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Abstract. The affine Weyl group ( eCn, S) can be realized as the fixed point set of

the affine Weyl group ( eAm, eSm), m ∈ {2n − 1, 2n, 2n + 1}, under a certain group

automorphism αm,n. Let e`m be the length function of eAm. The present paper is to

give a combinatorial description for all the left cells of eAm which have non-empty

intersection with eCn. Then we use this description to deduce some formulae for the

number of left cells of the weighted Coxeter group ( eCn, e`m) in the set Eλ associated

to any partition λ of m + 1.

§0. Introduction.

0.1. Let Z (respectively, N, P) be the set of all integers (respectively, non-negative

integers, positive integers). The affine Weyl group (C̃n, S) can be realized as the

fixed point set of the affine Weyl group (Ãm, S̃m), m ∈ {2n− 1, 2n, 2n + 1}, under

a certain automorphism αm,n with αm,n(S̃m) = S̃m, where S̃m, S are the Coxeter

generator sets of Ãm, C̃n, respectively. The restriction to C̃n of the length function˜̀
m of Ãm is a weight function of C̃n. It is known that there is a surjective map

ψ from Ãm to the set Λm+1 of partitions of m + 1 which induces a bijection from

the set of two-sided cells of Ãm to Λm+1 (see [6], [3]). For any i 6 j in N, denote

[i, j] := {i, i + 1, ..., j} and denote [1, i] simply by [i]. Let Eλ := ψ−1(λ) ∩ C̃n for

λ ∈ Λm+1. In the paper [7], we described all the cells of the weighted Coxeter
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group (C̃n, ˜̀2n−1) corresponding to the partitions k12n−k and h212n−h−2 for all

k ∈ [2n] and h ∈ [2, 2n − 2] and also all the cells of the weighted Coxeter group

(C̃3, ˜̀5).
0.2. Denote by λ∨ the dual partition of λ ∈ Λm+1 (see 1.8). Let Λ̃m+1 be the set

of all compositions of m + 1 (see 2.1). There is a natural surjective map ζ from

the set Λ̃m+1 to Λm+1 (see 2.1). Call a = (a1, a2, ..., ar) ∈ Λ̃m+1 symmetric, if

ai = ar+1−i for any i ∈ [r]. Let Cm+1 be the set of all tabloids of rank m + 1 (see

2.2). We can define an equivalence relation ≈ on Cm+1 (see 2.13). There exists

a bijective map from the set Πl
m of left cells of Ãm to the set of ≈-equivalence

classes of Cm+1 (see [6, Subsection 19.4]). There exists a natural surjective map ξ

from Cm+1 to Λ̃m+1 (see 2.2).

0.3. In the present paper, we prove that a left cell Γ of Ãm has a non-empty

intersection with C̃n if and only if the ≈-equivalence class of Cm+1 corresponding

to Γ is (m,n)-selfdual (see 2.13-2.14, Lemma 2.15 and Theorem 3.1). By this result,

we can deduce some formulae for the number γm+1−2n(a) of left cells of (C̃n, ˜̀m)

in the set Eζ(a)∨ for any a ∈ Λ̃m+1. More precisely, we give a close formula for the

number γm+1−2n(a) if a ∈ Λ̃m+1 is symmetric (Theorem 3.3). For an arbitrary

a = (a1, a2, ..., ar) ∈ Λ̃m+1, we have γm+1−2n(a) = γ0(a1)γm+1−2n(a2)
(
n
l

)
for

some symmetric a1 = (ai1 , ai2 , ..., ai2p) ∈ Λ̃2l, and some a2 = (aj1 , aj2 , ..., ajq ) ∈
Λ̃m+1−2l, aj1 > aj2 > · · · > ajq > 0, with some l ∈ N, where

(
n
l

)
:= n!

l!(n−l)! and

{ih, jl | h ∈ [0, 2p], l ∈ [0, q]} = [r] and the notation γk(b), k ∈ {0, 1, 2}, stands for

the numbers of (m,n)-selfdual tabloids T with ξ(T) = b over an (m,n)-selfdual

subset of [m+1] containing exactly k (m,n)-selfdual elements (see 3.6 and Theorem

3.7). Hence to calculate the number γm+1−2n(a), we are reduced to the case where

a = (a1, a2, ..., ar) ∈ Λ̃m+1−2l satisfies a1 > a2 > · · · > ar and l ∈ N. We get a

close formula for γm+1−2n(a) in the case of r = 2 (see Propositions 4.7-4.9 and

Corollary 4.12). Then in the case of r = 3, we describe the (m,n)-selfdual tabloids

in ξ−1(a) (see Proposition 4.15).

0.4. The contents of the paper are organized as follows. In Section 1, we collect

some concepts and known results concerning cells of the weighted Coxeter groups

(Ãm, ˜̀m) and (C̃n, ˜̀m). Then we introduce the tabloids of rank m + 1 in Section



The cells in the weighted Coxeter group (C̃n, ˜̀m) 3

2. In Section 3, we characterize all the tabloids parameterizing the left cells of

(C̃n, ˜̀m) and give some formulae for the number of left cells of (C̃n, ˜̀m) in the set

Eλ for any λ ∈ Λm+1. Finally, we deduce some more formulae for those numbers

and describe the (m,n)-selfdual tabloids in some special cases in Section 4.

§1. The weighted Coxeter groups (Ãm, ˜̀m) and (C̃n, ˜̀m).

In this section, we collect some concepts and results concerning the weighted

Coxeter groups (Ãm, ˜̀m) and (C̃n, ˜̀m).

1.1. Let (W,S) be a Coxeter system with ` its length function and 6 the Bruhat-

Chevalley ordering on W . An expression w = s1s2 · · · sr ∈ W with si ∈ S is called

reduced if r = `(w). Call L : W → Z a weight function on W if L(xy) = L(x)+L(y)

for any x, y ∈ W with `(xy) = `(x) + `(y). Hence L(s) = L(t) for any s, t ∈ S

conjugate in W . Call (W,L) is a weighted Coxeter group.

A weighted Coxeter group (W,L) is called in the split case if L = `.

Suppose that there exists a group automorphism α : W −→ W with α(S) = S.

Let Wα = {w ∈ W | α(w) = w}. For any α-orbit J in S, let wJ ∈ Wα be the

longest element in the subgroup WJ of W generated by J whenever WJ is finite.

Let Sα be the set of elements wJ with J ranging over all such α-orbits in S. Then

(Wα, Sα) is a Coxeter group and the restriction to Wα of the length function ` of

W is a weight function on Wα. The weighted Coxeter group (Wα, `) is called in

the quasi-split case.

1.2. Let 6
L

(respectively, 6
R

, 6
LR

) be the preorder on a weighted Coxeter group

(W,L) defined in [5]. The equivalence relation associated to this preorder is de-

noted by ∼
L

(respectively, ∼
R

, ∼
LR

). The corresponding equivalence classes in W are

called left cells (respectively, right cells, two-sided cells) of W .

1.3. Lusztig introduced a subset D of a weighted Coxeter group (W,L) (see [5,

Chapter 14]). When (W,L) is a Weyl or affine Weyl group which is either in the

split case or in the quasi-split case, Lusztig proved that the set D consists of certain

involutive elements w (hence w2 = 1) and that each left (respectively, right) cell

of W contains exactly one element in D (see [5, Chapters 14–16]). The elements

of D were called distinguished involutions when (W,L) is in the split case (see [4]).

1.4. The group Ãm, m > 1, can be realized as the following permutation group
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on the set Z (see [2, Subsection 3.6] and [6, Subsection 4.1)]:

Ãm =

{
w : Z −→ Z

∣∣∣∣∣(i + m + 1)w = (i)w + m + 1,

m+1∑
i=1

(i)w =
m+1∑
i=1

i

}
.

The Coxeter generator set S̃m = {si | i ∈ [0,m]} of Ãm is given by

(t)si =


t, if t 6≡ i, i + 1 (mod m + 1),
t + 1, if t ≡ i (mod m + 1),
t − 1, if t ≡ i + 1 (mod m + 1),

for t ∈ Z and i ∈ [0,m]. Any w ∈ Ãm can be realized as a Z × Z monomial

matrix Aw = (aij)i,j∈Z, where aij is 1 if j = (i)w and 0 otherwise. The row

(respectively, column) indices of Aw increase from top to bottom (respectively,

from left to right).

1.5. For m ∈ {2n − 1, 2n, 2n + 1}, let αm,n : Ãm −→ Ãm be the group automor-

phism determined by αm,n(si) = s2n−i if m = 2n − 1 and αm,n(si) = s2n+1−i if

m ∈ {2n, 2n + 1} for i ∈ [0,m], where we stipulate si+m+1 = si for any i ∈ Z.

In terms of matrix form, for any w ∈ Ãm, the matrix Aαm,n(w) can be obtained

from the matrix Aw by rotating with the angle π around the point (n + 1
2 , n + 1

2 )

(respectively, (n + 1, n + 1)) if m = 2n− 1 (respectively, m ∈ {2n, 2n + 1}), where

we identify Aw with a plane and identify the positions (i, j), i, j ∈ Z, of Aw with

the corresponding integer lattice points. Then αm,n gives rise to a permutation on

the set Πl
m (respectively, Πr

m, Πt
m) of left cells (respectively, right cells, two-sided

cells) of Ãm. Also, αm,n(D) = D by the definition of the set D in [5, Chapter 14].

1.6. The affine Weyl group C̃n can be realized as the fixed point set of Ãm,

m ∈ {2n − 1, 2n, 2n + 1}, under the automorphism αm,n, hence can be described

as follows.

C̃n = {w : Z −→ Z | (i+m+1)w = (i)w+m+1, (i)w+(εm,n−i)w = εm,n, ∀ i ∈ Z},

where εm,n is 1 if m ∈ {2n−1, 2n} and 0 if m = 2n+1. The Coxeter generator set

S = {ti | i ∈ [0, n]} of C̃n is given by setting ti = sis2n−i for i ∈ [n−1], t0 = s0 and
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tn = sn if m = 2n− 1; ti = sis2n+1−i for i ∈ [n− 1], t0 = s0 and tn = snsn+1sn if

m = 2n; ti = sis2n+1−i for i ∈ [n−1], t0 = s0s1s0 and tn = snsn+1sn if m = 2n+1.

In terms of matrix, an element w ∈ Ãm is in C̃n if and only if the matrix form Aw

of w is centrally symmetric at the points (qn+ 1
2 , qn+ 1

2 ) if m = 2n−1 and, at the

points ((2n + 1)q + 1
2 , (2n + 1)q + 1

2 ) and ((2n + 1)q + (n + 1), (2n + 1)q + (n + 1))

if m = 2n and, at the points ((n + 1)q, (n + 1)q) if m = 2n + 1, where q ranges

over Z
1.7. By a partition of l ∈ P, we mean an r-tuple λ := (λ1, λ2, ..., λr) with λ1 >
· · · > λr in P and

∑r
k=1 λk = l for some r ∈ P. Call λi a part of λ. We sometimes

denote λ by jk1
1 jk2

2 · · · jkm
m (boldfaced) with j1 > j2 > · · · > jm if ji is a part of λ

with multiplicity ki > 1. Let Λl be the set of all partitions of l.

Fix w ∈ Ãm. For any i 6= j in [m+1], we write i ≺w j, if there exist some p, q ∈ Z
such that both p(m+1)+ i > q(m+1)+ j and (p(m+1)+ i)w < (q(m+1)+ j)w

hold. This defines a partial order ¹w on the set [m + 1]. i 6= j in [m + 1] is said

w-comparable if either i ≺w j or j ≺w i, and w-uncomparable otherwise.

A sequence a1, a2, ..., ar in [m + 1] is called a w-chain, if a1 ≺w a2 ≺w · · · ≺w

ar. Sometimes we identify a w-chain a1, a2, ..., ar with the corresponding set

{a1, a2, ..., ar}. For any k > 1, a k-w-chain-family is by definition a union X =

∪k
i=1Xi of k w-chains X1, X2, ..., Xk in [m + 1]. Let dk be the maximally possi-

ble cardinal of a k-w-chain-family for any k > 1. Then there exists some r > 1

such that d1 < d2 < · · · < dr = m + 1. Let λ1 = d1 and λk+1 = dk+1 − dk for

k ∈ [r − 1]. Then λ1 > λ2 > · · · > λr by a result of C. Greene in [1]. Hence

w 7→ ψ(w) := (λ1, λ2, ..., λr) defines a map from the set Ãm to Λm+1.

A subset E of [m + 1] is called a w-antichain, if the elements of E are pairwise

w-uncomparable.

1.8. Let ˜̀
m be the length function for the Coxeter group (Ãm, S̃m). By the

definition in 1.1, we see that the weighted Coxeter group (Ãm, ˜̀m) is in the split

case, while (C̃n, ˜̀m) is in the quasi-split case.

For any λ = (λ1, ..., λr) ∈ Λm+1, define λ∨ = (λ∨
1 , ..., λ∨

t ) ∈ Λm+1 by setting

λ∨
j = #{k ∈ [r] | λk > j} for any j > 1, call λ∨ the dual partition of λ.

Lemma 1.9. (1) Regarding C̃n as a subset of Ãm, m ∈ {2n− 1, 2n, 2n + 1}. For
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any x, y ∈ C̃n, we have x ∼
L

y in C̃n if and only if x ∼
L

y in Ãm (see [5, Lemma

16.14]).

(2) The set ψ−1(λ) forms a two-sided cell of Ãm for any λ ∈ Λm+1 (see [3,

Theorem 6] and [6, Theorem 17.4]).

By Lemma 1.9 (1), we can just use the notation x ∼
L

y for x, y ∈ C̃n without

indicating whether the relation refers to Ãm, m ∈ {2n − 1, 2n, 2n + 1}, or C̃n.

For any λ ∈ Λm+1, denote Eλ := C̃n ∩ ψ−1(λ).

In the remaining part of the paper, when we mention the number m, we always

assume m ∈ {2n − 1, 2n, 2n + 1} unless otherwise specified.

§2. Tabloids of rank m + 1.

In the present section, we introduce the concept of tabloids of rank m+1 which

will be used to parametrize the left cells of Ãm and of C̃n.

2.1. By a composition of m + 1, we mean an r-tuple a = (a1, a2, ..., ar) with

a1, ..., ar, r ∈ P and
∑r

i=1 ai = m + 1. Let Λ̃m+1 be the set of all compositions

of m + 1. Clearly, Λm+1 ⊆ Λ̃m+1. For any a = (a1, a2, ..., ar) ∈ Λ̃m+1, let

i1, i2, ..., ir be a permutation of 1, 2, ..., r with ai1 > ai2 > · · · > air . Denote

ζ(a) = (ai1 , ai2 , ..., air ). This defines a surjective map ζ : Λ̃m+1 −→ Λm+1.

2.2. A (generalized) tabloid of rank m + 1 is, by definition, an r-tuple T =

(T1, T2, ..., Tr) with some r ∈ N such that [m + 1] is a disjoint union of some non-

empty subsets Tj , j ∈ [r]. We have ξ(T) := (|T1|, |T2|, ..., |Tr|) ∈ Λ̃m+1, where |Ti|
denotes the cardinal of the set Ti. Let Cm+1 be the set of all tabloids of rank m+1.

Then ξ : Cm+1 −→ Λ̃m+1 is a surjective map. Let κ = ζξ : Cm+1 −→ Λm+1.

2.3. For any i ∈ Z, define 〈i〉 ∈ [m + 1] by the condition 〈i〉 ≡ i (mod m + 1). Let

Ω be the set of all w ∈ Ãm such that there is some T = (T1, T2, ..., Tr) ∈ Cm+1

satisfying that

(i) If i < j in [r], then 〈(a)w−1〉 ≺w 〈(b)w−1〉 for any a ∈ Ti and b ∈ Tj ;

(ii) 〈(Ti)w−1〉 is a maximal w-antichain in [m + 1] for any i ∈ [r].

Clearly, the tabloid T is determined entirely by w ∈ Ω, denote T by T (w). The

map T : Ω −→ Cm+1 is surjective by [6, Proposition 19.1.2]. By a result of C.

Greene in [1], we have κ(T (w)) = ψ(w)∨.
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Lemma 2.4. (see [6, Proposition 19.1.2 and Lemma 19.4.6]) Suppose that y, w ∈
Ω satisfy ξ(T (y)) = ξ(T (w)). Then y ∼

L
w if and only if T (y) = T (w).

2.5. By Lemma 2.4, it makes sense to write T ∼
L

T′ in Cm+1 if there exist some

x, y ∈ Ω satisfying x ∼
L

y and T (x) = T and T (y) = T′. This defines an equivalence

relation on Cm+1.

Fix w ∈ Ãm and let λ = ψ(w). Take any a ∈ ζ−1(λ∨). There exists some y ∈ Ω

with y ∼
L

w and ξ(T (y)) = a. The tabloid T (y) is uniquely determined by the

element w and the composition a of m+1, denote it by Ta(w) (see [6, Propositions

19.1.2, 19.4.7 and 19.4.8]).

Lemma 2.6. (see [6, Propositions 19.4.7-19.4.8]) In the above setup, Ta gives

rise to a surjective map from the set ψ−1(λ) to ξ−1(a), which induces a bijection

(again denoted by Ta) from the set Πl
λ of left cells of Ãm in ψ−1(λ) to ξ−1(a).

2.7. For further discussion on the left cells of Ãm and C̃n, let us recall some more

concepts involving tabloids of rank m+1 (see [6, Chapter 20]). Let k ∈ P. Arrange

the numbers 1, 2, ..., k on a circle in clockwise order, hence t+1 is the successor of

t for any t ∈ [k − 1] and 1 is the successor of k. We call such a circle the k-circle.

For example, the following is the 8-circle.

8

7
6

5

4

3

2

1

Figure 1

For x 6= y in [k], we denote by
_
xy the arc of the k-circle which, starting with the

number x and moving clockwise, ends with the number y. For Z ⊆ [k], let Zxy be

the set of all elements of Z on
_
xy. Take the 8-circle in Figure 1 as an example, let

Z = {1, 2, 3, 4, 6}, x = 2, y = 5. Then Zxy = {2, 3, 4} and Zyx = {1, 2, 6}.
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Let X = {aj | j ∈ [t], a1 < · · · < at} and Y = {bj | j ∈ [r], b1 < · · · < br} be

two subsets of [k] with X ∩ Y = ∅ and t 6 r.

(i) Define a subset HY (X) = {c1, ..., ct} of Y such that ch ∈ Y is given recur-

rently by the condition |(Y − {c1, ..., ch−1})ahch
| = 1 for any h ∈ [t].

(ii) Define a subset LY (X) = {d1, ..., dt} of Y such that dh ∈ Y is given recur-

rently by the condition |(Y − {d1, ..., dh−1})dhat+1−h
| = 1 for any h ∈ [t].

By the definition, we see that the sets HY (X) and LY (X) depend only on the

relative positions of the elements of X∪Y on the k-circle, but neither on k ∈ P nor

on any element in [k] − X ∪ Y . In particular, HY (X) = LY (X) = Y if |X| = |Y |.
The following result can be checked directly from the above definition.

Lemma 2.8. Fix k ∈ P. If η is a permutation on [k] such that η(i+1) ≡ η(i)− 1 (

mod k) for any i ∈ [k] (hence the order of the numbers 1, 2, ..., k on the k-circle

are reversed by η) then η(HY (X)) = Lη(Y )(η(X)) and η(LY (X)) = Hη(Y )(η(X))

for any X,Y ⊆ [k] with |Y | > |X| and Y ∩ X = ∅.

Take the 8-circle in Figure 1 as an example. Let X = {1, 4} and Y = {2, 6, 7}.
Then HY (X) = {2, 6} and LY (X) = {2, 7}. Define η : [8] −→ [8] by setting η(i) =

9 − i for any i ∈ [8]. Then η(HY (X)) = {3, 7} = L{2,3,7}({5, 8}) = Lη(Y )(η(X)).

The following results describe the sets HY (X) and LY (X) in more intrinsic way.

Lemma 2.9. (see [6, Lemmas 20.1.2-20.1.3]) Fix k ∈ P and take X,Y ⊆ [k] such

that X ∩ Y = ∅ and |X| 6 |Y |. Then for any y ∈ Y , we have

(a) y ∈ HY (X) if and only if there exists some x ∈ X satisfying |Yxy| = |Xxy|.
(b) y ∈ LY (X) if and only if there exists some x ∈ X satisfying |Yyx| = |Xyx|.

2.10. For i, j ∈ [m + 1], we say that j is the (m,n)-dual of i, denote j = ī, if

either m = 2n − 1 and i + j = 2n + 1, or m ∈ {2n, 2n + 1} and i + j ≡ 2n + 2 (

mod 2n + 2); in this case, we also have i = j̄, and call i, ī an (m,n)-dual pair.

Denote E = {̄i | i ∈ E} for any E ⊆ [m+1] (The notation ī, E for i ∈ [m+1] and

E ⊆ [m + 1] will cause no confusion in the context since the pair (m,n) is fixed in

each case).

For any i ∈ [m + 1], we have i = ī if and only if either m = 2n and i = n + 1,

or m = 2n + 1 and i ∈ {n + 1, 2n + 2}. When the equivalent conditions hold, i
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with itself forms an (m,n)-dual pair, call i an (m,n)-selfdual element. Hence the

number of (m,n)-selfdual elements in [m + 1] is m + 1 − 2n.

Next result shows that for any Y ⊆ [m + 1], the operations HY and LY on

X ⊆ [m + 1] with |X| 6 |Y | and X ∩ Y = ∅ are inverse to each other in some

sense.

Lemma 2.11. Let X,Y ⊆ [m + 1] satisfy |X| 6 |Y | and X ∩ Y = ∅.
(a) Let Y ′ = HY (X) and X ′ = X ∪ (Y − HY (X)). Then X = LX′(Y ′) and

Y = Y ′ ∪ (X ′ − LX′(Y ′)).

(b) Let Y ′′ = LY (X) and X ′′ = X ∪ (Y − LY (X)) . Then X = HX′′(Y ′′) and

Y = Y ′′ ∪ (X ′′ − HX′′(Y ′′)).

(c) HY (X) = LY (X) and LY (X) = HY (X).

Proof. (a) and (b) are just the results in [6, Proposition 20.1.4]. Then (c) follows

by Lemma 2.8. ¤

Recall the relation ∼
L

on Cm+1 defined in 2.5.

Proposition 2.12. (see [6, Proposition 20.2.2 and Corollary 20.2.3]) Let T =

(T1, ..., Tt) ∈ Cm+1 and j ∈ [t − 1].

(a) If |Tj | 6 |Tj+1|, let

(2.12.1) T′ = (T1, ..., Tj−1, Tj ∪ (Tj+1 − HTj+1(Tj)),HTj+1(Tj), Tj+2, ..., Tt)

then T ∼
L

T′.

(b) If |Tj | > |Tj+1|, let

(2.12.2) T′′ = (T1, ..., Tj−1, LTj (Tj+1), Tj+1 ∪ (Tj − LTj (Tj+1)), Tj+2, ..., Tt).

Then T ∼
L

T′′.

2.13. Let T,T′,T′′ ∈ Cm+1 be given as in (2.12.1)-(2.12.2). We say that T′

(respectively, T′′) is obtained from T by a {j, j+1}-transformation. This definition

does not cause any confusion since T′ (respectively, T′′) is defined only when |Tj | 6
|Tj+1| (respectively, |Tj | > |Tj+1|). Note that if |Tj | = |Tj+1| then T′ = T′′ = T.
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Fix E with ∅ 6= E ⊆ [m+1]. Let CE be the set of all tabloids T = (T1, T2, ..., Tr)

with E = ∪̇r
i=1Ti (hence Cm+1 = C[m+1]).

For any T,T′ ∈ CE , written T ≈ T′, if there exists a sequence T0 = T, T1,...,

Tr = T′ in CE such that for every i ∈ [r], Ti can be obtained from Ti−1 by

an {hi, hi + 1}-transformation for some integer hi. This defines an equivalence

relation on the set CE .

Let l = |E| and ξE(T) := (|T1|, |T2|, ..., |Tr|) for any T = (T1, T2, ..., Tr) ∈ CE .

Then ξE : CE −→ Λ̃l is a surjective map.

2.14. Take E with ∅ 6= E ⊆ [m + 1] and E = E. Denote T = (T1, T2, ..., Tr) and

Top = (Tr, ..., T2, T1) for any T = (T1, T2, ..., Tr) ∈ CE . Then T,Top ∈ CE . We

say that T ∈ CE is (m,n)-selfdual, if T
op ≈ T.

Denote aop = (ar, ..., a2, a1) for a = (a1, a2, ..., ar) ∈ Λ̃m+1. Call a symmetric,

if aop = a.

When m ∈ {2n − 1, 2n + 1}, define a map τm+1 : [m + 1] −→ [m + 1] by

τm+1(i) =
{

i + m+1
2 , if i ∈ [m+1

2 ],

i − m+1
2 , if i ∈ [m+1

2 + 1,m + 1].

Then for any i, j ∈ [m+1], we have that τm+1(i) = τm+1(i), that i is (m,n)-selfdual

if and only if so is τm+1(i), and that on the (m + 1)-circle, j is the successor of i

if and only if τm+1(j) is the successor of τm+1(i).

Define τm+1(T) to be the tabloid obtained from T by replacing each i ∈ [m+1]

by τm+1(i) for any T ∈ Cm+1.

Lemma 2.15. Let T,T′ ∈ Cm+1.

(1) T ∼
L

T′ if and only if T ≈ T′.

(2) When a ∈ Λ̃m+1 is symmetric, T ∈ ξ−1(a) is (m,n)-selfdual if and only if

T
op

= T.

(3) If T ≈ T′, then T is (m,n)-selfdual if and only if so is T′.

(4) When (m,n) ∈ {(2n− 1, n), (2n + 1, n)}, T is (m,n)-selfdual if and only if

so is τm+1(T).

Proof. (1) follows by Proposition 2.12, Lemmas 2.4 and 2.6. For (2), by the

assumption of a being symmetric, we have ξ(T
op

) = a for any T ∈ ξ−1(a). So
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T
op ≈ T if and only if T

op
= T by (1) and Lemma 2.4. This implies (2). For

(3), let T = (T1, T2, ..., Tr). We may assume without loss of generality that T′ is

obtained from T by an {i, i+1}-transformation for some i ∈ [r−1]. Then T
op

can

be obtained from T′op by an {r − i, r + 1− i}-transformation by Lemma 2.11 (c).

This implies that T ≈ T
op

if and only if T′ ≈ T′op. Hence (3) follows. Finally, (4)

follows by the properties of the map τm+1 mentioned proceeding the lemma. ¤

By Lemma 2.15 (3), we can call an ≈-equivalence class of Cm+1 (m,n)-selfdual

if some (hence all) tabloid in this class is (m,n)-selfdual.

§3. A formula for the number of left cells of C̃n in the set Eλ, λ ∈ Λm+1.

In the present section, we first characterize all the tabloids of rank m+1 which

correspond to the left cells of C̃n. Applying this result, we deduce a formula for

the number of left cells of C̃n in the set Eλ for any λ ∈ Λm+1.

Theorem 3.1. Let λ ∈ Λm+1 and a ∈ ζ−1(λ∨). Then for any Γ ∈ Πl
λ (see

Lemma 2.6), we have Γ ∩ C̃n 6= ∅ if and only if Ta(Γ) is (m,n)-selfdual.

Proof. The automorphism α := αm,n of Ãm stabilizes the set Ω (see 1.5 and 2.3).

We have T (α(w)) = T (w)
op

for any w ∈ Ω (see the matrix description for the

action of α on Ãm in 1.5). This implies Taop(α(Γ)) = Ta(Γ)
op

for any Γ ∈ Πl
λ.

Hence by Lemmas 2.6, 2.15 and Proposition 2.12, we see that

(∗) α(Γ) = Γ ⇐⇒ Ta(Γ) is (m,n)-selfdual.

First assume Γ∩ C̃n 6= ∅. Then α(Γ)∩Γ 6= ∅, hence α(Γ) = Γ since both Γ and

α(Γ) are left cells of Ãm. This implies that Ta(Γ) is (m,n)-selfdual by (∗). Next

assume that Ta(Γ) is (m,n)-selfdual. Then α(Γ) = Γ by (∗). Recall the set D
mentioned in 1.3. The set Γ ∩D consists of a single element (say d) by 1.3. Then

α(d) ∈ α(Γ) ∩ D by the fact α(D) = D (see 1.5). This implies d = α(d) by the

facts α(Γ) = Γ and |Γ ∩ D| = 1, i.e., d ∈ Γ ∩ C̃n. Hence Γ ∩ C̃n 6= ∅. ¤

3.2. Suppose that ∅ 6= E ⊆ [m + 1] and E = E. For any b ∈ Λ̃|E|, let γE(b)

be the number of all (m,n)-selfdual tabloids in ξ−1
E (b) (see 2.13). Under the

conditions assumed on E, we see that the number γE(b) depends only on |E| and

the number of (m,n)-selfdual elements contained in E, but not on a particular
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choice of a subset E in [m+1]. Since |E| is determined by b, we may write γE(b)

by γk(b) if the number of (m,n)-selfdual elements contained in E is k.

Note that the number of (m,n)-selfdual elements in [m + 1] is m + 1 − 2n (see

2.10).

We have not yet found any efficient way to calculate the number γk(a) in general.

However, there is a simple formula for γm+1−2n(a) when a ∈ Λ̃m+1 is symmetric

(see 2.14).

Theorem 3.3. Suppose that a = (a1, ..., ar) ∈ Λ̃m+1 is symmetric with r ∈
{2l, 2l + 1} for some l ∈ N. Then

(3.3.1)

γm+1−2n(a) =


0, if m = 2n + 1 and r = 2l,

2a1+···+al
n!(

n−
∑l

k=1 ak

)
!
∏l

k=1ak!
, if otherwise,

Proof. Any (m,n)-selfdual tabloid T = (T1, T2, ..., Tr) ∈ ξ−1(a) is determined

entirely by its first l components if r ∈ {2l, 2l + 1} with l ∈ N by the facts that

Ti = Tr+1−i for any i ∈ [l] and that Tl+1 = [m + 1] −
⋃l

i=1(Ti ∪ Ti) is a union of

some (m,n)-dual pairs (see 2.10) if r = 2l + 1 is odd. If m = 2n + 1 and r = 2l

then the (m,n)-selfdual elements n+1, 2n+2 can not be in Ti for any i ∈ [2l] and

hence γm+1−2n(a) = 0. If m = 2n then the number r must be odd as m+1 is odd.

If r = 2l + 1 is odd then any (m,n)-selfdual elements, whenever they exist, must

be in Tl+1. Since the elements of
⋃l

i=1 Ti are pairwise not (m,n)-dual and none of

them is (m,n)-selfdual, the number of the choices for T1 is 2a1
(

n
a1

)
. Recurrently,

when T1, T2, ..., Th−1 have been chosen for h ∈ [l], the number of the choices for

Th is 2ah
(
n−a1−···−ah−1

ah

)
. This proves the formula (3.3.1). ¤

When m = 2n− 1 and r = 2l, we have n = a1 + · · ·+ al, hence (3.3.1) becomes

(3.3.2) γ0(a) = 2n n!∏l
k=1 ak!

.

Next result gives a necessary and sufficient condition on λ ∈ Λm+1 that there

is some symmetric a in ζ−1(λ∨).
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Lemma 3.4. Let λ = (λ1, ..., λr) ∈ Λm+1.

(1) There exists some symmetric a in ζ−1(λ∨) if and only if λ satisfies the

condition (3.4.1) below.

(3.4.1) λi is odd and λj is even for some k ∈ [0, r] and any i, j, 1 6 i 6 k < j 6 r.

(2) When the condition (3.4.1) holds, the set Eλ is empty if and only if m =

2n + 1 and k = 0.

Proof. The proof for (1) is straightforward. Then (2) follows by (1) and Theorem

3.3. ¤

Example 3.5. Let λ = 97642. Then λ∨ = 524232212. The composition

a = (5, 4, 3, 1, 2, 1, 3, 4, 5) ∈ ζ−1(λ∨) is symmetric.

3.6. Assume that λ ∈ Λm+1 satisfies the condition (3.4.1). By Theorems 3.1, 3.3

and Lemmas 3.4, 2.6, we see that for any symmetric a ∈ ζ−1(λ∨), the number

of left cells of C̃n in Eλ is equal to γm+1−2n(a), which can be computed by the

formula (3.3.1).

Next we consider the number of left cells of C̃n in Eλ for an arbitrary λ ∈ Λm+1.

For any λ ∈ Λm+1, let λ∨ = bk1
1 bk2

2 · · ·bkr
r . Write ki = 2li + pi for any i ∈ [r],

where li ∈ N and pi ∈ {0, 1}. Define q1 < q2 < · · · < qu in N by the condition

{qj | j ∈ [u]} = {i ∈ [r] | pi = 1} for some u ∈ N. Take a ∈ ζ−1(λ∨) as follows.

(3.6.1)

a = (b1, ..., b1︸ ︷︷ ︸
l1

, b2, ..., b2︸ ︷︷ ︸
l2

, ..., br, ..., br︸ ︷︷ ︸
lr

, bq1 , bq2 , ..., bqu , br, ..., br︸ ︷︷ ︸
lr

, ..., b2, ..., b2︸ ︷︷ ︸
l2

, b1, ..., b1︸ ︷︷ ︸
l1

).

Define

a1 = (b1, ..., b1︸ ︷︷ ︸
l1

, b2, ..., b2︸ ︷︷ ︸
l2

, ..., br, ..., br︸ ︷︷ ︸
lr

, br, ..., br︸ ︷︷ ︸
lr

, ..., b2, ..., b2︸ ︷︷ ︸
l2

, b1, ..., b1︸ ︷︷ ︸
l1

).
(3.6.2)

a2 = (bq1 , bq2 , ..., bqu).
(3.6.3)

We have

Theorem 3.7. Let λ ∈ Λm+1 be given as in 3.6, and let a ∈ Λ̃m+1, a1 ∈ Λ̃2l

and a2 ∈ Λ̃m+1−2l be obtained from λ as in (3.6.1)-(3.6.3), respectively, where
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l =
∑r

i=1 libi. Then

(3.7.1) γm+1−2n(a) =
(

n

l

)
γ0(a1)γm+1−2n(a2).

Proof. Let p =
∑r

i=1 li. For any

T = (T1, T2, ..., Tp, Tp+1, ..., Tp+u, Tp+u+1, ..., T2p+u) ∈ ξ−1(a),
let

T1 = (T1, T2, ..., Tp, Tp+u+1, Tp+u+2, ..., T2p+u) and T2 = (Tp+1, Tp+2, ..., Tp+u)

and E = [m + 1] −
⋃p+u

i=p+1 Ti. Then |E| = 2l and T1 ∈ ξ−1
E (a1) and T2 ∈

ξ−1
[m+1]−E(a2). We see by Lemma 2.15 that T is (m,n)-selfdual if and only if both

T1 and T2 are (m,n)-selfdual. When the equivalent conditions hold, we have

E = E again by Lemma 2.15. For any k ∈ [n], denote by [m + 1]2k the set of all

E ⊆ [m + 1] with |E| = 2k and E = E such that E contains no (m,n)-selfdual

element. For any E ∈ [m + 1]2l, let Ca
E be the set of all (m,n)-selfdual

T′ = (T ′
1, T

′
2, ..., T

′
p, T

′
p+1, ...T

′
p+u, T ′

p+u+1, ..., T
′
2p+u) ∈ ξ−1(a)

with E = [m + 1] −
⋃p+u

i=p+1 T ′
i . Then

γm+1−2n(a) = |[m + 1]2l| · |Ca
E | =

(
n

l

)
|Ca

E | for any fixed E ∈ [m + 1]2l.

T 7→ (T1,T2) is a bijective map from the set Ca
E to the Cartesian product

Ca1
E ×Ca2

[m+1]−E , where Ca1
E , Ca2

[m+1]−E are the sets of all (m,n)-selfdual tabloids in

ξ−1
E (a1), ξ−1

[m+1]−E(a2), respectively. This proves the formula (3.7.1) by the facts

γ0(a1) = |Ca1
E | and γm+1−2n(a2) = |Ca2

[m+1]−E | for any E ∈ [m + 1]2l. ¤

§4. Enumeration of some special tabloids in Cm+1.

For any a ∈ Λ̃m+1, let Ca
m+1 be the set of all (m,n)-selfdual tabloids T in

ξ−1(a). We want to formulate the number γm+1−2n(a) := |Ca
m+1|. By Theorems

3.3 and 3.7, it is enough to consider the case where a = (a1, a2, ..., ar) ∈ Λ̃m+1

satisfies a1 > a2 > · · · > ar for some r > 1.

First consider the case of r = 2.
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Lemma 4.1. Let T = (Y,X) ∈ Cm+1 satisfy |Y | > |X|. Then T is (m,n)-selfdual

if and only if LY (X) = X and Y − LY (X) = Y − LY (X).

Proof. Let X ′ = LY (X) and Y ′ = X ∪ (Y −LY (X)). Then (Y,X) ≈ (X ′, Y ′). So

T is (m,n)-selfdual ⇐⇒ X ′ = X and Y ′ = Y

⇐⇒ LY (X) = X and X ∪ (Y − LY (X)) = Y

⇐⇒ LY (X) = X and Y − LY (X) = Y − LY (X).

The last equivalence follows by the facts that

Y = LY (X) ∪ (Y − LY (X)) and X ∪ (Y − LY (X)) = X ∪ Y − LY (X). ¤

4.2. First assume m = 2n − 1. Hence m + 1 − 2n = 0 and ī := 2n + 1 − i for any

i ∈ [2n]. Define an admissible subsequence β′ in each of the following sequences

βij (note that βij has even number of terms in [2n]).

(a) Consider the sequence βn,q : n̄, n − 1, ..., q + 1, q + 1, ..., n − 1, n for any

q ∈ [0, n − 1]. A subsequence β′ : i1, i2, ..., ir of βn,q is called admissible, if the

following two conditions hold:

(a1) r = n − q and ih 6= ik for any h, k ∈ [n − q];

(a2) Let β′′ : j1, j2, ..., jn−q be the subsequence of βn,q complement to β′ (i.e.,

{ih, jh | h ∈ [n−q]} = βn,q identifying the sequences with the corresponding sets).

Then the term jh occurs after ih in the sequence βn,q for any h ∈ [n − q].

Let ∆n,q be the set of all admissible subsequences of βn,q and let δn,q := |∆n,q|.
Denote βn,0, ∆n,0, δn,0 simply by βn, ∆n, δn, respectively. Clearly, the equation

δn,q = δn−q holds for any q ∈ [0, n − 1].

(b) For any i < j in [n] with j − i odd, denote by βij (respectively, βj̄ī) the

sequence i + 1, i + 2, ..., j − 1 (respectively, j − 1, j − 2, ..., i + 1). A subsequence

β′ : h1, h2, ..., hr of βij (respectively, βj̄ī) is called admissible, if r = j−i−1
2 and if,

let β′′ : k1, k2, ..., k j−i−1
2

be the subsequence of βij (respectively, βj̄ī) complement

to β′, then kl occurs after hl in βij (respectively, βj̄ī) for any l ∈
[

j−i−1
2

]
.

It is well known that the number of admissible subsequences in βij (respectively,

βj̄ī) is C j−i−1
2

, where Cl := 1
l+1

(
2l
l

)
is the l-th Catalan number. The following is a

formula for the number δn of admissible subsequences in βn.
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Proposition 4.3. δn :=
(

n
bn

2 c
)

for any n ∈ P, where bxc stands for the largest

integer not greater than x for any x ∈ Q.

To show Proposition 4.3, we need some preparation. Let β′
n,q: i1, i2, ..., in−q

be a subsequence of βn,q satisfying the condition 4.2 (a1). Let p(β′
n,q) be the

largest k ∈ [0, n − q] with i1, i2, ..., ik a subsequence of n̄, n − 1, ..., q + 1. Denote

i1, i2, ..., ip(β′
n,q) by β′0

n,q. Then β′
n,q is entirely determined by β′0

n,q.

Let β′ : i1, i2, ..., in be a subsequence of βn satisfying the condition 4.2 (a1). For

any q ∈ [0, n−1], let β′
n,q be obtained from β′ by removing all the terms in βq and

let β′′
n,q be the subsequence of βn,q complement to β′

n,q (see 4.2 (a2)), where we

stipulate β0 to be the empty sequence. Then the following result can be checked

easily:

Lemma 4.4. Let β′ : i1, i2, ..., in be a subsequence of βn satisfying the condition

4.2 (a1).

(1) The following three conditions on β′ are equivalent:

(a) β′ is admissible in βn;

(b) β′
n,q is admissible in βn,q for every q ∈ [0, n − 1];

(c) p(β′) > n
2 and the term jh occurs after ih in βn for every h ∈ [p(β′)], where

β′′: j1, j2, ..., jn is the subsequence of βn complement to β′ (see 4.2 (a2)).

(2) For q ∈ [0, n − 1], if β′
n,q is admissible in βn,q, then p(β′

n,q) > p(β′′
n,q), in

particular, p(β′
n,q) > n−q

2 .

4.5. Proof of Proposition 4.3. Consider the set ∆n. We may assume n > 1, for

otherwise the result is obvious. By Lemma 4.4 (1), we see that β′
n,1 ∈ ∆n,1 for any

β′ ∈ ∆n. On the other hand, for any λ: i1, i2, ..., in−1 in ∆n,1, let λ1̄ (respectively,

λ1) be obtained from λ by inserting the term 1̄ (respectively, 1) immediately after

ip(λ). Then λ1̄ is always in ∆n, while λ1 is not in ∆n if and only if p(λ) < n
2 . Since

p(λ) > n−1
2 by the condition λ ∈ ∆n,1 and Lemma 4.4 (2), this implies that λ1 is

not in ∆n if and only if n is odd (say n = 2l + 1) and p(λ) = l. When n = 2l + 1,

let ∆′
n,1 be the set of all such subsequences λ: i1, i2, ..., il of n̄, n − 1, ..., 3̄, 2̄ that,

if λ′: j1, j2, ..., jl is the subsequence of n̄, n − 1, ..., 3̄, 2̄ complement to λ, then the

term jh occurs after the term ih for every h ∈ [l]. Then |∆′
n,1| is equal to the
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number of all λ ∈ ∆n,1 with λ1 /∈ ∆n. It is well known that |∆′
n,1| = Cl (the

l-th Catalan number). So by applying induction on n > 1 and by the fact that

δn,1 = δn−1, we have

δn =

{
δn−1+(δn−1−Cl)=2

(
2l
l

)
− 1

l+1

(
2l
l

)
=

(
2l+1

l

)
, if n=2l+1 is odd,

2δn−1 = 2
(
2l−1
l−1

)
=

(
2l
l

)
, if n = 2l is even.

Our result is proved. ¤

Remark 4.6. The result in Proposition 4.3 can be extended to a more general

case. Let β : it, it−1, ..., i1, i1, i2, ..., it (respectively, β : i1, i2, ..., it, it, it−1, ..., i1)

satisfy 1 6 i1 < i2 < · · · < it 6 n. A subsequence β′ : j1, j2, ..., jr of β (respec-

tively, β) is called admissible, if the following conditions are satisfied:

(i) r = t and jh 6= jk for any h, k ∈ [t];

(ii) Let β′′ : j′1, j
′
2, ..., j

′
t be the subsequence of β (respectively, β) complement

to β′. Then j′h occurs after jh in β (respectively, β) for any h ∈ [t].

By the same way as that for Proposition 4.3, one can prove that the number of

admissible subsequences of β (respectively, β) is equal to
(

t
b t

2 c
)
.

The following is a formula for the number γ0(a) with a ∈ Λ̃2n having exactly

two different parts.

Proposition 4.7. For a = (n + t, n − t) with t ∈ [n − 1], we have

(4.7.1) γ0(a) =
∑

h1,h2,...,ht∈N
16h1<h2<···<ht6n

hi+1−hi odd ∀i

(
n − ht

bn−ht

2 c

)(
h1 − 1
bh1−1

2 c

) t−1∏
i=1

Chi+1−hi−1
2

,

where Cl is the l-th Catalan number for any l ∈ N.

Proof. Let T = (Y,X) ∈ Ca
2n. By the condition of T being (2n − 1, n)-selfdual,

we have LY (X) = {i ∈ Y | ī /∈ Y } and Y − LY (X) = {h1, h2, ..., ht, ht, ..., h2, h1}
with some 1 6 h1 < h2 < · · · < ht 6 n by Lemma 4.1. According to the definition

of the set LY (X), we get the following results by Lemma 2.9 (b).



18 Jian-yi Shi

(i) For any j ∈ [t − 1], let Yhj+1,hj+1−1 = {hj1, hj2, ..., hjnj} be with hj <

hj1 < hj2 < · · · < hjnj < hj+1, then hj1, hj2, ..., hjnj is an admissible sub-

sequence of βhj ,hj+1 : hj + 1, hj + 2, ..., hj+1 − 1 (hence hj+1 − hj is odd and

nj = hj+1−hj−1
2 by 4.2 (b)), and Yhj+1−1,hj+1 = [hj + 1, hj+1 − 1] − Yhj+1,hj+1−1.

Write Yhj+1−1,hj+1 = {h′
j1, h

′
j2, ..., h

′
jnj

} with hj < h′
j1 < h′

j2 < · · · < h′
jnj

< hj+1.

Then h′
jnj

, ..., h′
j2, h

′
j1 is an admissible subsequence of hj+1 − 1, ..., hj + 2, hj + 1.

(ii) Let Yht+1,ht+1 = {ht1, ht2, ..., htnt} be with β′ : ht1, ht2, ..., htnt a subse-

quence of βht,n : ht + 1, ht + 2, ..., n, n̄, n − 1, ..., ht + 1. Then β′ is admissible in

βht,n.

(iii) Let Yh1−1,h1−1 = {h01, h02, ..., h0n0} be with β′ : h01, h02, ..., h0n0 a sub-

sequence of β1,h1 : h1 − 1, h1 − 2, ..., 1̄, 1, 2, ..., h1 − 1. Then β′ is admissible in

β1,h1 .

(iv) LY (X) =
(⋃

j∈[t−1]

(
Yhj+1,hj+1−1 ∪ Yhj+1−1,hj+1

))
∪Yht+1,ht+1∪Yh1−1,h1−1.

Conversely, fix h1, h2, ..., ht ∈ P with t ∈ P and 1 6 h1 < h2 < · · · < ht 6 n

and hi+1 −hi odd for all i ∈ [t−1]. Take an admissible subsequence β′
j in βhj ,hj+1

for any j ∈ [t − 1]. Also, take an admissible subsequence β′
t (respectively, β′

0) in

βht,n (respectively, β1,h1). For j ∈ [t − 1], let β′′
j be the subsequence of βhj ,hj+1

complement to β′
j and let β′

j
be the subsequence of βhj+1,hj

such that β′
j

= β′′
j by

regarding the sequences as the corresponding sets. Let Y be the union of the sets

{hl, hl | l ∈ [t]}, β′
t, β′

0 and β′
j , β′

j
with j ∈ [t − 1], regarding the sequences as the

corresponding sets. Let X = [2n] − Y . Then (Y,X) ∈ Ca
2n by Lemma 4.1.

By 4.2 (b) and Proposition 4.3, we see that the numbers of admissible subse-

quences in βhj ,hj+1 , j ∈ [t − 1], βht,n, β1,h1 are Chj+1−hj−1
2

,
( n−ht

bn−ht
2 c

)
,

( h1−1⌊
h1−1

2

⌋),
respectively. This implies the formula (4.7.1). ¤

We can get the corresponding results in the case of m ∈ {2n, 2n + 1} similarly

by noting that the number of (m,n)-selfdual elements in [m + 1] is m + 1 − 2n.

Proposition 4.8. For a = (n + 1 + t, n − t) with t ∈ [0, n − 1], we have

(4.8.1) γ1(a) =
∑

h1,h2,...,ht+1∈N
16h1<h2<···<ht+1=n+1

hi+1−hi odd ∀i

(
h1 − 1
bh1−1

2 c

) t∏
i=1

Chi+1−hi−1
2

,
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with the convention that γ1((n + 1, n)) =
(

n
bn

2 c
)
.

Proposition 4.9. For a = (n + 1 + t, n + 1 − t) with t ∈ [n], we have

(4.9.1) γ2(a) =
∑

h1,h2,...,ht+1∈N
0=h1<h2<···<ht+1=n+1

hi+1−hi odd ∀i

t∏
i=1

Chi+1−hi−1
2

.

From Theorem 3.3 and Propositions 4.7-4.9, we see that for k ∈ P with 2k 6
m + 1, the set E2k1m+1−2k is empty if and only if m = 2n + 1 and 2k = m + 1.

Example 4.10. (1) In Proposition 4.7, take n = 5 and t = 2, then a = (7, 3)

and ζ(a)∨ = 2314. The pairs (h1, h2) occurring in the summation of (4.7.1) are

(1, 2), (2, 3), (3, 4), (4, 5), (1, 4), (2, 5). Then γ0(a) =
(
3
1

)
+

(
2
1

)
+

(
2
1

)
+

(
3
1

)
+1+1 = 12,

which is just the number of left cells of C̃5 in the set E2314 . The set Ca
10 consists

of the following tabloids:

T1 = ({3, 4, 5} ∪ {1, 2, 9, 10}, {6, 7, 8}), T2 = ({3, 4, 6} ∪ {1, 2, 9, 10}, {5, 7, 8}),

T3 = ({3, 5, 7} ∪ {1, 2, 9, 10}, {4, 6, 8}), T4 = ({4, 5, 10} ∪ {2, 3, 8, 9}, {1, 6, 7}),

T5 = ({4, 6, 10} ∪ {2, 3, 8, 9}, {1, 5, 7}), T6 = ({5, 9, 10} ∪ {3, 4, 7, 8}, {1, 2, 6}),

T7 = ({1, 5, 9} ∪ {3, 4, 7, 8}, {2, 6, 10}), T8 = ({8, 9, 10} ∪ {4, 5, 6, 7}, {1, 2, 3}),

T9 = ({1, 8, 9} ∪ {4, 5, 6, 7}, {2, 3, 10}), T10 = ({2, 8, 10} ∪ {4, 5, 6, 7}, {1, 3, 9}),

T11 = ({2, 5, 8} ∪ {1, 4, 7, 10}, {3, 6, 9}), T12 = ({3, 7, 10} ∪ {2, 5, 6, 9}, {1, 4, 8}).

(2) In Proposition 4.8, take n = 5 and t = 2, then a = (8, 3) and ζ(a)∨ = 2315.

The triples (h1, h2, h3) occurring in the summation of (4.8.1) are (4, 5, 6), (2, 5, 6), (2, 3, 6).

Then γ1(a) =
(
3
1

)
+ 1 + 1 = 5, which is just the number of left cells of C̃5 in the

set E2315 . The set Ca
11 consists of the following tabloids:

T1 = ({4, 7, 11} ∪ {2, 3, 6, 9, 10}, {1, 5, 8}),
T2 = ({3, 8, 11} ∪ {2, 5, 6, 7, 10}, {1, 4, 9}),
T3 = ({9, 10, 11} ∪ {4, 5, 6, 7, 8}, {1, 2, 3}),
T4 = ({1, 9, 10} ∪ {4, 5, 6, 7, 8}, {2, 3, 11}),
T5 = ({2, 9, 11} ∪ {4, 5, 6, 7, 8}, {1, 3, 10}).
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(3) In Proposition 4.9, take n = 5 and t = 2, then a = (8, 4) and ζ(a)∨ = 2414.

The triples (h1, h2, h3) occurring in the summation of (4.9.1) are (0, 1, 6), (0, 3, 6), (0, 5, 6).

Then γ2(a) = 2 + 1 + 2 = 5, which is just the number of left cells of C̃5 in the set

E2414 . The set Ca
12 consists of the following tabloids:

T1 = ({2, 3, 7, 8} ∪ {1, 6, 11, 12}, {4, 5, 9, 10}),
T2 = ({2, 4, 7, 9} ∪ {1, 6, 11, 12}, {3, 5, 8, 10}),
T3 = ({1, 4, 7, 10} ∪ {3, 6, 9, 12}, {2, 5, 8, 11}),
T4 = ({1, 2, 8, 9} ∪ {5, 6, 7, 12}, {3, 4, 10, 11}),
T5 = ({1, 3, 8, 10} ∪ {5, 6, 7, 12}, {2, 4, 9, 11}).

Remark 4.11. (1) From Propositions 4.7-4.9, we can get a formula of the number

γm+1−2n(a) for any a = (r, s) with r, s ∈ P and r+s ∈ [m+1] (see 3.2). Note that

here we allow the case r 6 s. For, if r = s then a is symmetric, hence γm+1−2n(a)

is known by Theorem 3.3; if r < s then γm+1−2n(a) = γm+1−2n(aop).

We also allow the case r+s < m+1. When m+1−2n ∈ {0, 2}, we have r+s = 2p

and r−s = 2q for some p, q ∈ Z. If r > s, then the formula of the number γ0((r, s))

(respectively, γ2((r, s))) can be obtained from (4.7.1) (respectively, (4.9.1)) by

replacing n, t by p, q (respectively, p − 1, q), respectively. When m + 1 − 2n = 1,

we have r + s = 2p + 1 and r − s = 2q + 1 for some p, q ∈ Z. If r > s, then the

formula of the number γ1((r, s)) can be obtained from (4.8.1) by replacing n, t by

p, q, respectively.

(2) The results in Propositions 4.7-4.9 can be extended to a more general case.

Let λ = (2l1, 2l2, ..., 2lr, 2lr+1 + 1, ..., 2lt + 1) ∈ Λm+1 for some r, t, li ∈ N with

r ∈ [t − 1] and i ∈ [t] (Comparing with the partitions in Lemma 3.4). Then

a = (a1, a2, ..., al1−1, t, r, al1−1, ..., a2, a1) ∈ ζ−1(λ∨) for some 1 6 a1 6 a2 6 · · · 6
al1−1. Then the following is a formula of the number γm+1−2n(a).

Corollary 4.12. In the setup of 4.11 (2), we have

(4.12.1)

γm+1−2n(a) = 2a1+···+al1−1
n!

(n − a1 − · · · − al1−1)!
∏l1−1

i=1 ai!
· γm+1−2n((t, r)).

Proof. Let a1 = (a1, a2, ..., al1−1, al1−1, ..., a2, a1) and a2 = (t, r). Then γm+1−2n(a) =
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γ0(a1)γm+1−2n(a2)
(

n
a1+···+al1−1

)
by Theorem 3.7. Since

γ0(a1)
(

n

a1 + · · · + al1−1

)
= 2a1+···+al1−1

n!
(n − a1 − · · · − al1−1)!

∏l1−1
i=1 ai!

by Theorem 3.3, this proves the formula (4.12.1). ¤

4.13. Let T = (T1, T2, ..., Tr) and T′ = (T ′
1, T

′
2, ..., T

′
r) in Cm+1 satisfy |T1| >

|T2| > · · · > |Tr| and |T ′
1| < |T ′

2| < · · · < |T ′
r| and T′ ≈ T. Then |T ′

i | = |Tr+1−i|
for any i ∈ [r]. The tabloid T is (m,n)-selfdual if and only if T′ is (m,n)-selfdual

if and only if T ′
i = Tr+1−i for any i ∈ [r]. When the equivalent conditions hold,

define a partition Tj = Tj1∪̇Tj2∪̇ · · · ∪̇Tj,r+1−j for any j ∈ [r] such that the sets

Th
j := Tj1∪̇Tj2∪̇ · · · ∪̇Tjh for j ∈ [r] and h ∈ [r + 1 − j] satisfy the condition

LTj (T
h
j+1) = Th

j for any h ∈ [r − j].

4.14. Let us describe (m,n)-selfdual T = (T1, T2, T3) ∈ Cm+1 with |T1| > |T2| >

|T3|. Define the partitions T1 = T11∪̇T12∪̇T13 and T2 = T21∪̇T22 and T3 = T31 as

those in 4.13 with r = 3. Define

X := (T11, T21 ∪ T12 ∪ T13, T31 ∪ T22) and Y := (T11 ∪ T12, T21 ∪ T22 ∪ T13, T31).

Then X is obtained from T by a {2, 3}-transformation followed by a {1, 2}-
transformation, while Y is obtained from T by a {1, 2}-transformation (see 2.13).

So X ≈ T ≈ Y. We see by Lemma 2.15 that both X and Y are (m,n)-

selfdual and that Y = X
op

. This implies that T31 = T11 and T22 = T12 and

T13 ∪ T21 = T21 ∪ T13. Denote E0 = {i ∈ E | ī ∈ E} and E1 = E − E0 for any

E ⊆ [m+1]. Then T 1
13 = T 1

21 and T′ = (T11, T
0
21 ∪T12 ∪T 1

13, T31 ∪T22 ∪T 1
21 ∪T 0

13).

Hence we have

Proposition 4.15. For any a = (a1, a2, a3) ∈ Λ̃m+1 with a1 > a2 > a3, a tabloid

T ∈ ξ−1(a) is (m,n)-selfdual if and only if T = (T11∪̇T12∪̇T13, T21∪̇T12, T11) for

some T11, T12, T13, T21 ⊂ [m + 1] satisfying the following conditions:

(i) T11 = LT11∪̇T12∪̇T13
(T21);

(ii) T11∪̇T12 = LT11∪̇T12∪̇T13
(T21∪̇T12);

(iii) T21 = LT21∪̇T12
(T11) and T 0

21∪̇T 1
13 = LT21∪̇T12∪̇T13

(T11);

(iv) T 0
11 = T 0

12 = ∅ and T 1
13 = T 1

21.
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Example 4.16. Let (m,n) = (15, 8) and a = (8, 5, 3). Then

T1 = ({12, 13, 14} ∪ {7, 8} ∪ {2, 6, 11}, {1, 15, 16} ∪ {9, 10}, {3, 4, 5}),

T2 = ({4, 12, 14} ∪ {2, 11} ∪ {8, 9, 10}, {1, 7, 16} ∪ {6, 15}, {3, 5, 13}),

T′
1 = ({4, 5, 6} ∪ {15, 16} ∪ {3, 10, 14}, {7, 8, 9} ∪ {1, 2}, {11, 12, 13}),

T′
2 = ({4, 6, 12} ∪ {3, 10} ∪ {1, 2, 16}, {8, 9, 15} ∪ {7, 14}, {5, 11, 13})

are four tabloids in Ca
16 with T′

i = τ16(Ti) for i = 1, 2 (see 2.14).

Question 4.17. Can one find a close formula of the number γm+1−2n(a) for any

a = (a1, ..., ar) ∈ Λ̃m+1 with a1 > · · · > ar and r > 3 ?
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