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ABSTRACT. The fixed point set of the affine Weyl group (Agn+1,§) under
a certain group automorphlsm «a with a(g) = S can be considered as the
affine Weyl _group (Cn, S) Then we study the cells of the weighted Coxeter
group (C’n,Zgn_H) with £2n+1 the length function of A2n+1 We give an ex-
plicit description for all the cells of (Cn7 £2n+1) corresponding to the partitions
k122+2K and (h,2n+2—h) forany 1 <k <2n+2and n+1 < h < 2n, and
also for all the cells of (Cs, f7).

Let Z (respectively, P, N) be the set of integers (respectively, positive integers, non-
negative integers). For any ¢ < j in the set Z, denote [i, j] := {i,i+ 1, ..., j} and denote [1,1]
simply by [é].

By a Cozeter system (W,S), we mean a Coxeter group W together with a Coxeter
generator set S. Lusztig defined a weight function L on any Coxeter system (W, .S), called
(W, L) a weighted Coxeter group and also introduced the concepts of left, right and two-sided
cells in a weighted Coxeter group in [4]. The affine Coxeter group (C,, S) can be realized
as the fixed point set of the affine Coxeter group (Zm, §m), m € {2n — 1,2n,2n + 1}, under
a certain automorphism a,, , with am,n(gm) = §m7 where §m, S are the Coxeter generator
sets of ﬁm, én, respectively. The restriction to 5’n of the length function Zm of Zm is a
weight function of C,. It is known that there is a surjective map 1 from A,, to the set
A1 of partitions of m + 1 which induces a bijection from the set of two-sided cells of
Ay, t0 Ay (see [5], [3]). Let Ey := p1(\) N C,, for A € Apyr. In his papers [7] and
[8], Shi described all the cells of the weighted Coxeter group (én, Zgn,l) in the set E\ with
A€ {k12n-k h2120-h=2 (595 — j) | k € [2n],h € [2,2n — 2],j € [n,2n — 1]} and also all
the cells of the weighted Coxeter group (53,%) In the present paper, we study left cells
and two-sided cells in the weighted Coxeter group (én,ZgnH) and describe all the cells of
(Cp,lany1) in the set Ey with A € {k120+27k (j 20492 j) | k € [2n+2],5 € [n+1,2n+1]}
and also all the cells of the weighted Coxeter group (5’3, 677)
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weighted Coxeter group.
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Comparing with the weighted Coxeter group (CN',L, 572”_1), the set E, might be empty in
the weighted Coxeter group (én,zgnﬂ) for some A € Ag,y2. In our considered cases, we
prove that the sets Eyqzniz-x and E( a,40-k) and Ex, A € {431,422 2% 2312}, are empty,
where k is even.

The connectedness is an important structural property for the cells. We prove in E)
with A € {k12272-k (R, 2n+2—h) |k € 2n+2],h € [n+1,2n+ 1]} U Ag that all the left
cells are left-connected and that all the two-sided cells are two-sided-connected.

The generalized tabloid and the generalized T-invariants are two complete invariants for
the left cells of ggn“. Those invariants will be very useful in determination of left cells in
our considered cases.

The contents of the paper are organized as follows. We collect some concepts and known
results concerning cells of the weighted Coxeter groups (g2n+1,l72n+1) and (5’n,l72n+1) in
Sections 1-2. We give some criteria for the vanishing of the set E in Section 3. In Sections 4-
5, we give an explicit description for all the cells of (CN'n, zgnﬂ) corresponding to the partitions
k122+2% and (h,2n+2—h) for all k € [2n+2] and h € [n+ 1, 2n + 1] respectively. Finally,

we describe all the cells of (Cs, £7) in Section 6.

1. The weighted Coxeter groups (As,1,l2nt1) and (Cy, lapi1).

In this section, we assemble some concepts and known results concerning cells of a
weighted Coxeter group (W, L), in particular, in the cases where (W, L) is either (A2n+1, Zgn_H)

or (571, Zgn+1).

1.1. Let (W,S) be a Coxeter system with ¢ the length function and < the Bruhat-
Chevalley ordering on W. An expression w = s189---8, of w € W with s; € S is called
reduced if r = {(w). By a weight function on W, we mean a map L : W — Z satisfying that
L(s) = L(t) for any s,t € S conjugate in W and that L(w) = L(s1) + L(s2) +- - -+ L(s,) for
any reduced expression w = $153- -8, of w € W. Call (W, L) is a weighted Cozeter group.
In particular, the length function ¢ is a weight function on W and the weighted Coxeter
group (W, 0) is called in a split case.

Suppose that there is a group automorphism « of W with «(S) = S. Let W = {w €
W | a(w) = w}. For any a-orbit J on S, let wy € W be the longest element in the
subgroup of W generated by J. Let S, be the set of all w; with J ranging over the a-orbits
in S. Then (W*,S,) is a Coxeter system. The restriction of £ to W is a weight function
on (W% S,). The weighted Coxeter group (W, ) is called in a quasi-split case.



SOME CELLS IN THE WEIGHTED COXETER GROUP (Ch, fan11) 3

1.2. In [4], Lusztig introduced the preorders <, <, < and the associated equivalence
relations T [y, ona weighted Coxeter group (W,LL),]?cheL }(?orresponding equivalence classes
of (W, L) are called left cells, right cells and two-sided cells.

For w € W, define L(w) = {s € S | sw < w} and R(w) = {s € S | ws < w}. If
y,w € W satisfy y < w (resp., y < w), then R(y) 2 R(w) (resp., L(y) 2 L(w)). In
particular, if y ~w (rLesp., Y w), t}?en R(y) = R(w) (resp., L(y) = L(w)) (see [4, Lemma
8.6]).

In [4, Chapter 13], Lusztig defined a function a : W — NU {oo} in terms of structural
coefficients of the Hecke algebra associated to W. Then in [4, Chapters 15-16], Lusztig
proved that the function a is constant on any cell of W when W is either a finite or an affine

Coxeter group and when (W, L) is either in a split case or in a quasi-split case.

For any X C W, write X1 := {27! |z € X}.

1.3. Lemma. (see [7, Lemma 1.7]) Suppose that W is either a finite or an affine
Coxeter group and that (W, L) is either in a split case or in a quasi-split case.

Let E be a non-empty subset of W satisfying the following conditions:

(a) There exists some k € N with a(x) =k for any x € E;

(b) E is a union of some left cells of W;

(c) ET'=E.
Then E is a union of some two-sided cells of W.

From now on, we concentrate ourselves to the weighted Coxeter groups (/~12n+1, ZQn_l,_l)

and (én, ZQn+1), where Z2n+1 is the length function of the affine Weyl group szn+1.

1.4. The affine Weyl group Avgn_;,_l can be realized as the following permutation group
on the integer set Z (see [2, Subsection 3.6] and [5, Subsection 4.1]):

2n—+2 2n+2
(i+2n+2w=(w+2n+2,> (Hw= Y z}

i=1 i=1

22n+1:{w:Z—>Z

The Coxeter generator set S = {s; | i € [0,2n + 1]} of Ag, 4, is given by

t, ift#£4,i+1 (mod 2n + 2),
t)si=< t+1, ift=i (mod 2n + 2),
t—1, ift=i+1 (mod 2n+2),

for any t € Z.
Let o := aopq1p : ZQH_H — /~12n+1 be the group automorphism determined by a(s;) =
Son+1—¢ for i € [0,2n+1]. Then the affine Weyl group 5n can be realized as the fixed point

set of IZ[QnJ,_l under «, which can also be described as a permutation group on Z as follows.

Co={w:Z —Z|(i+2n+2w=(i)w+2n+2,(—)w=—(i)w,Vi € Z}
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with the Coxeter generator set S = {¢t; | i € [0,n]}, where t; = s;89,4+1—; for i € [n — 1],
to = SoS2n+150 and t, = S, 8,415, For any w € C~'n, we can see that (k(n—+1))w = k(n+1),
for any k € Z. For the sake of convenience, we define s;, t; for any 7,5 € Z by setting
S(2n+2)q+b to be sy and setting both t (2, 42)q1a and t(2p12)g+(2n+1—a) to be t, for any q € Z
and b € [0,2n + 1] and a € [0, n].

1.5. By a partition of n € P, we mean an r-tuple A := (A, Ag,...,..\.) of weakly
decreasing A1, Az, ..., A, in P with 2221 A = n for some r > 1. ); is called a part of \. We
sometimes denote A in the form jlfljl;2 ...j5m (boldfaced) with j; > jo > -+ > jp = 1if j;
is a part of A\ with multiplicity k; > 1 for i > 1. For example, 632231 stands for the partition
(6,3,3,2,2,2,1) of 19.

Fix w € AVQ»”J’_]_. For any i # j in [2n 4 2], we write ¢ <, j, if there exist some
p,q € Z such that both inequalities 2pn + 2p + i > 2gn + 2¢ + j and (2pn + 2p + )w <
(2gn + 2q + j)w hold. In terms of matrix entries of w, this means that the entry 1 at the
position (2gn + 2q + j, (2gn + 2q + j)w) is located at the northeastern of the entry 1 at the
position (2pn + 2p + 14, (2pn + 2p + i)w). This defines a partial order <., on the set [2n + 2].

A sequence aj,ag,...,a, in [2n 4 2] is called a w-chain, if a1 <y a2 <u + <w G
Sometimes we identify a w-chain aj,as,...,a, with the corresponding set {ay,as,...,a,}.
For any k > 1, a k-w-chain-family is by definition a disjoint union X = Ule X; of k w-chains
X1, ..., X in [2n 4 2]. Let di be the maximally possible cardinal of a k-w-chain-family for
any k > 1. Then there exists some r > 1 such that d; < ds < --- <d, =2n+2. Let \; = d3
and A\, = d, —d_1 for any k € [2,7]. Then Ay > Ao > -+ > A, by a result of Curtis Greene
in [1]. Let Ag,io be the set of all partitions of 2n + 2. Hence w — ¢(w) = (A1,..., )
defines a map from the set Egnﬂ to Agpta.

i # j in [2n + 2] are said w-comparable if either i <,, j or j <, %, and w-uncomparable
if otherwise. A subset F in [2n + 2] is called a w-antichain, if the elements of E are pairwise

w-uncomparable.

1.6. Let Zgn+1, £ be the length functions on the Coxeter systems (/TQTLH, §), (C~‘n, S),
respectively. By the definition in 1.1, we see that the weighted Coxeter group <g2n+17z2n+1)
is in a split case, while (Cyy, f2541) is in a quasi-split case (see [4, Lemma 16.2]).

For any x € Ag,y1 and k € Z, let my(z) = #{i € Z | i < k and (i)z > (k)z}. Then the

formulae for the functions Z2n+1 and ¢ are as follows.

1.7. Proposition. (comparing with [7, Proposition 2.4]) For any w € Zgn_H and

T € CN'n, we have
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(1) boni1(w) = D 1<ici<ant2 ‘ {%J = ST mp(w);
(2) U(z) = L(lans1 () — mo(z) — m(2)),

where |x] stands for the largest integer not larger than x and |x| for the absolute value of x

for any x € Q.

1.8. Let <,<¢ be the Bruhat-Chevalley orders on the Coxeter systems (Ain_i_],g),
(5,“ S), respectively. Since the condition x <¢ y is equivalent to x < y for any z,y € é’n,
it will cause no confusion if we use the notation < in the place of <. Hence from now on
we shall use < for both < and <¢.

Let L(z) = {s € S | sz < 2} and R(z) = {s € S | zs < z} for 2 € Ay, 1 and let
Ly)={teS|ty<y}and R(y)={t eS|yt <y} foryeCy.

1.9. Corollary. (comparing with [7, Corollary 2.6]) For any x € C, and i € [0,n],

si € L(2) <= sonp1-i € L(z) <= t; € L(z) <= ()x > (i + 1)z <= 2n+2—i)z <
2n+1—14)z,

i € R(x) = Sons1—i € R(1) == t; e R(z) = )z ' > (i+ Vo' < 2n+2—
e < (@n+1-i)x L

1.10. For any a € Z, denote by (a) the unique integer in [2n + 2] satisfying a =

(a) (mod 2n + 2). It is known that any w € én is determined uniquely by the n-tuple

((Dw, (2)w,...,(n)w). Hence we shall identify w with the n-tuple ((1)w, (2)w, ..., (n)w)

and denote the latter by [(1)w, (2)w, ..., (n)w] in such a sense. Let w = [ay, as, ..., a,] and
/

] and w” = wt; = [a},a},...,a"] be in C,,. When i € [n — 1],

N

I _ / /
w = tijw = [a},dh, ... al,

[

we have a ;

aj for j € [n] — {i,i + 1} (set difference) and (aj,aj,,) = (ait+1,a;); when
i = 0, we have a; = a; for j € [2,n] and a] = —a1; when i = n, we have a; = a; for
Jj € [n—1] and aj, = 2n + 2 — a,. On the other hand, when i € [n — 1], we have o} = a; if
(aj) ¢ {i,i+1,2n+1—1i,2n+2—i}, a7 = a; +1if (a;) € {i,2n+1 —i} and @} = a; — 1 if
(aj) € {i+1,2n+ 2 —i}; when i = 0, we have a} = a; if (a;) ¢ {1,2n + 1}, a] = a; + 2 if
(aj) =2n+1 and @ = a; —2if (a;) = 1; when i = n, we have af = a; if (a;) ¢ {n,n +2},
aj =aj; +2if (a;) = n and a} = a; — 2if (a;) =n + 2.

Let n be the group automorphism of CN'n determined by the condition n(t;) = t,—; for

any i € [0, n].

1.11. For any i € [0,2n+1], let Dg(i) be the set of all w € Ay, 41 satisfying |{s;, si11}N
R(w)| = 1. When w € Dg(i), exactly one of ws; and ws; 41 is in Dg(i), denote it by w*, call
the transformation from w to w* a right {s;, s;+1}-star operation (or a right star operation in

short) on w. Clearly, (w*)* = w in this case., For any w € Ay, 11, let M(w) be the set of all
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Yy € Egnﬂ satisfying the following condition: there exists a sequence o = w,z1,...,T, =y
in A~2n+1 with some 7 > 0 such that for every i € [r], x; is obtained from z;_; by a right
{Sk,, Sk, +1}-star operation with some k; € Z. Define a graph M(w) as follows. Its vertex
set is M(w), each z € M(w) is labeled by R(z). Two vertices z,y € M(w) are joined by
a solid edge if y can be obtained from x by a right star operation. By a path in ./,\X(w)7
we mean a sequence xog,ri,...,~T, in M(w) with some r > 0 such that z;_; and x; are
joined by a solid edge for every i € [r]. Two elements w,y € Av2n+1 are said to have the
same generalized T-invariants, if for any path w; = w,ws,...,w, in M(w), there exists a
path y1 = y,v2,...,y, in Mv(y) such that ﬁ(wz) = ﬁ(yl) for every i € [r] and if the same
condition holds when the roles of w and y are interchanged.

For any i € [0,n—1], let Dg(i) be the set of all w € C,, such that |{t;, ;41 } NR(w)| = 1.
Regarding C~'n as a subset of szn_t,_]_, an element w € 5n is in Dg(7) if and only if w is in
Dr(i) if and only if w is in Dp(2n —i). When w € Dg(i), exactly one of wt; and wt; 1 is in
Dpg(i) unless that i € {0,n — 1} and w = zy with 2,y € C,, satisfying {t;,t;11} N R(z) = 0
and y € {t;t;x1,t;+1t;}. In this excepted case, both wt; and wt;y1 are in Dg(i). When
{wt;, wt; 11} N Dgr(i)| = 1, denote by w* the unique element in {wt;, wt;11} N Dg(i), then
w* can be obtained from w by a pair of right star operations in Avgn_i'_l if and only if either
i € [n— 2] or w* = wty, with (4,m) € {(0,1),(n —1,n —1)}. When {wt;, wt;11} C Dg(i),
define wi, w3 by the conditions {wi,ws} = {wt;, wt;11} and wi < w3, then x € {w, w3}
can be obtained from w by a pair of right star operations in /~12n+1 if and only if x = wt,,
with m € {1,n — 1}.

In the remaining part of the paper, when we mention a right star operation and the
generalized T-invariants on w € 5,“ we always mean that w is regard as an element of szn+1.

‘We make such a convention once and forever.

1.12. Examples. (1) The elements x = t1,y = t1tp and z = t1tpt1 are in Dr(0). We
have z* = 2z* = y and yj = x and y5 = z. The elements y, z can be obtained from one
to another by a right {sg, s1 }-star operation followed by a right {s2,, s2,+1}-star operation,
but x,y can’t be obtained from one to another by a pair of right star operations.

(2) Assume n > 2. The elements = to and y = oty are in Dr(1). We have z* =y
and y* = z. The elements z,y can be obtained from one to another by a right {s;, so}-star

operation followed by a right {s2,,—1, 2, }-star operation.

1.13. For any w € C~'n, define M (w) to be the set of all y € C, satisfying the following
conditions: there exists a sequence rg = w,x1,...,%, = y with some r > 0 such that

for every i € [r], xi_lxi_l € S and z; can be obtained from xz;_; by a pair of right star
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operations. Define a graph M(w) as follows. Its vertex set is M (w). Each vertex z € M (w)
is labeled by R(z). Two elements z,y € M (w) are joined by a solid edge if 271y € S and =
can be obtained from y by a pair of right star operations.

One can define a path in M(w) in the same way as that in Mv(w) It is easily seen that
if y,w € 571 have the same generalized 7-invariants, then for any path w; = w,ws, ..., w,
in M(w), there exists a path y1 = y,y2, ...,y in M(y) such that R(w;) = R(y;) for every
i € [r] and the same condition holds when the roles of w and y are interchanged. In Section
7, the graphs M(w) with w € Cs will be used to confirm that two elements of C3 have
different generalized T-invariants.

Sometimes we join two vertices x,y € C, in a graph by a dashed edge to indicate the
facts that 271y € S, R(x)éR(y) and that y can’t be obtained from x by a pair of right star

operations in Ag, 1.

1.14. Example. In Figure 4 (see 6.4), the elements z = [-2, -3, —1], y = [-2, =5, —1]
and z = [—3,—6,—1] in Cs have labels R(z) = R(z) = {to,t2} and R(y) = {to,ts}, where
we use a boldfaced letter i to denote the generator t;, hence, for example, the notation

ly =ty € S and 2

stands for the set {tg,t2}. y and z are joined by a solid edge since y~
can be obtained from y by a right {ss, s3}-star operation followed by a right {s4, s5}-star
operation in g7. However, = and y are joined only by a dashed edge since 2 'y = t3 and
x can’t be obtained from y by a pair of right star operations. We see from Figure 4 that

x,, z have pairwise different generalized 7-invariants.

1.15. For any A = (A1, A2, ..., A) and g = (p1, o, -« ., pg) in Agypo, we write A < p if
A+ A < pr+- -+ pg for any 1 < k < min{r, ¢}. This defines a partial order on Agy, 4.
It is well known that if z € Ay, 1 and s € L£(z) and t € R(x) then ¢ (sz), ¥(at) < ¢(x)
(see [5, Lemma 5.5 and Corollary 5.6]). This implies by Corollary 1.9 that if z € C,, and
s € L(x) and t € R(x) then ¢(sz), v (xt) < ¥(x).

1.16. Lemma. (sce [4, Lemma 16.14]) Let z,y € C,. Then x Y (resp., x ~ y) in
C,, if and only if Y (resp., x ~ y) in Agpy1.

By Lemma 1.16, we can just use the notation x Y (resp., © ~ y) for x,y € C,, without
indicating whether the relation refers to the group As, 11 or C,.

For any A = (A, A, ..., A\r) € Ao, define AV = (ug, o, ..., 4t) € Agnyo by setting
Wy = #{k > 1| A, = j}, for any j > 1, and call AV the dual partition of \.

1.17. Lemma. Letz,y € ﬁgnﬂ,
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(1) x o if and only if x,y have the same generalized T-invariants (see [5, Theorem

16.1.2]).

(2) x < y if and only if Y(y) < Y(x). In particular, Y if and only if () = ¥ (y)
LR

(see [3, Theorem 6] and [5, Theorem 17.4] and [6, Theorem B]).

1.18. A non-empty subset E of a Coxeter group W = (W, S) is said left-connected,
(resp., right-connected) if for any z,y € E, there exists a sequence xg = x,21,...,T, = Y
in E such that x;_12; ' € S (vesp., z; 'z;_; € S) for every i € [r]. E is said two-sided-
connected if for any x,y € E, there exists a sequence x¢o = x,x1,...,%, =y in F such that
either z;_12; * or 2; 'x;_; is in S for every i € [r].

Let FF C E in W. Call F a left-connected component of E, if F is a maximal left-
connected subset of E. One can define a right-connected component and a two-sided-
connected component of F similarly.

For any A € Agp g, define Ey := C,, Np~1(N).

1.19. Lemma. (comparing with [7, Lemma 2.18]) Let A € Agpio.

(1) Any left-connected (resp., right-connected, two-sided-connected) set of 1 ~=*(\) is
contained in some left (resp., right, two-sided) cell of Agpi1.

(2) Any left-connected (resp., right-connected, two-sided-connected) set of Ex is con-
tained in some left (resp., right, two-sided) cell of C.,.

(8) The set Ey is either empty or a union of some two-sided cells of 571

1.20. Corollary. (comparing with [7, Corollary 2.19]) Let =,y € Aony1 be in h=1(N)
for some X € Aoy io.

(1) If Z2n+1(y) = Zgnﬂ(m) + Zgnﬂ(yx_l) then x,y are in the same left-connected com-
ponent of Yp~1(\) and hence x ~ Y-

(2) If loni1(y) = lopir(2) + lons1(xz~y) then z,y are in the same right-connected
component of »~1(\) and hence x Y-

Let x,y € Ey for some A € Agpya.

(3) If £(y) = €(z) + £(yx~') then z,y are in the same left-connected component of Ey
and hence x Y

(4) If £(y) = £(x) + £(xz~ y) then z,y are in the same right-connected component of E\

and hence x 2y
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2. Partial order <,, on [2n + 2] determined by some w € C,,.

In this section, we introduce two technical tools following Shi in [7, Section 3]. One is a
transformation on an element in 2.3, which is a crucial step in proving the left-connectedness
of a left cell and in finding a representative set for the left cells of én in the set By, A € Agyio.
The other is the generalized tabloids defined in 2.5, by which we can check whether two

elements of 5n are in the same left cell.

2.1. Call 4,5 € [2n+ 2] to be (2n + 2)-dual, if i + j = 2n 4+ 2 (mod 2n + 2); in this case,
we denote j =i (hence i = j also). In particular, 2n +2 =2n+2 and n+ 1 =n + 1. Call
each of n 4+ 1 and 2n + 2 to be (2n + 2)-selfdual. Recall the partial order =<, on [2n + 2]
defined in 1.5 for any w € AinJrl and that 5n can be regarded as a subset of Ain+1 (see
1.4). Denote [2n 4 1],41 := 2n+ 1] — {n+1}. Fix w € C,,. Call i € [2n + 1],41 a w-wild
if i # i are w-comparable and a w-tame if i # i are w-uncomparable. Call i € [2n + 1],41 a
w-wild head (resp., a w-tame head), if i is a w-wild (resp., a w-tame) with (i)w < (i)w; in
this case, we call i a w-wild tail (resp., a w-tame tail).

It is easily seen that ¢ < j in [2n + 2] are w-uncomparable if and only if (V)w < (jlw <
(H)w + 2n + 2.

2.2. Lemma. Fiz w € én

(i) For any j # k in [2n + 2], § < k if and only if k <y j;

Now suppose that j # k in [2n + 1],41 are w-wild heads and that i € 2n + 1],41 is a
w-tame head.

(ii) 7 <w k if and only if j, k are w-comparable.

(iii) If 4,k are w-uncomparable then so are j,k;

() i and k are w-comparable if and only if i <4, k.

(v) {j,i,7} is a w-chain if and only if j is w-comparable with both i and i;

(vi) {j, k.7, k} is a w-chain if and only if j,k are w-comparable.

(vii) if j <m+1then j <pn—+ 1<y j;ifj >n+1 then j <y, 2n+2 <y j;

(viii) i,i are w-uncomparable with n + 1,2n + 2.

Proof. The results (i)-(vi) follow by [7, Lemma 3.2] and (vii)-(viii) can be checked
directly.

2.3. Define
iy, if (k) € [n],
te=19 oy 1 if (k) € [n+2,2n+ 1],
1, if (k) € {n+1,2n+ 2}.
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and

(23.1) tij = t§+j—1t2+j72 it

for any i,k € Z and j € P. Suppose that = € C, and i € Z satisfy ¢ Z n+ 1,2n 4+ 2 (
mod 2n + 2). If (i)x — (j)z > 2n + 2 for any j € [i + 1,¢ + a] with some a € [2n + 1], let
x' = t; gz, then £(z') = l(x) — £(t;,q) and ¥ (z) = ¢(z'). Moreover, if (i) — (j)z > 2n + 2
for any j € [i + 1,7+ 2n + 1], let 2’/ = t; 2542, then

(m)x —2n — 2, if (m) = (i),
(m)z" =< (m)z+2n+2, if (m) = (2n + 2 — 1),
(m)zx, if otherwise.

for any m € Z, where z” satisfies (") = £(z) — 2n — 2 and ¢(z) = ¢ (2”) by 1.5 and
Proposition 1.7.

Fix w € C,,. Suppose that E; = {i1,i2,...,iq} and Ey = {41, 42, ..., Jp} are two subsets
of [2n 4 1],,4+1 satisfying that

(i)ig <ia<---<igand j1 <ja<---<jpwitha>0and b>0and a+b=mn;

(ii) the elements of Ey U E5 are pairwise not (2n + 2)-dual;

(iil) (k)w < (k)w for any k € Ey U Ey;

(iv) (D)w — (j)w > 1(2n+ 2) for any i € E; and j € E5 U {2n + 2}, where [ € N.

Suppose b > 0. Then by repeatedly left-multiplying the elements ¢; ; with some ¢ € Z,
j € P, on w, we can obtain some w’ € C~'n satisfying that

(1) (') = t(w) — L(w'w);

(2) There exists a unique order-preserving bijective map ¢ : Fo U Ea U {n + 1} —
[a+1,n+ b+ 1] such that (p)w’ = (ip)w —I'(2n + 2) and (¢(g))w’ = (¢)w for any p € [a]
and q € Fo U By U {n + 1}, where I’ < in N;

(3) (@)w' < (c)w' for any c € [a] U {p(m) | m € Ex};

(4) 0 < min{(c)w’ — (Q)w’ | ¢ € [a],q € {¢p(m) | m € Ea}} < 2n+ 2.

We have ¢(w’) = 1p(w) (denote it by ) by Lemma 2.2 and that w,w’ are in the same
left-connected component of E by Corollary 1.20.

2.4. Example. Let w = [~1,—11,—10] € C5. Then Ey = {5,6} and E, = {7} satisfy
the conditions (i)-(iv) in 2.3 with n = 3 and (a,b,1) = (2,1,1). Let w’ = ¢5 3t ow. Then
w' = [10,11, —1] € Cs satisfies the conditions (1)-(4) in 2.3 and 1 (w) = 1h(w') = s21.

Let w” =ty styow’. Then w” = [=1,—3,-2] € Cs (0" € Flyy in 6.4). We see that
PY(w”) = Y(w') = 521 and {(w”) = £(w') — £(t1 3t2,2). Hence by Corollary 1.20. w,w’, w"”

are in the same left-connected component of Essaq.
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2.5. By a composition of 2n + 2, we mean an r-tuple a = (ay,as,...,a,) of positive
integers ai,aq,...,a, with some r > 1 such that Z:Zl a; = 2n + 2. Let 7\2n+2 be the set
of all compositions of 2n + 2. Let iy, s, ...,7, be some permutation of 1,2,...,7 such that
@i, = aiy = -+ 2 a;,. Then ((a) := (i, @iy, ...y ai,) € Aoy Clearly, Ag,qo C /~\2n+2 and
¢: Kgn — Ao, is a surjective map.

A generalized tabloid of rank 2n + 2 is, by definition, an r-tuple T' = (T1,T5, ..., 1))
with some 7 € P such that [2n + 2] is a disjoint union of non-empty subsets T},j € [r]. We
have &(T) == (|T1], |T3], . .., |Ty|) € Aania, where |T;| denotes the cardinal of the set Tj. Let
Can+t2 be the set of all generalized tabloids of rank 2n + 2. Then £ : Copq0 — [~\2n+2 is a
surjective map.

Let Q be the set of all w € g2n+1 such that there is a generalized tabloid T =
(T, T>,...,T,) € Copnio satisfying:

(i) For any i < j in [r], we have ((a)w™!) <, ((b)w™!) for any a € T; and b € T};

(ii) ((T;)w™!) is a maximal w-antichain in [2n + 2] for any i € [r] (see 1.5).

Clearly, T is determined entirely by w € Q, denote T by T(w). The map T : Q —
Can2 is surjective by [5, Proposition 19.1.2]. By a result of Curtis Greene in [1], we have
C&(T(w)) = (w)Y for any w € Q.

The following known result will be crucial in the proof of Lemmas 4.5 and 5.6.

2.6. Lemma. (see [5, Lemma 19.4.6]) Suppose that y,w € Ay 1 are two elements in

Q with &(T(y)) = &(T(w)). Theny ~w if and only if T(y) = T(w).

3. Some criteria for the set Ey, A € A, 12, being empty.

Recall that in 1.18 we defined the set Ey for any A € Ag,12. We have E;l =FE)\. In
the present section, we shall give some criteria for the vanishing of the set E.

Fix \ = ()\1, Aoy, )\r) € A2n+2 in 3.1-3.3.

3.1. Lemma. Letw € Ey. If X = {a1,a2,...,ax,} is a w-chain such that a; is either
a w-wild or in {n +1,2n + 2} for any i € [\1], then A1 is odd.

Proof: We may assume a; <y @2 <y -+ <u ax,- By Lemma 2.2 (i) and (vii),
Qi1 ax, are all w-wild heads in X with ¢ = [4l], where [z] is the smallest integer
not smaller than x € Q. Assume that \; is even. Then E := {@x,, ..., Git1, QGit1, -, Gx, ;18
a w-chain by Lemma 2.2 (i). This would imply that either EU{n+ 1} or EU{2n+2} is a

w-chain of cardinal A\; + 1 by Lemma 2.2 (viii), contradicting the assumption w € E,. O
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3.2. Proposition. E) =0 if A1 is even and if either r < 3 or Ay = 1.

Proof. We argue by contrary. Suppose that there is some w in F).

First assume 7 < 3. Then there is no any w-tame in [2n + 2] by Lemma 2.2 (viii).
Hence any w-chain X in [2n 4 2] with | X| = A1 consists of some w-wilds and some elements
in {n+ 1,2n + 2}. But this would imply that A\; is odd by Lemma 3.1, contradicting our
assumption.

Next assume Ay = 1. Then all w-tames in [2n + 2] must be pairwise w-uncomparable by
Lemma 2.2 (i). Since any w-tame is w-uncomparable with each of n+ 1, 2n + 2, any w-chain
in [2n + 2] contains at most one element which is either a w-tame or one of n+1,2n+2. So
any w-chain X in [2n + 2] with | X| = A\; contains a subset X’ with |X’| > A; — 1 such that
X' consists of some w-wilds. Write X’ = X| U X} with X the set of all w-wild heads in X’
and X4 = X’ — X/|. We see that at least one of X UX]U{n+1}, X, UX]U{2n+2}isa
w-chain and also that at least one of X4 U X5 U {n + 1}, X, U X}, U {2n + 2} is a w-chain,

where E := {i | i € E} for any E C Z. We must have |X{| = [X}| = -1 with \; — 1 even

by the assumption of w € Ey. This would imply A; odd, contradicting our assumption also.

This proves Ey = ) in either case. [

3.3. Proposition. Suppose that m € [r| and that \; =2, \j =1 for any i € [m] and
any j € [m+1,r|. If either m is odd or m > r — 1, then E)\ = (.

Proof. Suppose that there is some w € E). We claim that there is no any w-wild in
[2n + 2]. For otherwise, we would have A; > 3 by Lemma 2.2 (vii). Hence all elements of
[2n + 1]p+1 are w-tames. So m is even by Lemma 2.2 (i). We see by Lemma 2.2 (viii) that
each of n + 1, 2n + 2 is w-uncomparable with any w-tame, hence A, = \._; = 1. This

completes our proof. [

4. The set Eyj2nt2-k.

In the present section, we shall describe all the cells of C,, in the set Eyq2nt2-c for all
k € [2n + 2]. The set Ejant2 consists of the identity element of C,, and Eyqzn+ac = 0§ for
any even k € [2n + 2] by Proposition 3.2. In the subsequent discussion of the section, we

shall always assume k = 2m + 1 with m € [n].

4.1. Let L =n —m. Then 2n + 2 — k = 2] 4+ 1. By Lemma 2.2, we see that w € én is
in the set Ejq2nt2-x if and only if the conditions (4.1.1) (i), (ii) on w hold.
(4.1.1)  There exist n disitnet 41,2, ..., 47, J1, 25 -5 Jm 0 [272 4 1],,41 such that

(i) 41,142, ...,9; are all w-tame heads with i1 < ig < -+ < 4; and (ip)w < (ix)w < -+ <

(i)w;
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(i1) j1,J2, -y jm are all w-wild heads with j1 < jo <w *** <w Jm;

Let Fyq2nt+2-x be the set of all w € Eyq2nt2-x satisfying one additional condition (iii).

(i) (i1, 001, 015 Jms Jm—1s - J1) = (1,2,...,n) and (j1)w € [n + 2,3n + 2] and
(as1)w — (ja)w € [2n+ 1] for any a € [m — 1]

By 2.3 and 4.1, it is easily seen that

4.2. Lemma. For any w € Ejqsnser, there exists some w' € Fiqenser such that w',w

are in the same left-connected component of Epqznter.

4.3. Lemma. The set Fiqzarer is contained in a right-connected component of Ejqzn+en.
Proof. Let J = {t;+1,t112,...,tn} and let w; be the longest element in the subgroup
W of C, generated by J. Then wy =[1,2,...,[,2n+1—1,2n—1,....,n+ 2] is in Fiqzntax.
By Corollary 1.9, we see that any w € Fyqznt2- satisfies L(w) = J and has an expression
w = wyz with £(w) = ((wy) + (z) for some z € C,,. So the set Fyqzntz is contained in

the right-connected component of Ejqzn+2-x containing wy. O

4.4. Lemma. |Fyjenrex| =nl2™/(n —m)!.

Proof. The elements w of Fj2n+2-k are in one-to-one correspondence with the m-tuples
(4.4.1) (Aw) = [((Gm)w), ((m-1)w), .., ((G1)w)).
with its components being in [2n + 1],,+1, pairwise distinct and pairwise not (2n + 2)-dual.
This is because that w is determined uniquely by the n-tuple

Ay = ((i)w, (i-1)w, .., ()W, (fm)w, (frm-1)w; .., (j1)w)

subject to the conditions that 1 < (i))w < (4_1)w < --- < (i1)w < n, that (j1)w €
[n+2,3n + 2] — {2n + 2}, that (jo+1)w — (Jo)w € [2n + 1] for any a € [m — 1], and that
the components of A,, are pairwise distinct and pairwise not (2n + 2)-dual modulo 2n + 2.
Now the number of choices for {(j1)w) is 2n. Recurrently, suppose that h € [2,m] and that
all the ((jo)w), a € [h — 1], have been chosen, then the number of choices for ((j,)w) should
be 2(n 4+ 1 — h). This implies our result. O

4.5. Lemma. No two elements of Fjqeni2x are in the same left cell of 6’n

Proof. For any w € Fyqent2xk, let w' = zw with z = (t,---titot; ---4)™. Then
Lw') = £(z) + £(w) by Corollary 1.9. We have (ix)w’ = (ix)w and (j,)w’ = (jr)w + 2n + 2
for any ¢ € [I] and r € [m]. We also have ¢ (w’) = ¢(w). This implies that w,w’ are in the
same left-connected component of Eyq2nt2- and further that w > w’ by Corollary 1.20.

We have w' € QN C, (see 2.5). Write T'(w') = (T1(w'), To(w'), ..., Tam+1(w')). Then
Ty(w') = {{(Gmy1-p)w)} and Tnpa(w') = {n+ 1,20 + 2, ((ia)w), ((ia)w) | a € [I]} and
To(w") = {{(jeem—1)w)} for any b € [m] and ¢ € [m + 2,2m + 1]. Hence T'(w’) is uniquely
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determined by (A,) (see (4.4.1)). We see from the proof of Lemma 4.4 that wy # wsy in
Fyq2nt2 implies (A,,) # (Aw,)and further T'(w}) # T(w}). This implies w) 7L¢ w! and
hence wq 7L¢ wy in C,, by Lemmas 2.6, 1.16 and by the fact £(T(w})) = &(T(w})). O

4.6. Theorem. (1) Eyqj2nt2x = ) for any even k € [2n + 2].

Now assume k =2m + 1 € [2n + 2] odd.

(2) The set Fyqznt2-k is two-sided-connected and forms a single two-sided cell of Ch.

(3) The set Eyqzniz-x is infinite if £ > 1 and Fq2n42 = {1}.

(4) The set Ejjantza contains n!2™/(n — m)! left cells of C, each of which is left-
connected.

Proof. The assertion (1) follows by Proposition 3.2. Now assume k = 2m +1 € [2n + 2]
odd. By Lemma 1.19, we see that Eyq2n+2-x is a union of some two-sided cells of C... Hence
the assertions (2) and (4) follow by Lemmas 4.2-4.5. For the assertion (3), we see that for
k=2m+1 > 1, the number of the choices for the integer (j,,)w in the condition (4.1.1) (ii)
is infinite. On the other hand, we have Ej2n+2 = {1}. This proves (3). O

5. The set Ey 2p42-k)-

In the present section, we shall describe all the cells of én in the set Ej 2n42-r) for all
k€ [n+1,2n]. Since E, 2p42-k) = 0 for all even k € [n+1,2n] by Proposition 3.2, we shall

always assume k = 2m + 1 € [n + 1,2n] odd in the subsequent discussion of the section.

51. Let I=n—m. Then 2n +2 -k =2l+1and m > [ > 1. By Lemma 2.2, we
see that w € én is in the set F(; 2n42—k) if and only if there are n distinct w-wild heads
P1,02, 101y J15 2y oy Jm 10 [210 4 1] 541 satisfying the following conditions (i)-(iii).

(1) J1 <w J2 <w *+* <w Jm and (i1)w < (ix)w < -+ < (i) w;

(i) E:={n+1,2n+ 2,ic,jqa | ¢ € [l],d € [m]} is a union of exactly two w-chains (or
equivalently, the maximal size of a w-antichain in E is 2 by a result of C. Greene in [1]);

(iii) Any w-chain in E’ := E — {n + 1,2n + 2} has cardinal < m.

For any w € C,, satisfying the conditions (i)-(ii), define

Y, (w) = {r € [m] | j, is w-uncomparable with i}

for any ¢ € [I].
Under the assumptions of (i)-(ii), we state the condition (iii’) on w below.

(iii") There exists some u; < ug < --- < w; in [m] such that ug € Y, for any ¢ € [].
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5.2. Lemma. In 5.1, under the assumptions of (i)-(ii), the conditions (iii) and (iii’) on
w E C~'n are equivalent.

Proof: Keep the notation in 5.1. First assume that w € C,, satisfies the conditions 5.1
()-(iii). We claim that
(5.2.1) Y, (w) # 0 for any q € [I].

For otherwise, there would exist some ¢ € [I] with Y,(w) = (. But this would imply
that {j1,72, .-, Jm.%q} is a w-chain of length m + 1, contradicting the assumption 5.1 (iii).

For any ¢ € [], let 7,7, be the largest and the smallest integers of Y; respectively. Then
Yy = [rg, 7y by the definition of the set Y; and the condition 5.1 (i). If Y, NY, # 0 for some
g # ¢’ in [l], then i, and 4, must be w-comparable by the condition 5.1 (ii). In other words,
we have Y; NY, = () for any w-uncomparable pair 44, i,. This implies the following
(5.2.2) For any ¢ € [l — 1], we have either that i, <, %441 or that i,,i,4+1 are w-
uncomparable and ¢t < r for any t € Y, and r € Y ;.

Now we want to find a required sequence u; < up < --- <y in 5.1 (iii’) recurrently.

We can take u; to be the smallest integer in Y7 by (5.2.1). If [ = 1, then we are done.
Now assume [ > 1. Suppose that we have got all the integers u; < ug < -+ < u, in [m] for
some p € [l — 1] such that uy; = min{i € Y, | ¢ > uy—1} for any ¢ € [2,p]. Now we want to
find upy1. If Epyq :={i € Ypq1 | @ > up} # 0, then we take up1 = min(Ep4q). Hence the
condition (iii’) holds by induction on p € [I].

It remains to show that there always exists some integer in Y};, larger than u,. Suppose
not. There should exist some b € [p] such that u is the smallest integer in Y3, but w,. is
not the smallest integer in Y, for any ¢ € [b+ 1,p] and that wu, is the largest integer
in Y,+1. This would imply by the choice of the ug’s, a € [p], that u, € Y, N Y41 for
any a € [b,p]. By (5.2.1)-(5.2.2), we see that upr. = up + ¢ for any ¢ € [p — b] and
that ju,—1 <w % <w 941 <w *** <w p <w Ipr1 <w Ju,+1. Bubt this would imply that
X = {J1, s Jup—15 b5 Tt 15 o Gt 15 Jup+15 -5 Jm } 18 @ w-chain with | X| = m+1, contradicting
the condition 5.1 (iii).

Next assume the conditions 5.1 (i), (ii), (iii’) on w. For any w-chain X C {i.,jq | ¢ €
(1], d € [m]}, we have | X N {ig,ju,}| < 1 for any ¢ € [I] by the condition 5.1 (iii’) on w.
Hence | X| < m, the condition 5.1 (iii) on w holds. O

5.3. Let F(’k72n+2_k) be the set of all w € C,, satisfying the condition (5.3.1) below.
(5.3.1) There exist n distinct w-wild heads 41,42, , 41, J1, 52, -vs Jm i [2n4+1] 41 such that
(jmail,jm—lail—la ~~7jm—l+17ilajm—l7 ...,jg,jl) = (1, 2, ...,TL), where (jl)’w c [371 + 47 5n —+ 4}
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and, the integers (je+1)w — (Je)w and (ip)w — (Jm—i+f)w and (fm—i+q+1)w — (ig)w are in
[2n+ 1] for any e € [m — ] and f € [[] and ¢ € [ — 1].

For any w € Cy satisfying the condition (5.3.1), we have the w-uncomparable pairs
ig, jm—1+q for any ¢ € [I] and the relations a <, j1 <w J2 <w *** <w Jm—1 <w P <w R2 <
-+ <y hy for some a € {n+1,2n + 2} and any hy € {ig, jm—i+q}- This implies that any
w € Fy 5,10y satisfies the conditions 5.1 (i), (ii), (ili'). So F{} 5,5 4y € Ek2n+2-k) N
by 2.5 and Lemma 5.2.

5.4. Lemma. For any w € K oni2_r), there ewists some w' e F(’k72n+27k) such that
w',w are in the same left-connected component of E, onta—r)-

Proof. We see by Lemma 5.2 that w € Ej, 25,42 if and only if w satisfies the conditions
5.1 (i), (i), (iii).

Now assume w € E(; 2n42-k). Suppose that i,i + 1 € [2n + 1],41 (resp., n,n + 2) are
a w-wild tail and a w-wild head, respectively. Then tjw (see 2.3) (resp., t,w) satisfies the
conditions 5.1 (i), (ii), (iii") (meaning that the conditions 5.1 (i), (ii), (iii’) hold with tjw
(resp., t,w) in the place of w). Hence the elements w and tjw (resp., t,w) are in the same
left-connected component of E(y 2, 12_k). Keeping this fact in mind, by replacing w by some
element in the same left-connected component of Ej, 2,42 if necessary and by symmetry
between the intervals [n] and [n + 2, 2n + 1], we may assume without loss of generality that
the integers iy, j, in the conditions 5.1 (i)-(ii) on w are in [n] for any p € [I] and ¢ € [m].

Define the sets X1 = {j1,J2, .., Ju,—1} and Xogi1 = {Ju,+15 Jug+2> - Jug -1 and
Xoiv1 = {Ju+1> Jur+25 -+ Jm } and Xop = {ip, ju, } for any ¢ € [I—1] and p € [I]. Then we have
the partition {i,,j, | p € [l],q € [m]} = U?ZZJZIXZ-, where any i € X, and any j € X,41 with
q € [21] either have the relation i <, j or are w-uncomparable (i.e., j 4, 7 in either case). If
Jj € Xpand j+1 € X, for some p < ¢ in [2]+ 1], then the element ¢;w satisfies the condition
5.1 (i),(ii), (iii") as w does so, hence ¢;w and w are in the same left-connected component of
E(i 2n+2-k) by Lemma 5.2. Again, keep this fact in mind, by replacing w by some element
in the same left-connected component of E(j 2,42-r) if necessary, we may assume that
(s oos Jurt1s Ps Gs Juy—15 o5 Jug+15 Ras Ggs Jug—15 o5 Juy +1, 1, 915 Juy —1, -+ J1) = (1,2,...,n),
where for ¢ € [I], we assign (hq, gq) to be (ju,,iq) O (ig, ju,) according to (ig)w > (ju,)w or
(ig)w < (Ju,)w-

Denote p; = | Xoj1| + | Xa| + -+ +|X;i| and 2, = (tp - - tu—1tntn_1---titg)? for any
i € [20+1] and p € [n]. Let wV) =z, -+ 2p, Tpy ., w. Then L(wD) = L(wDw=t) + £(w)
and (j)w™ = (j)w + (¢ — 1)(2n + 2) for any j' € X, with ¢ € [21 + 1]. We see that
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Ji =w® T = ju171 = hi <w ju1+1 <w® =@ juqfl <w® hq

<@ Jug+1 =@ =) Jup—1 < B =<0 Ju+1 <@ <) Jm

and that iy, j,, are wM-uncomparable for any ¢ € [I] and any h, € {ig, Ju, }- This implies
that w") satisfies the conditions 5.1 (i), (i), (iii’). So w(» and w are in the same left-
connected component of Ej 2,42k by Corollary 1.20.

Note that the set F(w™®) :={p € [n] | p+1,p+2 <, P <pa P — 1} is not empty,
where we stipulate 1 <,,1) 0 temporary. Define j to be the smallest integer in F(w(l)).

Suppose p(2n + 2) < (§)w — (j + 2w < (p+1)(2n + 2) for some p € N. Then
f(xj_pw(l)) = é(w(l))—f(xj_p) and (i)xj_pw(l) = ())w™ —p(2n+2) and (i’)x;pw(l) = (@")w®
for any i € [j] and i’ € [n] — [j]. This implies that 0 < (j)x;pw(l) -+ 2)x;pw(1) <2n+2
and that z; 7w satisfies the conditions 5.1 (i), (ii), (iii’). So by Lemma 5.2 and Corollary
1.20, the elements w") and x;pw(l) are in the same left-connected component of Ej, 2, 12_)-
Hence we may assume 0 < (j)w™ — (j 4 2)w™) < 2n +2 by replacing w® by some element

in the same left-connected component of E(j, 2,42_1) if necessary.

ath column (a+2n+2)th column ath column (a+2n+2)th columr
| |
T -1 #]— 1strow —— T T L e
o LS I e
. 1 N 1 jthrow —— . 1
. 1 . 1
A IR P I T e ... .
e’ . e
'1 1 . P 1 .
. .
1, 1,
1
ath column (a+2n+2)th column  (a+4n+4)th column
| | |
T R - -1 ®— 1strow
N S Ll 2
. 1 . . —— jthrow
............ S B B S
1 ":
1 .
-
.

w®@

Figure 2
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ath column (a+2n+2)th column ath column (a+2n+2)th column
| |
T T _ I — T T+
Le 1st row -
e ¢; e L;
o1 I jthrow —— Tl N
1 . 1
................. 1. .o e e
» »
Phe X .
1 . 1
e ' . .* 1
¢ . .
1
w() t]2n+1w()
ath column (at+2n+2)th column
|
T T L el —
I S 1st row
e ¢;
.1 . T jth row
. 1
....... "1..
i d .
1
1
-
o ®
w®
Figure 3

Define w® to be z;1t;w™ if (j)w™ — (j + 1)w® < 2n+2 and to be tj41t; 2, 11w
if (j)w® — G+ Dw® > 2n+2.

In Figure 2 (resp., Figure 3), we display the corresponding parts for the matrix forms
of w®, t;w0™M, w® in the case of a < (j + Nw® < (jlHuM < a+ 2n + 2 (vesp., w),
tiont1w; w? in the case of (j+1)w® < a < a+2n+2 < (j)w®) for some a € Z, where
the symbol »%° (or +** in short ) stands for a rectangular submatrix with g rows for
some ¢ € [n] each row contains a unique non-zero entry which is 1, the entries 1 are going
down to the left.

We see from the above graphs that w(?) satisfies the conditions 5.1 (i), (ii), (iii’), hence
w®, w® are in the same left-connected component of E(k 2n4+2-r) by Lemma 5.2. We have
that j +2 <, j,j+1if j =1 and that j +2 <, 7,7 +1 <,= j—1if j > 1 and that
4, j+ 1 are w®-uncomparable. We also have p <, ¢ if and only if p <, ¢ for any other
pairs of integers p, ¢ in [n].

By repeatedly applying the above process, we can eventually find an element w( in
the left-connected component of F(j 2,12k containing w with some r € N such that w()
satisfies the condition (5.4.1) below.

(5.4.1) There exist n distinct w-wild heads },5,- -+, 4], 1,75, s jo i [2n + 1],41 such

g . . 0 N y .
that (57,580, Jrn—1> 9115 s 1415 15 Jon—ts -+ 2 J1) = (1,2,...,n), where j;, <, Jjpi1 and
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Z:I <w™ i:;-&-l and j:nilJrqil <w™ Z; <w™ jfnfl+q+1 and j;n—l < w1 for any p € [m — 1]

and g € [l — 1] and that i/, j,, ;. are w(™-uncomparable for any ¢’ € [I].
Hence we see by 2.3 that there exists w’ € F('k onta_) Such that w’',w™ (and further

w’,w) are in the same left-connected component of Ej 9,42 k)-

5.5. Lemma. The set F(’k’2n+27k) is contained in a right-connected component of E(j, an42—k)-
Proof. Let J = {t1,t2,...,tn}. Then wy = [2n + 1,2n,...,n + 2]. Define the set F' =
{Z2zw | w € F(’k72n+2_k)} with z = tyt3-- -ty _sty—1 and 2’ = (toty - - th_1ty)". For any
€ Fly ont2-1)» we have L(2'zw) = J and £(zw) = £(z) + {(w) and £(2'zw) = L(zw) — {(2')
and (i)z'zw = (i)zw — 2n — 2 for any i € [n] by Corollary 1.9. A direct check shows that
wo = 2z~ 1(2")"lw satisfies the condition (5.3.1) with wy in the place of w and hence is

i Fy oy k-

F(/k,2n+27k) to F’ with wg, w; the unique shortest elements in F('k’QnJr%k)7 F’, respectively.

This implies that w — 2’zw is an order-preserving bijection from the set

Any w € F(’k,2n+2_k) satisfies 2/zw = wyz with £(z'2w) = L(w;) + £(z) for some z € Ch,
hence w = z71(2')"lwyx = wor satisfies £(w) = £(wy) + £(x). The element w is in the
right-connected component of F( 2,12_k) containing wg by Corollary 1.20. [J

Since F(’k72n+2_k) C Ek2nt2-k) N, it makes sense to define the set T(x 2,42-%) :=
{T(w) |we F(’k’Zank)} by 2.5. Let

a:=(2,..2 1,.,1,2 1,..1,2,....2) € Aypio.
S—— Y~ ~—— =

! times m—! times m—1l times [ times
Then ¢(T) = a for any T € T(; 2n42-k)-

5.6. Lemma. There are exactly n!2™ left cells of 671 in the set Bk onq2—k)-

Proof. By Lemmas 1.16, 1.19, 2.6 and 5.4, we need only to enumerate the set T 2p12—r)-
We see that T = (T3, Ty, ..., Tams1) € € () is in Ty 242-k) if and only if T; = Topqo—;
for any ¢ € [m] and Ty, 41 = {n+1,2n+2}. When the equivalent conditions hold, the gener-
alized tabloid T is determined uniquely by the m-tuple (71, T3, ..., T ). Now the number of
the choices for the set T} is 2n(n —1). Recurrently, suppose that a € [m — 1] and that all the
Ty, b € [a], have been chosen. Then the number of the choices for T 41 is 2(n—2a)(n—2a—1)
ifaell—1] andis 2(n — 1 —a) if @ € [[,m — 1]. This implies that the cardinal of the set

T (k,2n+2—k) 18 n!2", our result follows. [J

5.7. Theorem. (1) If k= 2m € [n+ 1,2n] is even, then Ey, opio_k) = 0.
Now assume k =2m +1 € [n+ 1,2n] odd.

(2) The set B, on42-k) is two-sided-connected and forms a single two-sided cell of 5n



20 QIAN HUANG AND JIAN-YI SHI

(3) The set Ey, onta_k) is infinite.

(4) The set B on42-k) contains n!2™ left cells, each of which is left-connected.

Proof. The assertion (1) follow by Proposition 3.2. Then (2) and (4) are the conse-
quences of Lemmas 5.2 and 5.4-5.5. Finally, (3) follows since the number of the choices for

the integer (j,,)w in the condition 5.1 (i) on w € E(; 2n42-k) is infinite. O

6. The left and two-sided cells of the affine Weyl group Cs.

We shall study the cells of the weighted Coxeter group 5‘3 = (6'3,277) in this section.

Recall the notation E) defined in 1.18 for any A € Ag, 42 and the group automorphism
n of C,, defined in 1.10. Denote by n(\) the number of left cells of C,, in Ey. Fix A € As.
We shall prove that the set E) contains at most two two-sided cells of C~'3 When F) is a
union of two two-sided cells (say E} , EY) of C3, denote by n/(A) , n”()\) the numbers of
left cells of 53 in EY , EY, respectively. The results on the cells of C~’3 can be summarized

as follows.

6.1. Theorem. Let 5’5 = (53,277) be the weighted Coxeter group with n its automor-
phism defined in 1.10. Let A € Ag.
(1) The set Ex forms a single two-sided cell of Cs if A € {71, 53,513, 4212, 3822, 3212 315 2214 18},
(2) The set Ey is a union of two two-sided cells of Cs if A € {521, 3221, 3213}
(3) Ex = 0 if A € {8,62,612,42 431,422 41?24 2312 216}, E\ # () is finite if A € {3221, 3213,2%14 18},
3

and is infinite if X € {71,53,521,513, 4212 322, 3212 315}.

2

interchanges the two-sided cells B, EY for any \ € {521,3221, 3213},
U] g PRREESY Y

(5) The numbers n(\) for all X € Ag with Ey # 0 are listed in the following table.

A 71| 53 | 521 | 513 | 4212 | 322 | 3212 | 3221 | 3213 | 31

n(A\)| 48| 24| 12 | 24 6 8 12 6 2 6 2 1

5 2214 18

where n’(521) = n"(521) = 6 and n'(3221) = n"(32%21) = 3 and n’(3213) = n”(3213) = 1.

(6) Each left cell of Cs is left-connected.

6.2. We have E\ = () for A € {8,62,612,42 431,422 41 2% 2312 215} by Propositions
3.2-3.3. To prove Theorem 6.1, we need only to consider the sets F) with A € A :=
{521, 4212 322 3212 3221, 3213 221%} by Theorems 4.6 and 5.7. We shall do this by a case-
by-case argument, which can be sketched as follows. Given A € A. We usually define a
subset (say Fy) of E) and then prove that F) has a non-empty intersection with each left-
connected component of Ey by 2.3 and that there are no two elements of F\ belong to the

same left cell of 53 by either Lemma 1.17 or Lemma 2.6. This implies by Lemmas 1.16, 1.17
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and 1.19 that each left cell of F is left-connected and that F is a representative set for the
left cells in E\. We get the number n(A) simply by enumerating the set F. Finally, when
FE), forms a single two-sided cell of C~'3, we prove such a conclusion usually by proving that
the set I\ is contained in some two-sided-connected component of E); when F) is a union

of two two-sided cells of 63, the argument becomes more subtle.

6.3. Consider the partial order =<,, on [8] with respect to a fixed w € Cs. The following
equivalent conditions hold by Lemma 2.2:

(1) ¥(w) = s21 if and only if there are distinct w-wild heads i,7,k € [7]4 such that
{i,J,k} is neither a w-chain nor a w-antichain and that either {i,j,4} or {i,7,8} is a w-
antichain.

(2) ¥ (w) = 4212 if and only if there are one w-wild head i and two w-tame heads j, k in
[7]4 such that i <, j <w k <4 i.

(3) ¥(w) = 322 if and only if there are pairwise w-uncomparable w-wild heads i, j, k in
[7]4 such that 4 <, ¢ and 8 <, k.

(4) ¥(w) = 3212 if and only if one of the conditions (4a)-(4c) holds for some distinct
i,7,k € [7]a:

(4a) Two w-uncomparable w-wild heads 4, j and one w-tame head k satisfy either that
4 <, 1 and 8 <,, j or that both k and k are w-comparable with at least one of 4, j;

(4b) One w-wild head i and two w-tame heads j, k satisfy either i £, j <u k <4 i OF
i <w J <w k Auw i

(4¢) 4,4, k are all w-tame heads and compose a w-chain.

(5) ¥(w) = 3221 if and only if one of the conditions (5a)-(5c) holds for some distinct
i,7,k € [7]a:

(5a) i, j, k are all w-wild heads such that either {4,4, j, k} or {8,4,j, k} is a w-antichain;

(5b) Two w-wild heads 7,j and one w-tame head k satisfy that exactly one of {k,1,j}
and {k,i,j} is a w-antichain and that either {4,4,5} or {8,4,5} is a w-antichain;

(5¢) One w-wild head i and two w-tame heads j, k satisfy i A, J <w k Auw i

(6) ¥(w) = 3213 if and only if there are two w-wild heads i, j and one w-tame head k
in [7]4 such that {i,j, k, k} and one of {4,4,j}, {8,i,j} are w-antichains.

(7) ¥ (w) = 221 if and only if there are distinct w-tame heads i, j, k € [7]4 such that
the set {4, j, k} forms neither a w-chain nor a w-antichain.

By making use of the above description of Ey, A € A, we shall prove Theorem 6.1 in
6.4-6.9.
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6.4. Denote by El,, (resp., Elyy) the set of all such w € Cs that there are distinct
w-wild heads i, j,k € [7]4 satisfying either that {4,i,k} is a w-antichain and ¢ <, j or
that {4,7,k} is a w-antichain and i <, j, k (resp., either that {8,4, k} is a w-antichain and
i < j or that {8,7,k} is a w-antichain and i <, j, k). We see that E~! = FE for any
E € {Efy1, Et51} and that Esa1 = EfyU Elgq by 6.3 (1). Let Fsa1 = Figq U Fiy with

Fio = {[-2,-3,-1],[-2,-5,-1],[-3, -6, —1],[-3,-7,-2],[-3, -9, 2], [-1, =3, -2]},

Fgay ={[5,7.6], [5,9,6], [5,10,7], [6,11,7], [6,13,7], [6,7,5]}.

The group automorphism 7 of Cs stabilizes the sets FEs21, F521 and interchanges Ffo, Efoq
(resp., Fiay, Fia1). By 6.3 (1) and 2.3, we see that for any w in Esa1 (resp., Ega1, Floq)
there is some w’ in Fyo1 (resp., Fiqa1, Fiaq) such that w',w are in the same left-connected
component of Esa1.

In Ffopq, let x :=[-2,—3,—1]. Then [-1, -3, -2] = xty, [-2, -5, —1] = xt3, [-3, —6, —1]
ststy, [—3,—7,—2] = atstaty, [—3, =9, 2] = wtstatito, R(z) = {to,t2}, R(wt1) = {to,t1},
R(xts) = {to,t3}, R(xtste) = {to,ta}, R(ztstat1) = {t1}, R(xtstatrto) = {to}.

Also, in Flyq, let y := [5,7,6]. Then [6,7,5] = yta, [5,9,6] = yto, [5,10,7] = ytot1,
[6,11,7] = ytotita, [6,13,7] = ytotatats, R(y) = {t1,t3}, R(yta) = {t2,t3}, R(yto) =
{to,ts}, Rlytotr) = {t1,t3}, R(wtotrts) = {ta}, R(ytot1tats) = {ts}.

The above data can be displayed by two graphs in Figure 4 below (see 1.13):

[-1,-3,-2] [-2,-3,-1] [-2,-5,-1] [-3,—6,—1] [-3,—7,—2] [-3,-9,—2]

------ oo -~ -~ g

6,7,5] 5,7,6] 5,9,6] [5,10,7] [6,11,7] [6,13,7]
------- o[-
Figure 4

Hence we see from Figure 4 that the elements of Ff,, (resp., Fiy;) are in the same right-
connected component of F521 and that the elements of Fsa1 have pairwise different gener-
alized 7-invariants. This implies by Lemmas 1.16, 1.17 and 1.19 that each left-connected
component of Egg; lies in either Ef,; or Ely; and forms a left cell of Cs. This further
implies by Lemma 1.3 that each of Ef4; and Efs; is two-sided-connected and forms a single

two-sided cell of én.

6.5. Let Fyp12 = F) o UF) 5 be with

F41212 ={[7,3,2],19,3,2],[10,3,1]} and F41/212 ={[3,1,-6],[2,1,-5],[2, 1, =3]}.
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Then by 6.3 (2) and 2.3, we see that for any w € E,,,2, there is some w’ € F,,,2 such that
w’,w are in the same left-connected component of E,, 2. From Figure 5, we see that each
of the sets F,_ o, F o is right-connected. Take z = [7,3,2] € F}_ 5,y =[2,1,-3] € F,
and z = [11,2,1] € E 5;2. Then z = xtotity = titatsy with £(2) = £(x) 4+ L(totit2) =
L(t1tats) + €(y). Hence z,y, z are in the same two-sided-connected component of E,,,2 by
Corollary 1.20. This implies that the set E,,; 2 is two-sided-connected and forms a single

two-sided cell of 53 by Lemmas 1.16, 1.17 and 1.19.

[7,3,2] [9,3,2] [10,3,1] [3,1,—6] [2,1,—5] [2,1,-3]

----- ------

Figure 5

Let © = [7,3,2] € F), o and y = [2,1,-3] € F] .

ments in A; and by Corollary 1.9, we have R(z) = R(y) = {s1,52,55,56}, R(wss) =

By regarding x,y as ele-

ﬁ(ys;e)) = {s1, 83, 85, 56}, 75,(1:5354) = ﬁ(y5354) = {s1, 84,56}, ﬁ(x535456) = R(ys3s485) =
{51, 84, 85}, ﬁ(ws;;sﬁ) = ﬁ(y33545553) = {s1, 83,85} and 7€(st) = {51, 892,85} # {s2,85} =
R(ys354555352). This implies that x, y have different generalized 7-invariants. Hence we see
from Figure 5 that the elements of F, 2 have pairwise different generalized 7-invariants.
So F,,,2 forms a representative set for the left cells of 5'3 in £ 5,2 by Lemma 1.17.

6.6. Lot Fyz, = Flp U FY,

32, D€ with

{;22 = {[_17 9, 6]7 [_27 9, 7]7 [_376’ 7]7 [_576a 7}})

0 {[-2,-1,5],[-3,-1,6],[-3,—2,7],[—3,—2,9]}.

322 —

Then by 6.3 (2) and 2.3, we see that for any w € Eg2,, there is some w’ € Fj2, such that

w’,w are in the same left-connected component of Fg2,. From Figure 6, we see that each

of the sets Iy, Fy5, is right-connected. Take x = [—1,5,6] € Fyp,, y = [-2,—1,5] € F5,
and z = [=5,—1,6] € Ez2,. Then z = atotity = titatsy with (z) = l(x) + L(tot1te) =

U(t1tats) + €(y). Hence x,y,z are in the same two-sided-connected component of Egz2, by
Corollary 1.20. This implies that the set Eg2, is two-sided-connected and forms a single

two-sided cell of 53 by Lemmas 1.16, 1.17 and 1.19.

[—1,5,6] [-3,6,7] [-5,6,7] [-3,-2,9] [-3,—-2,7 [-3,—1,6] [-2,-1,5]

R TR

Figure 6
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From Figure 6, we see that the elements of Fy2, have pairwise different generalized
T-invariants. So Fy2, forms a representative set for the left cells of C5 in E;2, by Lemma

1.17.

6.7. Let Fyz2 = Fly 5 UFY, 5 be with

F:;212 = {[_17 2a 5}7 [_27 17 5}7 [_17 37 6}7 [_37 17 6}7 [_57 17 6}7 [_2737 7}7 [_2,37 9]}a

5/212 ={[8,2,-1],3,1,-2],[5,2,1}, 6, 3,1], 3,2, 1]}

By 6.3 (4) and 2.3, we see that for any w € Eg2,2, there is some w’ € Fy2,2 such that
w’,w are in the same left-connected component of Ez2,2. From Figure 7, we see that each
of the sets Fi5 5, Fy5 o is right-connected and that the elements of Fy2,2 have pairwise

different generalized T-invariants.

[—5,1,6] [—3,1,6] [—2,1,5] [—1,2,5] [—1,3,6] [—2,3,7] [—2,3,9]

- - o ——fod——fi - - - o

[6,3,1] [5,2,1] (3,2,1] (8.2,-1  [3,1,-2]
----- ------
Figure 7
Take x = [-1,2,5] € Fip 0, ¥y = [3,2,1] € Fj5,5 and z = [-3,2,7] € Ez2,2. Then

z = zy with £(z) = ¢(x)+£(y). Hence z,y, z are in the same two-sided-connected component
of 42,2 by Corollary 1.20. This implies that the set Fg2,2 is two-sided-connected and forms
a single two-sided cell of 53 by Lemmas 1.16, 1.17 and 1.19.

We see from Figure 7 that the elements of Fy2,2 have pairwise different generalized
T-invariants. This implies by Lemma 1.17 that Fg2,2 forms a representative set for the left

cells of 6’3 in Fy2,2.

6.8. Let B o = U2:1 Ep and B 5, = U2:4 Ej be with
Ey, = {[27 1, 5]7 [27 9, 1]7 [27 9, 7}}7 Ey, = {[37 1, 6]7 [3u 6, 1]u [37 6, 7]}7
E3 = {[5’ 1, 6]’ [57 6, 1]7 [5767 7]}5 Ey= {[71737 2]a [3a -1, Q]a [*3, -1, 2”)

Es ={[-2,3,1],[3,-2,1],[-3,-2,1]}, Es={[-2,3,-1],[3,—-2,-1],[-3,-2,-1]}.

[2,1,5] [3,1,6] [5,1,6] [—2,3,—1] [—2,3,1] [-1,3,2]

2

Figure 8
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We see from 6.3 (5) that Fz,2, = ;’2210 392, and that the set Ej, is a left-connected
component of Egyz, for any k € [6]. From Figure 8, we see that the set E}_, (resp., Ey 5 )

is two-sided-connected and that the elements occurring as vertices of the graphs in Figure

8 have pairwise different generalized 7-invariants. So the set Ej, forms a left cell of F 52,
for any k € [6] by Lemmas 1.16, 1.17 and 1.19.

-1 _ / "

We have E~! = E for any f] € {E5y2, Fyp2y
forms a single two-sided cell of C3 by Lemma 1.3.

/ /!
}. Hence each of the sets Ej o, Ei o,

6.9. By 6.3 (6)-(7), we have
E3213 = {[1’ 5’ 6]’ [_2’ _173]} and E2214 = {[27 1a 3]7 [2737 1]; [L 3; Q]a [37 1a 2]}

Since both z :=[1,5,6] and y := [-2, —1, 3] are involutions with R(z) = {t3} # {to} =

R(y), each of the sets £} 5 = {[1,5,6]} and E 5 = {[-2,—1,3]} forms both a two-sided

cell and a left cell in Cs by Lemma 1.3. The group automorphism 7 of Cs interchanges E

li
3213

and Ey, 3. On the other hand, we see that the set E,2,4 is two-sided-connected and hence

forms a single two-sided cell of 63 by Lemma 1.16, 1.17 and 1.19. The set E,2,4 consists
of two left-connected components E; := {[2,1,3],[2,3,1]} and E := {[1,3,2],[3,1, 2]} with
R(E1) = {t1} # {t2} = R(F2). This in turn implies that both E; and Es are left cells of
Cs by 1.2.
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