $\mathbf{T} \in \xi^{-1}(\mathbf{a})$ . So

 $\overline{\mathbf{T}}^{\mathrm{op}} \approx \mathbf{T}$  if and only if  $\overline{\mathbf{T}}^{\mathrm{op}} = \mathbf{T}$  by (1) and Lemma 2.4. This implies (2). For (3), let  $\mathbf{T} = (T_1, T_2, ..., T_r)$ . We may assume without loss of generality that  $\mathbf{T}'$  is obtained from  $\mathbf{T}$  by an  $\{i, i+1\}$ -transformation for some  $i \in [r-1]$ . Then  $\overline{\mathbf{T}}^{\mathrm{op}}$  can be obtained from  $\overline{\mathbf{T}'}^{\mathrm{op}}$  by an  $\{r-i, r+1-i\}$ -transformation by Lemma 2.11 (c). This implies that  $\mathbf{T} \approx \overline{\mathbf{T}}^{\mathrm{op}}$  if and only if  $\mathbf{T}' \approx \overline{\mathbf{T}'}^{\mathrm{op}}$ . Hence (3) follows. Finally, (4) follows by the properties of the map  $\tau_{m+1}$  mentioned proceeding the lemma.  $\square$ 

By Lemma 2.15 (3), we can call an  $\approx$ -equivalence class of  $\mathcal{C}_{m+1}$  (m, n)-selfdual if some (hence all) tabloid in this class is (m, n)-selfdual.

## §3. A formula for the number of left cells of $\widetilde{C}_n$ in the set $E_{\lambda}$ , $\lambda \in \Lambda_{m+1}$ .

In the present section, we first characterize all the tabloids of rank m+1 which correspond to the left cells of  $\widetilde{C}_n$ . Applying this result, we deduce a formula for the number of left cells of  $\widetilde{C}_n$  in the set  $E_{\lambda}$  for any  $\lambda \in \Lambda_{m+1}$ .

**Theorem 3.1.** Let  $\lambda \in \Lambda_{m+1}$  and  $\mathbf{a} \in \zeta^{-1}(\lambda^{\vee})$ . Then for any  $\Gamma \in \Pi_{\lambda}^{l}$  (see Lemma 2.6), we have  $\Gamma \cap \widetilde{C}_{n} \neq \emptyset$  if and only if  $T_{\mathbf{a}}(\Gamma)$  is (m, n)-selfdual.

Proof. The automorphism  $\alpha := \alpha_{m,n}$  of  $\widetilde{A}_m$  stabilizes the set  $\Omega$  (see 1.5 and 2.3). We have  $T(\alpha(w)) = \overline{T(w)}^{\text{op}}$  for any  $w \in \Omega$  (see the matrix description for the action of  $\alpha$  on  $\widetilde{A}_m$  in 1.5). This implies  $T_{\mathbf{a}^{\text{op}}}(\alpha(\Gamma)) = \overline{T_{\mathbf{a}}(\Gamma)}^{\text{op}}$  for any  $\Gamma \in \Pi^l_{\lambda}$ . Hence by Lemmas 2.6, 2.15 and Proposition 2.12, we see that  $(*) \alpha(\Gamma) = \Gamma \iff T_{\mathbf{a}}(\Gamma)$  is (m, n)-selfdual.

First assume  $\Gamma \cap \widetilde{C}_n \neq \emptyset$ . Then  $\alpha(\Gamma) \cap \Gamma \neq \emptyset$ , hence  $\alpha(\Gamma) = \Gamma$  since both  $\Gamma$  and  $\alpha(\Gamma)$  are left cells of  $\widetilde{A}_m$ . This implies that  $T_{\mathbf{a}}(\Gamma)$  is (m,n)-selfdual by (\*). Next assume that  $T_{\mathbf{a}}(\Gamma)$  is (m,n)-selfdual. Then  $\alpha(\Gamma) = \Gamma$  by (\*). Recall the set  $\mathcal{D}$  mentioned in 1.3. The set  $\Gamma \cap \mathcal{D}$  consists of a single element (say d) by 1.3. Then  $\alpha(d) \in \alpha(\Gamma) \cap \mathcal{D}$  by the fact  $\alpha(\mathcal{D}) = \mathcal{D}$  (see 1.5). This implies  $d = \alpha(d)$  by the facts  $\alpha(\Gamma) = \Gamma$  and  $|\Gamma \cap \mathcal{D}| = 1$ , i.e.,  $d \in \Gamma \cap \widetilde{C}_n$ . Hence  $\Gamma \cap \widetilde{C}_n \neq \emptyset$ .  $\square$ 

**3.2.** Suppose that  $\emptyset \neq E \subseteq [m+1]$  and  $\overline{E} = E$ . For any  $\mathbf{b} \in \widetilde{\Lambda}_{|E|}$ , let  $\gamma_E(\mathbf{b})$  be the number of all (m,n)-selfdual tabloids in  $\xi_E^{-1}(\mathbf{b})$  (see 2.13). Under the conditions assumed on E, we see that the number  $\gamma_E(\mathbf{b})$  depends only on |E| and the number of (m,n)-selfdual elements contained in E, but not on a particular

choice of a subset E in [m+1]. Since |E| is determined by  $\mathbf{b}$ , we may write  $\gamma_E(\mathbf{b})$  by  $\gamma_k(\mathbf{b})$  if the number of (m, n)-selfdual elements contained in E is k.

Note that the number of (m, n)-selfdual elements in [m + 1] is m + 1 - 2n (see 2.10).

We have not yet found any efficient way to calculate the number  $\gamma_k(\mathbf{a})$  in general. However, there is a simple formula for  $\gamma_{m+1-2n}(\mathbf{a})$  when  $\mathbf{a} \in \widetilde{\Lambda}_{m+1}$  is symmetric (see 2.14).

**Theorem 3.3.** Suppose that  $\mathbf{a} = (a_1, ..., a_r) \in \widetilde{\Lambda}_{m+1}$  is symmetric with  $r \in \{2l, 2l+1\}$  for some  $l \in \mathbb{N}$ . Then

$$\gamma_{m+1-2n}(\mathbf{a}) = \left\{ \begin{array}{ll} 0, & \text{if } m = 2n+1 \ and \ r = 2l, \\ 2^{a_1+\dots+a_l} \frac{n!}{\left(\!n\!-\!\sum_{k=1}^l a_k\!\right)! \prod_{k=1}^l a_k!}, \text{ if otherwise,} \end{array} \right.$$

Proof. Any (m,n)-selfdual tabloid  $\mathbf{T}=(T_1,T_2,...,T_r)\in \xi^{-1}(\mathbf{a})$  is determined entirely by its first l components if  $r\in\{2l,2l+1\}$  with  $l\in\mathbb{N}$  by the facts that  $T_i=\overline{T_{r+1-i}}$  for any  $i\in[l]$  and that  $T_{l+1}=[m+1]-\bigcup_{i=1}^l(T_i\cup\overline{T_i})$  is a union of some (m,n)-dual pairs (see 2.10) if r=2l+1 is odd. If m=2n+1 and r=2l then the (m,n)-selfdual elements n+1,2n+2 can not be in  $T_i$  for any  $i\in[2l]$  and hence  $\gamma_{m+1-2n}(\mathbf{a})=0$ . If m=2n then the number r must be odd as m+1 is odd. If r=2l+1 is odd then any (m,n)-selfdual elements, whenever they exist, must be in  $T_{l+1}$ . Since the elements of  $\bigcup_{i=1}^l T_i$  are pairwise not (m,n)-dual and none of them is (m,n)-selfdual, the number of the choices for  $T_1$  is  $2^{a_1}\binom{n}{a_1}$ . Recurrently, when  $T_1,T_2,...,T_{h-1}$  have been chosen for  $h\in[l]$ , the number of the choices for  $T_h$  is  $2^{a_h}\binom{n-a_1-\cdots-a_{h-1}}{a_h}$ . This proves the formula (3.3.1).  $\square$ 

When m = 2n - 1 and r = 2l, we have  $n = a_1 + \dots + a_l$ , hence (3.3.1) becomes (3.3.2)  $\gamma_0(\mathbf{a}) = 2^n \frac{n!}{\prod_{k=1}^l a_k!}.$ 

Next result gives a necessary and sufficient condition on  $\lambda \in \Lambda_{m+1}$  that there is some symmetric **a** in  $\zeta^{-1}(\lambda^{\vee})$ .

**Lemma 3.4.** Let  $\lambda = (\lambda_1, ..., \lambda_r) \in \Lambda_{m+1}$ .

- (1) There exists some symmetric  $\mathbf{a}$  in  $\zeta^{-1}(\lambda^{\vee})$  if and only if  $\lambda$  satisfies the condition (3.4.1) below.
- (3.4.1)  $\lambda_i$  is odd and  $\lambda_j$  is even for some  $k \in [0, r]$  and any  $i, j, 1 \leq i \leq k < j \leq r$ .
- (2) When the condition (3.4.1) holds, the set  $E_{\lambda}$  is empty if and only if m = 2n + 1 and k = 0.

*Proof.* The proof for (1) is straightforward. Then (2) follows by (1) and Theorem 3.3.  $\Box$ 

**Example 3.5.** Let  $\lambda = 97642$ . Then  $\lambda^{\vee} = 5^2 4^2 3^2 21^2$ . The composition  $\mathbf{a} = (5, 4, 3, 1, 2, 1, 3, 4, 5) \in \zeta^{-1}(\lambda^{\vee})$  is symmetric.

**3.6.** Assume that  $\lambda \in \Lambda_{m+1}$  satisfies the condition (3.4.1). By Theorems 3.1, 3.3 and Lemmas 3.4, 2.6, we see that for any symmetric  $\mathbf{a} \in \zeta^{-1}(\lambda^{\vee})$ , the number of left cells of  $\widetilde{C}_n$  in  $E_{\lambda}$  is equal to  $\gamma_{m+1-2n}(\mathbf{a})$ , which can be computed by the formula (3.3.1).

Next we consider the number of left cells of  $\widetilde{C}_n$  in  $E_{\lambda}$  for an arbitrary  $\lambda \in \Lambda_{m+1}$ . For any  $\lambda \in \Lambda_{m+1}$ , let  $\lambda^{\vee} = \mathbf{b_1^{k_1} b_2^{k_2} \cdots b_r^{k_r}}$ . Write  $k_i = 2l_i + p_i$  for any  $i \in [r]$ , where  $l_i \in \mathbb{N}$  and  $p_i \in \{0,1\}$ . Define  $q_1 < q_2 < \cdots < q_u$  in  $\mathbb{N}$  by the condition  $\{q_j \mid j \in [u]\} = \{i \in [r] \mid p_i = 1\}$  for some  $u \in \mathbb{N}$ . Take  $\mathbf{a} \in \zeta^{-1}(\lambda^{\vee})$  as follows. (3.6.1)

$$\mathbf{a} = (\underbrace{b_1,...,b_1}_{l_1},\underbrace{b_2,...,b_2}_{l_2},...,\underbrace{b_r,...,b_r}_{l_r},b_{q_1},b_{q_2},...,b_{q_u},\underbrace{b_r,...,b_r}_{l_r},...,\underbrace{b_2,...,b_2}_{l_2},\underbrace{b_1,...,b_1}_{l_1}).$$

Define

$$\mathbf{a}_{1} = (\underbrace{b_{1}, ..., b_{1}}_{l_{1}}, \underbrace{b_{2}, ..., b_{2}}_{l_{2}}, ..., \underbrace{b_{r}, ..., b_{r}}_{l_{r}}, \underbrace{b_{r}, ..., b_{r}}_{l_{r}}, ..., \underbrace{b_{2}, ..., b_{2}}_{l_{2}}, \underbrace{b_{1}, ..., b_{1}}_{l_{1}}).$$
(3.6.3)

(3.6.3) 
$$\mathbf{a}_2 = (b_{q_1}, b_{q_2}, ..., b_{q_u}).$$

We have

**Theorem 3.7.** Let  $\lambda \in \Lambda_{m+1}$  be given as in 3.6, and let  $\mathbf{a} \in \widetilde{\Lambda}_{m+1}$ ,  $\mathbf{a}_1 \in \widetilde{\Lambda}_{2l}$  and  $\mathbf{a}_2 \in \widetilde{\Lambda}_{m+1-2l}$  be obtained from  $\lambda$  as in (3.6.1)-(3.6.3), respectively, where

$$l = \sum_{i=1}^{r} l_i b_i$$
. Then

(3.7.1) 
$$\gamma_{m+1-2n}(\mathbf{a}) = \binom{n}{l} \gamma_0(\mathbf{a}_1) \gamma_{m+1-2n}(\mathbf{a}_2).$$

*Proof.* Let  $p = \sum_{i=1}^{r} l_i$ . For any

$$\mathbf{T} = (T_1, T_2, ..., T_p, T_{p+1}, ..., T_{p+u}, T_{p+u+1}, ..., T_{2p+u}) \in \xi^{-1}(\mathbf{a}),$$

let

$$\mathbf{T}_1 = (T_1, T_2, ..., T_p, T_{p+u+1}, T_{p+u+2}, ..., T_{2p+u})$$
 and  $\mathbf{T}_2 = (T_{p+1}, T_{p+2}, ..., T_{p+u})$ 

and  $E = [m+1] - \bigcup_{i=p+1}^{p+u} T_i$ . Then |E| = 2l and  $\mathbf{T}_1 \in \xi_E^{-1}(\mathbf{a}_1)$  and  $\mathbf{T}_2 \in \xi_{[m+1]-E}^{-1}(\mathbf{a}_2)$ . We see by Lemma 2.15 that  $\mathbf{T}$  is (m,n)-selfdual if and only if both  $\mathbf{T}_1$  and  $\mathbf{T}_2$  are (m,n)-selfdual. When the equivalent conditions hold, we have  $\overline{E} = E$  again by Lemma 2.15. For any  $k \in [n]$ , denote by  $[m+1]_{2k}$  the set of all  $E \subseteq [m+1]$  with |E| = 2k and  $\overline{E} = E$  such that E contains no (m,n)-selfdual element. For any  $E \in [m+1]_{2l}$ , let  $\mathcal{C}_E^{\mathbf{a}}$  be the set of all (m,n)-selfdual

$$\mathbf{T}' = (T_1', T_2', ..., T_p', T_{p+1}', ..., T_{p+u}', T_{p+u+1}', ..., T_{2p+u}') \in \xi^{-1}(\mathbf{a})$$

with  $E = [m+1] - \bigcup_{i=p+1}^{p+u} T_i'$ . Then

$$\gamma_{m+1-2n}(\mathbf{a}) = |[m+1]_{2l}| \cdot |\mathcal{C}_E^{\mathbf{a}}| = \binom{n}{l} |\mathcal{C}_E^{\mathbf{a}}| \quad \text{ for any fixed } E \in [m+1]_{2l}.$$

 $\mathbf{T} \mapsto (\mathbf{T}_1, \mathbf{T}_2)$  is a bijective map from the set  $\mathcal{C}_E^{\mathbf{a}}$  to the Cartesian product  $\mathcal{C}_E^{\mathbf{a}_1} \times \mathcal{C}_{[m+1]-E}^{\mathbf{a}_2}$ , where  $\mathcal{C}_E^{\mathbf{a}_1}$ ,  $\mathcal{C}_{[m+1]-E}^{\mathbf{a}_2}$  are the sets of all (m, n)-selfdual tabloids in  $\xi_E^{-1}(\mathbf{a}_1)$ ,  $\xi_{[m+1]-E}^{-1}(\mathbf{a}_2)$ , respectively. This proves the formula (3.7.1) by the facts  $\gamma_0(\mathbf{a}_1) = |\mathcal{C}_E^{\mathbf{a}_1}|$  and  $\gamma_{m+1-2n}(\mathbf{a}_2) = |\mathcal{C}_{[m+1]-E}^{\mathbf{a}_2}|$  for any  $E \in [m+1]_{2l}$ .  $\square$ 

## $\S 4$ . Enumeration of some special tabloids in $\mathcal{C}_{m+1}$ .

For any  $\mathbf{a} \in \widetilde{\Lambda}_{m+1}$ , let  $\mathcal{C}_{m+1}^{\mathbf{a}}$  be the set of all (m,n)-selfdual tabloids  $\mathbf{T}$  in  $\xi^{-1}(\mathbf{a})$ . We want to formulate the number  $\gamma_{m+1-2n}(\mathbf{a}) := |\mathcal{C}_{m+1}^{\mathbf{a}}|$ . By Theorems 3.3 and 3.7, it is enough to consider the case where  $\mathbf{a} = (a_1, a_2, ..., a_r) \in \widetilde{\Lambda}_{m+1}$  satisfies  $a_1 > a_2 > \cdots > a_r$  for some r > 1.

First consider the case of r=2.

**Lemma 4.1.** Let  $\mathbf{T} = (Y, X) \in \mathcal{C}_{m+1}$  satisfy  $|Y| \ge |X|$ . Then  $\mathbf{T}$  is (m, n)-selfdual if and only if  $L_Y(X) = \overline{X}$  and  $Y - L_Y(X) = \overline{Y - L_Y(X)}$ .

*Proof.* Let  $X' = L_Y(X)$  and  $Y' = X \cup (Y - L_Y(X))$ . Then  $(Y, X) \approx (X', Y')$ . So

T is 
$$(m, n)$$
-selfdual  $\iff X' = \overline{X} \text{ and } Y' = \overline{Y}$ 

$$\iff L_Y(X) = \overline{X} \text{ and } X \cup (Y - L_Y(X)) = \overline{Y}$$

$$\iff L_Y(X) = \overline{X} \text{ and } Y - L_Y(X) = \overline{Y} - L_Y(X).$$

The last equivalence follows by the facts that

$$Y = L_Y(X) \cup (Y - L_Y(X))$$
 and  $\overline{X \cup (Y - L_Y(X))} = \overline{X} \cup \overline{Y - L_Y(X)}$ .

- **4.2.** First assume m = 2n 1. Hence m + 1 2n = 0 and  $\bar{i} := 2n + 1 i$  for any  $i \in [2n]$ . Define an admissible subsequence  $\beta'$  in each of the following sequences  $\beta_{ij}$  (note that  $\beta_{ij}$  has even number of terms in [2n]).
- (a) Consider the sequence  $\beta_{n,q}: \bar{n}, \overline{n-1}, ..., \overline{q+1}, q+1, ..., n-1, n$  for any  $q \in [0, n-1]$ . A subsequence  $\beta': i_1, i_2, ..., i_r$  of  $\beta_{n,q}$  is called *admissible*, if the following two conditions hold:
  - (a1) r = n q and  $\overline{i_h} \neq i_k$  for any  $h, k \in [n q]$ ;
- (a2) Let  $\beta'': j_1, j_2, ..., j_{n-q}$  be the subsequence of  $\beta_{n,q}$  complement to  $\beta'$  (i.e.,  $\{i_h, j_h \mid h \in [n-q]\} = \beta_{n,q}$  identifying the sequences with the corresponding sets). Then the term  $j_h$  occurs after  $i_h$  in the sequence  $\beta_{n,q}$  for any  $h \in [n-q]$ .

Let  $\Delta_{n,q}$  be the set of all admissible subsequences of  $\beta_{n,q}$  and let  $\delta_{n,q} := |\Delta_{n,q}|$ . Denote  $\beta_{n,0}$ ,  $\Delta_{n,0}$ ,  $\delta_{n,0}$  simply by  $\beta_n$ ,  $\Delta_n$ ,  $\delta_n$ , respectively. Clearly, the equation  $\delta_{n,q} = \delta_{n-q}$  holds for any  $q \in [0, n-1]$ .

(b) For any i < j in [n] with j - i odd, denote by  $\beta_{ij}$  (respectively,  $\beta_{\overline{j}i}$ ) the sequence i + 1, i + 2, ..., j - 1 (respectively,  $\overline{j-1}, \overline{j-2}, ..., \overline{i+1}$ ). A subsequence  $\beta': h_1, h_2, ..., h_r$  of  $\beta_{ij}$  (respectively,  $\beta_{\overline{j}\overline{i}}$ ) is called admissible, if  $r = \frac{j-i-1}{2}$  and if, let  $\beta'': k_1, k_2, ..., k_{\frac{j-i-1}{2}}$  be the subsequence of  $\beta_{ij}$  (respectively,  $\beta_{\overline{j}\overline{i}}$ ) complement to  $\beta'$ , then  $k_l$  occurs after  $h_l$  in  $\beta_{ij}$  (respectively,  $\beta_{\overline{j}\overline{i}}$ ) for any  $l \in \left[\frac{j-i-1}{2}\right]$ .

It is well known that the number of admissible subsequences in  $\beta_{ij}$  (respectively,  $\beta_{\bar{j}\bar{i}}$ ) is  $C_{\frac{j-i-1}{2}}$ , where  $C_l:=\frac{1}{l+1}\binom{2l}{l}$  is the l-th Catalan number. The following is a formula for the number  $\delta_n$  of admissible subsequences in  $\beta_n$ .

**Proposition 4.3.**  $\delta_n := \binom{n}{\lfloor \frac{n}{2} \rfloor}$  for any  $n \in \mathbb{P}$ , where  $\lfloor x \rfloor$  stands for the largest integer not greater than x for any  $x \in \mathbb{Q}$ .

To show Proposition 4.3, we need some preparation. Let  $\beta'_{n,q}$ :  $i_1, i_2, ..., i_{n-q}$  be a subsequence of  $\beta_{n,q}$  satisfying the condition 4.2 (a1). Let  $p(\beta'_{n,q})$  be the largest  $k \in [0, n-q]$  with  $i_1, i_2, ..., i_k$  a subsequence of  $\overline{n}, \overline{n-1}, ..., \overline{q+1}$ . Denote  $i_1, i_2, ..., i_{p(\beta'_{n,q})}$  by  $\beta'^0_{n,q}$ . Then  $\beta'_{n,q}$  is entirely determined by  $\beta'^0_{n,q}$ .

Let  $\beta': i_1, i_2, ..., i_n$  be a subsequence of  $\beta_n$  satisfying the condition 4.2 (a1). For any  $q \in [0, n-1]$ , let  $\beta'_{n,q}$  be obtained from  $\beta'$  by removing all the terms in  $\beta_q$  and let  $\beta''_{n,q}$  be the subsequence of  $\beta_{n,q}$  complement to  $\beta'_{n,q}$  (see 4.2 (a2)), where we stipulate  $\beta_0$  to be the empty sequence. Then the following result can be checked easily:

**Lemma 4.4.** Let  $\beta': i_1, i_2, ..., i_n$  be a subsequence of  $\beta_n$  satisfying the condition 4.2 (a1).

- (1) The following three conditions on  $\beta'$  are equivalent:
  - (a)  $\beta'$  is admissible in  $\beta_n$ ;
  - (b)  $\beta'_{n,q}$  is admissible in  $\beta_{n,q}$  for every  $q \in [0, n-1]$ ;
- (c)  $p(\beta') \geqslant \frac{n}{2}$  and the term  $j_h$  occurs after  $i_h$  in  $\beta_n$  for every  $h \in [p(\beta')]$ , where  $\beta'': j_1, j_2, ..., j_n$  is the subsequence of  $\beta_n$  complement to  $\beta'$  (see 4.2 (a2)).
- (2) For  $q \in [0, n-1]$ , if  $\beta'_{n,q}$  is admissible in  $\beta_{n,q}$ , then  $p(\beta'_{n,q}) \geqslant p(\beta''_{n,q})$ , in particular,  $p(\beta'_{n,q}) \geqslant \frac{n-q}{2}$ .
- **4.5.** Proof of Proposition 4.3. Consider the set  $\Delta_n$ . We may assume n > 1, for otherwise the result is obvious. By Lemma 4.4 (1), we see that  $\beta'_{n,1} \in \Delta_{n,1}$  for any  $\beta' \in \Delta_n$ . On the other hand, for any  $\lambda$ :  $i_1, i_2, ..., i_{n-1}$  in  $\Delta_{n,1}$ , let  $\lambda_{\bar{1}}$  (respectively,  $\lambda_1$ ) be obtained from  $\lambda$  by inserting the term  $\bar{1}$  (respectively, 1) immediately after  $i_{p(\lambda)}$ . Then  $\lambda_{\bar{1}}$  is always in  $\Delta_n$ , while  $\lambda_1$  is not in  $\Delta_n$  if and only if  $p(\lambda) < \frac{n}{2}$ . Since  $p(\lambda) \geqslant \frac{n-1}{2}$  by the condition  $\lambda \in \Delta_{n,1}$  and Lemma 4.4 (2), this implies that  $\lambda_1$  is not in  $\Delta_n$  if and only if n is odd (say n = 2l + 1) and  $p(\lambda) = l$ . When n = 2l + 1, let  $\Delta'_{n,1}$  be the set of all such subsequences  $\lambda$ :  $i_1, i_2, ..., i_l$  of  $\bar{n}, \overline{n-1}, ..., \bar{3}, \bar{2}$  that, if  $\lambda'$ :  $j_1, j_2, ..., j_l$  is the subsequence of  $\bar{n}, \overline{n-1}, ..., \bar{3}, \bar{2}$  complement to  $\lambda$ , then the term  $j_h$  occurs after the term  $i_h$  for every  $h \in [l]$ . Then  $|\Delta'_{n,1}|$  is equal to the

number of all  $\lambda \in \Delta_{n,1}$  with  $\lambda_1 \notin \Delta_n$ . It is well known that  $|\Delta'_{n,1}| = C_l$  (the l-th Catalan number). So by applying induction on  $n \geqslant 1$  and by the fact that  $\delta_{n,1} = \delta_{n-1}$ , we have

$$\delta_n = \begin{cases} \delta_{n-1} + (\delta_{n-1} - C_l) = 2\binom{2l}{l} - \frac{1}{l+1}\binom{2l}{l} = \binom{2l+1}{l}, & \text{if } n = 2l+1 \text{ is odd,} \\ 2\delta_{n-1} = 2\binom{2l-1}{l-1} = \binom{2l}{l}, & \text{if } n = 2l \text{ is even.} \end{cases}$$

Our result is proved.  $\square$ 

**Remark 4.6.** The result in Proposition 4.3 can be extended to a more general case. Let  $\beta: \overline{i_t}, \overline{i_{t-1}}, ..., \overline{i_1}, i_1, i_2, ..., i_t$  (respectively,  $\overline{\beta}: i_1, i_2, ..., i_t, \overline{i_t}, \overline{i_{t-1}}, ..., \overline{i_1}$ ) satisfy  $1 \leq i_1 < i_2 < \cdots < i_t \leq n$ . A subsequence  $\beta': j_1, j_2, ..., j_r$  of  $\beta$  (respectively,  $\overline{\beta}$ ) is called *admissible*, if the following conditions are satisfied:

- (i) r = t and  $\overline{j_h} \neq j_k$  for any  $h, k \in [t]$ ;
- (ii) Let  $\beta'': j'_1, j'_2, ..., j'_t$  be the subsequence of  $\beta$  (respectively,  $\overline{\beta}$ ) complement to  $\beta'$ . Then  $j'_h$  occurs after  $j_h$  in  $\beta$  (respectively,  $\overline{\beta}$ ) for any  $h \in [t]$ .

By the same way as that for Proposition 4.3, one can prove that the number of admissible subsequences of  $\beta$  (respectively,  $\overline{\beta}$ ) is equal to  $\binom{t}{\left\lfloor \frac{t}{2} \right\rfloor}$ .

The following is a formula for the number  $\gamma_0(\mathbf{a})$  with  $\mathbf{a} \in \widetilde{\Lambda}_{2n}$  having exactly two different parts.

**Proposition 4.7.** For  $\mathbf{a} = (n+t, n-t)$  with  $t \in [n-1]$ , we have

(4.7.1) 
$$\gamma_0(\mathbf{a}) = \sum_{\substack{h_1, h_2, \dots, h_t \in \mathbb{N} \\ 1 \leqslant h_1 < h_2 < \dots < h_t \leqslant n \\ h_{i+1} - h_i \text{ odd } \forall i}} \binom{n - h_t}{\lfloor \frac{n - h_t}{2} \rfloor} \binom{h_1 - 1}{\lfloor \frac{h_1 - 1}{2} \rfloor} \prod_{i=1}^{t-1} C_{\frac{h_{i+1} - h_i - 1}{2}},$$

where  $C_l$  is the l-th Catalan number for any  $l \in \mathbb{N}$ .

Proof. Let  $\mathbf{T} = (Y, X) \in \mathcal{C}_{2n}^{\mathbf{a}}$ . By the condition of  $\mathbf{T}$  being (2n-1, n)-selfdual, we have  $L_Y(X) = \{i \in Y \mid \overline{i} \notin Y\}$  and  $Y - L_Y(X) = \{h_1, h_2, ..., h_t, \overline{h_t}, ..., \overline{h_2}, \overline{h_1}\}$  with some  $1 \leq h_1 < h_2 < \cdots < h_t \leq n$  by Lemma 4.1. According to the definition of the set  $L_Y(X)$ , we get the following results by Lemma 2.9 (b).

- (i) For any  $j \in [t-1]$ , let  $Y_{h_j+1,h_{j+1}-1} = \{h_{j1},h_{j2},...,h_{jn_j}\}$  be with  $h_j < h_{j1} < h_{j2} < \cdots < h_{jn_j} < h_{j+1}$ , then  $h_{j1},h_{j2},...,h_{jn_j}$  is an admissible subsequence of  $\beta_{h_j,h_{j+1}}: h_j+1,h_j+2,...,h_{j+1}-1$  (hence  $h_{j+1}-h_j$  is odd and  $n_j = \frac{h_{j+1}-h_j-1}{2}$  by 4.2 (b)), and  $Y_{\overline{h_{j+1}-1},\overline{h_j+1}} = \overline{[h_j+1,h_{j+1}-1]-Y_{h_j+1,h_{j+1}-1}}$ . Write  $Y_{\overline{h_{j+1}-1},\overline{h_{j+1}}} = \{\overline{h'_{j1}},\overline{h'_{j2}},...,\overline{h'_{jn_j}}\}$  with  $h_j < h'_{j1} < h'_{j2} < \cdots < h'_{jn_j} < h_{j+1}$ . Then  $\overline{h'_{jn_j}},...,\overline{h'_{j2}},\overline{h'_{j1}}$  is an admissible subsequence of  $\overline{h_{j+1}-1},...,\overline{h_j+2},\overline{h_j+1}$ .
- (ii) Let  $Y_{h_t+1,\overline{h_t+1}} = \{h_{t1}, h_{t2}, ..., h_{tn_t}\}$  be with  $\beta' : h_{t1}, h_{t2}, ..., h_{tn_t}$  a subsequence of  $\beta_{h_t,n} : h_t + 1, h_t + 2, ..., n, \overline{n}, \overline{n-1}, ..., \overline{h_t+1}$ . Then  $\beta'$  is admissible in  $\beta_{h_t,n}$ .
- (iii) Let  $Y_{\overline{h_1-1},h_1-1} = \{h_{01},h_{02},...,h_{0n_0}\}$  be with  $\beta':h_{01},h_{02},...,h_{0n_0}$  a subsequence of  $\beta_{1,h_1}:\overline{h_1-1},\overline{h_1-2},...,\overline{1},1,2,...,h_1-1$ . Then  $\beta'$  is admissible in  $\beta_{1,h_1}$ .
- (iv)  $L_Y(X) = \left(\bigcup_{j \in [t-1]} \left(Y_{h_j+1,h_{j+1}-1} \cup Y_{\overline{h_{j+1}-1},\overline{h_{j}+1}}\right)\right) \cup Y_{h_t+1,\overline{h_t+1}} \cup Y_{\overline{h_1-1},h_1-1}.$  Conversely, fix  $h_1,h_2,...,h_t \in \mathbb{P}$  with  $t \in \mathbb{P}$  and  $1 \leqslant h_1 < h_2 < \cdots < h_t \leqslant n$  and  $h_{i+1} h_i$  odd for all  $i \in [t-1]$ . Take an admissible subsequence  $\beta'_j$  in  $\beta_{h_j,h_{j+1}}$  for any  $j \in [t-1]$ . Also, take an admissible subsequence  $\beta'_t$  (respectively,  $\beta'_0$ ) in  $\beta_{h_t,n}$  (respectively,  $\beta_{1,h_1}$ ). For  $j \in [t-1]$ , let  $\beta''_j$  be the subsequence of  $\beta_{h_j,h_{j+1}}$  complement to  $\beta'_j$  and let  $\beta'_j$  be the subsequence of  $\beta_{\overline{h_{j+1},h_j}}$  such that  $\beta'_j = \overline{\beta''_j}$  by regarding the sequences as the corresponding sets. Let Y be the union of the sets  $\{h_l,\overline{h_l} \mid l \in [t]\}, \beta'_l, \beta'_0$  and  $\beta'_j, \beta'_j$  with  $j \in [t-1]$ , regarding the sequences as the corresponding sets. Let X = [2n] Y. Then  $(Y,X) \in \mathcal{C}^{\mathbf{a}}_{2n}$  by Lemma 4.1.

By 4.2 (b) and Proposition 4.3, we see that the numbers of admissible subsequences in  $\beta_{h_j,h_{j+1}}$ ,  $j \in [t-1]$ ,  $\beta_{h_t,n}$ ,  $\beta_{1,h_1}$  are  $C_{\frac{h_{j+1}-h_{j}-1}{2}}$ ,  $\binom{n-h_t}{\left\lfloor \frac{n-h_t}{2} \right\rfloor}$ ,  $\binom{h_1-1}{\left\lfloor \frac{h_1-1}{2} \right\rfloor}$ , respectively. This implies the formula (4.7.1).  $\square$ 

We can get the corresponding results in the case of  $m \in \{2n, 2n + 1\}$  similarly by noting that the number of (m, n)-selfdual elements in [m + 1] is m + 1 - 2n.

**Proposition 4.8.** For a = (n + 1 + t, n - t) with  $t \in [0, n - 1]$ , we have

(4.8.1) 
$$\gamma_{1}(\mathbf{a}) = \sum_{\substack{h_{1}, h_{2}, \dots, h_{t+1} \in \mathbb{N} \\ 1 \leqslant h_{1} < h_{2} < \dots < h_{t+1} = n+1 \\ h_{i+1} = h_{i} \text{ odd } \forall i}} \begin{pmatrix} h_{1} - 1 \\ \lfloor \frac{h_{1} - 1}{2} \rfloor \end{pmatrix} \prod_{i=1}^{t} C_{\frac{h_{i+1} - h_{i} - 1}{2}},$$

with the convention that  $\gamma_1((n+1,n)) = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ .

**Proposition 4.9.** For  $\mathbf{a} = (n+1+t, n+1-t)$  with  $t \in [n]$ , we have

(4.9.1) 
$$\gamma_{2}(\mathbf{a}) = \sum_{\substack{h_{1}, h_{2}, \dots, h_{t+1} \in \mathbb{N} \\ 0 = h_{1} < h_{2} < \dots < h_{t+1} = n+1 \\ h_{i+1} - h_{i} \text{ odd } \forall i}} \prod_{i=1}^{t} C_{\frac{h_{i+1} - h_{i} - 1}{2}}.$$

From Theorem 3.3 and Propositions 4.7-4.9, we see that for  $k \in \mathbb{P}$  with  $2k \leq m+1$ , the set  $E_{\mathbf{2^{k_1m+1-2k}}}$  is empty if and only if m=2n+1 and 2k=m+1. **Example 4.10.** (1) In Proposition 4.7, take n=5 and t=2, then  $\mathbf{a}=(7,3)$  and  $\zeta(\mathbf{a})^{\vee} = \mathbf{2^31^4}$ . The pairs  $(h_1,h_2)$  occurring in the summation of (4.7.1) are (1,2),(2,3),(3,4),(4,5),(1,4),(2,5). Then  $\gamma_0(\mathbf{a})=\binom{3}{1}+\binom{2}{1}+\binom{2}{1}+\binom{3}{1}+1+1=12$ , which is just the number of left cells of  $\widetilde{C}_5$  in the set  $E_{\mathbf{2^31^4}}$ . The set  $\mathcal{C}_{10}^{\mathbf{a}}$  consists of the following tabloids:

$$\begin{split} \mathbf{T}_1 &= (\{3,4,5\} \cup \{1,2,9,10\}, \{6,7,8\}), & \mathbf{T}_2 &= (\{3,4,6\} \cup \{1,2,9,10\}, \{5,7,8\}), \\ \mathbf{T}_3 &= (\{3,5,7\} \cup \{1,2,9,10\}, \{4,6,8\}), & \mathbf{T}_4 &= (\{4,5,10\} \cup \{2,3,8,9\}, \{1,6,7\}), \\ \mathbf{T}_5 &= (\{4,6,10\} \cup \{2,3,8,9\}, \{1,5,7\}), & \mathbf{T}_6 &= (\{5,9,10\} \cup \{3,4,7,8\}, \{1,2,6\}), \\ \mathbf{T}_7 &= (\{1,5,9\} \cup \{3,4,7,8\}, \{2,6,10\}), & \mathbf{T}_8 &= (\{8,9,10\} \cup \{4,5,6,7\}, \{1,2,3\}), \\ \mathbf{T}_9 &= (\{1,8,9\} \cup \{4,5,6,7\}, \{2,3,10\}), & \mathbf{T}_{10} &= (\{2,8,10\} \cup \{4,5,6,7\}, \{1,3,9\}), \\ \mathbf{T}_{11} &= (\{2,5,8\} \cup \{1,4,7,10\}, \{3,6,9\}), & \mathbf{T}_{12} &= (\{3,7,10\} \cup \{2,5,6,9\}, \{1,4,8\}). \end{split}$$

(2) In Proposition 4.8, take n=5 and t=2, then  $\mathbf{a}=(8,3)$  and  $\zeta(\mathbf{a})^{\vee}=\mathbf{2^31^5}$ . The triples  $(h_1,h_2,h_3)$  occurring in the summation of (4.8.1) are (4,5,6),(2,5,6),(2,3,6). Then  $\gamma_1(\mathbf{a})=\binom{3}{1}+1+1=5$ , which is just the number of left cells of  $\widetilde{C}_5$  in the set  $E_{\mathbf{2^31^5}}$ . The set  $\mathcal{C}_{11}^{\mathbf{a}}$  consists of the following tabloids:

$$\begin{split} \mathbf{T}_1 &= (\{4,7,11\} \cup \{2,3,6,9,10\}, \{1,5,8\}), \\ \mathbf{T}_2 &= (\{3,8,11\} \cup \{2,5,6,7,10\}, \{1,4,9\}), \\ \mathbf{T}_3 &= (\{9,10,11\} \cup \{4,5,6,7,8\}, \{1,2,3\}), \\ \mathbf{T}_4 &= (\{1,9,10\} \cup \{4,5,6,7,8\}, \{2,3,11\}), \\ \mathbf{T}_5 &= (\{2,9,11\} \cup \{4,5,6,7,8\}, \{1,3,10\}). \end{split}$$

(3) In Proposition 4.9, take n = 5 and t = 2, then  $\mathbf{a} = (8,4)$  and  $\zeta(\mathbf{a})^{\vee} = \mathbf{2^4 1^4}$ . The triples  $(h_1, h_2, h_3)$  occurring in the summation of (4.9.1) are (0, 1, 6), (0, 3, 6), (0, 5, 6). Then  $\gamma_2(\mathbf{a}) = 2 + 1 + 2 = 5$ , which is just the number of left cells of  $\widetilde{C}_5$  in the set  $E_{\mathbf{2^4 1^4}}$ . The set  $\mathcal{C}_{12}^{\mathbf{a}}$  consists of the following tabloids:

$$\mathbf{T}_1 = (\{2, 3, 7, 8\} \cup \{1, 6, 11, 12\}, \{4, 5, 9, 10\}),$$

$$\mathbf{T}_2 = (\{2, 4, 7, 9\} \cup \{1, 6, 11, 12\}, \{3, 5, 8, 10\}),$$

$$\mathbf{T}_3 = (\{1, 4, 7, 10\} \cup \{3, 6, 9, 12\}, \{2, 5, 8, 11\}),$$

$$\mathbf{T}_4 = (\{1, 2, 8, 9\} \cup \{5, 6, 7, 12\}, \{3, 4, 10, 11\}),$$

$$\mathbf{T}_5 = (\{1, 3, 8, 10\} \cup \{5, 6, 7, 12\}, \{2, 4, 9, 11\}).$$

**Remark 4.11.** (1) From Propositions 4.7-4.9, we can get a formula of the number  $\gamma_{m+1-2n}(\mathbf{a})$  for any  $\mathbf{a} = (r,s)$  with  $r,s \in \mathbb{P}$  and  $r+s \in [m+1]$  (see 3.2). Note that here we allow the case  $r \leq s$ . For, if r=s then  $\mathbf{a}$  is symmetric, hence  $\gamma_{m+1-2n}(\mathbf{a})$  is known by Theorem 3.3; if r < s then  $\gamma_{m+1-2n}(\mathbf{a}) = \gamma_{m+1-2n}(\mathbf{a}^{op})$ .

We also allow the case r+s < m+1. When  $m+1-2n \in \{0,2\}$ , we have r+s = 2p and r-s = 2q for some  $p, q \in \mathbb{Z}$ . If r > s, then the formula of the number  $\gamma_0((r,s))$  (respectively,  $\gamma_2((r,s))$ ) can be obtained from (4.7.1) (respectively, (4.9.1)) by replacing n, t by p, q (respectively, p-1, q), respectively. When m+1-2n=1, we have r+s=2p+1 and r-s=2q+1 for some  $p,q\in\mathbb{Z}$ . If r>s, then the formula of the number  $\gamma_1((r,s))$  can be obtained from (4.8.1) by replacing n, t by p, q, respectively.

(2) The results in Propositions 4.7-4.9 can be extended to a more general case. Let  $\lambda = (2l_1, 2l_2, ..., 2l_r, 2l_{r+1} + 1, ..., 2l_t + 1) \in \Lambda_{m+1}$  for some  $r, t, l_i \in \mathbb{N}$  with  $r \in [t-1]$  and  $i \in [t]$  (Comparing with the partitions in Lemma 3.4). Then  $\mathbf{a} = (a_1, a_2, ..., a_{l_1-1}, t, r, a_{l_1-1}, ..., a_2, a_1) \in \zeta^{-1}(\lambda^{\vee})$  for some  $1 \leq a_1 \leq a_2 \leq \cdots \leq a_{l_1-1}$ . Then the following is a formula of the number  $\gamma_{m+1-2n}(\mathbf{a})$ .

Corollary 4.12. In the setup of 4.11 (2), we have

(4.12.1) 
$$\gamma_{m+1-2n}(\mathbf{a}) = 2^{a_1 + \dots + a_{l_1-1}} \frac{n!}{(n - a_1 - \dots - a_{l_1-1})! \prod_{i=1}^{l_1-1} a_i!} \cdot \gamma_{m+1-2n}((t,r)).$$

*Proof.* Let  $\mathbf{a}_1 = (a_1, a_2, ..., a_{l_1-1}, a_{l_1-1}, ..., a_2, a_1)$  and  $\mathbf{a}_2 = (t, r)$ . Then  $\gamma_{m+1-2n}(\mathbf{a}) = (t, r)$ 

 $\gamma_0(\mathbf{a}_1)\gamma_{m+1-2n}(\mathbf{a}_2)\binom{n}{a_1+\cdots+a_{l_1-1}}$  by Theorem 3.7. Since

$$\gamma_0(\mathbf{a}_1) \binom{n}{a_1 + \dots + a_{l_1 - 1}} = 2^{a_1 + \dots + a_{l_1 - 1}} \frac{n!}{(n - a_1 - \dots - a_{l_1 - 1})! \prod_{i = 1}^{l_1 - 1} a_i!}$$

by Theorem 3.3, this proves the formula (4.12.1).  $\square$ 

**4.13.** Let  $\mathbf{T} = (T_1, T_2, ..., T_r)$  and  $\mathbf{T}' = (T'_1, T'_2, ..., T'_r)$  in  $\mathcal{C}_{m+1}$  satisfy  $|T_1| > |T_2| > \cdots > |T_r|$  and  $|T'_1| < |T'_2| < \cdots < |T'_r|$  and  $|T'| \approx \mathbf{T}$ . Then  $|T'_i| = |T_{r+1-i}|$  for any  $i \in [r]$ . The tabloid  $\mathbf{T}$  is (m, n)-selfdual if and only if  $|T'| = |T_r|$  for any  $|T'| = |T_r|$ 

**4.14.** Let us describe (m, n)-selfdual  $\mathbf{T} = (T_1, T_2, T_3) \in \mathcal{C}_{m+1}$  with  $|T_1| > |T_2| > |T_3|$ . Define the partitions  $T_1 = T_{11} \dot{\cup} T_{12} \dot{\cup} T_{13}$  and  $T_2 = T_{21} \dot{\cup} T_{22}$  and  $T_3 = T_{31}$  as those in 4.13 with r = 3. Define

$$\mathbf{X} := (T_{11}, T_{21} \cup T_{12} \cup T_{13}, T_{31} \cup T_{22})$$
 and  $\mathbf{Y} := (T_{11} \cup T_{12}, T_{21} \cup T_{22} \cup T_{13}, T_{31}).$ 

Then **X** is obtained from **T** by a  $\{2,3\}$ -transformation followed by a  $\{1,2\}$ -transformation, while **Y** is obtained from **T** by a  $\{1,2\}$ -transformation (see 2.13). So  $\mathbf{X} \approx \mathbf{T} \approx \mathbf{Y}$ . We see by Lemma 2.15 that both **X** and **Y** are (m,n)-selfdual and that  $\mathbf{Y} = \overline{\mathbf{X}}^{\mathrm{op}}$ . This implies that  $T_{31} = \overline{T_{11}}$  and  $T_{22} = \overline{T_{12}}$  and  $T_{13} \cup T_{21} = \overline{T_{21} \cup T_{13}}$ . Denote  $E^0 = \{i \in E \mid \overline{i} \in E\}$  and  $E^1 = E - E^0$  for any  $E \subseteq [m+1]$ . Then  $T_{13}^1 = \overline{T_{21}}^1$  and  $\mathbf{T}' = (T_{11}, T_{21}^0 \cup T_{12} \cup T_{13}^1, T_{31} \cup T_{22} \cup T_{21}^1 \cup T_{13}^0)$ . Hence we have

**Proposition 4.15.** For any  $\mathbf{a} = (a_1, a_2, a_3) \in \widetilde{\Lambda}_{m+1}$  with  $a_1 > a_2 > a_3$ , a tabloid  $\mathbf{T} \in \xi^{-1}(\mathbf{a})$  is (m, n)-selfdual if and only if  $\mathbf{T} = (T_{11} \dot{\cup} T_{12} \dot{\cup} T_{13}, T_{21} \dot{\cup} \overline{T_{12}}, \overline{T_{11}})$  for some  $T_{11}, T_{12}, T_{13}, T_{21} \subset [m+1]$  satisfying the following conditions:

- (i)  $T_{11} = L_{T_{11} \dot{\cup} T_{12} \dot{\cup} T_{13}}(T_{21});$
- (ii)  $T_{11}\dot{\cup}T_{12} = L_{T_{11}\dot{\cup}T_{12}\dot{\cup}T_{13}}(T_{21}\dot{\cup}\overline{T_{12}});$
- $(iii) \ T_{21} = L_{T_{21} \dot{\cup} \overline{T_{12}}} (\overline{T_{11}}) \ \ and \ T_{21}^0 \dot{\cup} T_{13}^1 = L_{T_{21} \dot{\cup} \overline{T_{12}} \dot{\cup} T_{13}} (\overline{T_{11}});$
- (iv)  $T_{11}^0 = T_{12}^0 = \emptyset$  and  $T_{13}^1 = \overline{T_{21}^1}$ .

**Example 4.16.** Let (m, n) = (15, 8) and  $\mathbf{a} = (8, 5, 3)$ . Then

$$\mathbf{T}_1 = (\{12, 13, 14\} \cup \{7, 8\} \cup \{2, 6, 11\}, \{1, 15, 16\} \cup \{9, 10\}, \{3, 4, 5\}),$$

$$\mathbf{T}_2 = (\{4, 12, 14\} \cup \{2, 11\} \cup \{8, 9, 10\}, \{1, 7, 16\} \cup \{6, 15\}, \{3, 5, 13\}),$$

$$\mathbf{T}_1' = (\{4, 5, 6\} \cup \{15, 16\} \cup \{3, 10, 14\}, \{7, 8, 9\} \cup \{1, 2\}, \{11, 12, 13\}),$$

$$\mathbf{T}_2' = (\{4, 6, 12\} \cup \{3, 10\} \cup \{1, 2, 16\}, \{8, 9, 15\} \cup \{7, 14\}, \{5, 11, 13\})$$

are four tabloids in  $C_{16}^{\mathbf{a}}$  with  $\mathbf{T}_{i}' = \tau_{16}(\mathbf{T}_{i})$  for i = 1, 2 (see 2.14).

Question 4.17. Can one find a close formula of the number  $\gamma_{m+1-2n}(\mathbf{a})$  for any  $\mathbf{a} = (a_1, ..., a_r) \in \widetilde{\Lambda}_{m+1}$  with  $a_1 > \cdots > a_r$  and  $r \geqslant 3$ ?

### References

- 1. C. Greene, Some partitions associated with a partially ordered set, J. Comb. Theory (A) **20** (1976), 69–79.
- 2. G. Lusztig, Some examples in square integrable representations of semisimple p-adic groups, Trans. of the AMS **277** (1983), 623–653.
- 3. G. Lusztig, The two-sided cells of the affine Weyl group of type  $\widetilde{A}_n$ , in "Infinite Dimensional Groups with Applications", (V. Kac, ed.), MSRI. Publications 4, Springer-Verlag,(1985), 275–283.
- 4. G. Lusztig, Cells in affine Weyl groups, II, J. Algebra 109 (1987), 536-548.
- 5. G. Lusztig, *Hecke algebras with unequal parameters*, CRM Monograph Series, vol. 18, AMS, USA, 2003.
- 6. J. Y. Shi, *The Kazhdan-Lusztig cells in certain affine Weyl groups*, Lecture Notes in Math. vol. 1179, Springer-Verlag, Germany, 1986.
- 7. J. Y. Shi, The cells of the affine Weyl group  $\widetilde{C}_n$  in a certain quasi-split case, to appear in Journal of Algebra.