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Abstract. We describe all the left cells of a-values 5, 6 in the affine Weyl

group eE8 in the paper. More precisely, we show that each of those left cells
is left-connected, verifying a conjecture of Lusztig in our case. We find all the
distinguished involutions in those left cells which occur as the vertices of the
corresponding distinguished involution graphs. We also get all the correspond-
ing left cell graphs.

1. Introduction

1.1. Let W be a Coxeter group with S its Coxeter generator set. Kazhdan and Lusztig

introduced the concepts of left, right and two-sided cells in W in order to construct repre-

sentations of W and the associated Hecke algebra H in [3]. Lusztig further introduced the

function a : W −→ N ∪ {∞}, he proved that when W is either a Weyl group or an affine

Weyl group, the function a is constant on any two-sided cell of W and that each left cell of

W contains a unique distinguished involution (see [6]). Distinguished involutions play an

important role in the representation theory of W and H. Thus this yields a big project to

describe all the left cells of a Coxeter group W , and to find all the distinguished involutions

of W when W is either a Weyl group or an affine Weyl group.

1.2. Now we consider the cells of the affine Weyl group Ẽ8. All the cells Γ of Ẽ8 with

a(Γ) either equal to 120 or 6 4 have been described explicitly (see [4], [9], [12], [13], [20]).

In the present paper, we describe all the cells Γ of Ẽ8 with a(Γ) ∈ {5, 6}.
Let 6 be the Bruhat-Chevalley order and ` the length function on W . For any two-

sided cell Ω and any left cell Γ of W , define F (Ω) = {w ∈ Ω | a(sw), a(tw) < a(w), ∀ s, t ∈
S with sw, tw < w} and Emin(Γ) = {w ∈ Γ | `(w) 6 `(y), ∀ y ∈ Γ}. In [19], Shi introduced

an algorithm for finding a representative set of left cells (or an l.c.r. set for short) of W

in a two-sided cell Ω with the starting set F (Ω). On the other hand, when W is an affine

Weyl group of simply-laced type and when Γ is a left cell of W with a(Γ) 6 6, Shi described

the distinguished involution in Γ in terms of elements of Emin(Γ) (see [18, Theorem A]). By
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applying these results, we find all the distinguished involutions d (which occur as the vertices

of certain distinguished involution graphs) of Ẽ8 and all left cell graphs in the two-sided cells

Ω of Ẽ8 with a(d), a(Ω) ∈ {5, 6}.
A subset K of W is left-connected, if for any x, y ∈ K, there exists a sequence x0 =

x, x1, ..., xr = y in K with some r > 0 such that xi−1x
−1
i ∈ S for 1 6 i 6 r. Lusztig

conjectured in [1] that any left cell Γ of an affine Weyl group is left-connected. The conjecture

is supported by all the existing data. In the present paper, we prove that all the left cells Γ

of Ẽ8 with a(Γ) ∈ {5, 6} are left-connected, verifying Lusztig’s conjecture in our case.

1.3. The contents of the paper are organized as follows. Section 2 is served as pre-

liminaries, we collect some concepts, notation and known results there. In Section 3, we

show that all the left cells Γ of Ẽ8 with a(Γ) ∈ {5, 6}, are left-connected. In Section 4,

we introduce distinguished involution graphs and left cell graphs for any two-sided cell Ω

of Ẽ8 with a(Ω) ∈ {5, 6}. In Appendices, we display all the elements of E(Ω) and all the

distinguished involution graphs and all the left cells graphs for Ω in the electronic version

of the paper (see [2]) and attach only a small portion of it after the paper version.

2. Preliminary.

2.1. Let W = (W,S) be a Coxeter group with S its Coxeter generator set. Let 6 be

the Bruhat-Chevalley order and ` the length function on W .

2.2. Let A = Z[u, u−1] be the ring of all Laurent polynomials in an indeterminate u

with integer coefficients. The Hecke algebra H of W over A has two A−bases {Tx | x ∈ W}
and {Cw | w ∈ W} which satisfy the relations

{
TwTw′ = Tww′ , if `(ww′) = `(w) + `(w′),
(Ts − u−1)(Ts + u) = 0, for s ∈ S,

and

Cw =
∑
y6w

u`(w)−`(y)Py,w(u−2)Ty,

where Py,w ∈ Z[u] satisfies that Pw,w = 1 for w ∈ W , Py,w = 0 if y 66 w and deg Py,w 6
(1/2)(`(w)− `(y)−1) if y < w. The Py,w’s are called Kazhdan-Lusztig polynomials (see [3]).

2.3. For y, w ∈ W with `(y) < `(w), denote by µ(y, w) or µ(w, y) the coefficient of

u(1/2)(`(w)−`(y)−1) in Py,w. The elements y and w are called jointed, written y −−− w, if
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µ(y, w) 6= 0. To any x ∈ W , we associate two subsets of S:

L(x) = {s ∈ S | sx < x} and R(x) = {s ∈ S | xs < x}.

2.4. Let 6
L

(resp., 6
R

, 6
LR

) be the preorder on W defined as in [3], and let ∼
L

(resp., ∼
R

,

∼
LR

) be the equivalence relation on W determined by 6
L

(resp., 6
R

, 6
LR

). The corresponding

equivalence classes of W are called left (resp., right, two-sided) cells of W . The preorder 6
L

(resp., 6
R

, 6
LR

) on W induces a partial order on the set of left (resp., right, two-sided) cells

of W .

If x 6
L

y (resp., x 6
R

y), then R(x) ⊇ R(y) (resp., L(x) ⊇ L(y)). In particular, If x ∼
L

y (

resp., x ∼
R

y), then R(x) = R(y) (resp., L(x) = L(y)) (see [3, Proposition 2.4]). So we may

define R(Γ) (resp., L(Γ)) for a left (resp., right) cell Γ of Wa to be the common set R(x)

(resp., L(x)) for all x ∈ Γ.

2.5. Define hx,y,z ∈ A by

CxCy =
∑

z

hx,y,zCz

for any x, y, z ∈ W . In [5], Lusztig defined a function a : W → N ∪ {∞} by setting

a(z) = min{k ∈ N | ukhx,y,z ∈ Z[u], ∀x, y ∈ W} for any z ∈ W

with the convention that a(z) = ∞ if {k ∈ N | ukhx,y,z ∈ Z[u], ∀x, y ∈ W} = ∅.

2.6. An affine Weyl group Wa is a Coxeter group which can be realized geometrically as

follows. Let G be a connected, adjoint reductive algebraic group over the complex number

field C. Fix a maximal torus T of G, let X be the character group of T and let Φ ⊂ X be the

root system of G with ∆ = {α1, ..., αl} a choice of simple root system. Then E = X ⊗Z R

is a euclidean space with an inner product〈 , 〉 such that the Weyl group (W0, S0) of G with

W0
∼= NG(T )/T acts naturally on E and preserves its inner product, where S0 is the set of

simple reflections si corresponding to the simple roots αi, 1 6 i 6 l. Denote by N the group

of all the translations Tλ : x 7→ x + λ on E with λ ranging over X. Then the semidirect

product Wa = N o W0 of W0 with N is an affine Weyl group. Let K be the type dual to

the type of G. Then the type of Wa is K̃. In the case where no danger of confusion causes,

Wa is denoted simply by its type K̃. Let w 7→ w̄ be the canonical homomorphism from Wa

to W0
∼= Wa/N .

The following properties of the function a on (Wa, S) were proved by Lusztig:

(1) x 6
LR

y =⇒ a(x) > a(y). In particular, x ∼
LR

y =⇒ a(x) = a(y). So we may define

the value a(Γ) for a left (resp., right, two-sided) cell Γ of Wa to be the common value a(x)

for all x ∈ Γ (see [5, Theorem 5.4]).
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(2) a(x) = a(y) and x 6
L

y (resp., x 6
R

y) =⇒ x ∼
L

y ( resp., x ∼
R

y) (see [5, Corollary

6.3], [6, Corollary 1.9]).

(3) Let δ(z) = deg Pe,z for z ∈ Wa, where e is the identity of the group Wa. Define, for

any i ∈ Z,

Di = {w ∈ Wa | `(w) − 2δ(w) − a(w) = i}

Then Lusztig proved that Di 6= ∅ only if i > 0, that D0 is a finite set of involutions

(following Lusztig, we call elements of D0 distinguished involutions of Wa) and that each left

(resp., right) cell of Wa contains a unique element of D0 (see [6, Subsection 1.3, Proposition

1.4 and Theorems 1.10, 2.2]).

(4) For any I ⊂ S, let wI be the longest element in the subgroup WI of Wa generated

by I (note that WI is always finite). Then wI ∈ D0 and a(wI) = `(wI) (see [5, Proposition

2.4 and Corollary 6.3]).

(5) If W(i) := {w ∈ Wa | a(w) = i} contains an element of the form wI for some I ⊂ S,

then the set {w ∈ W(i) | R(w) = I} forms a single left cell of Wa by (1)-(2) and (4).

Call s ∈ S special if the group WS\{s} has the maximum possible order among all the

standard parabolic subgroups WI , I ⊂ S, of Wa. For s ∈ S, let

Ys = {w ∈ Wa | R(w) ⊆ {s}}.

Then Lusztig and Xi proved the result (6) below.

(6) Let s ∈ S be special. Then Ω ∩ Ys is non-empty and forms a single left cell of Wa

for any two-sided cell Ω of Wa (see [8, Theorem 1.2]).

(7) By the notation x = y · z (x, y, z ∈ Wa), we mean x = yz and `(x) = `(y) + `(z).

In this case, we have x 6
L

z and x 6
R

y and hence a(x) > a(y), a(z) by (1). In particular, if

I = R(x) (resp., I = L(x)), then a(x) > `(wI) by (4).

Lusztig also proved the following

2.7. Theorem. (see [7, Theorems 4.8 and 8.1]) Let G and Wa be the algebraic group

and the corresponding affine Weyl group given in 2.6 respectively. Then there exists a bi-

jective map u 7→ c(u) from the set U(G) of unipotent conjugacy classes in G to the set

Cell(Wa) of two-sided cells in Wa, which satisfies the equation a(c(u)) = dimBu, where u is

any element in u, and dimBu is the dimension of the variety of all the Borel subgroups of

G containing u.
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2.8. In the remaining part of the section, we assume that (Wa, S) is an irreducible affine

Weyl group of simply-laced type, that is, the order o(st) of the product st is not greater

than 3 for any s, t ∈ S, or equivalently, Wa is of type Ã, D̃ or Ẽ.

Given s, t ∈ S with o(st) = 3, a set of the form {sy, tsy} (resp., {ys, yst}) is called a left

(resp., right) {s, t}-string (or a left (resp., right) string for short), if L(y)∩ {s, t} = ∅ (resp.,

R(y) ∩ {s, t} = ∅).

2.9. Proposition. (see [3, Theorem 4.2], [16, Proposition 4.6]) For s, t ∈ S with

o(st) = 3, let {x1, x2} and {y1, y2} be two left (resp., right) {s, t}-strings. Then

(1) x1 −−− y1 ⇐⇒ x2 −−− y2;

(2) x1 ∼
R

y1 (resp., x1 ∼
L

y1) ⇐⇒ x2 ∼
R

y2 (resp., x2 ∼
L

y2).

2.10. Two elements x, y ∈ Wa form a (left) primitive pair, if there exist two sequences

x0 = x, x1, . . . , xr and y0 = y, y1, . . . , yr in Wa such that the following conditions are satis-

fied:

(a) For every 1 6 i 6 r, there exist some si, ti ∈ S with o(siti) = 3 such that both

{xi−1, xi} and {yi−1, yi} are left {si, ti}-strings.

(b) xi −−− yi for some (and then for all by Proposition 2.9 (1)) 0 6 i 6 r.

(c) Either L(x) * L(y) and L(yr) * L(xr), or L(y) * L(x) and L(xr) * L(yr) hold.

2.11. Proposition. (see [14, Subsection 3.3]) x ∼
L

y if x, y ∈ Wa form a left primitive

pair.

2.12. We say that x is obtained from w by a left (resp., right) {s, t}-star operation (or

a left (resp., right) star operation for short), if {x,w} is a left (resp., right) {s, t}-string.

Note that the resulting element x for a left (resp., right) {s, t}-star operation on w is always

unique whenever it exists.

Let d be an involution of Wa, i.e., d2 = e. Suppose that there exist some s, t ∈ S with

o(st) = 3 such that |L(d) ∩ {s, t}| = 1 (the notation |X| stands for the cardinal of a set X).

We say that d′ ∈ Wa is obtained from d by the two-sided {s, t}-star operations, if d′ can

be obtained from d by a left {s, t}-star operation followed by a right {s, t}-star operation.

In this case, there must exist some t1, t2 ∈ {s, t} such that d′ = t1dt2, where {d, t1d} is

a left {s, t}-string and {t1d, d′} is a right {s, t}-string. It is easily seen that d′ is also an

involution. Hence we also have d′ = t2dt1 with {d, dt1} a right {s, t}-string and {dt1, d
′} a

left {s, t}-string. Moreover, we have the following result.
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2.13. Proposition. (see [15, Proposition 5.12] ) Let d ∈ D0. Suppose that there exist

some s, t ∈ S with o(st) = 3 such that |L(d) ∩ {s, t}| = 1. If d′ is obtained from d by the

two-sided {s, t}-star operations, then d′ ∈ D0.

2.14. In the present paper, when we mention a graph, we always mean a set M of

vertices together with a set E of edges, where M ⊆ Wa and, each element of E is a certain

two-elements subset of M . We usually denote a graph by a capital calligraphic letter (e.g.,

M = (M,E)). By a vertex-labeled graph (or a v-l graph for short), we mean a graph

M = (M,E) with each x ∈ M labeled by some subset of S (say V(x), we usually take V(x)

to be R(x) or L(x)). By a vertex-edge-labeled graph (or a v-e-l graph for short), we mean a

v-l graph each of whose edges is labeled by either some element or some subset in S.

By a path in a graph M = (M,E), we mean a sequence z0, z1, . . . , zr in M with some

r > 0 such that {zi−1, zi} ∈ E for every 1 6 i 6 r.

Two edges {x, y} 6= {x′, y′} of a graph M = (M,E) are said parallel, if there are two

paths x0 = x, x1, ..., xr = x′ and y0 = y, y1, ..., yr = y′ in M with some r > 1 such that

{xi, yi} ∈ E for every 0 6 i 6 r.

For any two v-l (respectively, v-e-l) graphs M = (M,E) and M′ = (M ′, E′) in G, we

write M ' M′ (respectively, M ∼= M′), if there exists a bijective map φ : M −→ M ′

satisfying the conditions (a)-(b) (respectively, (a)-(c)) below.

(a) V(x) = V(φ(x)) for any x ∈ M .

(b) For any x, y ∈ M , we have {x, y} ∈ E if and only if {φ(x), φ(y)} ∈ E′.

(c) For any {x, y} ∈ E, the label of {x, y} ∈ E is equal to that of {φ(x), φ(y)}.

2.15. For any x ∈ Wa, denote by M(x) the set of all y ∈ Wa such that there is a

sequence x0 = x, x1, . . . , xr = y in Wa with some r > 0 such that {xi−1, xi} is a right string

for every 1 6 i 6 r.

Define the graph M(x) associated to x ∈ Wa to be a v-l graph with M(x) its vertex set

and E its edge set, where E consists of all such two-elements subsets {y, z} in M(x) that

{y, z} is a right string, and each y ∈ M(x) is labeled by the set R(y).

The left cell graph associated to x ∈ Wa, written ML(x), is by definition a v-l graph,

whose vertex set ML(x) consists of all the left cells Γ of Wa with Γ ∩ M(x) 6= ∅; {Γ,Γ′} ⊆
ML(x) is an edge of ML(x), if there are some y ∈ M(x) ∩ Γ and some y′ ∈ M(x) ∩ Γ′ with

{y, y′} an edge of M(x); each Γ ∈ ML(x) is labeled by the set R(Γ) (see 2.4).



THE LEFT CELLS WITH a-VALUES 5,6 IN THE AFFINE WEYL GROUP eE8 7

2.16. Let d ∈ D0. Denote by D(d) the set of all such d′ ∈ Wa that there is a sequence

d0 = d, d1, . . . , dr = d′ in Wa with some r > 0, where di is obtained from di−1 by a two-sided

{si, ti}−star operation with some si, ti ∈ S, o(siti) = 3, for every 1 6 i 6 r.

By Proposition 2.13, we have D(d) ⊆ D0 for any d ∈ D0, so D(d) is a finite set by 2.6

(3).

Define a graph D(d) associated to d ∈ D0 to be a v-e-l graph with D(d) its vertex set,

its edge set consists of all the two-elements subsets {d1, d2} in D(d), where d1 is obtained

from d2 by a two-sided {s, t}−star operation with some s, t ∈ S, o(st) = 3; in this case, we

label the edge {d1, d2} by the pair t1, t2 ∈ {s, t} if d2 = t1d1t2. When t1 = t2, we denote

the pair t1, t2 simply by t1 for simplifying the notation. Each d′ ∈ D(d) is labeled by the

set R(d′). Call D(d) the distinguished involution graph associated to d.

By the definition, we have D(d′) = D(d) and D(d) = D(d′) for any d′ ∈ D(d).

2.17. Two elements x, x′ ∈ Wa are said to have the same (right) generalized τ -invariants,

if for any path z0 = x, z1, . . . , zr in M(x), there is a path z′0 = x′, z′1, . . . , z
′
r in M(x′) with

R(z′i) = R(zi) for every 0 6 i 6 r, and if the above condition remains valid when the roles

of x and x′ are interchanged.

Then the following result is known.

2.18. Proposition. (see [16, Proposition 4.2], [20, Proposition 2.6], [21]) (a) If x ∼
L

y

in Wa, then x, y have the same right generalized τ -invariants.

(b) If x, y ∈ Wa satisfy either x ∼
L

y or y ∈ M(x), then the left cell graphs ML(x) and

ML(y) are the same.

2.19. Keep the notation in 2.6. Let −α0 be the highest short root in Φ. Denote

s0 = sα0T−α0 , where sα0 is the reflection in E with respect to α0. Then S = S0∪{s0} forms

a Coxeter generator set of Wa.

The alcove form of an element w ∈ Wa is, by definition, a Φ-tuple (k(w,α))α∈Φ over Z

determined by the following conditions.

(a) k(w,−α) = −k(w,α) for any α ∈ Φ;

(b) k(e, α) = 0 for any α ∈ Φ, where e is the identity element of Wa;

(c) If w′ = wsi (0 6 i 6 l), then

k(w′, α) = k(w, (α)si) + ε(α, i)

with
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ε(α, i) =


0 if α 6= ±αi;
−1 if α = αi;
1 if α = −αi,

where si = si if 1 6 i 6 l, and s0 = sα0 .

By condition (a), we can also denote the alcove form of w ∈ Wa by a Φ+-tuple

(k(w,α))α∈Φ+ , where Φ+ is the positive root system of Φ containing ∆.

Condition (c) defines a set of operators {si | 0 6 i 6 l} on the alcove forms of elements

w of Wa:

si : (k(w;α))α∈Φ 7−→ (k(w; (α)si) + ε(α, i))α∈Φ.

2.20. Let w′ = x · w with w′, x, w ∈ Wa. In this case, we call w′ a left (resp., right)

extension of w (resp., x), and call w (resp., x) a left (resp., right) retraction of w′. When

w′ = x ·w · y with w′, x, y, w ∈ Wa, we call w′ an extension of w and call w a retraction of

w′.

Then the following results were shown by Shi:

2.21. Proposition. (see [10, Proposition 4.3], [11], [17, Proposition 1.6]) Let w ∈ Wa.

(1) `(w) = Σα∈Φ+ |k(w,α)|, where the notation |x| stands for the absolute value of x ∈ Z;

(2) R(w) = {si | k(w,αi) < 0, 0 6 i 6 l};
(3) w′ is a left extension of w if and only if the inequalities k(w′, α)k(w,α) > 0 and

|k(w′, α)| > |k(w,α)| hold for any α ∈ Φ+.

Remark. The alcove forms of the elements of the affine Weyl group Ẽ8, together with the

above results in terms of alcove forms, will be used in proceeding various algorithms of the

paper by computer programmes.

3. Left cells and distinguished involutions of Ẽ8 in W(i), i=5,6.

In the present section, we assume that Wa is an irreducible affine Weyl group of simply-

laced type.

3.1. Consider the Condition (C) on w ∈ Wa below:

(C) w = x · wJ · y for some x, y ∈ Wa and some J ⊆ S with `(wJ) = a(w).

For any left cell Γ and any two-sided cell Ω of Wa, recall the notation Emin(Γ) and F (Ω)

defined in 1.2. Define E(Γ) = {w ∈ Γ | a(sw) < a(w), ∀ s ∈ L(w)}. Let Ri = {J ⊂ S |
a(wJ) 6 i − 1}, i > 1.
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3.2. Theorem. (see [18, Theorem A]) Suppose that Condition (C) holds on all elements

in a left cell Γ of Wa.

(1) If w = wJ · x ∈ Emin(Γ) with J = L(w), then the distinguished involution in Γ has

the expression x−1 · wJ · x.

(2) If Emin(Γ) = E(Γ), then Γ is left-connected.

3.3. Theorem. (see [18, Theorem B]) Let Γ be a left cell of Wa with m := a(Γ) 6 6.

(1) Any w ∈ Γ satisfies Condition (C).

(2) Any w ∈ E(Γ) has the form w = wJ · y for some y ∈ Wa and some J ⊆ S with

`(wJ) = m.

3.4. Theorem. (see [18, Proposition 2.4]) For w ∈ Wa, write w = wJ · w1 with

J = L(w) for some w1 ∈ Wa. If w satisfies a(w) > `(wJ) 6 5, then there exists some s ∈ J

such that sw ∼
L

w.

The following algorithm is for finding the set E(Ω) from F (Ω).

3.5. Algorithm. (see [19, Algorithm 3.4])

(1) Set Y0 = F (Ω);

Let k > 0. Suppose that the set Yk has been found.

(2) If Yk = ∅, then the algorithm terminates;

(3) If Yk 6= ∅, then find the set Yk+1 = {xs | x ∈ Yk; s ∈ S \ R(x);xs ∈ E(Ω)}.

3.6. Theorem. (see [19, Theorem 3.5]) For a two-sided cell Ω of Wa, let Yj, j > 0, be

obtained from the set F (Ω) by Algorithm 3.5.

(1) There exists some t ∈ N such that Yj 6= ∅ and Yh = ∅ for 0 6 j 6 t < h;

(2) E(Ω) =
⋃t

k=0 Yk.

In the step (3) of Algorithm 3.5, it is not so easy in general to determine if the element

xs with x ∈ Yk and s ∈ S \R(x) is in the set E(Ω). The following result provides a criterion

for doing so.

3.7. Theorem. Let Ω be a two-sided cell of Wa with 0 < a(Ω) = i 6 6. Suppose

w ∈ E(Ω), and s ∈ S \ R(w). Then the element ws is in E(Ω) if and only if any right

retraction w1 of tws satisfies R(w1) ∈ Ri for any t ∈ L(ws).

Proof. If ws ∈ E(Ω), then w ∼
R

ws, and for any t ∈ L(ws), we have a(tws) < a(ws) = i.

Hence any right retraction w1 of tws satisfies J = R(w1) ∈ Ri by the fact that a(wJ) 6
a(w1) 6 a(tws) < i.
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Now assume that any right retraction w1 of tws satisfies R(w1) ∈ Ri for any t ∈ L(ws).

By this assumption on ws, to show that ws ∈ E(Ω), we need only to prove that the element

ws is in Ω. By 2.6 (2), this is equivalent to proving that a(ws) = i.

Let us argue by contrary. If a(ws) 6= i, then a(ws) > i by 2.6 (7). Let ws = w2 · wJ

with J = R(ws) for some w2 ∈ Wa. If w2 = 1, then ws = wJ . Hence s ∈ L(ws), w−1 is

a right retraction of sws = w−1, but R(w−1) /∈ Ri, a contradiction. This implies w2 6= 1.

Let t ∈ L(w2) ⊆ L(ws), then J = R(tw2 · wJ) = R(tws) ∈ Ri, hence a(ws) > `(wJ) 6
5. Then there exists a sequence s1, s2, ..., sn in S such that sk ∈ R(wss1s2 · · · sk−1) ∈
Ri, wss1s2 · · · sk ∼

R
wss1s2 · · · sk−1, 1 6 k 6 n and R(wss1s2 · · · sn) /∈ Ri by Theorem 3.4.

Hence a(wI) > i with I = R(wss1s2 · · · sn). Let y1 = snsn−1 · · · s1, then ws = x1 ·wI ·y1 for

some x1 ∈ Wa and x1 · wI ∼
R

ws. If x1 6= 1, let t ∈ L(x1) ⊆ L(ws), then R(tx1 · wI) /∈ Ri,

a contradiction. If x1 = 1, then I = L(ws). If there exists some t ∈ L(ws) \ L(w), then

tws = w and a(tws) = i. By Theorem 3.3 (1), tws = x2 · wJ · y2 for some x2, y2 ∈ Wa

and some J ⊂ S with `(wJ) = i. Since x2 · wJ is a right retraction of tws satisfying

R(x2 ·wJ) /∈ Ri, contradicting our assumption. This implies that L(w) = L(ws) = I. Then

a(ws) = a(wI) 6 a(w), a contradiction. Hence a(ws) = i, our proof is completed. ¤

3.8. Proposition. Suppose that an element x ∈ Wa and a left cell Γ of Wa satisfy

|M(x) ∩ Γ| = n for some 1 6 n 6 ∞. Let Γ′ ∈ ML(x) and y ∈ Γ′.

(1) ML(y) = ML(x).

(2) |M(x) ∩ Γ′| = n.

(3) |M(x)|/|ML(x)| = n.

Proof. (1) follows by the assumption y ∈ Γ′ ∈ ML(x) and Proposition 2.18 (b). For

(2), we need only to consider the case where 1 6 n < ∞. For, suppose that (2) has been

proved in the case of 1 6 n < ∞. Now assume |M(x) ∩ Γ| = ∞. If (2) in the present case

is false, then there exists some Γ′ ∈ ML(x) with |M(x) ∩ Γ′| = m < ∞. Since Γ ∈ ML(x),

this would imply that |M(x)∩Γ| = m < ∞ by our assumption with Γ′, m, Γ in the place of

Γ, n, Γ′, respectively, contradicting our assumption. So (2) is proved in the case of n = ∞.

Now assume 1 6 n < ∞. In the proof of (2), we may assume without loss of generality that

{Γ,Γ′} is an edge of ML(x).

Let M(x) ∩ Γ = {x1, x2, ..., xn}. Then there are some 1 6 k 6 n and some z ∈
M(x) ∩ Γ′ such that {xk, z} is an edge of M(x). Since xi, i = 1, ..., n, have the same right

generalized τ -invariants by Proposition 2.18 (a), there is a sequence of pairwise different

elements z1, ..., zn in M(x) such that R(zi) = R(Γ′) and {xi, zi} is an edge of M(x) for

every 1 6 i 6 n, where zk = z. Then z1, ..., zn ∈ Γ′ by Proposition 2.9 (2). If there is
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some z′ ∈ (M(x) ∩ Γ′) \ {z1, ..., zn}, then there is some x′ ∈ (M(x) ∩ Γ) \ {x1, ..., xn} with

{x′, z′} an edge of M(x) by Propositions 2.9 (2) and 2.18 (a), contradicting the assumption

of |M(x) ∩ Γ| = n. This proves the equation |M(x) ∩ Γ′| = n and hence (2) is proved.

Finally, (3) follows immediately by (2). ¤
Next we state an algorithm for obtaining the set M(x) from any x ∈ Wa.

3.9. Algorithm. (1) Set M0 = {x}.
Let k > 0. Suppose that the set Mj has been found for any j 6 k.

(2) If Mk = ∅, then the algorithm terminates;

(3) If Mk 6= ∅, then find the set Mk+1 of all ws ∈ Wa with w ∈ Mk and s ∈ S such that

ws /∈ Mi, ∀ i 6 k and {w, ws} is a right string.

Then M(x) = ∪k>0Mk. If M(x) is a finite set, then we can get the set M(x) by this

algorithm in a finite number of steps.

3.10. From now on, we concentrate ourselves to the affine Weyl group Ẽ8. Let si,

0 6 i 6 8, be the Coxeter generators of Ẽ8 whose labels coincide with the nodes in the

following Coxeter graph.

bb b b b
b

b b b
1 3 4 5 6 7 8 0

2

In the subsequent discussion, we denote by i (boldfaced) the generator si in Ẽ8 for simplifying

the notation.

In Ẽ8, the set W(5) is a single two-sided cell, while W(6) is a union of two two-sided cells

(say Ω1
6, Ω2

6) by Theorem 2.7, where we assume 131257 ∈ Ω1
6. Denote E(5) = E(W(5)) and

E(6)i = E(Ωi
6), i = 1, 2 (see 1.2).

Let

P (5) = {07523, 07521, 13125, 13126, 13127, 13128, 13120, 1317, 13158, 13150, 13168, 13160,

13170, 24216, 24217, 24218, 24210, 24268, 24260, 24270, 34368, 34360, 34370, 45417,

45418, 45410, 45470, 56512, 56518, 56510, 56523, 56528, 56520, 56538, 56530, 67601,

67602, 67603, 67604, 67612, 67614, 67623, 78712, 78714, 78715, 78723, 78725, 78735,

80812, 80814, 80815, 80816, 80823, 80825, 80826, 80835, 80836, 80846}.
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P (6)1 = {131257, 131258, 131250, 131268, 131260, 131270, 131570, 131565, 131676, 131787,

131808, 242168, 242160, 242170, 242676, 242787, 242808, 343676, 343787, 343808,

454170, 454787, 454808, 565128, 565120, 565238, 565230, 565808, 676120, 676140,

676230, 787125, 787235, 808125, 808126, 808235, 808236, 808146}.

P (6)2 = {143143, 234234, 254254, 354354, 465465, 576576, 687687, 708708}.

The set P (5) (resp., P (6)1∪P (6)2) consists of all the elements of Ẽ8 in W(5) (resp., W(6))

of the form wI for some I ⊂ S. Let S be the power set of S. Define L(6)i = {J ∈ S | wJ ∈
P (6)i}, i = 1, 2. For any X ⊆ Ẽ8, define R(X) = {R(y) ∈ S | y ∈ X}. Let Γw be the left cell

of Ẽ8 containing w for w ∈ Ẽ8. Our computational results show that L(6)1 ⊆ R(M(131257))

and L(6)2 ⊆ R(M(143143)). This implies that {ΓwJ
| wJ ∈ P (6)1} ⊆ ML(131257) and

{ΓwJ
| wJ ∈ P (6)2} ⊆ ML(143143)) by 2.6 (5). So each of the sets P (6)i, i=1,2, is contained

in a two-sided cell of Ẽ8. Since 131257 ∈ Ω1
6∩P (6)1 by our assumption, we have P (6)1 ⊆ Ω1

6.

Since F (Ω2
6) ∩ (P (6)1 ∪ P (6)2) 6= ∅ by Theorem 3.3 (2), we must have Ω2

6 ∩ P (6)2 6= ∅. So

P (6)2 ⊆ Ω2
6. Hence F (W(5)) = P (5) and F (Ωi

6) = P (6)i, i = 1, 2, by Theorem 3.3 (2).

3.11. We can get the set E(5) (resp., E(6)i, i = 1, 2) from Y0 = P (5) (respectively,

Y0 = P (6)i, i = 1, 2) by applying Algorithm 3.5. The most difficult part in proceeding

the algorithm is the third step, i.e., finding the set Yk+1 from Yk. Theorem 3.7 provides

us a powerful technical tool in doing so since, by the computer programme MATLAB, we

can easily check, for any ws with w ∈ Yk and s ∈ S \ R(w), the condition that any right

retraction w1 of tws satisfies R(w1) ∈ R5 (resp., R(w1) ∈ R6) for every t ∈ L(ws).

By Theorem 3.6, the algorithm must terminate after a finite number of steps. We get

the set E(5) =
⋃n

k=0 Yk for some n ∈ N (resp., E(6)1 =
⋃m

k=0 Yk, E(6)2 =
⋃r

k=0 Yk for some

m, r ∈ N) (see [2, Appendix I]).

3.12. In Ẽ8, only the generator 0 is special (see 2.6 (5)). Denote by Γ0 (resp., Γ1, Γ2)

the unique left cell Γ of Ẽ8 in W(5) (resp., Ω1
6, Ω2

6) with R(Γ) = {0}. Define

R(5) = {{2, 3, 5, 7, 0}, {0}, {1, 2, 3, 5}},
R(6)1 = {{0}, {1, 3, 5, 6}, {1, 3, 5, 7, 0}},
R(6)2 = {{0}, {1, 3, 4}}.
U = {Γ23570, Γ0, Γ13125, Γ1, Γ131565, Γ131570, Γ2, Γ143143}.
For any X ⊆ Ẽ8 and any n ∈ N, define

Xn = {x ∈ X | |M(x)| = n}.
Define
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Ê =
{

E(5)n, E(6)1i , E(6)2j
∣∣ n ∈ {50, 135, 1650}, i ∈ {50, 135, 990, 1030}, j ∈ {50, 135, 1735}

}
,

E′ = Ê \ {E(6)i
50 | i = 1, 2}.

The following computational results are concerned with the elements x in E(5)∪E(6)1∪
E(6)2 and the related sets M(x), R(M(x)).

3.13. Proposition.

(a) For any x ∈ E(5), we have |M(x)| ∈ {50, 135, 1650}.
(a1) If |M(x)| = 50, then R(M(x)) ∩ R(5) = {{2, 3, 5, 7, 0}} and there exists a unique

y ∈ M(x) with R(y) = {2, 3, 5, 7, 0}.
(a2) If |M(x)| = 135, then R(M(x))∩R(5) = {{0}} and there exists a unique y ∈ M(x)

with R(y) = {0}.
(a3) If |M(x)| = 1650, then R(M(x)) ∩R(5) = {{1, 2, 3, 5}} and there exist exactly two

elements (say y, z) in M(x) such that R(y) = R(z) = {1, 2, 3, 5}.
(b) For any x ∈ E(6)1, we have |M(x)| ∈ {50, 135, 990, 1030}.

(b1) If |M(x)| = 50, then R(M(x)) ∩ R(6)1 = ∅.
(b2) If |M(x)| = 135, then R(M(x))∩R(6)1 = {{0}} and there exists a unique y ∈ M(x)

with R(y) = {0}.
(b3) If |M(x)| = 990, then R(M(x)) ∩R(6)1 = {{1, 3, 5, 6}} and there exist exactly two

elements (say y, z) in M(x) such that R(y) = R(z) = {1, 3, 5, 6}.
(b4) If |M(x)| = 1030, then R(M(x))∩R(6)1 = {{1, 3, 5, 7, 0}} and there exists a unique

y ∈ M(x) with R(y) = {1, 3, 5, 7, 0}.
(c) For any x ∈ E(6)2, we have |M(x)| ∈ {50, 135, 1735}.

(c1) If |M(x)| = 50, then R(M(x)) ∩ R(6)2 = ∅.
(c2) If |M(x)| = 135, then R(M(x))∩R(6)2 = {{0}} and there exists a unique y ∈ M(x)

with R(y) = {0}.
(c3) If |M(x)| = 1735, then R(M(x)) ∩ R(6)2 = {{1, 3, 4}} and there exists a unique

y ∈ M(x) with R(y) = {1, 3, 4}.

Next result is concerned with the sets M(x) and ML(x) for Y ∈ Ê (in particular,

Y ∈ E′) and x ∈ Y .

3.14. Proposition. (a) Let Y ∈ E′ and x, y ∈ Y . Then U ∩ML(x) = U ∩ML(y) and

|U ∩ML(x)| = 1. We have |M(x)∩Γ| = |M(y)∩Γ| ∈ {1, 2} for any Γ ∈ U ∩ML(x). Further,

we have ML(x) = ML(y). For any z ∈ E(6)150 ∪ E(6)250, we have U ∩ ML(z) = ∅.
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(b) Let x, y be in E(5) (resp., E(6)1, E(6)2) with |M(x)| 6= |M(y)|. Then x, y have

different right generalized τ−invariants. Hence x �
L

y. For any Y ∈ Ê and z ∈ Y , we have

E(Γz) ⊂ Y and Y =
⋃

w∈Y E(Γw).

(c) Let Y ∈ E′ and x ∈ Y . If |M(x)| ∈ {50, 135, 1030, 1735}, then |ML(x)| = |M(x)|; if

|M(x)| ∈ {1650, 990}, then |ML(x)| = 1
2 |M(x)|.

(d) Let Y ∈ E′ and x ∈ Y . Then {Γw | w ∈ Y } = ML(x). Further, |{E(Γw) | w ∈
Y }| = |ML(x)|.

Proof: (a) is a consequence of 2.6 (5) (6) and Propositions 3.13 and 3.8. Then (b)

follows by Propositions 3.13 and 2.18 (a). We get (c) from (a) by Propositions 3.8 and 3.13.

Now it remains to prove (d). We have {Γw | w ∈ Y } ⊆ ML(x) by (a). Take y ∈ E(Γz) for

any z ∈ M(x). Then R(M(y)) = R(M(z)) = R(M(x)) by Proposition 2.18 (a). So y ∈ Y

by Proposition 3.13. Then Γz ∈ {Γw | w ∈ Y }. Hence ML(x) ⊆ {Γw | w ∈ Y }.

3.15. Let Y ∈ E′. By Proposition 3.14 (a), (d), there is a unique left cell (say Γ)

of Ẽ8 in U ∩ {Γw | w ∈ Y }. For any x, y ∈ Y , we have M(x) ∩ Γ = {x1, . . . , xn} and

M(y) ∩ Γ = {y1, . . . , yn}, for some n ∈ {1, 2} by Proposition 3.14 (a). If x ∼
L

y, then x, y

satisfy the Condition (∗) below by Propositions 2.18 (a) and 3.13:

(∗) There are a path z0 = x, z1, . . . , zr = xk in M(x) and a path z′0 = y, z′1, . . . , z
′
r = yj

in M(y) with some 1 6 k, j 6 n such that R(z′i) = R(zi) for every 0 6 i 6 r.

Conversely, if x, y ∈ Y satisfy the Condition (∗), then x ∼
L

y by Proposition 2.9 (2).

Next we state an algorithm to partition any set Y ∈ E′ into its subsets E(Γw), w ∈ Y .

3.16. Algorithm.

(1) Take any y ∈ Y .

We find the set Y1 of all x ∈ Y such that x, y satisfy the Condition (∗).
Let k > 1. Suppose that all the sets Yj , j 6 k, have been found.

(2) If Y \ (
⋃k

j=1 Yj) = ∅, then the algorithm terminates;

(3) If Y \ (
⋃k

j=1 Yj) 6= ∅, then take any z ∈ Y \ (
⋃k

j=1 Yj) and then find all such

x ∈ Y \ (
⋃k

j=1 Yj) that x, z satisfy the Condition (∗). Let Yk+1 be the set of all such

elements x.

The algorithm must terminate after a finite number of steps by Proposition 3.14 (b) and

3.15. Hence Y =
⋃m

j=1 Yj and {Yj | 1 6 j 6 m} = {E(Γw) | w ∈ Y } for some m ∈ N.

3.17. Define

A = {E(Γy) | y ∈ E(5)50}, B = {E(Γy) | y ∈ E(5)135},
C = {E(Γy) | y ∈ E(5)1650}, D = {E(Γy) | y ∈ E(6)11030},



THE LEFT CELLS WITH a-VALUES 5,6 IN THE AFFINE WEYL GROUP eE8 15

E = {E(Γy) | y ∈ E(6)1990}, F = {E(Γy) | y ∈ E(6)1135},
H = {E(Γy) | y ∈ E(6)21735}, J = {E(Γy) | y ∈ E(6)2135}.

Let XR = {w | w ∈ X with R(w) = R} for any R ⊂ S and X ⊂ Ẽ8.

Let Y = E(6)i
50 and x ∈ Y for some i ∈ {1, 2}. Then our computational results show

that M(x) ' M(07523) and R(Y ) = R(M(07523)). We have M(07523) ' D(07523), so

M(x) ' D(07523) (see 2.14). From the graph D(07523) (see 4.10), we have |M(x)R| = 1 if

R ∈ R(M(07523)) \ {{4, 7}, {4, 8}} and |M(x)R| = 2 if R ∈ {{4, 7}, {4, 8}}. Define

Y{4,7}1 = {w | w ∈ Y{4,7},R(ws) = {4, 8}, for some s ∈ S},
Y{4,7}2 = Y{4,7} \ Y{4,7}1 ,

Y{4,8}1 = {w | w ∈ Y{4,8},R(ws) = {4, 7}, for some s ∈ S} and

Y{4,8}2 = Y{4,8} \ Y{4,8}1 .

Define

G =
{

(E(6)150)R, (E(6)150){4,7}i , (E(6)150){4,8}i

∣∣∣R ∈ R(E(6)150) \ {{4, 7}, {4, 8}}, i = 1, 2
}

and

I =
{

(E(6)250)R, (E(6)250){4,7}i , (E(6)250){4,8}i

∣∣∣R ∈ R(E(6)250) \ {{4, 7}, {4, 8}}, i = 1, 2
}

.

Then |G| = |I| = 50. Let K be in G (resp., I) and w ∈ K, we can see that E(Γw) ⊆ K

by Propositions 2.18 (a) and 3.14 (b).

We have

E(5) =
⋃

K∈A∪B∪C

K, E(6)1 =
⋃

K∈D∪E∪F∪G

K, E(6)2 =
⋃

K∈H∪I∪J

K.

By Proposition 3.14 (c) (d), we see that the number of left cells of Ẽ8 in W(5) is equal

to |A| + |B| + |C| = 50 + 135 + 825 = 1010.

3.18. The elements of E(5) and E(6)1 are listed in [2, Appendix I]. More precisely, the

elements in the sets
⋃

K∈X K are listed in [2, Appendix I (X)] for X ∈ {A,B,C,D,E, F,G}.
To explain the related notation, we take Table 1 below as an example. Table 1 is a part of

[2, Appendix I (B)], where B = {Bi | 1 6 i 6 135} (see 3.17).

B1 2357 5652342357 6762345423

B8 2350 565234237805 676234542803 787234654203 808234765423

Table 1
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The set R(Bi), together with the elements in Bi, are listed after the symbol Bi in turn.

Hence, for example, after the symbol B1, we should read “ 2357 ” as R(B1) = {2, 3, 5, 7} and

“ 5652342357 6762345423 ” as B1 = {5652342357, 6762345423}; also, after the symbol B8, we

read “ 2350 ” as R(B8) = {2, 3, 5, 0} and

“ 565234237805 676234542803 787234654203 808234765423 ”

as B8 = {565234237805, 676234542803, 787234654203, 808234765423}.
The following proposition follows directly by our computational results in [2, Appendix

I (X)] for X ∈ {A,B,C,D,E, F,G}.

3.19. Proposition. All the elements of K have the same length for any K ∈ Y with

Y ∈ {A,B,C,D,E, F,G}.

3.20. For any w = wJ · x ∈ Ẽ8 with J = L(w), define bw = x−1wJx.

3.21. Proposition. K = E(Γw) for any w ∈ K with K ∈ G.

Proof: We have K ⊇ E(Γw) in general by 3.17.

For any y ∈ K, we have Emin(Γy) = E(Γy) by Proposition 3.19 and hence by is the

distinguished involution of Γy by Theorems 3.2 (1) and 3.3 (1). Since by = bw for any y ∈ K

by our computational results, the set K is contained in a left cell of Ẽ8 by 2.6 (3). Hence

K ⊆ E(Γw). ¤

3.22. By 3.17, Propositions 3.14 (c), (d) and 3.21, we see that the number of left cells

of Ẽ8 in Ω1
6 is equal to |D| + |E| + |F | + |G| = 1030 + 495 + 135 + 50 = 1710.

3.23. The elements of E(6)2, together with the proof for the left-connectedness of left

cells of Ẽ8 containing them, are displayed in [2, Appendix I (H) (I) (J)].

Let X ⊆ Ẽ8. For any x, y ∈ X, we denote x −−−−
X

y if there exists a sequence x0 =

x, x1, ..., xr = y in X such that xi−1x
−1
i ∈ S for every 1 6 i 6 r. This defines an equivalence

relation in the set X. The corresponding equivalence classes of X are called left-connected

components of X.

Given a left cell Γ of Ẽ8. It is easily seen that for any x′ ∈ Γ, there is some x ∈ E(Γ)

such that x′ −−−−
Γ

x. So to show Γ being left-connected, one need only to prove that any

x, y ∈ E(Γ) satisfy x −−−−
Γ

y.

Now we take some examples to illustrate how our proof proceeds. Table 2 below is a

part of [2, Appendix I (H)]. All the elements in the set
⋃1735

i=1 Hi are listed in [2, Appendix

I (H)], where H = {H1,H2, ...,H1735}.
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H227 146 w1=2342341546

w2=14314324546

2w2=31w1

(1) w2 134 (2) 2w2 123

w3=354354123456

421w3=24531w1

(1) w3 345 (2) 1w3 145

(3) 21w3 125 (4) 421w3 124

...

H233 156 w1=23423415465

w2=143143245465

2w2=31w1

(1) w2 134 (2) 2w2 123

w3=3543541234565

421w3=24531w1

(1) w3 345 (2) 1w3 145

(3) 21w3 125 (4) 421w3 124

w4=46546531423456

54132w4=45624531w1

(1) w4 456 (2) 2w4 256

(3) 32w4 2356 (4) 132w4 1256

(5) 4132w4 146 (6) 54132w4 145

(2) 2w4 256 (3) 32w4 2356

22w4 456 432w4 46

...

Table 2

The set R(Hi) occurs immediately after the symbol Hi, then the elements of the set Hi occur

next, which are expressed as w1, w2, ..., or u1, u2, ..., etc. The other data displayed after the

symbol Hi are for the proof of the left-connectedness of the left cell Γ of Ẽ8 containing Hi.

The proof is accomplished by showing that any two elements x, y of Hi satisfy x−−−−
Γ

y. Let

us take two examples to illustrate how this proceeds.

(i) The boldfaced numbers 146 occur immediately after the symbol H227 should be read

as R(H227) = {1, 4, 6}. Then the elements w1 = 2342341546, w2 = 14314324546, w3 =

354354123456 occurring after 146 form the set H227. The data
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“ 2w2 = 31w1

(1) w2 134 (2) 2w2 123 ”

means that the element 2 ·w2 = 31 ·w1 is a common left-extension of the elements w1, w2 and

that L(w2) = {1, 3, 4}, L(2w2) = {1, 2, 3}. These data show that {w2, 2w2} form a left {2, 4}-
string and hence w1, w2 satisfy w1−−−−

Γ
w2 by the equations 2w2 = 31w1, a(w1) = a(w2) = 6,

the assertion 2.6 (2) and Proposition 2.9. On the other hand, the data

“ 421w3 = 24531w1

(1) w3 345 (2) 1w3 145

(3) 21w3 125 (4) 421w3 124 ”

means that the element 421 ·w3 = 24531 ·w1 is a common left-extension of the elements w1,

w3 and that L(w3) = {3, 4, 5}, L(1w3) = {1, 4, 5}, L(21w3) = {1, 2, 5}, L(421w3) = {1, 2, 4}.
These data show that {w3, 1w3}, {1w3, 21w3}, {21w3, 421w3} are three left strings and hence

the elements w1, w3 satisfy w1−−−−
Γ

w3 by the equations 421·w3 = 24531·w1, a(w1) = a(w3) =

6, the assertion 2.6 (2) and Proposition 2.9.

Since the set H227 = E(Γ) = {w1, w2, w3} is contained in a left-connected component

of Γ, this proves that Γ is left-connected.

(ii) The boldfaced numbers 156 immediately after the symbol H233 should be read as

R(H233) = {1, 5, 6}. The elements u1 = 23423415465, u2 = 143143245465, u3 = 3543541234565,

u4 = 46546531423456 occurring after 156 form the set H233. From the following data

“ 2u2 = 31u1

(1) u2 134 (2)2u2 123

421u3 = 24531u1

(1) u3 345 (2) 1u3 145

(3) 21u3 125 (4) 421u3 124

54132u4 = 45624531u1

(1) u4 456 (2) 2u4 256

(3) 32u4 2356 (4) 132u4 1256

(5) 4132u4 146 (6) 54132u4 145

(7) 432u4 46 ”

we can observe the relations u1 −−−−
Γ

u2, u1 −−−−
Γ

u3 and u1 −−−−
Γ

u4 hold, where Γ is the left

cell of Ẽ8 containing the set H233. The relations u1 −−−−
Γ

u2 and u1 −−−−
Γ

u3 can be observed

in the way similar to that in (i). Now we consider the relation between u1 and u4. The

above data concerning this pair can be interpreted by the following graph,
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u4 456
2

256

-
-

-

3

432u4 46
4

2356
1

1256
4

146
5

145 .

where the vertex (say v) labeled by 456 represents the element u4 with L(u4) = {4, 5, 6},
all the elements represented by the other vertices (say v′) of the graph can be written out

according to the labels of the path connecting v and v′. For example, the element labeled

by 145 is 54312 · u4 with L(54312 · u4) = {1, 4, 5} since the labels of the edges on the path

connecting these two vertices are 2, 3, 1, 4, 5 in turn. We see that each of the pairs {u4, 2 ·u4},
{32 · u4, 132 · u4}, {132 · u4, 4132 · u4}, {4132 · u4, 54132 · u4} are left strings and that the pair

{2 ·u4, 32 ·u4} is a left primitive pair, the latter can be observed from the subgraph with the

vertices labeled by 456 , 256 , 2356 , 46 , respectively. This implies that u4 −−−−
Γ

54132 · u4

by Proposition 2.11. Since u := 54132 ·u4 is a common left-extension of the elements u4 and

u1 by the equation 54132 ·u4 = 45624531 ·u1, this implies u1 −−−−
Γ

u4 by the fact u, u1, u4 ∈ Γ

and by 2.6 (2) and Proposition 2.9.

Since H233 = E(Γ) = {u1, u2, u3, u4} is contained in a left-connected component of Γ,

this proves that Γ is left-connected.

3.24. By our computational results (see [2, Appendix I (H) (I) (J)]), we observe that

for any K in H ∪ I ∪ J , the set K contains a unique shortest element (say x). By the data

in [2, Appendix I (H) (I) (J)] and the arguments similar to that in 3.23 (i), we see that for

any y ∈ K \ {x}, there exists a sequence x0 = x, x1, ..., xr = y in W(6) such that xix
−1
i−1 ∈ S

for 1 6 i 6 r. This implies that K is contained in a left-connected component of W(6). We

know that any left-connected component of W(6) is contained in a left cell (denote it by Γx)

of the group. Then we have x −−−−
Γx

y.

3.25. Proposition. Let x the unique shortest element of K with K ∈ I. Then K =

E(Γx).

Proof: This is because K ⊇ E(Γx) in general by 3.17 and K ⊆ E(Γx) by 3.24. ¤

3.26. By 3.17, Propositions 3.14 (c), (d) and 3.25, we can see that the number of left

cells in Ω2
6 is equal to |H| + |I| + |J | = 1735 + 50 + 135 = 1920.

Lusztig conjectured in [1] that if W is an affine Weyl group then any left cell of W is

left-connected. The conjecture was supported by all the existing data. Now we have

3.27. Theorem. Any left cell Γ of Ẽ8 in W(i), i = 5, 6 is left-connected.
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Proof: First assume Γ ⊂ W(5)∪Ω1
6. Then E(Γ) ∈ A∪B∪C∪D∪E∪F ∪G by 3.17 and

Proposition 3.21. We have E(Γ) = Emin(Γ) by Proposition 3.19. Then Γ is left-connected

by Theorems 3.3 (1) and 3.2 (2).

Next assume Γ ⊂ Ω2
6. Then E(Γ) ∈ H ∪I∪J by 3.17 and Proposition 3.25. Hence E(Γ)

contains a unique shortest element w by 3.24. For any x, y ∈ Γ, there are some x0, y0 ∈ E(Γ)

such that x −−−−
Γ

x0 and y −−−−
Γ

y0. We have w −−−−
Γ

x0 and w −−−−
Γ

y0 by 3.24. So x −−−−
Γ

y.

This proves that Γ is left-connected. ¤

4. The left cell graphs and distinguished involution graphs of Ẽ8 in W(i), i = 5, 6.

4.1. A set Q ⊂ Ẽ8 is called a representative set for the left cells (or an l.c.r set for short)

of Ẽ8 in a two-sided cell Ω if Q ⊆ Ω and |Q ∩ Γ| = 1 for any left cell Γ of Ẽ8 in Ω.

Now we state an algorithm for obtaining the set D(d) from any d ∈ D0.

4.2. Algorithm.

(1) Let D0 = {d}.
Let k > 0. Suppose that the set Dj has been found for any 0 6 j 6 k.

(2) If Dk = ∅, then the algorithm terminates;

(3) If Dk 6= ∅, then find the set Dk+1 of all d′ ∈ Ẽ8 \
(⋃k

i=0 Di

)
such that d′ can be

obtained from some d1 ∈ Dk by the two-sided {s, t}-star operations, where s, t ∈ S satisfy

o(st) = 3 and |{s, t} ∩ L(d1)| = 1.

By Proposition 2.13 and by the recurrence procedure, we see that all the elements

obtained from the above algorithm are distinguished involutions of Ẽ8 and that D(d) =⋃
k>0 Dk.

Since |D(d)| 6 |D0| < ∞ by 2.6 (3), the algorithm must terminate after a finite number

of steps.

For any d, d′ ∈ D0, we have either D(d) = D(d′) or D(d′) ∩ D(d) = ∅ by Proposition

2.13.

4.3. Denote x1 = 07523, x2 = 5652342357, x3 = 13125, y1 = 131570, y2 = 131565,

y3 = 13125742354654237, y4 = 56523042357, z1 = 143143, z2 = 25425431436542765870 and z3 =

143143254365427654318765423408765423. Then x1 (resp., x2, x3, y1, y2, y3, y4, z1, z2, z3) is

the shortest element of E(5)50 (resp., E(5)135, E(5)1650, E(6)11030, E(6)1990, E(6)1135, E(6)150,

E(6)21735, E(6)250, E(6)2135). The elements x1, x3, y1, y2, z1 are in D0 by 2.6 (4). Any

w ∈ {x2, y3, y4, z2, z3} is in Emin(Γw) by Proposition 3.14 (b). So bw ∈ D0 by Theorems

3.2 (1) and 3.3 (1).
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We have |D(x1)| = 50, |D(bx2)| = 135, |D(x3)| = 825, |D(y1)| = 1030, |D(y2)| =

495, |D(by3)| = 135, |D(by4)| = 50, |D(z1)| = 1735, |D(bz2)| = 50 and |D(bz3)| = 135 by

our computational results in applying Algorithm 4.2. Let D(5) = D(x1)£ ¢· D(bx2)£ ¢· D(x3),

D(6)1 = D(y1)£ ¢· D(y2)£ ¢· D(by3)£ ¢· D(by4) and D(6)2 = D(z1)£ ¢· D(bz2)£ ¢· D(bz3). Then

|D(5)| = 1010, |D(6)1| = 1710 and |D(6)2| = 1920 by our computational results. The set

D(5) (resp., D(6)1, D(6)2) consists of all the distinguished involutions in the two-sided cell

W(5) (resp., Ω1
6, Ω2

6) and also forms an l.c.r set of it by 2.6 (3).

Let D = {x1, bx2 , x3, y1, y2, by3 , by4 , z1, bz2 , bz3}.
We have the following conclusion from our computational results.

4.4. Proposition. If two edges of a distinguished involution graphs D(w) with w ∈ D

are parallel (see 2.14) then they have the same label.

4.5. Remark. By Proposition 4.4, we need only to display the label of some edge (say

α) but to hide the labels of all the other edges in each parallel class (say X ) of edges in a

displayed distinguished involution graph for simplifying the graph since those implicit labels

of the edges in X \ {α} can easily be recovered by Proposition 4.4.

4.6. We have ML(w) ' D(w) (see 2.14) for any w ∈ D. Thus we need only to draw all

the distinguished involution graphs for the two-sided cells of a-values 5 and 6, then all the

left cell graphs of those two-sided cells can be obtained from the corresponding distinguished

involution graphs simply by forgetting all the labels of the edges.

From the graphs displayed in [2, Appendix II], we can see that D(x1) ' D(by4), D(x1) '
D(bz2), D(bx2) ' D(by3) and D(bx2) ' D(bz3). Although the above notation “ ' ” can’t

be replaced by “ ∼= ” (see 2.14) in general, the graphs in each of the above pairs can be

obtained from one to another by changing only a few edge labels (see 4.7 below).

4.7. The distinguished involution graph D(x1) (resp., D(by4), D(bz2)) is displayed in

FigA (resp., FigG, FigI) of [2, Appendix II]. The graph D(bx2) (resp., D(x3), D(y1), D(y2),

D(by3), D(z1), D(bz3)) is too big to be displayed in one page, hence it has to be taken into

2 (resp., 6, 7, 3, 2, 9, 2) pieces, one page for each piece, being displayed in FigB1-FigB2

(resp., FigC1-FigC6, FigD1-FigD7, FigE1-FigE3, FigF1-FigF2, FigH1-FigH9, FigJ1-FigJ2)

of [2, Appendix II]. The following are the relations between some graphs:

(i) D(by4) in FigG can be obtained from D(x1) in FigA by replacing all the edge labels

13 by 1.

(ii) D(bz2) in FigI can be obtained from D(x1) in FigA by moving the extra label S from

the vertex 23570 to 12570.
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(iii) It looks the same for FigB1 and FigF1, and also for FigB2, FigF2 and FigJ2.

(iv) FigB1 can be obtained from FigJ1 by moving the extra label S from the vertex 2358

to 2357 and by replacing all the edge labels 78, 80 by 8, 0, respectively.

4.8. Next we give some explanation for the distinguished involution graphs. As we

know before, in a distinguished involution graph D, once the expression of an element corre-

sponding to one vertex (say v) of D is known, the expressions of the elements corresponding

to all the other vertices (say v′) of D can be written out easily according to the labels on the

path connecting v and v′. So we select one vertex by giving it an extra label S in each distin-

guished involution graph, the expression of the element corresponding to the selected vertex

is given explicitly. More precisely, the selected vertex in D(x1) (resp., D(by4)) is labeled

by 23570 in FigA (resp., FigG) with an extra label S nearby, the corresponding element is

x1 (resp., by4) (see 4.3). The selected vertex in D(bx2) (resp., D(x3), D(y1), D(y2), D(by3),

D(z1), D(bz2), D(bz3)) is located in FigB1 (resp., FigC5, FigD5, FigE2, FigF1, FigH2, FigI,

FigJ1), the corresponding element is bx2 (resp., x3, y1, y2, by3 , z1, bz2 , bz3) (see 4.3 and

3.20).

Concerning the notation for the edge labels in a distinguished involution graph, we take

the symbol 2358
13

−−−−1258 (resp., 2358
1

−−−−1258 ) as an example: it means that an edge {y, z}
with R(y) = {2, 3, 5, 8} and R(z) = {1, 2, 5, 8} satisfies z = 1y3 (resp., z = 1y1 ).

As mentioned in 4.7, some big graphs need to be divided into several smaller pieces such

that each piece could be fit into one page. For example, the graph D(bz3) is divided into

two pieces FigJ1, FigJ2. There are two vertices (arranged as v1, v2) of D(bz3), each of which

occurs in both FigJ1 and FigJ2. For any i ∈ {1, 2}, we doubly box vi and give it an extra

label “ i, 1 ” in FigJ2 and “ i, 2 ” in FigJ1. For example, the vertex v1 of D(bz3) has the

doubly boxed label 148 , the one in FigJ2 has an extra label 1, 1, while that in FigJ1 has

an extra label 1, 2.
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Appendices

In Appendix I, we list all the sets K ∈ X and R(K) for X ∈ {A,B,C,D,E, F,G,H, I, J}
(see 3.17) and some computational data involving K, by which one could easily prove the

left-connectedness of the left cells containing K (see 3.23). Then in Appendix II, we display

all the distinguished involution graphs for all the two-sided cell Ω of Ẽ8 with a(Ω) ∈ {5, 6},
by which one could easily get all the distinguished involutions d of Ẽ8 in Ω and all the left

cells graphs for Ω. The complete contents of Appendices I, II occupy almost two thousands

of pages and are included in the electronic version of our paper (see [2]). Owing to the limit

space of the journal, we include only a small portion of the Appendices here, from which,

the readers might get some concrete idea on our results.

Appendix I.

(1) A = {Ai | 1 6 i 6 50}. Each Ai is a set containing one element. Here are the sets Ai

and R(Ai), 1 6 i 6 12 (read “ A2 = {075234} with R(A2) = {4, 7, 0} ” , etc):

A1 23570 07523 A2 470 075234 A3 2360 075236 A4 2358 075238

A5 460 0752346 A6 48 0752348 A7 2368 0752368 A8 50 07523465

A9 468 07523468 A10 237 07523687 A11 58 075234658 A12 47 075234687

(2) B = {Bi | 1 6 i 6 135}. Here are the sets Bi and R(Bi), 1 6 i 6 8 (read “ B3 =

{56523423547, 67623454234} with R(B3) = {4, 7} ” , etc):

B1 2357 5652342357 6762345423 B2 1257 56523423157 67623454312

B3 47 56523423547 67623454234

B4 2358 56523423785 67623454283 78723465423

B5 236 56523425763 67623454263 B6 147 565234231547 676234543124

B7 1258 565234231785 676234543182 787234654312

B8 2350 565234237805 676234542803 787234654203 808234765423

(3) C = {Ci | 1 6 i 6 825}. Here are the sets Ci and R(Ci), 107 6 i 6 116:

C107 1238 13128 C108 148 131284 C109 348 1312843 2421834

C110 158 1312845 C111 358 13128435 24218345 C112 168 13128456

C113 458 131284354 242183454 454182345

C114 368 131284356 242183456 C115 17 131284567

C116 258 1312843542 1315842345 2421834542 4541823425
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(4) D = {Di | 1 6 i 6 1030}. Here are the sets Di and R(Di), 335 6 i 6 345:

D335 12370 131270 D336 1470 1312704 D337 1238 1312708

D338 3470 13127043 24217034 D339 1570 13127045

D340 148 13127048 D341 3570 131270435 242170345

D342 348 131270438 242170348 D343 160 131270456

D344 158 131270458 D345 4570 1312704354 2421703454 4541702345

(5) E = {Ei | 1 6 i 6 495}. Here are the sets Ei and R(Ei), 274 6 i 6 282:

E274 1367 131676 E275 1467 1316764 3436761

E276 1368 1316768 1317876 E277 1267 13167642 24267631 34367612

E278 157 13167645 34367615

E279 1468 13167648 13178746 34367618 34378716

E280 1360 13167680 13178760 13180876

E281 1257 131676425 242676315 343676125

E282 1268 131676428 131787426 242676318 242787316 343676128 343787126

(6) F = {Fi | 1 6 i 6 135}. Each Fi contains a single element. Here are the sets Fi and

R(Fi), 1 6 i 6 6:

F1 2357 13125742354654237 F2 1257 131257423546542317 F3 47 131257423546542347

F4 236 131257423546542763 F5 2358 131257423546542783 F6 147 1312574235465423147

(7) G = {Gi | 1 6 i 6 50}. Here are the sets Gi and R(Gi) for 1 6 i 6 6:

G1 23570 56523042357 67623045423 G2 12570 565230423157 676230454312

G3 470 565230423547 676230454234 G4 2358 565230423785 676230454283

G5 2360 565230425763 676230454263 G6 1470 5652304231547 6762304543124

(8) H = {Hi | 1 6 i 6 1735} and I = {Ii | 1 6 i 6 50} and J = {Ji | 1 6 i 6 135}. Here

are the sets X and R(X) for X ∈ {Hi, I1, J1 | 1 6 i 6 6}:

H1 134 w1=143143

H2 123 w1=1431432

w2=23423413

1w2=42w1
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(1) w2 234 (2) 1w2 124

H3 135 w1=1431435

w2=35435413

1w2=45w1

(1) w2 345 (2) 1w2 145

H4 1235 w1=14314325

w2=234234135

1w2=42w1

(1) w2 234 (2) 1w2 124

w3=354354123

1w3=45w1

(1) w3 345 (2) 1w3 145

H5 136 w1=14314356

w2=354354136

1w2=45w1

(1) w2 345 (2) 1w2 145

w3=4654653143

13w3=5645w1

(1) w3 456 (2) 3w3 356

(3) 13w3 156

H6 14 w1=143143254

w2=2342341354

1w2=42w1

(1) w2 234 (2) 1w2 124

w3=3543541234

1w3=45w1

(1) w3 345 (2) 1w3 145

I1 12570 w1=25425431436542765870

w2=465465231431542765870

2w2=56w1

(1) w2 456 (2) 2w2 256

w3=3543541243654231765870

642w3=24563w1
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(1) w3 345 (2) 2w3 235

(3) 42w3 24 (4) 642w3 246

(5) 442w3 235 (6) 4642w3 236

w4=5765764231435423165870

24w4 =6756w1

(1) w4 567 (2) 4w4 467

(3) 24w4 267

w5=14314325423654231765870

63452w5=43245613w1

(1) w5 134 (2) 2w5 123

(3) 52w5 1235 (4) 452w5 14

(5) 3452w5 34 (6) 63452w5 346

(7) 6452w5 146 (8) 652w5 1236

w6=68768754231435465423170

245w6=786756w1

(1) w6 678 (2) 5w6 578

(3) 45w6 478 (4) 245w6 278

w7=234234135423654231765870

563451w7=6543245613w1

(1) w7 234 (2) 1w7 124

(3) 51w7 125 (4) 451w7 145

(5) 3451w7 35 (6) 63451w7 36

(7) 563451w7 356 (8) 6451w7 146

(9) 56451w7 156

w8=708708654231435467654231

2456w8=80786756w1

(1) w8 780 (2) 6w8 680

(3) 56w8 580 (4) 456w8 480

(5) 2456w8 280

J1 2358 w1=143143254365427654318765423408765423

(1) w2 234 (2) 1w2 124

w3= 3543541234365427654318765423408765423

1w3=45w1
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(1) w3 345 (2) 1w3 145

w4= 46546523142345427654318765423408765423

13w4=5645w1

(1) w4 456 (2) 3w4 356

(3) 13w4 156

w5= 254254314365423457654318765423408765423

63413w5=13456245w1

(1) w5 245 (2) 3w5 235

(3) 13w5 125 (4) 413w5 14

(5) 3413w5 13 (6) 63413w5 136

(7) 6413w5 146 (8) 613w5 126

w6= 576576423143542345654318765423408765423

134w6=675645w1

(1) w6 567 (2) 4w6 467

(3) 34w6 367 (4) 134w6 167

w7= 6876875423143542654231456765423408765423

1345w7=78675645w1

(1) w7 678 (2) 5w7 578

(3) 45w7 478 (4) 345w7 378

(5) 1345w7 178

w8= 70870865423143542654376542314354678765423

13456w8=8078675645w1

(1) w8 780 (2) 6w8 680

(3) 56w8 580 (4) 456w8 480

(5) 3456w8 380 (6) 13456w8 180
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Appendix II.

Here are the distinguished involution graphs D(x1) in FigA and D(bz3) in FigJ1-FigJ2.
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