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Abstract. The fixed point set of the affine Weyl group ( eA2n+1, eS) under

a certain group automorphism α with α(eS) = eS can be considered as the

affine Weyl group ( eCn, S). Then we study the cells of the weighted Coxeter

group ( eCn, e`2n+1) with e`2n+1 the length function of eA2n+1. We give an ex-

plicit description for all the cells of ( eCn, e`2n+1) corresponding to the partitions

k12n+2-k and (h, 2n +2−h) for any 1 6 k 6 2n +2 and n +1 6 h 6 2n, and

also for all the cells of ( eC3, e`7).

Let Z (respectively, P, N) be the set of integers (respectively, positive integers, non-

negative integers). For any i 6 j in the set Z, denote [i, j] := {i, i+1, ..., j} and denote [1, i]

simply by [i].

By a Coxeter system (W,S), we mean a Coxeter group W together with a Coxeter

generator set S. Lusztig defined a weight function L on any Coxeter system (W,S), called

(W,L) a weighted Coxeter group and also introduced the concepts of left, right and two-sided

cells in a weighted Coxeter group in [4]. The affine Coxeter group (C̃n, S) can be realized

as the fixed point set of the affine Coxeter group (Ãm, S̃m), m ∈ {2n− 1, 2n, 2n + 1}, under

a certain automorphism αm,n with αm,n(S̃m) = S̃m, where S̃m, S are the Coxeter generator

sets of Ãm, C̃n, respectively. The restriction to C̃n of the length function ˜̀
m of Ãm is a

weight function of C̃n. It is known that there is a surjective map ψ from Ãm to the set

Λm+1 of partitions of m + 1 which induces a bijection from the set of two-sided cells of

Ãm to Λm+1 (see [5], [3]). Let Eλ := ψ−1(λ) ∩ C̃n for λ ∈ Λm+1. In his papers [7] and

[8], Shi described all the cells of the weighted Coxeter group (C̃n, ˜̀2n−1) in the set Eλ with

λ ∈ {k12n−k,h212n−h−2, (j, 2n − j) | k ∈ [2n], h ∈ [2, 2n − 2], j ∈ [n, 2n − 1]} and also all

the cells of the weighted Coxeter group (C̃3, ˜̀5). In the present paper, we study left cells

and two-sided cells in the weighted Coxeter group (C̃n, ˜̀2n+1) and describe all the cells of

(C̃n, ˜̀2n+1) in the set Eλ with λ ∈ {k12n+2−k, (j, 2n+2−j) | k ∈ [2n+2], j ∈ [n+1, 2n+1]}
and also all the cells of the weighted Coxeter group (C̃3, ˜̀7).
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weighted Coxeter group.
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Comparing with the weighted Coxeter group (C̃n, ˜̀2n−1), the set Eλ might be empty in

the weighted Coxeter group (C̃n, ˜̀2n+1) for some λ ∈ Λ2n+2. In our considered cases, we

prove that the sets Ek12n+2−k and E(k,2n+2−k) and Eλ, λ ∈ {431, 422, 24, 231
2}, are empty,

where k is even.

The connectedness is an important structural property for the cells. We prove in Eλ

with λ ∈ {k12n+2−k, (h, 2n + 2 − h) | k ∈ [2n + 2], h ∈ [n + 1, 2n + 1]} ∪ Λ8 that all the left

cells are left-connected and that all the two-sided cells are two-sided-connected.

The generalized tabloid and the generalized τ -invariants are two complete invariants for

the left cells of Ã2n+1. Those invariants will be very useful in determination of left cells in

our considered cases.

The contents of the paper are organized as follows. We collect some concepts and known

results concerning cells of the weighted Coxeter groups (Ã2n+1, ˜̀2n+1) and (C̃n, ˜̀2n+1) in

Sections 1-2. We give some criteria for the vanishing of the set Eλ in Section 3. In Sections 4-

5, we give an explicit description for all the cells of (C̃n, ˜̀2n+1) corresponding to the partitions

k12n+2-k and (h, 2n+2−h) for all k ∈ [2n+2] and h ∈ [n+1, 2n+1] respectively. Finally,

we describe all the cells of (C̃3, ˜̀7) in Section 6.

1. The weighted Coxeter groups (Ã2n+1, ˜̀2n+1) and (C̃n, ˜̀2n+1).

In this section, we assemble some concepts and known results concerning cells of a

weighted Coxeter group (W,L), in particular, in the cases where (W,L) is either (Ã2n+1, ˜̀2n+1)

or (C̃n, ˜̀2n+1).

1.1. Let (W,S) be a Coxeter system with ` the length function and ≤ the Bruhat-

Chevalley ordering on W . An expression w = s1s2 · · · sr of w ∈ W with si ∈ S is called

reduced if r = `(w). By a weight function on W , we mean a map L : W −→ Z satisfying that

L(s) = L(t) for any s, t ∈ S conjugate in W and that L(w) = L(s1)+L(s2)+ · · ·+L(sr) for

any reduced expression w = s1s2 · · · sr of w ∈ W . Call (W,L) is a weighted Coxeter group.

In particular, the length function ` is a weight function on W and the weighted Coxeter

group (W, `) is called in a split case.

Suppose that there is a group automorphism α of W with α(S) = S. Let Wα = {w ∈
W | α(w) = w}. For any α-orbit J on S, let wJ ∈ Wα be the longest element in the

subgroup of W generated by J . Let Sα be the set of all wJ with J ranging over the α-orbits

in S. Then (Wα, Sα) is a Coxeter system. The restriction of ` to Wα is a weight function

on (Wα, Sα). The weighted Coxeter group (Wα, `) is called in a quasi-split case.
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1.2. In [4], Lusztig introduced the preorders 6
L
, 6

R
, 6

LR
and the associated equivalence

relations ∼
L
, ∼

R
, ∼

LR
on a weighted Coxeter group (W,L), the corresponding equivalence classes

of (W,L) are called left cells, right cells and two-sided cells.

For w ∈ W , define L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}. If

y, w ∈ W satisfy y 6
L

w (resp., y 6
R

w), then R(y) ⊇ R(w) (resp., L(y) ⊇ L(w)). In

particular, if y ∼
L

w (resp., y ∼
R

w), then R(y) = R(w) (resp., L(y) = L(w)) (see [4, Lemma

8.6]).

In [4, Chapter 13], Lusztig defined a function a : W −→ N∪ {∞} in terms of structural

coefficients of the Hecke algebra associated to W . Then in [4, Chapters 15-16], Lusztig

proved that the function a is constant on any cell of W when W is either a finite or an affine

Coxeter group and when (W,L) is either in a split case or in a quasi-split case.

For any X ⊂ W , write X−1 := {x−1 | x ∈ X}.

1.3. Lemma. (see [7, Lemma 1.7]) Suppose that W is either a finite or an affine

Coxeter group and that (W,L) is either in a split case or in a quasi-split case.

Let E be a non-empty subset of W satisfying the following conditions:

(a) There exists some k ∈ N with a(x) = k for any x ∈ E;

(b) E is a union of some left cells of W ;

(c) E−1 = E.

Then E is a union of some two-sided cells of W .

From now on, we concentrate ourselves to the weighted Coxeter groups (Ã2n+1, ˜̀2n+1)

and (C̃n, ˜̀2n+1), where ˜̀
2n+1 is the length function of the affine Weyl group Ã2n+1.

1.4. The affine Weyl group Ã2n+1 can be realized as the following permutation group

on the integer set Z (see [2, Subsection 3.6] and [5, Subsection 4.1]):

Ã2n+1 =

{
w : Z −→ Z

∣∣∣∣∣(i + 2n + 2)w = (i)w + 2n + 2,

2n+2∑
i=1

(i)w =
2n+2∑
i=1

i

}
.

The Coxeter generator set S̃ = {si | i ∈ [0, 2n + 1]} of Ã2n+1 is given by

(t)si =

 t, if t 6≡ i, i + 1 (mod 2n + 2),
t + 1, if t ≡ i (mod 2n + 2),
t − 1, if t ≡ i + 1 (mod 2n + 2),

for any t ∈ Z.

Let α := α2n+1,n : Ã2n+1 −→ Ã2n+1 be the group automorphism determined by α(si) =

s2n+1−i for i ∈ [0, 2n + 1]. Then the affine Weyl group C̃n can be realized as the fixed point

set of Ã2n+1 under α, which can also be described as a permutation group on Z as follows.

C̃n = {w : Z −→ Z | (i + 2n + 2)w = (i)w + 2n + 2, (−i)w = −(i)w, ∀i ∈ Z}
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with the Coxeter generator set S = {ti | i ∈ [0, n]}, where ti = sis2n+1−i for i ∈ [n − 1],

t0 = s0s2n+1s0 and tn = snsn+1sn. For any w ∈ C̃n, we can see that (k(n+1))w = k(n+1),

for any k ∈ Z. For the sake of convenience, we define si, tj for any i, j ∈ Z by setting

s(2n+2)q+b to be sb and setting both t(2n+2)q+a and t(2n+2)q+(2n+1−a) to be ta for any q ∈ Z

and b ∈ [0, 2n + 1] and a ∈ [0, n].

1.5. By a partition of n ∈ P, we mean an r-tuple λ := (λ1, λ2, . . . , ...λr) of weakly

decreasing λ1, λ2, ..., λr in P with
∑r

k=1 λk = n for some r > 1. λi is called a part of λ. We

sometimes denote λ in the form jk1
1 jk2

2 . . . jkm
m (boldfaced) with j1 > j2 > · · · > jm > 1 if ji

is a part of λ with multiplicity ki > 1 for i > 1. For example, 63
2
2
3
1 stands for the partition

(6, 3, 3, 2, 2, 2, 1) of 19.

Fix w ∈ Ã2n+1. For any i 6= j in [2n + 2], we write i ≺w j, if there exist some

p, q ∈ Z such that both inequalities 2pn + 2p + i > 2qn + 2q + j and (2pn + 2p + i)w <

(2qn + 2q + j)w hold. In terms of matrix entries of w, this means that the entry 1 at the

position (2qn + 2q + j, (2qn + 2q + j)w) is located at the northeastern of the entry 1 at the

position (2pn + 2p + i, (2pn + 2p + i)w). This defines a partial order ≺w on the set [2n + 2].

A sequence a1, a2, ..., ar in [2n + 2] is called a w-chain, if a1 ≺w a2 ≺w · · · ≺w ar.

Sometimes we identify a w-chain a1, a2, . . . , ar with the corresponding set {a1, a2, . . . , ar}.
For any k > 1, a k-w-chain-family is by definition a disjoint union X =

⋃k
i=1 Xi of k w-chains

X1, ..., Xk in [2n + 2]. Let dk be the maximally possible cardinal of a k-w-chain-family for

any k > 1. Then there exists some r > 1 such that d1 < d2 < · · · < dr = 2n+2. Let λ1 = d1

and λk = dk − dk−1 for any k ∈ [2, r]. Then λ1 > λ2 > · · · > λr by a result of Curtis Greene

in [1]. Let Λ2n+2 be the set of all partitions of 2n + 2. Hence w 7→ ψ(w) = (λ1, . . . , λr)

defines a map from the set Ã2n+1 to Λ2n+2.

i 6= j in [2n + 2] are said w-comparable if either i ≺w j or j ≺w i, and w-uncomparable

if otherwise. A subset E in [2n+2] is called a w-antichain, if the elements of E are pairwise

w-uncomparable.

1.6. Let ˜̀
2n+1, ` be the length functions on the Coxeter systems (Ã2n+1, S̃), (C̃n, S),

respectively. By the definition in 1.1, we see that the weighted Coxeter group (Ã2n+1, ˜̀2n+1)

is in a split case, while (C̃n, ˜̀2n+1) is in a quasi-split case (see [4, Lemma 16.2]).

For any x ∈ Ã2n+1 and k ∈ Z, let mk(x) = #{i ∈ Z | i < k and (i)x > (k)x}. Then the

formulae for the functions ˜̀
2n+1 and ` are as follows.

1.7. Proposition. (comparing with [7, Proposition 2.4]) For any w ∈ Ã2n+1 and

x ∈ C̃n, we have
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(1) ˜̀
2n+1(w) =

∑
16i<j62n+2

∣∣∣⌊ (j)w−(i)w
2n+2

⌋∣∣∣ =
∑2n+2

k=1 mk(w);

(2) `(x) = 1
2 (˜̀2n+1(x) − m0(x) − mn(x)),

where bxc stands for the largest integer not larger than x and |x| for the absolute value of x

for any x ∈ Q.

1.8. Let 6,6C be the Bruhat-Chevalley orders on the Coxeter systems (Ã2n+1, S̃),

(C̃n, S), respectively. Since the condition x 6C y is equivalent to x 6 y for any x, y ∈ C̃n,

it will cause no confusion if we use the notation 6 in the place of 6C . Hence from now on

we shall use 6 for both 6 and 6C .

Let L̃(x) = {s ∈ S̃ | sx < x} and R̃(x) = {s ∈ S̃ | xs < x} for x ∈ Ã2n+1 and let

L(y) = {t ∈ S | ty < y} and R(y) = {t ∈ S | yt < y} for y ∈ C̃n.

1.9. Corollary. (comparing with [7, Corollary 2.6]) For any x ∈ C̃n and i ∈ [0, n],

si ∈ L̃(x) ⇐⇒ s2n+1−i ∈ L̃(x) ⇐⇒ ti ∈ L(x) ⇐⇒ (i)x > (i + 1)x ⇐⇒ (2n + 2 − i)x <

(2n + 1 − i)x,

si ∈ R̃(x) ⇐⇒ s2n+1−i ∈ R̃(x) ⇐⇒ ti ∈ R(x) ⇐⇒ (i)x−1 > (i + 1)x−1 ⇐⇒ (2n + 2 −
i)x−1 < (2n + 1 − i)x−1.

1.10. For any a ∈ Z, denote by 〈a〉 the unique integer in [2n + 2] satisfying a ≡
〈a〉 (mod 2n + 2). It is known that any w ∈ C̃n is determined uniquely by the n-tuple

((1)w, (2)w, . . . , (n)w). Hence we shall identify w with the n-tuple ((1)w, (2)w, . . . , (n)w)

and denote the latter by [(1)w, (2)w, . . . , (n)w] in such a sense. Let w = [a1, a2, . . . , an] and

w′ = tiw = [a′
1, a

′
2, . . . , a

′
n] and w′′ = wti = [a′′

1 , a′′
2 , . . . , a′′

n] be in C̃n. When i ∈ [n − 1],

we have a′
j = aj for j ∈ [n] − {i, i + 1} (set difference) and (a′

i, a
′
i+1) = (ai+1, ai); when

i = 0, we have a′
j = aj for j ∈ [2, n] and a′

1 = −a1; when i = n, we have a′
j = aj for

j ∈ [n − 1] and a′
n = 2n + 2 − an. On the other hand, when i ∈ [n − 1], we have a′′

j = aj if

〈aj〉 /∈ {i, i + 1, 2n + 1− i, 2n + 2− i}, a′′
j = aj + 1 if 〈aj〉 ∈ {i, 2n + 1− i} and a′′

j = aj − 1 if

〈aj〉 ∈ {i + 1, 2n + 2 − i}; when i = 0, we have a′′
j = aj if 〈aj〉 /∈ {1, 2n + 1}, a′′

j = aj + 2 if

〈aj〉 = 2n + 1 and a′′
j = aj − 2 if 〈aj〉 = 1; when i = n, we have a′′

j = aj if 〈aj〉 /∈ {n, n + 2},
a′′

j = aj + 2 if 〈aj〉 = n and a′′
j = aj − 2 if 〈aj〉 = n + 2.

Let η be the group automorphism of C̃n determined by the condition η(ti) = tn−i for

any i ∈ [0, n].

1.11. For any i ∈ [0, 2n+1], let D̃R(i) be the set of all w ∈ Ã2n+1 satisfying |{si, si+1}∩
R̃(w)| = 1. When w ∈ D̃R(i), exactly one of wsi and wsi+1 is in D̃R(i), denote it by w∗, call

the transformation from w to w∗ a right {si, si+1}-star operation (or a right star operation in

short) on w. Clearly, (w∗)∗ = w in this case., For any w ∈ Ã2n+1, let M̃(w) be the set of all
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y ∈ Ã2n+1 satisfying the following condition: there exists a sequence x0 = w, x1, . . . , xr = y

in Ã2n+1 with some r > 0 such that for every i ∈ [r], xi is obtained from xi−1 by a right

{ski , ski+1}-star operation with some ki ∈ Z. Define a graph M̃(w) as follows. Its vertex

set is M̃(w), each x ∈ M̃(w) is labeled by R̃(x). Two vertices x, y ∈ M̃(w) are joined by

a solid edge if y can be obtained from x by a right star operation. By a path in M̃(w),

we mean a sequence x0, x1, . . . , xr in M̃(w) with some r > 0 such that xi−1 and xi are

joined by a solid edge for every i ∈ [r]. Two elements w, y ∈ Ã2n+1 are said to have the

same generalized τ -invariants, if for any path w1 = w,w2, . . . , wr in M̃(w), there exists a

path y1 = y, y2, . . . , yr in M̃(y) such that R̃(wi) = R̃(yi) for every i ∈ [r] and if the same

condition holds when the roles of w and y are interchanged.

For any i ∈ [0, n−1], let DR(i) be the set of all w ∈ C̃n such that |{ti, ti+1}∩R(w)| = 1.

Regarding C̃n as a subset of Ã2n+1, an element w ∈ C̃n is in DR(i) if and only if w is in

D̃R(i) if and only if w is in D̃R(2n− i). When w ∈ DR(i), exactly one of wti and wti+1 is in

DR(i) unless that i ∈ {0, n − 1} and w = xy with x, y ∈ C̃n satisfying {ti, ti+1} ∩ R(x) = ∅
and y ∈ {titi+1, ti+1ti}. In this excepted case, both wti and wti+1 are in DR(i). When

|{wti, wti+1} ∩ DR(i)| = 1, denote by w∗ the unique element in {wti, wti+1} ∩ DR(i), then

w∗ can be obtained from w by a pair of right star operations in Ã2n+1 if and only if either

i ∈ [n − 2] or w∗ = wtm with (i,m) ∈ {(0, 1), (n − 1, n − 1)}. When {wti, wti+1} ⊂ DR(i),

define w∗
1 , w∗

2 by the conditions {w∗
1 , w∗

2} = {wti, wti+1} and w∗
1 < w∗

2 , then x ∈ {w∗
1 , w∗

2}
can be obtained from w by a pair of right star operations in Ã2n+1 if and only if x = wtm

with m ∈ {1, n − 1}.
In the remaining part of the paper, when we mention a right star operation and the

generalized τ -invariants on w ∈ C̃n, we always mean that w is regard as an element of Ã2n+1.

We make such a convention once and forever.

1.12. Examples. (1) The elements x = t1, y = t1t0 and z = t1t0t1 are in DR(0). We

have x∗ = z∗ = y and y∗
1 = x and y∗

2 = z. The elements y, z can be obtained from one

to another by a right {s0, s1}-star operation followed by a right {s2n, s2n+1}-star operation,

but x, y can’t be obtained from one to another by a pair of right star operations.

(2) Assume n > 2. The elements x = t2 and y = t2t1 are in DR(1). We have x∗ = y

and y∗ = x. The elements x, y can be obtained from one to another by a right {s1, s2}-star

operation followed by a right {s2n−1, s2n}-star operation.

1.13. For any w ∈ C̃n, define M(w) to be the set of all y ∈ C̃n satisfying the following

conditions: there exists a sequence x0 = w, x1, . . . , xr = y with some r > 0 such that

for every i ∈ [r], x−1
i xi−1 ∈ S and xi can be obtained from xi−1 by a pair of right star
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operations. Define a graph M(w) as follows. Its vertex set is M(w). Each vertex x ∈ M(w)

is labeled by R(x). Two elements x, y ∈ M(w) are joined by a solid edge if x−1y ∈ S and x

can be obtained from y by a pair of right star operations.

One can define a path in M(w) in the same way as that in M̃(w). It is easily seen that

if y, w ∈ C̃n have the same generalized τ -invariants, then for any path w1 = w,w2, . . . , wr

in M(w), there exists a path y1 = y, y2, . . . , yr in M(y) such that R(wi) = R(yi) for every

i ∈ [r] and the same condition holds when the roles of w and y are interchanged. In Section

7, the graphs M(w) with w ∈ C̃3 will be used to confirm that two elements of C̃3 have

different generalized τ -invariants.

Sometimes we join two vertices x, y ∈ C̃n in a graph by a dashed edge to indicate the

facts that x−1y ∈ S, R(x)+
*R(y) and that y can’t be obtained from x by a pair of right star

operations in Ã2n+1.

1.14. Example. In Figure 4 (see 6.4), the elements x = [−2,−3,−1], y = [−2,−5,−1]

and z = [−3,−6,−1] in C̃3 have labels R(x) = R(z) = {t0, t2} and R(y) = {t0, t3}, where

we use a boldfaced letter i to denote the generator ti, hence, for example, the notation 02

stands for the set {t0, t2}. y and z are joined by a solid edge since y−1z = t2 ∈ S and z

can be obtained from y by a right {s2, s3}-star operation followed by a right {s4, s5}-star

operation in Ã7. However, x and y are joined only by a dashed edge since x−1y = t3 and

x can’t be obtained from y by a pair of right star operations. We see from Figure 4 that

x, y, z have pairwise different generalized τ -invariants.

1.15. For any λ = (λ1, λ2, . . . , λr) and µ = (µ1, µ2, . . . , µt) in Λ2n+2, we write λ 6 µ if

λ1+ · · ·+λk 6 µ1+ · · ·+µk for any 1 6 k 6 min{r, t}. This defines a partial order on Λ2n+2.

It is well known that if x ∈ Ã2n+1 and s ∈ L̃(x) and t ∈ R̃(x) then ψ(sx), ψ(xt) 6 ψ(x)

(see [5, Lemma 5.5 and Corollary 5.6]). This implies by Corollary 1.9 that if x ∈ C̃n and

s ∈ L(x) and t ∈ R(x) then ψ(sx), ψ(xt) 6 ψ(x).

1.16. Lemma. (see [4, Lemma 16.14]) Let x, y ∈ C̃n. Then x ∼
L

y (resp., x ∼
R

y) in

C̃n if and only if x ∼
L

y (resp., x ∼
R

y) in Ã2n+1.

By Lemma 1.16, we can just use the notation x ∼
L

y (resp., x ∼
R

y) for x, y ∈ C̃n without

indicating whether the relation refers to the group Ã2n+1 or C̃n.

For any λ = (λ1, λ2, . . . , λr) ∈ Λ2n+2, define λ∨ = (µ1, µ2, . . . , µt) ∈ Λ2n+2 by setting

µj = #{k > 1 | λk > j}, for any j > 1, and call λ∨ the dual partition of λ.

1.17. Lemma. Let x, y ∈ Ã2n+1.
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(1) x ∼
L

y if and only if x, y have the same generalized τ -invariants (see [5, Theorem

16.1.2]).

(2) x 6
LR

y if and only if ψ(y) 6 ψ(x). In particular, x ∼
LR

y if and only if ψ(x) = ψ(y)

(see [3, Theorem 6] and [5, Theorem 17.4] and [6, Theorem B]).

1.18. A non-empty subset E of a Coxeter group W = (W,S) is said left-connected,

(resp., right-connected) if for any x, y ∈ E, there exists a sequence x0 = x, x1, . . . , xr = y

in E such that xi−1x
−1
i ∈ S (resp., x−1

i xi−1 ∈ S) for every i ∈ [r]. E is said two-sided-

connected if for any x, y ∈ E, there exists a sequence x0 = x, x1, . . . , xr = y in E such that

either xi−1x
−1
i or x−1

i xi−1 is in S for every i ∈ [r].

Let F ⊆ E in W . Call F a left-connected component of E, if F is a maximal left-

connected subset of E. One can define a right-connected component and a two-sided-

connected component of E similarly.

For any λ ∈ Λ2n+2, define Eλ := C̃n ∩ ψ−1(λ).

1.19. Lemma. (comparing with [7, Lemma 2.18]) Let λ ∈ Λ2n+2.

(1) Any left-connected (resp., right-connected, two-sided-connected) set of ψ−1(λ) is

contained in some left (resp., right, two-sided) cell of Ã2n+1.

(2) Any left-connected (resp., right-connected, two-sided-connected) set of Eλ is con-

tained in some left (resp., right, two-sided) cell of C̃n.

(3) The set Eλ is either empty or a union of some two-sided cells of C̃n.

1.20. Corollary. (comparing with [7, Corollary 2.19]) Let x, y ∈ Ã2n+1 be in ψ−1(λ)

for some λ ∈ Λ2n+2.

(1) If ˜̀
2n+1(y) = ˜̀

2n+1(x) + ˜̀
2n+1(yx−1) then x, y are in the same left-connected com-

ponent of ψ−1(λ) and hence x ∼
L

y.

(2) If ˜̀
2n+1(y) = ˜̀

2n+1(x) + ˜̀
2n+1(x−1y) then x, y are in the same right-connected

component of ψ−1(λ) and hence x ∼
R

y.

Let x, y ∈ Eλ for some λ ∈ Λ2n+2.

(3) If `(y) = `(x) + `(yx−1) then x, y are in the same left-connected component of Eλ

and hence x ∼
L

y.

(4) If `(y) = `(x) + `(x−1y) then x, y are in the same right-connected component of Eλ

and hence x ∼
R

y.
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2. Partial order ¹w on [2n + 2] determined by some w ∈ C̃n.

In this section, we introduce two technical tools following Shi in [7, Section 3]. One is a

transformation on an element in 2.3, which is a crucial step in proving the left-connectedness

of a left cell and in finding a representative set for the left cells of C̃n in the set Eλ, λ ∈ Λ2n+2.

The other is the generalized tabloids defined in 2.5, by which we can check whether two

elements of C̃n are in the same left cell.

2.1. Call i, j ∈ [2n + 2] to be (2n + 2)-dual, if i + j = 2n + 2 (mod 2n + 2); in this case,

we denote j = i (hence i = j also). In particular, 2n + 2 = 2n + 2 and n + 1 = n + 1. Call

each of n + 1 and 2n + 2 to be (2n + 2)-selfdual. Recall the partial order ¹w on [2n + 2]

defined in 1.5 for any w ∈ Ã2n+1 and that C̃n can be regarded as a subset of Ã2n+1 (see

1.4). Denote [2n + 1]n+1 := [2n + 1] − {n + 1}. Fix w ∈ C̃n. Call i ∈ [2n + 1]n+1 a w-wild

if i 6= i are w-comparable and a w-tame if i 6= i are w-uncomparable. Call i ∈ [2n + 1]n+1 a

w-wild head (resp., a w-tame head), if i is a w-wild (resp., a w-tame) with (i)w < (i)w; in

this case, we call ī a w-wild tail (resp., a w-tame tail).

It is easily seen that i < j in [2n + 2] are w-uncomparable if and only if (i)w < (j)w <

(i)w + 2n + 2.

2.2. Lemma. Fix w ∈ C̃n.

(i) For any j 6= k in [2n + 2], j ≺w k if and only if k ≺w j;

Now suppose that j 6= k in [2n + 1]n+1 are w-wild heads and that i ∈ [2n + 1]n+1 is a

w-tame head.

(ii) j ≺w k if and only if j, k are w-comparable.

(iii) If j, k are w-uncomparable then so are j, k;

(iv) i and k are w-comparable if and only if i ≺w k.

(v) {j, i, j} is a w-chain if and only if j is w-comparable with both i and i;

(vi) {j, k, j, k} is a w-chain if and only if j, k are w-comparable.

(vii) if j < n + 1 then j ≺w n + 1 ≺w j; if j > n + 1 then j ≺w 2n + 2 ≺w j;

(viii) i, i are w-uncomparable with n + 1, 2n + 2.

Proof. The results (i)-(vi) follow by [7, Lemma 3.2] and (vii)-(viii) can be checked

directly.

2.3. Define

t′k =


t〈k〉, if 〈k〉 ∈ [n],

t〈k〉−1
, if 〈k〉 ∈ [n + 2, 2n + 1],

1, if 〈k〉 ∈ {n + 1, 2n + 2}.
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and

(2.3.1) ti,j = t′i+j−1t
′
i+j−2 . . . t′i+1t

′
i

for any i, k ∈ Z and j ∈ P. Suppose that x ∈ C̃n and i ∈ Z satisfy i 6≡ n + 1, 2n + 2 (

mod 2n + 2). If (i)x − (j)x > 2n + 2 for any j ∈ [i + 1, i + a] with some a ∈ [2n + 1], let

x′ = ti,ax, then `(x′) = `(x) − `(ti,a) and ψ(x) = ψ(x′). Moreover, if (i)x − (j)x > 2n + 2

for any j ∈ [i + 1, i + 2n + 1], let x′′ = ti,2n+2x, then

(m)x′′ =

 (m)x − 2n − 2, if 〈m〉 = 〈i〉,
(m)x + 2n + 2, if 〈m〉 = 〈2n + 2 − i〉,
(m)x, if otherwise.

for any m ∈ Z, where x′′ satisfies `(x′′) = `(x) − 2n − 2 and ψ(x) = ψ(x′′) by 1.5 and

Proposition 1.7.

Fix w ∈ C̃n. Suppose that E1 = {i1, i2, . . . , ia} and E2 = {j1, j2, . . . , jb} are two subsets

of [2n + 1]n+1 satisfying that

(i) i1 < i2 < · · · < ia and j1 < j2 < · · · < jb with a > 0 and b > 0 and a + b = n;

(ii) the elements of E1 ∪ E2 are pairwise not (2n + 2)-dual;

(iii) (k)w < (k)w for any k ∈ E1 ∪ E2;

(iv) (i)w − (j)w > l(2n + 2) for any i ∈ E1 and j ∈ E2 ∪ {2n + 2}, where l ∈ N.

Suppose b > 0. Then by repeatedly left-multiplying the elements ti,j with some i ∈ Z,

j ∈ P, on w, we can obtain some w′ ∈ C̃n satisfying that

(1) `(w′) = `(w) − `(w′w−1);

(2) There exists a unique order-preserving bijective map φ : E2 ∪ E2 ∪ {n + 1} −→
[a + 1, n + b + 1] such that (p)w′ = (ip)w − l′(2n + 2) and (φ(q))w′ = (q)w for any p ∈ [a]

and q ∈ E2 ∪ E2 ∪ {n + 1}, where l′ 6 l in N;

(3) (c)w′ < (c)w′ for any c ∈ [a] ∪ {φ(m) | m ∈ E2};
(4) 0 < min{(c)w′ − (q)w′ | c ∈ [a], q ∈ {φ(m) | m ∈ E2}} 6 2n + 2.

We have ψ(w′) = ψ(w) (denote it by λ) by Lemma 2.2 and that w,w′ are in the same

left-connected component of Eλ by Corollary 1.20.

2.4. Example. Let w = [−1,−11,−10] ∈ C̃3. Then E1 = {5, 6} and E2 = {7} satisfy

the conditions (i)-(iv) in 2.3 with n = 3 and (a, b, l) = (2, 1, 1). Let w′ = t5,3t6,2w. Then

w′ = [10, 11,−1] ∈ C̃3 satisfies the conditions (1)-(4) in 2.3 and ψ(w) = ψ(w′) = 521.

Let w′′ = t1,3t2,2w
′. Then w′′ = [−1,−3,−2] ∈ C̃3 (w′′ ∈ F ′

521 in 6.4). We see that

ψ(w′′) = ψ(w′) = 521 and `(w′′) = `(w′) − `(t1,3t2,2). Hence by Corollary 1.20. w,w′, w′′

are in the same left-connected component of E521.
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2.5. By a composition of 2n + 2, we mean an r-tuple a = (a1, a2, . . . , ar) of positive

integers a1, a2, . . . , ar with some r > 1 such that
∑r

i=1 ai = 2n + 2. Let Λ̃2n+2 be the set

of all compositions of 2n + 2. Let i1, i2, ..., ir be some permutation of 1, 2, ..., r such that

ai1 > ai2 > · · · > air . Then ζ(a) := (ai1 , ai2 , ..., air ) ∈ Λ2n. Clearly, Λ2n+2 ⊆ Λ̃2n+2 and

ζ : Λ̃2n −→ Λ2n is a surjective map.

A generalized tabloid of rank 2n + 2 is, by definition, an r-tuple T = (T1, T2, . . . , Tr)

with some r ∈ P such that [2n + 2] is a disjoint union of non-empty subsets Tj , j ∈ [r]. We

have ξ(T ) := (|T1|, |T2|, . . . , |Tr|) ∈ Λ̃2n+2, where |Ti| denotes the cardinal of the set Ti. Let

C2n+2 be the set of all generalized tabloids of rank 2n + 2. Then ξ : C2n+2 −→ Λ̃2n+2 is a

surjective map.

Let Ω be the set of all w ∈ Ã2n+1 such that there is a generalized tabloid T =

(T1, T2, . . . , Tr) ∈ C2n+2 satisfying:

(i) For any i < j in [r], we have 〈(a)w−1〉 ≺w 〈(b)w−1〉 for any a ∈ Ti and b ∈ Tj ;

(ii) 〈(Ti)w−1〉 is a maximal w-antichain in [2n + 2] for any i ∈ [r] (see 1.5).

Clearly, T is determined entirely by w ∈ Ω, denote T by T (w). The map T : Ω −→
C2n+2 is surjective by [5, Proposition 19.1.2]. By a result of Curtis Greene in [1], we have

ζξ(T (w)) = ψ(w)∨ for any w ∈ Ω.

The following known result will be crucial in the proof of Lemmas 4.5 and 5.6.

2.6. Lemma. (see [5, Lemma 19.4.6]) Suppose that y, w ∈ Ã2n+1 are two elements in

Ω with ξ(T (y)) = ξ(T (w)). Then y ∼
L

w if and only if T (y) = T (w).

3. Some criteria for the set Eλ, λ ∈ Λ2n+2, being empty.

Recall that in 1.18 we defined the set Eλ for any λ ∈ Λ2n+2. We have E−1
λ = Eλ. In

the present section, we shall give some criteria for the vanishing of the set Eλ.

Fix λ = (λ1, λ2, . . . , λr) ∈ Λ2n+2 in 3.1-3.3.

3.1. Lemma. Let w ∈ Eλ. If X = {a1, a2, . . . , aλ1} is a w-chain such that ai is either

a w-wild or in {n + 1, 2n + 2} for any i ∈ [λ1], then λ1 is odd.

Proof: We may assume a1 ≺w a2 ≺w · · · ≺w aλ1 . By Lemma 2.2 (i) and (vii),

ai+1, ..., aλ1 are all w-wild heads in X with i =
⌈

λ1
2

⌉
, where dxe is the smallest integer

not smaller than x ∈ Q. Assume that λ1 is even. Then E := {aλ1 , ..., ai+1, ai+1, ..., aλ1} is

a w-chain by Lemma 2.2 (i). This would imply that either E ∪ {n + 1} or E ∪ {2n + 2} is a

w-chain of cardinal λ1 + 1 by Lemma 2.2 (viii), contradicting the assumption w ∈ Eλ. ¤
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3.2. Proposition. Eλ = ∅ if λ1 is even and if either r 6 3 or λ2 = 1.

Proof. We argue by contrary. Suppose that there is some w in Eλ.

First assume r 6 3. Then there is no any w-tame in [2n + 2] by Lemma 2.2 (viii).

Hence any w-chain X in [2n + 2] with |X| = λ1 consists of some w-wilds and some elements

in {n + 1, 2n + 2}. But this would imply that λ1 is odd by Lemma 3.1, contradicting our

assumption.

Next assume λ2 = 1. Then all w-tames in [2n+2] must be pairwise w-uncomparable by

Lemma 2.2 (i). Since any w-tame is w-uncomparable with each of n+1, 2n+2, any w-chain

in [2n+2] contains at most one element which is either a w-tame or one of n+1, 2n+2. So

any w-chain X in [2n + 2] with |X| = λ1 contains a subset X ′ with |X ′| > λ1 − 1 such that

X ′ consists of some w-wilds. Write X ′ = X ′
1 ∪X ′

2 with X ′
1 the set of all w-wild heads in X ′

and X ′
2 = X ′ −X ′

1. We see that at least one of X ′
1 ∪X ′

1 ∪ {n + 1}, X ′
1 ∪X ′

1 ∪ {2n + 2} is a

w-chain and also that at least one of X ′
2 ∪ X ′

2 ∪ {n + 1}, X ′
2 ∪ X ′

2 ∪ {2n + 2} is a w-chain,

where E := {i | i ∈ E} for any E ⊂ Z. We must have |X ′
1| = |X ′

2| = λ1−1
2 with λ1 − 1 even

by the assumption of w ∈ Eλ. This would imply λ1 odd, contradicting our assumption also.

This proves Eλ = ∅ in either case. ¤

3.3. Proposition. Suppose that m ∈ [r] and that λi = 2, λj = 1 for any i ∈ [m] and

any j ∈ [m + 1, r]. If either m is odd or m > r − 1, then Eλ = ∅.
Proof. Suppose that there is some w ∈ Eλ. We claim that there is no any w-wild in

[2n + 2]. For otherwise, we would have λ1 > 3 by Lemma 2.2 (vii). Hence all elements of

[2n + 1]n+1 are w-tames. So m is even by Lemma 2.2 (i). We see by Lemma 2.2 (viii) that

each of n + 1, 2n + 2 is w-uncomparable with any w-tame, hence λr = λr−1 = 1. This

completes our proof. ¤

4. The set Ek12n+2-k .

In the present section, we shall describe all the cells of C̃n in the set Ek12n+2-k for all

k ∈ [2n + 2]. The set E12n+2 consists of the identity element of C̃n and Ek12n+2-k = ∅ for

any even k ∈ [2n + 2] by Proposition 3.2. In the subsequent discussion of the section, we

shall always assume k = 2m + 1 with m ∈ [n].

4.1. Let l = n − m. Then 2n + 2 − k = 2l + 1. By Lemma 2.2, we see that w ∈ C̃n is

in the set Ek12n+2-k if and only if the conditions (4.1.1) (i), (ii) on w hold.

(4.1.1) There exist n disitnct i1, i2, ..., il, j1, j2, ..., jm in [2n + 1]n+1 such that

(i) i1, i2, ..., il are all w-tame heads with i1 < i2 < · · · < il and (i1)w < (i2)w < · · · <

(il)w;
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(ii) j1, j2, ..., jm are all w-wild heads with j1 ≺w j2 ≺w · · · ≺w jm;

Let Fk12n+2-k be the set of all w ∈ Ek12n+2-k satisfying one additional condition (iii).

(iii) (il, il−1, · · · , i1, jm, jm−1, ..., j1) = (1, 2, ..., n) and (j1)w ∈ [n + 2, 3n + 2] and

(ja+1)w − (ja)w ∈ [2n + 1] for any a ∈ [m − 1];

By 2.3 and 4.1, it is easily seen that

4.2. Lemma. For any w ∈ Ek12n+2-k , there exists some w′ ∈ Fk12n+2-k such that w′, w

are in the same left-connected component of Ek12n+2-k .

4.3. Lemma. The set Fk12n+2-k is contained in a right-connected component of Ek12n+2-k .

Proof. Let J = {tl+1, tl+2, ..., tn} and let wJ be the longest element in the subgroup

WJ of C̃n generated by J . Then wJ = [1, 2, ..., l, 2n + 1 − l, 2n − l, ..., n + 2] is in Fk12n+2-k .

By Corollary 1.9, we see that any w ∈ Fk12n+2-k satisfies L(w) = J and has an expression

w = wJx with `(w) = `(wJ) + `(x) for some x ∈ C̃n. So the set Fk12n+2-k is contained in

the right-connected component of Ek12n+2-k containing wJ . ¤

4.4. Lemma. |Fk12n+2-k | = n!2m/(n − m)!.

Proof. The elements w of Fk12n+2-k are in one-to-one correspondence with the m-tuples

(4.4.1) 〈Aw〉 := (〈(jm)w〉, 〈(jm−1)w〉, ..., 〈(j1)w〉).

with its components being in [2n + 1]n+1, pairwise distinct and pairwise not (2n + 2)-dual.

This is because that w is determined uniquely by the n-tuple
Aw := ((il)w, (il−1)w, ..., (i1)w, (jm)w, (jm−1)w, ..., (j1)w)

subject to the conditions that 1 6 (il)w < (il−1)w < · · · < (i1)w 6 n, that (j1)w ∈
[n + 2, 3n + 2] − {2n + 2}, that (ja+1)w − (ja)w ∈ [2n + 1] for any a ∈ [m − 1], and that

the components of Aw are pairwise distinct and pairwise not (2n + 2)-dual modulo 2n + 2.

Now the number of choices for 〈(j1)w〉 is 2n. Recurrently, suppose that h ∈ [2,m] and that

all the 〈(ja)w〉, a ∈ [h− 1], have been chosen, then the number of choices for 〈(jh)w〉 should

be 2(n + 1 − h). This implies our result. ¤

4.5. Lemma. No two elements of Fk12n+2-k are in the same left cell of C̃n.

Proof. For any w ∈ Fk12n+2-k , let w′ = zw with z = (tn · · · t1t0t1 · · · tl)m. Then

`(w′) = `(z) + `(w) by Corollary 1.9. We have (it)w′ = (it)w and (jr)w′ = (jr)w + 2n + 2

for any t ∈ [l] and r ∈ [m]. We also have ψ(w′) = ψ(w). This implies that w,w′ are in the

same left-connected component of Ek12n+2-k and further that w ∼
L

w′ by Corollary 1.20.

We have w′ ∈ Ω ∩ C̃n (see 2.5). Write T (w′) = (T1(w′), T2(w′), ..., T2m+1(w′)). Then

Tb(w′) = {〈(jm+1−b)w〉} and Tm+1(w′) = {n + 1, 2n + 2, 〈(ia)w〉, 〈(ia)w〉 | a ∈ [l]} and

Tc(w′) = {〈(jc−m−1)w〉} for any b ∈ [m] and c ∈ [m + 2, 2m + 1]. Hence T (w′) is uniquely
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determined by 〈Aw〉 (see (4.4.1)). We see from the proof of Lemma 4.4 that w1 6= w2 in

Fk12n+2-k implies 〈Aw1〉 6= 〈Aw2〉and further T (w′
1) 6= T (w′

2). This implies w′
1 6∼

L
w′

2 and

hence w1 6∼
L

w2 in C̃n by Lemmas 2.6, 1.16 and by the fact ξ(T (w′
1)) = ξ(T (w′

2)). ¤

4.6. Theorem. (1) Ek12n+2-k = ∅ for any even k ∈ [2n + 2].

Now assume k = 2m + 1 ∈ [2n + 2] odd.

(2) The set Ek12n+2-k is two-sided-connected and forms a single two-sided cell of C̃n.

(3) The set Ek12n+2-k is infinite if k > 1 and E12n+2 = {1}.
(4) The set Ek12n+2-k contains n!2m/(n − m)! left cells of C̃n each of which is left-

connected.

Proof. The assertion (1) follows by Proposition 3.2. Now assume k = 2m + 1 ∈ [2n + 2]

odd. By Lemma 1.19, we see that Ek12n+2-k is a union of some two-sided cells of C̃n. Hence

the assertions (2) and (4) follow by Lemmas 4.2-4.5. For the assertion (3), we see that for

k = 2m+1 > 1, the number of the choices for the integer (jm)w in the condition (4.1.1) (ii)

is infinite. On the other hand, we have E12n+2 = {1}. This proves (3). ¤

5. The set E(k,2n+2−k).

In the present section, we shall describe all the cells of C̃n in the set E(k,2n+2−k) for all

k ∈ [n+1, 2n]. Since E(k,2n+2−k) = ∅ for all even k ∈ [n+1, 2n] by Proposition 3.2, we shall

always assume k = 2m + 1 ∈ [n + 1, 2n] odd in the subsequent discussion of the section.

5.1. Let l = n − m. Then 2n + 2 − k = 2l + 1 and m > l > 1. By Lemma 2.2, we

see that w ∈ C̃n is in the set E(k,2n+2−k) if and only if there are n distinct w-wild heads

i1, i2, · · · , il, j1, j2, ..., jm in [2n + 1]n+1 satisfying the following conditions (i)-(iii).

(i) j1 ≺w j2 ≺w · · · ≺w jm and (i1)w < (i2)w < · · · < (il)w;

(ii) E := {n + 1, 2n + 2, ic, jd | c ∈ [l], d ∈ [m]} is a union of exactly two w-chains (or

equivalently, the maximal size of a w-antichain in E is 2 by a result of C. Greene in [1]);

(iii) Any w-chain in E′ := E − {n + 1, 2n + 2} has cardinal 6 m.

For any w ∈ C̃n satisfying the conditions (i)-(ii), define

Yq(w) = {r ∈ [m] | jr is w-uncomparable with iq}

for any q ∈ [l].

Under the assumptions of (i)-(ii), we state the condition (iii′) on w below.

(iii′) There exists some u1 < u2 < · · · < ul in [m] such that uq ∈ Yq for any q ∈ [l].
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5.2. Lemma. In 5.1, under the assumptions of (i)-(ii), the conditions (iii) and (iii′) on

w ∈ C̃n are equivalent.

Proof: Keep the notation in 5.1. First assume that w ∈ C̃n satisfies the conditions 5.1

(i)-(iii). We claim that

(5.2.1) Yq(w) 6= ∅ for any q ∈ [l].

For otherwise, there would exist some q ∈ [l] with Yq(w) = ∅. But this would imply

that {j1, j2, ..., jm, iq} is a w-chain of length m + 1, contradicting the assumption 5.1 (iii).

For any q ∈ [l], let r′q, rq be the largest and the smallest integers of Yq respectively. Then

Yq = [rq, r
′
q] by the definition of the set Yq and the condition 5.1 (i). If Yq ∩Yq′ 6= ∅ for some

q 6= q′ in [l], then iq and iq′ must be w-comparable by the condition 5.1 (ii). In other words,

we have Yq ∩ Yq′ = ∅ for any w-uncomparable pair iq, iq′ . This implies the following

(5.2.2) For any q ∈ [l − 1], we have either that iq ≺w iq+1 or that iq, iq+1 are w-

uncomparable and t < r for any t ∈ Yq and r ∈ Yq+1.

Now we want to find a required sequence u1 < u2 < · · · < ul in 5.1 (iii′) recurrently.

We can take u1 to be the smallest integer in Y1 by (5.2.1). If l = 1, then we are done.

Now assume l > 1. Suppose that we have got all the integers u1 < u2 < · · · < up in [m] for

some p ∈ [l − 1] such that uq = min{i ∈ Yq | i > uq−1} for any q ∈ [2, p]. Now we want to

find up+1. If Ep+1 := {i ∈ Yp+1 | i > up} 6= ∅, then we take up+1 = min(Ep+1). Hence the

condition (iii′) holds by induction on p ∈ [l].

It remains to show that there always exists some integer in Yp+1 larger than up. Suppose

not. There should exist some b ∈ [p] such that ub is the smallest integer in Yb but uc is

not the smallest integer in Yc for any c ∈ [b + 1, p] and that up is the largest integer

in Yp+1. This would imply by the choice of the ua’s, a ∈ [p], that ua ∈ Ya ∩ Ya+1 for

any a ∈ [b, p]. By (5.2.1)-(5.2.2), we see that ub+c = ub + c for any c ∈ [p − b] and

that jub−1 ≺w ib ≺w ib+1 ≺w · · · ≺w ip ≺w ip+1 ≺w jup+1. But this would imply that

X = {j1, ..., jub−1, ib, ib+1, ..., ip+1, jup+1, ..., jm} is a w-chain with |X| = m+1, contradicting

the condition 5.1 (iii).

Next assume the conditions 5.1 (i), (ii), (iii′) on w. For any w-chain X ⊆ {ic, jd | c ∈
[l], d ∈ [m]}, we have |X ∩ {iq, juq}| 6 1 for any q ∈ [l] by the condition 5.1 (iii′) on w.

Hence |X| 6 m, the condition 5.1 (iii) on w holds. ¤

5.3. Let F ′
(k,2n+2−k) be the set of all w ∈ C̃n satisfying the condition (5.3.1) below.

(5.3.1) There exist n distinct w-wild heads i1, i2, · · · , il, j1, j2, ..., jm in [2n+1]n+1 such that

(jm, il, jm−1, il−1, ..., jm−l+1, i1, jm−l, ..., j2, j1) = (1, 2, ..., n), where (j1)w ∈ [3n + 4, 5n + 4]
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and, the integers (je+1)w − (je)w and (if )w − (jm−l+f )w and (jm−l+q+1)w − (iq)w are in

[2n + 1] for any e ∈ [m − l] and f ∈ [l] and q ∈ [l − 1].

For any w ∈ C̃n satisfying the condition (5.3.1), we have the w-uncomparable pairs

iq, jm−l+q for any q ∈ [l] and the relations a ≺w j1 ≺w j2 ≺w · · · ≺w jm−l ≺w h1 ≺w h2 ≺w

· · · ≺w hl for some a ∈ {n + 1, 2n + 2} and any hq ∈ {iq, jm−l+q}. This implies that any

w ∈ F ′
(k,2n+2−k) satisfies the conditions 5.1 (i), (ii), (iii′). So F ′

(k,2n+2−k) ⊆ E(k,2n+2−k) ∩ Ω

by 2.5 and Lemma 5.2.

5.4. Lemma. For any w ∈ E(k,2n+2−k), there exists some w′ ∈ F ′
(k,2n+2−k) such that

w′, w are in the same left-connected component of E(k,2n+2−k).

Proof. We see by Lemma 5.2 that w ∈ E(k,2n+2−k) if and only if w satisfies the conditions

5.1 (i), (ii), (iii′).

Now assume w ∈ E(k,2n+2−k). Suppose that i, i + 1 ∈ [2n + 1]n+1 (resp., n, n + 2) are

a w-wild tail and a w-wild head, respectively. Then t′iw (see 2.3) (resp., tnw) satisfies the

conditions 5.1 (i), (ii), (iii′) (meaning that the conditions 5.1 (i), (ii), (iii′) hold with t′iw

(resp., tnw) in the place of w). Hence the elements w and t′iw (resp., tnw) are in the same

left-connected component of E(k,2n+2−k). Keeping this fact in mind, by replacing w by some

element in the same left-connected component of E(k,2n+2−k) if necessary and by symmetry

between the intervals [n] and [n + 2, 2n + 1], we may assume without loss of generality that

the integers ip, jq in the conditions 5.1 (i)-(ii) on w are in [n] for any p ∈ [l] and q ∈ [m].

Define the sets X1 = {j1, j2, ..., ju1−1} and X2q+1 = {juq+1, juq+2, ..., juq+1−1} and

X2l+1 = {jul+1, jul+2, ..., jm} and X2p = {ip, jup} for any q ∈ [l−1] and p ∈ [l]. Then we have

the partition {ip, jq | p ∈ [l], q ∈ [m]} =
⋃̇2l+1

i=1 Xi, where any i ∈ Xq and any j ∈ Xq+1 with

q ∈ [2l] either have the relation i ≺w j or are w-uncomparable (i.e., j 6≺w i in either case). If

j ∈ Xp and j +1 ∈ Xq for some p < q in [2l+1], then the element tjw satisfies the condition

5.1 (i),(ii), (iii′) as w does so, hence tjw and w are in the same left-connected component of

E(k,2n+2−k) by Lemma 5.2. Again, keep this fact in mind, by replacing w by some element

in the same left-connected component of E(k,2n+2−k) if necessary, we may assume that

(jm, ..., jul+1, hl, gl, jul−1, ..., juq+1, hq, gq, juq−1, ..., ju1+1, h1, g1, ju1−1, ..., j1) = (1, 2, ..., n),

where for q ∈ [l], we assign (hq, gq) to be (juq , iq) or (iq, juq ) according to (iq)w > (juq )w or

(iq)w < (juq )w.

Denote pi = |X2l+1| + |X2l| + · · · + |Xi| and xp = (tp · · · tn−1tntn−1 · · · t1t0)p for any

i ∈ [2l + 1] and p ∈ [n]. Let w(1) = xp2 · · ·xp2l
xp2l+1w. Then `(w(1)) = `(w(1)w−1) + `(w)

and (j′)w(1) = (j′)w + (q − 1)(2n + 2) for any j′ ∈ Xq with q ∈ [2l + 1]. We see that
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j1 ≺w(1) · · · ≺w(1) ju1−1 ≺w(1) h1 ≺w(1) ju1+1 ≺w(1) · · · ≺w(1) juq−1 ≺w(1) hq

≺w(1) juq+1 ≺w(1) · · · ≺w(1) jul−1 ≺w(1) hl ≺w(1) jul+1 ≺w(1) · · · ≺w(1) jm

and that iq, juq are w(1)-uncomparable for any q ∈ [l] and any hq ∈ {iq, juq}. This implies

that w(1) satisfies the conditions 5.1 (i), (ii), (iii′). So w(1) and w are in the same left-

connected component of E(k,2n+2−k) by Corollary 1.20.

Note that the set F (w(1)) := {p ∈ [n] | p + 1, p + 2 ≺w(1) p ≺w(1) p − 1} is not empty,

where we stipulate 1 ≺w(1) 0 temporary. Define j to be the smallest integer in F (w(1)).

Suppose p(2n + 2) < (j)w(1) − (j + 2)w(1) < (p + 1)(2n + 2) for some p ∈ N. Then

`(x−p
j w(1)) = `(w(1))−`(x−p

j ) and (i)x−p
j w(1) = (i)w(1)−p(2n+2) and (i′)x−p

j w(1) = (i′)w(1)

for any i ∈ [j] and i′ ∈ [n]− [j]. This implies that 0 < (j)x−p
j w(1) − (j +2)x−p

j w(1) < 2n +2

and that x−p
j w(1) satisfies the conditions 5.1 (i), (ii), (iii′). So by Lemma 5.2 and Corollary

1.20, the elements w(1) and x−p
j w(1) are in the same left-connected component of E(k,2n+2−k).

Hence we may assume 0 < (j)w(1) − (j +2)w(1) < 2n+2 by replacing w(1) by some element

in the same left-connected component of E(k,2n+2−k) if necessary.

j−1

11

1

1
1

ath column (a+2n+2)th column

1
1

j−1

11

1
1

1

1
1

ath column (a+2n+2)th column

1st row

jth row

w(1) tjw
(1)

11

1

1
1

ath column (a+2n+2)th column

j−1

(a+4n+4)th column

1st row

jth row1
1

w(2)

Figure 2
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1st row

jth row

j−1

ath column (a+2n+2)th column

1
1

j−1

ath column (a+2n+2)th column

1
1

1
1

1

1
1

1

w(1) tj,2n+1w
(1)

1st row

jth row

j−1

ath column (a+2n+2)th column

1
1

1

1
1

w(2)

Figure 3

Define w(2) to be xj+1tjw
(1) if (j)w(1) − (j + 1)w(1) < 2n + 2 and to be tj+1tj,2n+1w

(1)

if (j)w(1) − (j + 1)w(1) > 2n + 2.

In Figure 2 (resp., Figure 3), we display the corresponding parts for the matrix forms

of w(1), tjw
(1), w(2) in the case of a < (j + 1)w(1) < (j)w(1) < a + 2n + 2 (resp., w(1),

tj,2n+1w
(1), w(2) in the case of (j +1)w(1) < a < a+2n+2 6 (j)w(1)) for some a ∈ Z, where

the symbol
q

(or in short ) stands for a rectangular submatrix with q rows for

some q ∈ [n] each row contains a unique non-zero entry which is 1, the entries 1 are going

down to the left.

We see from the above graphs that w(2) satisfies the conditions 5.1 (i), (ii), (iii′), hence

w(1), w(2) are in the same left-connected component of E(k,2n+2−k) by Lemma 5.2. We have

that j + 2 ≺w(2) j, j + 1 if j = 1 and that j + 2 ≺w(2) j, j + 1 ≺w(2) j − 1 if j > 1 and that

j, j + 1 are w(2)-uncomparable. We also have p ≺w(1) q if and only if p ≺w(2) q for any other

pairs of integers p, q in [n].

By repeatedly applying the above process, we can eventually find an element w(r) in

the left-connected component of E(k,2n+2−k) containing w with some r ∈ N such that w(r)

satisfies the condition (5.4.1) below.

(5.4.1) There exist n distinct w-wild heads i′1, i
′
2, · · · , i′l, j

′
1, j

′
2, ..., j

′
m in [2n + 1]n+1 such

that (j′m, i′l, j
′
m−1, i

′
l−1, ..., j

′
m−l+1, i

′
1, j

′
m−l, ..., j

′
2, j

′
1) = (1, 2, ..., n), where j′p ≺w(r) j′p+1 and
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i′q ≺w(r) i′q+1 and j′m−l+q−1 ≺w(r) i′q ≺w(r) j′m−l+q+1 and j′m−1 ≺w(r) il for any p ∈ [m − 1]

and q ∈ [l − 1] and that i′q′ , j′m−l+q′ are w(r)-uncomparable for any q′ ∈ [l].

Hence we see by 2.3 that there exists w′ ∈ F ′
(k,2n+2−k) such that w′, w(r) (and further

w′, w) are in the same left-connected component of E(k,2n+2−k).

5.5. Lemma. The set F ′
(k,2n+2−k) is contained in a right-connected component of E(k,2n+2−k).

Proof. Let J = {t1, t2, ..., tn}. Then wJ = [2n + 1, 2n, ..., n + 2]. Define the set F ′ =

{z′zw | w ∈ F ′
(k,2n+2−k)} with z = t1t3 · · · t2l−3t2l−1 and z′ = (t0t1 · · · tn−1tn)n. For any

w ∈ F ′
(k,2n+2−k), we have L(z′zw) = J and `(zw) = `(z) + `(w) and `(z′zw) = `(zw)− `(z′)

and (i)z′zw = (i)zw − 2n − 2 for any i ∈ [n] by Corollary 1.9. A direct check shows that

w0 := z−1(z′)−1wJ satisfies the condition (5.3.1) with w0 in the place of w and hence is

in F ′
(k,2n+2−k). This implies that w 7→ z′zw is an order-preserving bijection from the set

F ′
(k,2n+2−k) to F ′ with w0, wJ the unique shortest elements in F ′

(k,2n+2−k), F ′, respectively.

Any w ∈ F ′
(k,2n+2−k) satisfies z′zw = wJx with `(z′zw) = `(wJ) + `(x) for some x ∈ C̃n,

hence w = z−1(z′)−1wJx = w0x satisfies `(w) = `(w0) + `(x). The element w is in the

right-connected component of E(k,2n+2−k) containing w0 by Corollary 1.20. ¤
Since F ′

(k,2n+2−k) ⊆ E(k,2n+2−k) ∩ Ω, it makes sense to define the set T(k,2n+2−k) :=

{T (w) | w ∈ F ′
(k,2n+2−k)} by 2.5. Let

a := ( 2, ..., 2︸ ︷︷ ︸
l times

, 1, ..., 1︸ ︷︷ ︸
m−l times

, 2, 1, ..., 1︸ ︷︷ ︸
m−l times

, 2, ..., 2︸ ︷︷ ︸
l times

) ∈ Λ̃2n+2.

Then ξ(T) = a for any T ∈ T(k,2n+2−k).

5.6. Lemma. There are exactly n!2m left cells of C̃n in the set E(k,2n+2−k).

Proof. By Lemmas 1.16, 1.19, 2.6 and 5.4, we need only to enumerate the set T(k,2n+2−k).

We see that T = (T1, T2, ..., T2m+1) ∈ ξ−1(a) is in T(k,2n+2−k) if and only if Ti = T2m+2−i

for any i ∈ [m] and Tm+1 = {n+1, 2n+2}. When the equivalent conditions hold, the gener-

alized tabloid T is determined uniquely by the m-tuple (T1, T2, ..., Tm). Now the number of

the choices for the set T1 is 2n(n−1). Recurrently, suppose that a ∈ [m−1] and that all the

Tb, b ∈ [a], have been chosen. Then the number of the choices for Ta+1 is 2(n−2a)(n−2a−1)

if a ∈ [l − 1] and is 2(n − l − a) if a ∈ [l,m − 1]. This implies that the cardinal of the set

T(k,2n+2−k) is n!2m, our result follows. ¤

5.7. Theorem. (1) If k = 2m ∈ [n + 1, 2n] is even, then E(k,2n+2−k) = ∅.
Now assume k = 2m + 1 ∈ [n + 1, 2n] odd.

(2) The set E(k,2n+2−k) is two-sided-connected and forms a single two-sided cell of C̃n.
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(3) The set E(k,2n+2−k) is infinite.

(4) The set E(k,2n+2−k) contains n!2m left cells, each of which is left-connected.

Proof. The assertion (1) follow by Proposition 3.2. Then (2) and (4) are the conse-

quences of Lemmas 5.2 and 5.4-5.5. Finally, (3) follows since the number of the choices for

the integer (jm)w in the condition 5.1 (i) on w ∈ E(k,2n+2−k) is infinite. ¤

6. The left and two-sided cells of the affine Weyl group C̃3.

We shall study the cells of the weighted Coxeter group C̃3 = (C̃3, ˜̀7) in this section.

Recall the notation Eλ defined in 1.18 for any λ ∈ Λ2n+2 and the group automorphism

η of C̃n defined in 1.10. Denote by n(λ) the number of left cells of C̃n in Eλ. Fix λ ∈ Λ8.

We shall prove that the set Eλ contains at most two two-sided cells of C̃3. When Eλ is a

union of two two-sided cells (say E′
λ , E′′

λ) of C̃3, denote by n′(λ) , n′′(λ) the numbers of

left cells of C̃3 in E′
λ , E′′

λ , respectively. The results on the cells of C̃3 can be summarized

as follows.

6.1. Theorem. Let C̃3 = (C̃3, ˜̀7) be the weighted Coxeter group with η its automor-

phism defined in 1.10. Let λ ∈ Λ8.

(1) The set Eλ forms a single two-sided cell of C̃3 if λ ∈ {71, 53, 513, 4212, 322, 321
2, 315, 221

4, 18}.
(2) The set Eλ is a union of two two-sided cells of C̃3 if λ ∈ {521, 3221, 3213}.
(3) Eλ = ∅ if λ ∈ {8, 62, 612, 42, 431, 422, 414, 24, 231

2, 216}; Eλ 6= ∅ is finite if λ ∈ {3221, 3213, 221
4, 18},

and is infinite if λ ∈ {71, 53, 521, 513, 4212, 322, 321
2, 315}.

(4) η interchanges the two-sided cells E′
λ, E′′

λ for any λ ∈ {521, 3221, 3213}.
(5) The numbers n(λ) for all λ ∈ Λ8 with Eλ 6= ∅ are listed in the following table.

λ 71 53 521 51
3

421
2

3
2
2 3

2
1
2

32
2
1 321

3
31

5
2
2
1
4

1
8

n(λ) 48 24 12 24 6 8 12 6 2 6 2 1

where n′(521) = n′′(521) = 6 and n′(3221) = n′′(3221) = 3 and n′(3213) = n′′(3213) = 1.

(6) Each left cell of C̃3 is left-connected.

6.2. We have Eλ = ∅ for λ ∈ {8, 62, 612, 42, 431, 422, 414, 24, 231
2, 216} by Propositions

3.2-3.3. To prove Theorem 6.1, we need only to consider the sets Eλ with λ ∈ ∆ :=

{521, 4212, 322, 321
2, 3221, 321

3, 221
4} by Theorems 4.6 and 5.7. We shall do this by a case-

by-case argument, which can be sketched as follows. Given λ ∈ ∆. We usually define a

subset (say Fλ) of Eλ and then prove that Fλ has a non-empty intersection with each left-

connected component of Eλ by 2.3 and that there are no two elements of Fλ belong to the

same left cell of C̃3 by either Lemma 1.17 or Lemma 2.6. This implies by Lemmas 1.16, 1.17
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and 1.19 that each left cell of Eλ is left-connected and that Fλ is a representative set for the

left cells in Eλ. We get the number n(λ) simply by enumerating the set Fλ. Finally, when

Eλ forms a single two-sided cell of C̃3, we prove such a conclusion usually by proving that

the set Fλ is contained in some two-sided-connected component of Eλ; when Eλ is a union

of two two-sided cells of C̃3, the argument becomes more subtle.

6.3. Consider the partial order ¹w on [8] with respect to a fixed w ∈ C̃3. The following

equivalent conditions hold by Lemma 2.2:

(1) ψ(w) = 521 if and only if there are distinct w-wild heads i, j, k ∈ [7]4 such that

{i, j, k} is neither a w-chain nor a w-antichain and that either {i, j, 4} or {i, j, 8} is a w-

antichain.

(2) ψ(w) = 421
2 if and only if there are one w-wild head i and two w-tame heads j, k in

[7]4 such that i ≺w j ≺w k ≺w i.

(3) ψ(w) = 3
2
2 if and only if there are pairwise w-uncomparable w-wild heads i, j, k in

[7]4 such that 4 ≺w i and 8 ≺w k.

(4) ψ(w) = 3
2
1
2 if and only if one of the conditions (4a)-(4c) holds for some distinct

i, j, k ∈ [7]4:

(4a) Two w-uncomparable w-wild heads i, j and one w-tame head k satisfy either that

4 ≺w i and 8 ≺w j or that both k and k are w-comparable with at least one of i, j;

(4b) One w-wild head i and two w-tame heads j, k satisfy either i ⊀w j ≺w k ≺w i or

i ≺w j ≺w k ⊀w i;

(4c) i, j, k are all w-tame heads and compose a w-chain.

(5) ψ(w) = 32
2
1 if and only if one of the conditions (5a)-(5c) holds for some distinct

i, j, k ∈ [7]4:

(5a) i, j, k are all w-wild heads such that either {4, i, j, k} or {8, i, j, k} is a w-antichain;

(5b) Two w-wild heads i, j and one w-tame head k satisfy that exactly one of {k, i, j}
and {k, i, j} is a w-antichain and that either {4, i, j} or {8, i, j} is a w-antichain;

(5c) One w-wild head i and two w-tame heads j, k satisfy i ⊀w j ≺w k ⊀w i.

(6) ψ(w) = 321
3 if and only if there are two w-wild heads i, j and one w-tame head k

in [7]4 such that {i, j, k, k} and one of {4, i, j}, {8, i, j} are w-antichains.

(7) ψ(w) = 2
2
1
4 if and only if there are distinct w-tame heads i, j, k ∈ [7]4 such that

the set {i, j, k} forms neither a w-chain nor a w-antichain.

By making use of the above description of Eλ, λ ∈ ∆, we shall prove Theorem 6.1 in

6.4-6.9.
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6.4. Denote by E′
521 (resp., E′′

521) the set of all such w ∈ C̃3 that there are distinct

w-wild heads i, j, k ∈ [7]4 satisfying either that {4, i, k} is a w-antichain and i ≺w j or

that {4, j, k} is a w-antichain and i ≺w j, k (resp., either that {8, i, k} is a w-antichain and

i ≺w j or that {8, j, k} is a w-antichain and i ≺w j, k). We see that E−1 = E for any

E ∈ {E′
521, E′′

521} and that E521 = E′
521£ ¢· E′′

521 by 6.3 (1). Let F521 = F ′
521 ∪ F ′′

521 with

F ′
521 = {[−2,−3,−1], [−2,−5,−1], [−3,−6,−1], [−3,−7,−2], [−3,−9,−2], [−1,−3,−2]},

F ′′
521 = {[5, 7, 6], [5, 9, 6], [5, 10, 7], [6, 11, 7], [6, 13, 7], [6, 7, 5]}.

The group automorphism η of C̃3 stabilizes the sets E521, F521 and interchanges E′
521, E′′

521

(resp., F ′
521, F ′′

521). By 6.3 (1) and 2.3, we see that for any w in E521 (resp., E′
521, E′′

521)

there is some w′ in F521 (resp., F ′
521, F ′′

521) such that w′, w are in the same left-connected

component of E521.

In F ′
521, let x := [−2,−3,−1]. Then [−1,−3,−2] = xt1, [−2,−5,−1] = xt3, [−3,−6,−1] =

xt3t2, [−3,−7,−2] = xt3t2t1, [−3,−9,−2] = xt3t2t1t0, R(x) = {t0, t2}, R(xt1) = {t0, t1},
R(xt3) = {t0, t3}, R(xt3t2) = {t0, t2}, R(xt3t2t1) = {t1}, R(xt3t2t1t0) = {t0}.

Also, in F ′′
521, let y := [5, 7, 6]. Then [6, 7, 5] = yt2, [5, 9, 6] = yt0, [5, 10, 7] = yt0t1,

[6, 11, 7] = yt0t1t2, [6, 13, 7] = yt0t1t2t3, R(y) = {t1, t3}, R(yt2) = {t2, t3}, R(yt0) =

{t0, t3}, R(yt0t1) = {t1, t3}, R(xt0t1t2) = {t2}, R(yt0t1t2t3) = {t3}.
The above data can be displayed by two graphs in Figure 4 below (see 1.13):

[−1,−3,−2] [−2,−3,−1] [−2,−5,−1] [−3,−6,−1] [−3,−7,−2] [−3,−9,−2]

01 02- - - - - - - 03 02 1- - - - - - - 0 .

[6,7,5] [5,7,6] [5,9,6] [5,10,7] [6,11,7] [6,13,7]

23 13- - - - - - - 03 13 2- - - - - - - 3

Figure 4

Hence we see from Figure 4 that the elements of F ′
521 (resp., F ′′

521) are in the same right-

connected component of E521 and that the elements of F521 have pairwise different gener-

alized τ -invariants. This implies by Lemmas 1.16, 1.17 and 1.19 that each left-connected

component of E521 lies in either E′
521 or E′′

521 and forms a left cell of C̃3. This further

implies by Lemma 1.3 that each of E′
521 and E′′

521 is two-sided-connected and forms a single

two-sided cell of C̃n.

6.5. Let F4212 = F ′
4212

∪ F ′′
4212

be with

F ′
4212

= {[7, 3, 2], [9, 3, 2], [10, 3, 1]} and F ′′
4212

= {[3, 1,−6], [2, 1,−5], [2, 1,−3]}.
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Then by 6.3 (2) and 2.3, we see that for any w ∈ E4212 , there is some w′ ∈ F4212 such that

w′, w are in the same left-connected component of E4212 . From Figure 5, we see that each

of the sets F ′
4212

, F ′′
4212

is right-connected. Take x = [7, 3, 2] ∈ F ′
4212

, y = [2, 1,−3] ∈ F ′′
4212

and z = [11, 2, 1] ∈ E4212 . Then z = xt0t1t2 = t1t2t3y with `(z) = `(x) + `(t0t1t2) =

`(t1t2t3) + `(y). Hence x, y, z are in the same two-sided-connected component of E4212 by

Corollary 1.20. This implies that the set E4212 is two-sided-connected and forms a single

two-sided cell of C̃3 by Lemmas 1.16, 1.17 and 1.19.

[7,3,2] [9,3,2] [10,3,1] [3,1,−6] [2,1,−5] [2,1,−3]

12- - - - - - 02 1 2 13- - - - - - 12

Figure 5

Let x = [7, 3, 2] ∈ F ′
4212

and y = [2, 1,−3] ∈ F ′′
4212

. By regarding x, y as ele-

ments in Ã7 and by Corollary 1.9, we have R̃(x) = R̃(y) = {s1, s2, s5, s6}, R̃(xs3) =

R̃(ys3) = {s1, s3, s5, s6}, R̃(xs3s4) = R̃(ys3s4) = {s1, s4, s6}, R̃(xs3s4s6) = R(ys3s4s5) =

{s1, s4, s5}, R̃(xs3s6) = R̃(ys3s4s5s3) = {s1, s3, s5} and R̃(xs6) = {s1, s2, s5} 6= {s2, s5} =

R̃(ys3s4s5s3s2). This implies that x, y have different generalized τ -invariants. Hence we see

from Figure 5 that the elements of F4212 have pairwise different generalized τ -invariants.

So F4212 forms a representative set for the left cells of C̃3 in E4212 by Lemma 1.17.

6.6. Let F322 = F ′
322

∪ F ′′
322

be with

F ′
322

= {[−1, 5, 6], [−2, 5, 7], [−3, 6, 7], [−5, 6, 7]},

F ′′
322

= {[−2,−1, 5], [−3,−1, 6], [−3,−2, 7], [−3,−2, 9]}.

Then by 6.3 (2) and 2.3, we see that for any w ∈ E322, there is some w′ ∈ F322 such that

w′, w are in the same left-connected component of E322. From Figure 6, we see that each

of the sets F ′
322

, F ′′
322

is right-connected. Take x = [−1, 5, 6] ∈ F ′
322

, y = [−2,−1, 5] ∈ F ′′
322

and z = [−5,−1, 6] ∈ E322. Then z = xt0t1t2 = t1t2t3y with `(z) = `(x) + `(t0t1t2) =

`(t1t2t3) + `(y). Hence x, y, z are in the same two-sided-connected component of E322 by

Corollary 1.20. This implies that the set E322 is two-sided-connected and forms a single

two-sided cell of C̃3 by Lemmas 1.16, 1.17 and 1.19.

[−1,5,6] [−2,5,7] [−3,6,7] [−5,6,7] [−3,−2,9] [−3,−2,7] [−3,−1,6] [−2,−1,5]

03 13 2- - - - - - 3 0- - - - - - 1 02 03

Figure 6
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From Figure 6, we see that the elements of F322 have pairwise different generalized

τ -invariants. So F322 forms a representative set for the left cells of C̃3 in E322 by Lemma

1.17.

6.7. Let F3212 = F ′
3212

∪ F ′′
3212

be with

F ′
3212

= {[−1, 2, 5], [−2, 1, 5], [−1, 3, 6], [−3, 1, 6], [−5, 1, 6], [−2, 3, 7], [−2, 3, 9]},

F ′′
3212

= {[3, 2,−1], [3, 1,−2], [5, 2, 1], [6, 3, 1], [3, 2, 1]}.

By 6.3 (4) and 2.3, we see that for any w ∈ E3212 , there is some w′ ∈ F3212 such that

w′, w are in the same left-connected component of E3212 . From Figure 7, we see that each

of the sets F ′
3212

, F ′′
3212

is right-connected and that the elements of F3212 have pairwise

different generalized τ -invariants.

[−5,1,6] [−3,1,6] [−2,1,5] [−1,2,5] [−1,3,6] [−2,3,7] [−2,3,9]

3- - - - - - 2 13 03 02 1- - - - - - 0

[6,3,1] [5,2,1] [3,2,1] [3,2,−1] [3,1,−2]

2 13- - - - - - 12- - - - - - 02 1

Figure 7

Take x = [−1, 2, 5] ∈ F ′
3212

, y = [3, 2, 1] ∈ F ′′
3212

and z = [−3, 2, 7] ∈ E3212 . Then

z = xy with `(z) = `(x)+`(y). Hence x, y, z are in the same two-sided-connected component

of E3212 by Corollary 1.20. This implies that the set E3212 is two-sided-connected and forms

a single two-sided cell of C̃3 by Lemmas 1.16, 1.17 and 1.19.

We see from Figure 7 that the elements of F3212 have pairwise different generalized

τ -invariants. This implies by Lemma 1.17 that F3212 forms a representative set for the left

cells of C̃3 in E3212 .

6.8. Let E′
3221

=
⋃3

k=1 Ek and E′′
3221

=
⋃6

k=4 Ek be with

E1 = {[2, 1, 5], [2, 5, 1], [2, 5, 7]}, E2 = {[3, 1, 6], [3, 6, 1], [3, 6, 7]},

E3 = {[5, 1, 6], [5, 6, 1], [5, 6, 7]}, E4 = {[−1, 3, 2], [3,−1, 2], [−3,−1, 2]},

E5 = {[−2, 3, 1], [3,−2, 1], [−3,−2, 1]}, E6 = {[−2, 3,−1], [3,−2,−1], [−3,−2,−1]}.

[2,1,5] [3,1,6] [5,1,6] [−2,3,−1] [−2,3,1] [−1,3,2]

13 2- - - - - - 3 0- - - - - - 1 02

Figure 8
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We see from 6.3 (5) that E3221 = E′
3221

∪̇E′′
3221

and that the set Ek is a left-connected

component of E3221 for any k ∈ [6]. From Figure 8, we see that the set E′
3221

(resp., E′′
3221

)

is two-sided-connected and that the elements occurring as vertices of the graphs in Figure

8 have pairwise different generalized τ -invariants. So the set Ek forms a left cell of E3221

for any k ∈ [6] by Lemmas 1.16, 1.17 and 1.19.

We have E−1 = E for any E ∈ {E′
3221

, E′′
3221

}. Hence each of the sets E′
3221

E′′
3221

forms a single two-sided cell of C̃3 by Lemma 1.3.

6.9. By 6.3 (6)-(7), we have

E3213 = {[1, 5, 6], [−2,−1, 3]} and E2214 = {[2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2]}.

Since both x := [1, 5, 6] and y := [−2,−1, 3] are involutions with R(x) = {t3} 6= {t0} =

R(y), each of the sets E′
3213

= {[1, 5, 6]} and E′′
3213

= {[−2,−1, 3]} forms both a two-sided

cell and a left cell in C̃3 by Lemma 1.3. The group automorphism η of C̃3 interchanges E′
3213

and E′′
3213

. On the other hand, we see that the set E2214 is two-sided-connected and hence

forms a single two-sided cell of C̃3 by Lemma 1.16, 1.17 and 1.19. The set E2214 consists

of two left-connected components E1 := {[2, 1, 3], [2, 3, 1]} and E2 := {[1, 3, 2], [3, 1, 2]} with

R(E1) = {t1} 6= {t2} = R(E2). This in turn implies that both E1 and E2 are left cells of

C̃3 by 1.2.
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