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Abstract. We survey our achievements on the classification of congruence
classes of presentations for the finite complex reflection groups. The classifi-
cation is described in terms of certain graphs for the imprimitive groups, and
is with the help of the computer programmes for the primitive groups.

Shephard and Todd classified all the finite complex reflection groups in their
paper [10]. A finite complex reflection group G can be presented by generators and
relations just as that for a Coxeter group. We already have one presentation for each
irreducible finite complex reflection group (see [1]). However, such a presentation
is not unique for G in general. Different presentations of G may reveal various
properties of G (see [5] for example). Then it is desirable to define an equivalent
relation, called congruent relation, among the presentations of G and then to classify
all the presentations of G into congruence classes.

Finite complex reflection groups are divided into two main classes: primitive
and imprimitive. Any imprimitive complex reflection group has the form G(m, p, n)
for some positive integers m, p, n with p|m (reading “ p divides m ”), m > 2, n > 1,
and (m, p, n) 6= (m, m, 2) (see [2]). The imprimitive complex reflection groups form
an infinite series. There are 23 primitive complex reflection groups in total, 8 of
them has exactly one congruence class of presentations since they can be generated
by only two reflections (see [1, Appendix 2]).

I completed the classification of the presentations (S, P ) for the groups G(m, p, n)
according to their congruence (see [8] [9]). The classification was made separately
in the cases of p = 1, p = m and 1 < p < m. We established a bijection between
the set of congruence classes of presentations (S, P ) of the group G(m,m, n) (resp.,
G(m, 1, n), G(m, p, n) with 1 < p < m) and the set of isomorphism classes of certain
graphs ΓS (resp., of certain rooted graphs Γr

S). The relation set P was chosen to
be the set PS of the basic relations on S, which was defined separately in the cases
of p = 1, p = m and 1 < p < m. The latter can be treated with uniformly now (see
Section 4).

I, together with my students L. Wang and P. Zeng, found the number of con-
gruence classes of the presentations for all the primitive complex reflection groups
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G except for the group G34. We also found a representative set for all the congru-
ence classes of presentations for 10 primitive complex reflection groups: G7, G11,
G12, G15, G19, G24, G25, G26, G27, G32 (the notations are due to Shephard-Todd,
see [10]), each of which is generated by at least three reflections (see [6] [7] [11]
[12]). We achieved these results with the help of the computer programmes.

In the present paper, we give a survey on the above achievements.

1. Preliminaries

1.1. Let V be an n-dimensional complex vector space with a hermitian form
( , ). A reflection s on V is by definition an invertible linear transformation on
V with o(s) < ∞ and dim V s = n − 1, where o(s) denotes the order of s and
V s := {v ∈ V | s ·v = v}. Any reflection has the form sα,ζ for some non-zero vector
α ∈ V and some root ζ of unity, where sα,ζ is defined by

sα,ζ(v) = v + (ζ − 1)(v, α)α for all v ∈ V .

We also write sa,d for sa,ζ if ζ = e2πi/d. A reflection group G on V is a finite
group generated by reflections on V .

A reflection group G on V is called a real group or a Coxeter group if there
is a G-invariant R-subspace V0 of V such that the canonical map C ⊗R V0 → V is
bijective. If this is not the case, then G is called complex. (Note that, according to
this definition, a real reflection group is not complex.)

1.2. A reflection group G in V is imprimitive, if there exists a decomposition
V = V1 ⊕ ...... ⊕ Vr into a direct sum of proper subspaces V1, ..., Vr such that G
permutes V := {Vi | 1 ≤ i ≤ r} (V is called an imprimitive system of G in V ). G
is primitve if otherwise.

1.3. Let Sn be the symmetric group over n numbers 1, 2, ..., n. For σ ∈ Sn,
denote by [(a1, ..., an)|σ] the n×n monomial matrix with non-zero entries ai in the
(i, (i)σ)-positions. For p|m in N, set

G(m, p, n) =
{

[(a1, ..., an)|σ]
∣∣∣∣ai ∈ C, am

i = 1, σ ∈ Sn,
(∏

j
aj

)m/p

= 1
}

.

Any imprimitive complex reflection group G on V has the matrix form G(m, p, n)
with respect to a basis e1, e2, ..., en for some m, p, n ∈ N with m > 2, n > 1, p|m
and (m, p, n) 6= (m,m, 2), in particular, the imprimitive system {V1, ..., Vr} of G in
V consists of one-dimensional subspaces.

1.4. It is well known that to each finite complex reflection group G, we can
associate a root system (R, f), where R is a finite G-invariant set of unit vectors
in the vector space V and f : R → N \ {1} is a function, constant on any G-
orbit, such that G is generated by the reflection set {sα,f(α) | α ∈ R}. As a root
system for G, (R, f) is determined by G up to scalar factors (see [3, Subsection
1.9]). One can define a simple root system (B, w) in (R, f), where B ⊂ R has the
minimal cardinality with the following properties: G · B = R, G is generated by
{sα,w(α) | α ∈ B}, and w = f |B . A simple root system B for R is not uniquely
determined by G. In [6], we introduce an equivalence relation on simple root
systems: Two simple root systems (B, w) and (B′, w′) of (R, f) are equivalent,
written B ∼ B′, if there exists a bijection φ : B −→ B′ such that for any α, β ∈ B,

(1) w(α) = w′(φ(α)) and,
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(2) 〈sα,w(α), sβ,w(β)〉 ∼= 〈sφ(α),w′(φ(α)), sφ(β),w′(φ(β))〉, where the notation 〈x, y〉
stands for the subgroup of G generated by the elements x, y ∈ G.

1.5. For a reflection group G, a presentation of G by generators and relations
(or a presentation in short) is by definition a pair (S, P ), where

(1) S is a finite set of reflection generators for G with minimal possible cardi-
nality.

(2) P is a finite relation set on S, and any other relation on S is a consequence
of the relations in P .

Clearly, for any simple system (B, w) for G, S = {sα,w(α) | α ∈ B} forms a
generator set of a presentation of G. Call (B, w) the associated simple system of
the presentation.

1.6. Two presentations (S, P ) and (S′, P ′) for G are congruent, if there exists
a bijection η : S −→ S′ such that for any s, t ∈ S,(∗) 〈s, t〉 ∼= 〈η(s), η(t)〉,

Note that when a generator set S of the group G is given, we assume that all
the relations on S are known. Thus by the definition, we see that the congruence
of a presentation (S, P ) of G is determined entirely by the generator set S, the
relation set P plays no role concerning it.

We see that two presentations of G are congruent if and only if their associated
simple root systems are equivalent.

1.7. For a given G, one way to calculate the number of congruence classes of
presentations is to find the number of equivalence classes of simple root systems in
the root system of G. The latter can be done by calculation of the groups 〈sα, sβ〉
for all pairs of reflections sα 6= sβ in G with respect to α, β ∈ R, and also by
calculation of all the permutations of R given rise by the action of the reflections
sα, α ∈ R. These can be done by a computer in general. We did it in such a way
when G is primitive (see 5.1).

2. Graphs associated to reflection sets of G(m, p, n)

2.1. We have G(m,m, n) ⊆ G(m, p, n) ⊆ G(m, 1, n) for any 1 ≤ p ≤ m with
p|m. There exists two kinds of reflections in G(m, 1, n) as follows.(i) s(i, j; k) :=
[(1, ..., 1, ζ−k

m , 1, ..., 1, ζk
m, 1, ..., 1)|(i, j)], where ζm := e2πi/m, the numbers ζ−k

m , ζk
m

are the ith, resp. jth components of the n-tuple and (i, j) is the transposition
of i and j for some i < j. Call s(i, j; k) a reflection of type I. Set s(j, i; k) =
s(i, j;−k).(ii) s(i; k) := [(1, ..., 1, ζk

m, 1, ..., 1)|1] for some k ∈ Z with m | k, where
ζk
m is the ith component of the n-tuple. Call s(i; k) a reflection of type II. s(i; k)

has the order m/gcd{m, k}.
All the reflections of type I lie in the subgroup G(m,m, n).

2.2. Let X = {s(ih, jh; kh) | h ∈ J} be a set of reflections of type I in
G(m, 1, n) for some finite index set J . We associate to X a digraph ΓX = (V, E) as
follows. Its node set V is [n] := {1, 2, ..., n}, and its arrow set E consists of all the
ordered pairs (i, j), i < j, with labels k for any s(i, j; k) ∈ X (hence, if s(i, j; k) ∈ X
and i > j, then ΓX = (V,E) contains an arrow (j, i) with the label −k). Denote
by ΓX the underlying graph of ΓX , i.e., ΓX is obtained from ΓX by replacing each
labelled arrow by an unlabelled edge.

Clearly, the graph ΓX has no loop but may have multi-edges between two nodes.
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The above definition of a graph can be extended: to any set X of reflections of
G(m, 1, n), we define a graph ΓX to be ΓX′ , where X ′ is the subset of X consisting
of all the reflections of type I. When X contains exactly one reflection of type II
(say s(i; k)), we define another graph, denoted by Γr

X , which is obtained from ΓX

by rooting the node i, i.e., Γr
X is a rooted graph with the rooted node i. Sometimes

we denote Γr
X by ([n], E, i).

2.3. Example. Let n = 6.
(1) If X = {s(1, 2; 4), s(3, 4; 2), s(4, 6; 0), s(3, 4; 3)}, then ΓX is as in Fig. 1 (a).

1 2 3 4 6 5

d d d d d d- ---4 2

3

0

(a)

1 2 3 4 6 5

d d d d d d
(b)

Fig. 1

and ΓX is as in Fig. 1 (b).
(2) Let Y = X ∪ {s(6; 3)} be with X as in (1). Then Γr

Y is as in Fig. 2.

1 2 3 4 6 5

d d d d t d

Fig. 2

where the node labelled by 6 is rooted.

2.4. Two graphs (N, E) and (N ′, E′) are isomorphic, if there exists a bijection
η : N → N ′ such that for any v, w ∈ N , {v, w} is in E if and only if {η(v), η(w)} is
in E′.

Two rooted graphs (N, E, i) and (N ′, E′, i′) are isomorphic, if there exists a
bijection η : N → N ′ with η(i) = i′ such that for any v, w ∈ N , {v, w} is in E if
and only if {η(v), η(w)} is in E′.

2.5. In [8, Lemma 2.1], we showed that the generator set S of a presentation
(S, P ) of the group G(m, 1, n) consists of n−1 reflections of type I and one reflection
of order m. Then we showed the following

2.6. Theorem. (see [8, Theorem 2.8]) Let S be a subset of G(m, 1, n) consist-
ing of n−1 reflections of type I and one reflection of order m ( m > 2 as assumed).
Then S is the generator set of a presentation for G(m, 1, n) if and only if the graph
Γr

S is a rooted tree.

2.7. Assume that X is a reflection set of G(m, 1, n) with ΓX connected and
having exactly one circle. Then for some integer 2 ≤ r ≤ n, X contains the
reflections s(ah, ah+1; kh) with some integers kh for any 1 ≤ h ≤ r (the subscripts
are modulo r). Denote by δ(X) the absolute value of

∑r
h=1 kh.

By [8, Lemma 2.7] and [1, Appendix 2], we see that the generator set S of a
presentation (S, P ) of the group G(m,m, n) consists of n reflections of type I such
that the graph ΓS is connected (hence contains exactly one circle). Then we showed
the following
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2.8. Theorem. (see [8, Theorem 2.19]) Let S be a subset of G(m,m, n) con-
sisting of n reflections of type I with ΓS connected. Then S is the generator set of
a presentation of G(m,m, n) if and only if the value δ(S) is coprime to m.

2.9. Next we consider the group G(m, p, n) for any m, p, n ∈ N with p|m
and 1 < p < m. By [9, Lemma 2.2], we know that for 1 < p < m with p|m,
the generator set S in a presentation (S, P ) of the group G(m, p, n) consists of n
reflections of type I and one reflection of order m/p and type II such that the graph
ΓS is connected (hence containing exactly one circle). Then we get the following

2.10. Theorem. (see [9, Theorem 2.4]) Assume that S is a subset of G(m, p, n)
consisting of n reflections of type I and one reflection of order m/p and type II such
that ΓS is connected. Then S is the generator set of a presentation of G(m, p, n) if
and only if gcd{p, δ(S)} = 1.

3. The classification of presentations of G(m, p, n)

Let Σ(m, p, n) be the set of the presentations (S, P ) of G(m, p, n) and let
Σ̃(m, p, n) be the set of congruence classes of Σ(m, p, n). In the present section,
we shall describe the set Σ̃(m, p, n) in the cases of p = 1, p = m and 1 < p < m,
separately.

3.1. It is known by [8, Subsection 3.1] that S, S′ ∈ Σ(m, 1, n) are congruent
if and only if Γr

S
∼= Γr

S′ . Also, it is known by [8, Subsection 3.3] that S, S′ ∈
Σ(m, m, n) are congruent if and only if ΓS

∼= ΓS′ . So we get the following two
theorems concerning the classification of congruence classes of presentations for the
groups G(m, 1, n) and G(m,m, n).

3.2. Theorem. (see [8, Theorem 3.2]) The map (S, P ) → Γr
S induces a bijec-

tion from the set Σ̃(m, 1, n) to the set of isomorphism classes of rooted trees with n
nodes.

3.3. Theorem. (see [8, Theorem 3.4]) The map (S, P ) → ΓS induces a bijec-
tion from the set Σ̃(m,m, n) to the set of isomorphism classes of connected graphs
with n nodes and n edges (or equivalently with n nodes and exactly one circle).

3.4. Example. Let n = 4.
(1) There are 4 isomorphic classes of rooted trees of nodes 4 (see Fig. 3).

e e e e e e e eu u

e e e e e e
e eu

u

Fig. 3

Hence G(m, 1, 4) has 4 congruence classes of presentations.
(2) There are 5 isomorphic classes of connected graphs with exactly one circle

(see Fig 4).
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e e e e e e e e

e e e e e e e e
e e e e

¡¡ @@

Fig. 4

Hence G(m,m, 4) has 5 congruence classes of presentations.
In the remaining part of the section, we always assume 1 < p < m and p|m.

3.5. It is known by [9, Lemma 2.7] that S, S′ ∈ Σ(m, p, n) are congruent if
and only if one of the following conditions holds:

(1) the circle of Γr
S contains more than two nodes and Γr

S
∼= Γr

S′ (see 2.4);
(2) the circle of Γr

S contains exactly two nodes, Γr
S
∼= Γr

S′ and gcd{m, δ(S)} =
gcd{m, δ(S′)}.

3.6. Denote by Λ(m, p) the set of all the numbers d ∈ N such that d|m
and gcd{d, p} = 1. Let Γ(m, p, n) be the set of all the connected rooted graphs
with n nodes and n edges. Let Γ1(m, p, n) be the set consisting of all the rooted
graphs in Γ(m, p, n) each of which contains a two-nodes circle. Let Γ2(m, p, n) be
the complement of Γ1(m, p, n) in Γ(m, p, n). Denote by Γ̃(m, p, n), resp., Γ̃i(m, p, n)
the set of the isomorphism classes in the set Γ(m, p, n), resp., Γi(m, p, n) for i = 1, 2
(see 2.4).

The following result describes all the congruence classes of presentations for
G(m, p, n) in terms of rooted graphs.

3.7. Theorem. (see [9, Theorem 2.9]) (1) The map ψ : S 7→ Γr
S from Σ(m, p, n)

to Γ(m, p, n) induces a surjection ψ̃: Σ̃(m, p, n) ³ Γ̃(m, p, n). (2) Let Σ̃i(m, p, n) =
ψ̃−1(Γ̃i(m, p, n)) for i = 1, 2. Then the map ψ̃ gives rise to a bijection: Σ̃2(m, p, n) ½
³ Γ̃2(m, p, n); also, S 7→ (Γr

S , gcd{m, δ(S)}) induces a bijection: Σ̃1(m, p, n) ½³
Γ̃1(m, p, n)× Λ(m, p).

3.8. Example. Let n = 4, m = 6 and p = 2. Then Λ(6, 2) = {1, 3}. There
exist 13 isomorphic classes of rooted connected graphs with exactly one circle, 9
of them contain a two-nodes circle (see Fig. 5). So G(6, 2, 4) has 22 = 9 × 2 + 4
congruence classes of presentations.

d d d d d d d d d d d d d d dt t t
t

d d d d d d d d d d d d d d dt t t t
d

d d d d d d d d d d d d d d
d d d dt t
t t t¡¡ ¡¡@@ @@ ¡¡ @@

Fig. 5
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4. The relation set of a presentation for G(m, p, n)

We always assume 1 ≤ p ≤ m, m > 2, n > 1, p|m and (m, p, n) 6= (m,m, 2) in
the section. In [8, Section 4] and [9, Section 4], we defined the basic relations on
the generator set S of a presentation (S, P ) for the groups G(m, p, n) in the cases
of p = 1, p = m and 1 < p < m separately. In the present section, we shall give a
uniform treatment for these relations.

4.1. Let S ∈ Σ(m, p, n). By the results stated in the previous sections, we
can write

(4.1) S = {s = s(a, k), th | h ∈ J},
where gcd{m, k} = gcd{m, p} (Thus, if p = m then s = 1, which can be removed
from S), J is an index set with |J | = n− 1 if p = 1 and |J | = n if 1 < p ≤ m, and
all the reflections th, h ∈ J , are of type I. The graph ΓS is always connected. When
1 ≤ p < m, we have the rooted graph Γr

S with the node a rooted; when 1 < p ≤ m,
the graph ΓS contains exactly one circle.

4.2. Now assume 1 < p ≤ m. Take any node x of ΓS . Call a sequence of
nodes ξx : a0 = x, a1, ..., ar = x in ΓS a generalized circle sequence of Γr

S at the node
x if S contains reflections th = s(ah−1, ah; kh) for 1 ≤ h ≤ r with some integers
kh, where tl 6= tl+1 for 1 ≤ l < r. Since the graph ΓS is connected and contains a
unique circle, the sequence ξx always exists. ξx contains all the nodes on the circle
of ΓS and is uniquely determined by the set S and the node x up to an orientation
of the circle.

When x = a is the rooted node of Γr
S (this is the case only when 1 < p < m),

ξx is also called a root-circle sequence of Γr
S .

Call shj := thth+1...tj−1tjtj−1...th a path reflection of ΓS in ξx for any 1 ≤ h <
j ≤ r (see Fig. 6).

d d d d dp p p p p p p p p p pth th+1 tj

Fig. 6

Let cx, c′x be the smallest, resp., the largest integer with the node acx , resp.,
ac′x lying on the circle of ΓS . Then x is on the circle of ΓS if and only if cx = 0 and
c′x = r.

4.3. Example.

d d

d d

d d

t d¢
¢
¢
¢

¢
¢
¢
¢A

A
A
A

A
A
A
Aa0 = a10 = x

a1

a9

a2

a8

a3

a7

a4

a6

a5
t1

t10

t2

t9

t3

t8

t4

t7

t5

t6

Fig. 7
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Here the generalized circle sequence ξx at the node x is a0 = x, a1, ..., a10 = x,
which is also a root-circle sequence. Hence r = 10, cx = 2, c′x = 8, a1 = a9,
a2 = a8 and s1,4 = t1t2t3t4t3t2t1. We have s1,2 = s9,10 since t1 = t10, t2 = t9 and
t1t2t1 = t2t1t2.

4.4. Let S be as in (4.1). By [8, Theorems 4.17 and 4.20] and [9, Theorem
6.2], we see that (S, P ) is a presentation of G(m, p, n) if P consists of relations
(A)–(M) as follow. Here the path reflections s1j , sj+1,r are with respect to the
generalized circle sequence ξx in 4.2 and satisfy cx < j < c′x whenever it is applica-
ble. {x, aj} is called an admissible node pair of ΓS , at which we are allowed to talk
about relations (J)-(L) on S, where x is required to be the rooted node a of Γr

S for
relations (K)-(L). u, v ∈ S in (M) satisfy that the edges e(u), e(v) are incident to
ξx at the nodes x, aj respectively.

(A) sm/p = 1.
(B) t2i = 1 for i ∈ J .
(C) titj = tjti if the edges e(ti) and e(tj) have no common end node.
(D) titjti = tjtitj if the edges e(ti) and e(tj) have exactly one common end

node.
(E) stisti = tistis if a is an end node of e(ti).
(F) sti = tis if a is not an end node of e(ti).
(G) (titj)m/d = 1 if ti 6= tj with e(ti) and e(tj) having two common end nodes,

where d = gcd{m, δ(S)}.
(H) ti · tjtltj = tjtltj · ti for any triple X = {ti, tj , tl} ⊆ S with ΓX having a

branching node.
(I) s · titjti = titjti · s, if e(ti) and e(tj) have exactly one common end node a.
(J) (s1jsj+1,r)

m
gcd{m,δ(S)} = 1.

(K) ss1jsj+1,r = s1jsj+1,rs.
(L) (sj+1,rs1j)p−1 = s−δ(S)s1js

δ(S)sj+1,r.
(M) (a) us1ju · vsj+1,rv = vsj+1,rv · us1ju.

(b) us1jsj+1,rus1jsj+1,r =s1jsj+1,rus1jsj+1,ru.
(c) vs1jsj+1,rvs1jsj+1,r =s1jsj+1,rvs1jsj+1,rv.

Here any of the above relations involving the reflection s (i.e., any of the relations
(A), (E), (F), (I), (K) and (L)) is applicable only in the case of 1 ≤ p < m; while
any of the above relations involving a circle (i.e., any of the relations (G), (J), (K),
(L) and (M)) is applicable only in the case of 1 < p ≤ m.

4.5. In 4.4, call (A)-(B) the order relations, (C)-(G) the braid relations on S.
Call (A)-(F) the order-braid relations (or o.b. relations in short) on S (note that
relation (G) is not included in the o.b. relations on S). Call (H) the branching
relations, (I) the root-braid relations, (H) the branching relations, (I) the root-braid
relations, (G), (J) the circle relations, (K) the root-circle relations, (L) the circle-
root relations, and (M) the branching-circle relations on S.

Call all the relations (A)-(M) above the basic relations on S. We have the
following

4.6. Theorem. (see [8, Theorems 4.17 and 4.20] and [9, Theorem 6.2]) Let
S ∈ Σ(m, p, n) and let PS be the set of all the basic relations on S. Then (S, PS)
forms a presentation of G(m, p, n).
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4.7. A presentation (S, P ) of a reflection group G is essential if (S, P0) is not
a presentation of G for any proper subset P0 of P .

Let S ∈ Σ(m, p, n) be as in (4.1) with 1 ≤ p ≤ m and let PS be the set of all
the basic relations (A)-(M) on S. Then the presentation (S, PS) of G(m, p, n) is
not essential in general.

Let us take the case of 1 < p < m as an example,
(a) Let (B′) be any relation in (B). Then (B′) is equivalent to (B) under the as-
sumption of (D).
(b) Let (K′) (resp., (L′)) be a relation in (K) (resp., (L)) at any one admissible node
pair. Then (K′) (resp., (L′)) is equivalent to (K) (resp., (L)) under the assumption
of the o.b. relations on S.
(c) For any branching node v of ΓS , fix some tv ∈ S of type I with e(tv) incident
to v. Set
(H′) The relation tv · tt′t = tt′t · tv holds for any t 6= t′ in S \ {tv} of type I with
Γ{tv,t,t′} having v as a branching node.

Then (H′) is a subset of and is equivalent to (H) under the assumption of the
o.b. relations on S.
(d) Let a be the rooted node in Γr

S . Fix some ta ∈ S of type I with e(ta) incident
to a. Set (I′) s · tatta = tatta · s for any t ∈ ΓS \ {ta} of type I with e(t), e(ta)
having just one common end node a.

Then (I′) is a subset of and is equivalent to (I) under the assumption of the
o.b. relations and the branching relations on S. (e) (G) is a special case of (J),
while (J) is a consequence of the o.b. relations and the relations (K)-(L) on S.
(f) Let (M′) be the relations (M) if Γr

S has a two-nodes circle and be the empty set
of relations if otherwise.
(g) Assume that Γr

S has a two-nodes circle with the rooted node on the circle and
not adjacent to any node outside the circle and that gcd{δ(S),m} = p. Then
relation (E) is a consequence of (L) and the other o.b. relations on S. Let (E′) be
the empty set of relations in this case and be the relation (E) in any other case.

Let P ′S be the collection of relations (A), (B′), (C), (D), (E′), (F), (H′), (I′),
(K′), (L′), (M′). Then (S, P ′S) is again a presentation of G(m, p, n) (see [9, Remark
6.9 (1)]).

One may ask if the presentation (S, P ′S) is always essential. The answer is still
negative. Recently, Liu and Shi have showed that each of the relations (H′), (I′),
(M′) could be further reduced (see [4]).

4.8. Among all the presentation (S, PS) of G(m, 1, n), the relation set PS

has a simpler form when Γr
S is a string with the rooted node at one end (see [1,

Appendix 2]). Among all the presentations (S, PS) of G(m, p, n), 1 < p ≤ m, we
single out two kinds of presentations whose relation sets have simpler forms:

(i) One is when ΓS is a string with a two-nodes circle at one end, and with the
rooted node on the circle, not incident to any node outside the circle if 1 < p < m
(see [1, Appendix 2]);

(ii) The other is when ΓS is a circle. In this case, if p = m, then the relation set
PS can only consist of some o.b. relations and one circle relation (see [5, Proposition
3.3]); if 1 < p < m, then PS can only consist of some o.b. relations, one root-braid
relation, one root-circle relation and one circle-root relation (see [9, Remark 6.9
(2)]).
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5. Presentations for the primitive complex reflection groups

5.1. In Table 1, we record results of L. Wang, P. Zeng and J. Y. Shi on the
numbers N(G) of congruence classes of presentations for the primitive complex
reflection groups G (see 1.7), where the numbers N(Gi) for i = 12, 24, 25, 26 were
got by Shi (see [6]), for i = 13, 22, 27, 29, 31, 33 by Wang (see [11]), and for i =
7, 11, 15, 19, 32 by Zeng (see [12]).

G N(G) G N(G)
G7 2 G11 4
G12 5 G13 4
G15 4 G19 6
G22 18 G24 3
G25 2 G26 2
G27 6 G29 9
G31 61 G32 5
G33 14

Table 1

Since any G generated by ≤ 2 reflections satisfies N(G) = 1, G34 is the only
primitive complex reflection group with N(G34) unknown.

5.2. We list a representative set for the congruence classes of presentations
(or r.c.p. for brevity) of the primitive complex reflection groups G12, G24, G27,
G25, G26, G7, G15, G19, G11, G32 (see 5.3–5.12), where the groups G12, G24, G25,
G26, G19, G11, G32 were done by Shi (see [6] [7]), G27 by Wang (see [11]), and
G7, G15 by Zeng (see [12]). The first presentation for each group was given in
[1, Appendix 2]). According to the Shephard-Todd’s classification (see [10]), the
groups G25, G26, G7, G15, G19, G11 and G32 form the full set of such primitive
complex reflection groups each of which is generated by more than two reflections
and contains some reflections of order > 2.

5.3. r.c.p. for the group G12. (see [6, Propositions 3.3–3.7]):
(1) G12 = 〈s, u, t | s2 = u2 = t2 = 1, suts = utsu = tsut〉.
(2) G12 = 〈s, u, w | s2 = u2 = w2 = 1, sususu = ususus, sws = wsw, swus =

uswu〉.
(3) G12 = 〈s, u, x | s2 = u2 = x2 = 1, suxs = usux, xusx = uxus〉.
(4) G12 = 〈s, u, y | s2 = u2 = y2 = 1, usuyu = susuy, ysuyu = suyus〉.
(5) G12 = 〈s, x, y | s2 = x2 = y2 = 1, sxsx = xsxs, sys = ysy, xyx =

yxy, sxsxy = ysxsx〉.
Here w = ututu, x = utu, y = tst, t = sususuw = uxu = uyusy = yxsxy and

u = sxyxs.

5.4. r.c.p. for the group G24. (see [6, Propositions 4.3–4.5]):
(1) G24 = 〈s, u, t | s2 = u2 = t2 = 1, stst = tsts, sus = usu, utut = tutu, tusutu =

usutus〉.
(2) G24 = 〈s, t, x | s2 = t2 = x2 = 1, stst = tsts, sxs = xsx, txt = xtx, stsxstsx =

xstsxsts〉.
(3) G24 = 〈s, t, y | s2 = t2 = y2 = 1, stst = tsts, tyty = ytyt, tstyts = ytstyt〉.
Here x = sus, y = tut and u = sxs = tyt.
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5.5. r.c.p. for the group G27. (see [11, Propositions 3.1.1–3.1.6]):
(1) G27 = 〈s, u, t | s2 = u2 = t2 = 1, utu = tut, stst = tsts, susus =

ususu, usutus = tusutu〉.
(2) G27 = 〈s, u, w | s2 = u2 = w2 = 1, susus = ususu, uwu = wuw, sws =

wsw, suwusuwu = uwusuwus〉.
(3) G27 = 〈s, t, w | s2 = t2 = w2 = 1, stst = tsts, wtw = twt, sws =

wsw, swtwswtwsw = wtwswtwswt〉.
(4) G27 = 〈s, u, x | s2 = u2 = x2 = 1, susus = ususu, sxsx = xsxs, usxsus =

sxsusx, uxsxux = xsxuxs〉.
(5) G27 = 〈s, t, y | s2 = t2 = y2 = 1, stst = tsts, sysys = ysysy, ysytys =

tysyty, tsysts = systsy〉.
(6) G27 = 〈s, w, y | s2 = w2 = y2 = 1, sws = wsw, sysys = ysysy, wysywy =

ysywys,wsyswsys = syswsysw〉.
Here w = utu, x = sts, y = susus, t = uwu = sxs = ysywysy and u = ysy.

5.6. r.c.p. for the group G25. (see [6, Propositions 5.3–5.4]):
(1) G25 = 〈t, u, v | t3 = u3 = v3 = 1, tut = utu, uvu = vuv, tv = vt〉.
(2) G25 = 〈t, u, x | t3 = u3 = x3 = 1, tut = utu, uxu = xux, xtux = uxtu〉.
Here x = u2vu and v = uxu2.
Each of the above presentations for G12, G24, G27 and G25 becomes essential

after removing any two of the order relations.

5.7. r.c.p. for the group G26. (see [6, Propositions 6.3–6.4]):
(1) G26 = 〈t, u, v | t2 = u3 = v3 = 1, tutu = utut, uvu = vuv, tv = vt〉.
(2) G26 = 〈t, u, x | t2 = u3 = x3 = 1, tutu = utut, uxu = xux, uxtu = xtux〉.
Here x = u2vu and v = uxu2.
Each presentation becomes essential after removing any one of the order 3

relations.

5.8. r.c.p. for the group G7. (see [12, Propositions 4.1.1–4.1.2]):
(1) G7 = 〈t, u, s | t2 = u3 = s3 = 1, tus = ust = stu〉.
(2) G7 = 〈t, x, s | t2 = x3 = s3 = 1, sxt = txs, txtsts = ststxt〉.
Here x = tsus2t and u = s2txts.

5.9. r.c.p. for the group G15. (see [12, Propositions 4.2.1–4.2.4]):
(1) G15 = 〈t, u, s | t2 = u2 = s3 = 1, tus = ust, stusu = tusus〉.
(2) G15 = 〈t, x, s | t2 = x2 = s3 = 1, tsxs2ts = sxs2tst, xstsxs2t = stsxstsx〉.
(3) G15 = 〈t, y, s | t2 = y2 = s3 = 1, tsy = syt, ytsys = tsysy〉.
(4) G15 = 〈t, z, s | t2 = z2 = s3 = 1, tzts = ztst, sztstz = ztszts〉.
Here x = s2tuts, y = s2us and z = tut. Hence u = tsxs2t = sys2 = tzt.

5.10. r.c.p. for the group G19. (see [7, (2.1.1) and Propositions 2.4–2.8]) :
(1) G19 = 〈t, u, s | t2 = u3 = s5 = 1, tus = ust = stu〉
(2) G19 = 〈t, u, w | t2 = u3 = w5 = 1, wuwu = uwuw, u2t · w2 = w2 · utu〉
(3) G19 = 〈t, v, w | t2 =v3 =w5 =1, wv2wv=vwv2w, vw · wvt=wvt · vw〉
(4) G19 = 〈t, x, z | t2 =x3 =z5 =1, xzxz=zxzx, zxz2 · zt= tz · zxz2〉
(5) G19 = 〈t, y, w | t2=y3=w5=1, ywyw=wywy, yw2y · wt = wt · w2y2〉
Here v = s3u2s2, x = utsu2s4tu2, y = x2 = utsus4tu2, w = su2s2us4 and

z = s2. Hence s = w2tu2tuw = tvw3v2t = tyw3y2t = z3 and u = s2v2s3 =
w3v2w2 = w2yw3 = z2tz2xztx.



12 JIAN-YI SHI

5.11. r.c.p. for the group G11. (see [7, (3.1.1) and Propositions 3.3–3.5]):
(1) G11 = 〈t, u, s | t2 = u3 = s4 = 1, tus = ust = stu〉
(2) G11 = 〈t, u, z | t2 = u3 = z4 = 1, tuz = zut, tuzu = uzut〉
(3) G11 = 〈r, u, s | r2 = u3 = s4 = 1, usus = susu, usu · rs = rs · su2〉
(4) G11 = 〈r, u, w | r2 = u3 = w4 = 1, wuwu = uwuw,w · w2r · u = u · w2r · w〉
Here w = u2su, z = u2s3u and r = us3tsu2. Hence s = uwu2 = uz3u2 and

t = su2rus3 = w3rw = zrz3.
All the above presentations for the groups G7, G15, G19 and G11 are essential.

5.12. r.c.p. for the group G32. (see [7, (4.1.1) and Propositions 4.3–4.6]):
(1) G32 = 〈t, u, v, w | t3 = u3 = v3 = w3 = 1, tut = utu, uvu = vuv, vwv =

wvw, tv = vt, tw = wt, uw = wu〉
(2) G32 = 〈t, u, v, x | t3 = u3 = v3 = x3 = 1, tut = utu, tv = vt, tx = xt, vuxv =

xvux = uxvu〉
(3) G32 = 〈r, u, v, x | r3 = u3 = v3 = x3 = 1, uvu = vuv, rur = uru, vxv =

xvx, uvru = vruv, uxvu = vuxv, vrxv = xvrx〉
(4) G32 = 〈t, s, w, y | t3 = s3 = w3 = y3 = 1, tw = wt, tyt = yty, ywy =

wyw, sws = wsw, stys = ysty, syws = wsyw〉
(5) G32 = 〈t, u, z, m | t3 = u3 = z3 = m3 = 1, uzu2m2tm = m2tmuzu2, tz =

zt, um = mu, zmz = mzm, tut = utu, uzu = zuz, tmt = mtm〉
Here x = vwv2, r = utu2, s = uvu2, y = u2vu, z = wvw2 and m =

t2u2vut. Hence t = u2ru, u = sys2, v = s2ys = utmt2u2 and w = v2xv =
utmt2u2zutm2t2u2.

Any of the presentations (1)–(4) of the group G32 becomes essential after remov-
ing any three of the four order relations. However, in order to make presentation (5)
of G32 essential, one need remove any one of the relations zmz = mzm, tut = utu,
uzu = zuz and tmt = mtm in addition.
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