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Abstract. We give an explicit description in terms of rooted graphs for representatives
of all the congruence classes of presentations (or r.c.p. for brevity) for the imprimitive
complex reflection group G(m, p, n). Also, we show that (S, PS) forms a presentation of
G(m, p, n), where S is any generating reflection set of G(m, p, n) of minimally possible
cardinality and PS is the set of all the basic relations on S.

Introduction.

In [7], we describe r.c.p. for two special families of imprimitive complex reflec-

tion groups G(m, 1, n) and G(m,m, n) in terms of graphs. In the present paper, we

shall extend the results to the imprimitive complex reflection group G(m, p, n) for any

m, p, n ∈ N with p|m (read “ p divides m ”) and 1 < p < m.

Let Σ(m, p, n) be the set of all the reflection sets S of G(m, p, n) such that (S, P )

forms a presentation of G(m, p, n) for some relation set P on S (see 1.7 and 2.6). We

associate each S ∈ Σ(m, p, n) to a connected rooted graph Γr
S with exactly one circle

(see 1.6 and Lemma 2.2). Also, we define a value δ(S) ∈ N for each S ∈ Σ(m, p, n)

(see 2.3), which satisfies the condition gcd{δ(S), p} = 1 by Theorem 2.4. Then our first

main result (i.e., Theorem 2.9) asserts that the congruence of a presentation (S, P ) for
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G(m, p, n) is entirely determined by the isomorphism class of the rooted graph Γr
S if the

circle of Γr
S contains more than two nodes, and by the isomorphism class of Γr

S and the

value gcd{δ(S),m} if the circle of Γr
S contains only two nodes.

Next we introduce the set PS of the basic relations on any S ∈ Σ(m, p, n) (see (A)-

(M) in 4.2-4.3). Our second main result (i.e., Theorem 6.2) asserts that (S, PS) forms

a presentation of G(m, p, n). There are two crucial steps in proving this result: one is

to apply a circle operation on the set Σ(m, p, n), as we did before on the set Σ(m, 1, n)

and Σ(m,m, n) in [7]; the other is a transition between certain pair S,X ∈ Σ(m, p, n),

which is new, where both Γr
S and Γr

X are a string with a two-nodes circle at one end

and with the rooted node on the circle and not adjacent to any node outside the circle;

X differs from S only by one reflection of type I whose corresponding edges are on the

circles of the respective graphs (see 6.3).

Comparing with the cases of G(m, 1, n) and G(m,m, n), the cardinality of any S ∈
Σ(m, p, n) is n+1, rather than n. Hence there are more basic relations on S. This makes

our treatment for G(m, p, n) more complicated than that for G(m, 1, n) and G(m,m, n).

We introduce the concept of a generalized circle sequence and a root-circle sequence in

the graph Γr
S (see 4.3). We use them to simplify our discussion for the circle relations,

root-circle relations and circle-root relations on S (see relations (J), (K), (L) in 4.2).

Let X be the subset of S containing the reflection of type II such that Γr
X is the

subgraph of Γr
S corresponding to the root-circle sequence. Then by Theorem 2.4, we see

that the subgroup 〈X〉 of G(m, p, n) generated by X is isomorphic to G(m, p, |X| − 1).

Moreover, it is easily seen by Theorem 2.4 that a subset X ′ of S satisfies the condition

〈X ′〉 ∼= G(m, p, |X ′| − 1) if and only if X ′ ⊇ X and the graph ΓX′ is connected. Denote

X by S0. It looks likely that a presentation (S, P ) has a simpler relation set P when the

graph Γr
S has no branching node and when the subgraph obtained from Γr

S by removing

Γr
S0

is either a string or empty. In particular, two cases are worthy to be mentioned:

one is when Γr
S is a string with a two-nodes circle at one end (the presentation given
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in [1, Appendix II] belongs to such a case, see 4.1); the other is when Γr
S is a rooted

circle. The latter may convenience us to associate G(m, p, n) with the extended affine

Weyl group of type Ãn−1 in the study of the group G(m, p, n).

Theorems 2.9 and 6.2 suggest an effective way to find a representative (S, P ) for any

congruence class of presentations of G(m, p, n), see Remark 2.10 (1) for getting S, and

see relations (A)–(M) in 4.2–4.3 and Remark 6.9 (1) for getting P .

It is interesting to find an essential presentation (see 1.7) by removing some redundant

relations from any presentation of G(m, p, n) given in the paper. However, this has not

yet been solved in general (see Remark 6.9 (1)). We can deal with it only in some special

cases or when the given numbers m, p, n are smaller.

The contents of the paper are organized as follows. Section 1 is the preliminaries,

some concepts, notations and known results are collected there. We show the first main

result in Section 2. Then Sections 3-6 are served to show the second main result. More

precisely, we introduce the circle operations on the set Σ(m, p, n) in Section 3; Basic

relations on any S ∈ Σ(m, p, n) are introduced in Section 4; In Section 5, we consider

the equivalence of the basic relation sets PS on S ∈ Σ(m, p, n) when S is changed by

a circle operation; finally, we consider the equivalence of the basic relation sets PS on

S ∈ Σ(m, p, n) when ΓS has a two-nodes circle with the rooted node on it and when the

value δ(S) is changed.

§1. Preliminaries.

1.1. Let V be a complex vector space of dimension n. A reflection on V is a linear

transformation on V of finite order with exactly n−1 eigenvalues equal to 1. A reflection

group G on V is a finite group generated by reflections on V . A reflection group G on

V is called a real group or a Coxeter group if there is a G-invariant R-subspace V0 of

V such that the canonical map C⊗R V0 → V is bijective. If this is not the case, G will

be called complex. (Note that, according to this definition, a real reflection group is not
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complex.)

Since G is finite, there exists a unitary inner product ( , ) on V invariant under G.

From now on we fix such an inner product.

1.2. A reflection group G in V is imprimitive, if G acts on V irreducibly and there

exists a decomposition V = V1 ⊕ ......⊕ Vr of nontrivial proper subspaces Vi, 1 6 i 6 r,

of V such that G permutes the set {Vi | 1 6 i 6 r} (see [2]).

1.3. Let Sn be the symmetric group on n letters 1, 2, ..., n. For σ ∈ Sn, we denote

by [(a1, ..., an)|σ] the n × n monomial matrix with non-zero entries ai in the (i, (i)σ)-

positions. For p|m in N, we set

G(m, p, n) =





[(a1, ..., an)|σ]

∣∣∣∣∣∣∣
ai ∈ C, am

i = 1 ∀ 1 6 i 6 n;




n∏

j=1

aj



m/p

= 1; σ ∈ Sn





.

G(m, p, n) is the matrix form of an imprimitive reflection group acting on V with respect

to an orthonormal basis e1, e2, ..., en, which is Coxeter only when either m 6 2 or

(m, p, n) = (m,m, 2). We have G(m, p, n) = G(1, 1, n) n A(m, p, n), where A(m, p, n)

consists of all the diagonal matrices of G(m, p, n), and G(1, 1, n) ∼= Sn.

There are two special imprimitive reflection groups G(m, 1, n) and G(m,m, n) with

the inclusions G(m,m, n) ⊆ G(m, p, n) ⊆ G(m, 1, n), where the smaller ones are normal

subgroups of the bigger ones. We described r.c.p. for these two families of groups in

[7]. In the present paper, we shall deal with the imprimitive group G(m, p, n) for any

m, p, n ∈ N with p|m and 1 < p < m.

From now on, we shall always assume n > 2, p|m and 1 < p < m when we consider

the group G(m, p, n) unless otherwise specified.

1.4. For an orthonormal basis e1, ..., en of V , ζm = e2πi/m, µm = {ζk
m | k ∈ Z}, and

q = p−1m ∈ N \ {1}, put
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R1 = µ2 · µm · {ζk
mei − ej | i, j, k ∈ Z, 1 ≤ i 6= j ≤ n},

R2 = µq · {ek | 1 ≤ k ≤ n},

R(m, p, n) = R1 ∪R2.

Then R(m, p, n) is a root system of the group G(m, p, n) (refer [2] for the definition of

a root system).

1.5. There are two kinds of reflections in the group G(m, p, n) as follows.

(i) One is with respect to a root in R1. It is of the form

s(i, j; k) := [(1, ..., 1, ζ−k
m , 1, ..., 1, ζk

m, 1, ..., 1)|(i, j)],

where ζ−k
m , ζk

m with some k ∈ Z are the ith, resp. jth components of the n-tuple and

(i, j) is the transposition of i and j for some 1 6 i < j 6 n. We call s(i, j; k) a reflection

of type I. Clearly, any reflection of type I has order 2. We also set s(j, i; k) = s(i, j;−k).

(ii) The other is with respect to a root in R2. It is of the form

s(i; k) := [(1, ..., 1, ζk
q , 1, ..., 1)|1]

for some k ∈ Z, where ζk
q occurs as the ith component of the n-tuple and 1 is the identity

element of Sn. We call s(i; k) a reflection of type II. s(i; k) has order q/gcd{q, k}.
All the reflections of type I lie in the subgroup G(m, m, n).

1.6. For any Z ⊆ {1, 2, ..., n}, let VZ be the subspace of V spanned by {ei | i ∈ Z}.
Let RZ(m, p, n) = R(m, p, n)∩VZ . Then RZ(m, p, n) is a root subsystem of R(m, p, n).

Let GZ(m, p, n) be the subgroup of G(m, p, n) generated by the reflections with respect

to the roots in RZ(m, p, n). Then GZ(m, p, n) ∼= G(m, p, r) with r = |Z|. To any

set X = {s(ih, jh; kh) | h ∈ J} of reflections of GZ(m, p, n) (J a finite index set), we

associate a digraph ΓZ,X = (NX , EX) as follows. Its node set NX is Z, and its arrow
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set EX consists of all the ordered pairs (i, j), i < j, with labels k, where s(i, j; k) ∈ X

(hence, if s(i, j; k) ∈ X and i > j, then ΓZ,X contains an arrow (j, i) with the label

−k). Denote by ΓZ,X the underlying graph of ΓZ,X , i.e., ΓZ,X = (Z,EX) is obtained

from ΓZ,X by replacing all the labelled arrows (i, j) by unlabelled edges {i, j}, where

EX denotes the set of edges of ΓZ,X .

We see that the graph ΓZ,X has no loop but may have multi-edges between two

nodes.

The above definition of a graph can be extended: to any set X of reflections of

GZ(m, p, n), we define a graph ΓZ,X to be ΓZ,X′ , where X ′ is the subset of X consisting

of all the reflections of type I. When X contains exactly one reflection of type II (say

s(i; k)), we define another graph, denoted by Γr
Z,X , which is obtained from ΓZ,X by

rooting the node i, i.e., Γr
Z,X is a rooted graph with the rooted node i. Sometimes we

denote Γr
Z,X by (Z, EX , i).

When Z = {1, 2, ..., n}, we simply denote ΓX (resp. Γr
X) for ΓZ,X (resp. Γr

Z,X).

Note that when X is the generator set in a presentation of G(m, p, n), the graph

ΓX defined here is different from a Coxeter-like graph given in [1, Appendix 2]: in a

Coxeter-like graph, all the generating reflections are represented by nodes; while in a

graph defined here, most of the generating reflections are represented by edges.

Two graphs (N, E) and (N ′, E′) are isomorphic, if there exists a bijection η : N → N ′

such that for any v, w ∈ N , {v, w} is in E if and only if {η(v), η(w)} is in E′.

Two rooted graphs (N, E, i) and (N ′, E′, i′) are isomorphic, if there exists a bijection

η : N → N ′ with η(i) = i′ such that for any v, w ∈ N , {v, w} is in E if and only if

{η(v), η(w)} is in E′.

1.7. For a reflection group G, a presentation of G by generators and relations (or a

presentation in short) is by definition a pair (S, P ), where

(1) S is a finite generator set for G which consists of reflections, and S has minimal

cardinality with this property.
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(2) P is a finite set of relations on S, and any other relation on S is a consequence

of the relations in P .

A presentation (S, P ) of G is essential if (S, P0) is not a presentation of G for any

proper subset P0 of P .

Two presentations (S, P ) and (S′, P ′) for G are congruent, if there exists a bijection

η : S −→ S′ such that for any s, t ∈ S,

(∗) 〈s, t〉 ∼= 〈η(s), η(t)〉, where the notation 〈x, y〉 stands for the group generated by

x, y.

In this case, we see by taking s = t that the order o(s) of s is equal to the order

o(η(s)) of η(s) for any s ∈ S.

If there does not exist such a bijection η, then we say that these two presentations

are non-congruent.

When a reflection group G is a Coxeter group, Coxeter system can be an example of

the presentations of G. However, G may have some other presentations not congruent

to (S, P ). For example, let G be the symmetric group Sn. Then one can show that the

set of all the congruence classes of presentations of Sn is in one-to-one correspondence to

the set of isomorphism classes of trees of n nodes. The presentation of Sn as a Coxeter

system corresponds to the string with n nodes.

Suppose that the structure of a reflection group G is known. Then by the above

definition of a presentation, we see that for any generator set S of G with minimally

possible cardinality, one can always find a relation set P on S such that (S, P ) is a

(essential) presentation of G. The congruence of the presentation (S, P ) is entirely

determined by the generator set S. So it makes sense to talk about the congruence

relations among the generator sets of a reflection group G when a reflection group G is

given.

1.8. For any non-zero vector v ∈ V , denote by lv the one dimensional subspace Cv of

V spanned by v, we call it a line. In particular, denote li := lei for 1 6 i 6 n. Let
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L = {li | 1 6 i 6 n}. Then a reflection of the form s(i, j; k) in G(m, p, n) interchanges

the lines li, lj and leaves all the other lines lh, h 6= i, j, in L stable. A reflection of the

form s(i; k) stabilizes all the lines in L. More generally, any element of G(m, p, n) gives

rise to a permutation on the set L, and the action of G(m, p, n) on L is transitive.

Let X be a set of reflections of G(m, p, n) and let 〈X〉 be the subgroup of G(m, p, n)

generated by X. Then the action of 〈X〉 on L is transitive if and only if the graph ΓX

is connected. In particular, the graph ΓX must be connected when X is the generator

set of a presentation of G(m, p, n).

§2. The generator sets in the presentations for G(m, p, n).

In the present section, we shall describe the generator set S in a presentation (S, P )

for the group G(m, p, n). Set q = m/p.

Let us first show

Lemma 2.1. Let X be a subset of G(m, p, n) consisting of n − 1 reflections of type I

and one reflection of type II and of order q such that the graph ΓX is a tree. Then X

generates a subgroup of G(m, p, n) isomorphic to G(q, 1, n).

Proof. We have a decomposition X = X1 ∪ {s(i; k)}, where X1 is the set of n − 1

reflections of type I in X, the integers i, k satisfy 1 6 i 6 n and gcd{k, q} = 1 (since

the order of s(i; k) is q). Then ΓX1 = ΓX is a tree. Let G1 := 〈X1〉. Then G1
∼=

Sn by [7, Lemma 2.7]. By the connectivity of the graph ΓX1 , we see that for any

1 6 j 6 n, there exists a sequence of nodes i1 = i, i2, ..., ir = j in ΓX1 such that X1

contains the reflections sh = s(ih, ih+1; kh) for any 1 6 h < r and some kh ∈ Z. Thus

s(j; k) = sr−1sr−2...s1 · s(i; k) · s1...sr−1 is contained in the group G := 〈X〉. By the

condition of gcd{k, q} = 1, the subgroup D of G(m, p, n) generated by s(i; k), 1 6 i 6 n,

consists of all the diagonal matrices of the form [(ζk1
q , ζk2

q , ..., ζkn
q )|1], where ζq = e2πi/q,

and k1, ..., kn ∈ Z. So D = A(q, 1, n). It is easily seen that G = G1 n D and hence

G ∼= G(q, 1, n). ¤
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Next result is concerned with the members of the generator set in a presentation of

G(m, p, n).

Lemma 2.2. The generator set S in a presentation (S, P ) of the group G(m, p, n)

consists of n reflections of type I and one reflection of type II and of order q. Hence the

graph ΓS is connected with n edges.

Proof. By the definition of a presentation and by [1, Appendix 2], the set S is of

cardinality 6 n + 1. Let a1 (resp. a2) be the number of reflections in S of type I (resp.

of type II and of order q). Then we have a2 > 1 and hence a1 6 n. So the graph ΓS has

at most n edges. Since the action of the group G(m, p, n) on L is transitive (see 1.8),

the graph ΓS must be connected and hence has at least n−1 edges since it has n nodes.

So a1 > n−1 and hence a2 6 2. Let X be a subset of S consisting of n−1 reflections of

type I and one reflection of type II and of order q (say s = s(i; k) for some integers i, k

with 1 6 i 6 n and gcd{k, q} = 1) such that the graph ΓX is connected. Let G = 〈X〉.
Then by Lemma 2.1 and its proof, we see that G ∼= G(q, 1, n), which contains all the

reflections of G(m, p, n) of type II. By comparing the orders of G(m, p, n) and G(q, 1, n),

we see that G is a proper subgroup of G(m, p, n). Since S generates G(m, p, n), S must

contain one more reflection of type I than X. This proves our result. ¤

2.3. Assume that X is a reflection set of G(m, p, n) such that the graph ΓX is connected

and contains exactly one circle, say the edges of the circle are {ah, ah+1}, 1 6 h 6 r (the

subscripts are modulo r) for some integer 2 6 r 6 n. Then X contains the reflections

s(ah, ah+1; kh) with some integers kh for any 1 6 h 6 r (the subscripts are modulo r).

Denote δ(X) := |∑r
h=1 kh|.

Now we can characterize a reflection set of G(m, p, n) to be the generator set of a

presentation as follows.

Theorem 2.4. Let X be a subset of G(m, p, n) consisting of n reflections of type I and

one reflection of type II and of order q such that the graph ΓX is connected. Then X is
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the generator set of a presentation of G(m, p, n) if and only if gcd{p, δ(X)} = 1.

Proof. We have a decomposition X = X1∪{s(i; k)}, where X1 is the set of n reflections

of X of type I. By Lemma 2.1 and its proof, we see that the group G := 〈X〉 contains

all the reflections of type II in G(m, p, n).

Let d = gcd{m, δ(X1)} (note that δ(X1) = δ(X)). Let D1 (resp., D2) be the set of

all the diagonal matrices of the form [(ζk1d, ..., ζknd)|1] (resp., [(ζh1p, ..., ζhnp)|1]), where

ζ = e2πi/m, ki, hj ∈ Z and k1 + ... + kn = 0. Let D = 〈D1, D2〉. Let X2 be a subset of

X1 with |X2| = n− 1 and ΓX2 connected. Let G1 = 〈X1〉 and G2 = 〈X2〉. Then by [7,

Lemmas 2.13 and 2.16], we have G1 = D1 oG2 with G2
∼= Sn. Let G3 = 〈X2, s(i; k)〉.

By Lemma 2.1, we have G3 = D2 o G2
∼= G(q, 1, n). Hence G := 〈X〉 = D o G2. We

see that G = G(m, p, n) if and only if D = A(m, p, n). We know that A(m, p, n) is the

set of all the diagonal matrices of the form [(ζl1 , ..., ζln)|1] with p|∑n
i=1 li. It is easily

seen that D = A(m, p, n) if and only if gcd{d, p} = 1 if and only if gcd{p, δ(X)} = 1.

So our result follows by Lemma 2.2. ¤

Remark 2.5. Under the assumption of Theorem 2.4, if p = 1 then the condition

“ gcd{p, δ(X)} = 1 ” trivially holds; on the other extreme, if p = m then this condition

becomes gcd{m, δ(X)} = 1. By [7, Theorems 2.8 and 2.19], we see that Theorem 2.4

also holds in the case of p = 1,m, provided that the sentence “ X is the generator set

of a presentation of G(m, p, n) ”is replaced by “ X is a generator set of G(m, p, n) ”.

2.6. Let Σ(m, p, n) be the set of all the reflection sets S, where each of those comes

from a presentation (S, P ) of the group G(m, p, n). By Theorem 2.4, we know that any

S ∈ Σ(m, p, n) has a decomposition S = S1∪{s(i; k)}, where S1 consists of n reflections

of type I with ΓS1 connected and gcd{δ(S1), p} = 1, and s(i; k) satisfies 1 6 i 6 n and

gcd{k, q} = 1, q = m/p. Thus we can define a rooted graph Γr
S for any S ∈ Σ(m, p, n).

Let S1 = {th | 1 6 h 6 n} and s = s(i; k). For 1 6 h 6 n, denote by e(th) the edge of

Γr
S corresponding to th. Then we have the following relations:
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(i) sq = 1;

(ii) t2h = 1 for 1 6 h 6 n;

(iii) thtl = tlth if the edges e(th) and e(tl) have no common end node;

(iv) thtlth = tlthtl if the edges e(th) and e(tl) have exactly one common end node;

(v) (thtl)m/d = 1 if th 6= tl with e(th) and e(tl) having two common end nodes, where

d = gcd{m, δ(S)};
(vi) sthsth = thsths if i is an end node of e(th);

(vii) sth = ths if i is not an end node of e(th);

We call (i)-(ii) the order relations on S, and (iii)-(vii) the braid relations on S.

We see that the congruence of S ∈ Σ(m, p, n) is entirely determined by the order

and braid relations (or briefly, the o.b. relations) on S, the latter are determined in

turn by the rooted graph Γr
S except for the case where Γr

S contains a two-nodes circle.

In this exceptional case, they are determined by the graph Γr
S together with the value

gcd{m, δ(S)}. So we have the following

Lemma 2.7. Let S, S′ ∈ Σ(m, p, n).

(1) Suppose that Γr
S contains a circle with more than two nodes. Then S and S′ are

congruent if and only if Γr
S
∼= Γr

S′ ;

(2) Suppose that Γr
S contains a two-nodes circle. Then S and S′ are congruent if and

only if Γr
S
∼= Γr

S′ and gcd{m, δ(S)} = gcd{m, δ(S′)}.

2.8. Denote by Λ(m, p) the set of all the numbers d ∈ N such that d|m and gcd{d, p} = 1.

Let Γ(m, p, n) be the set of all the connected rooted graphs with n nodes and n edges. Let

Γ1(m, p, n) be the set of all the rooted graphs in Γ(m, p, n), where each of those contains a

two-nodes circle. Let Γ2(m, p, n) be the complement of Γ1(m, p, n) in Γ(m, p, n). Denote

by Γ̃(m, p, n) (resp., Γ̃i(m, p, n)) the set of the isomorphism classes in the set Γ(m, p, n)

(resp., Γi(m, p, n)) for i = 1, 2 (see 1.6).

Let Σ̃(m, p, n) be the set of congruence classes in Σ(m, p, n). Then the following is the
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first main result of the paper, which describes all the congruence classes of presentations

for G(m, p, n) in terms of rooted graphs.

Theorem 2.9. The map ψ : S 7→ Γr
S from Σ(m, p, n) to Γ(m, p, n) induces a surjec-

tion (denoted by ψ̃) from the set Σ̃(m, p, n) to the set Γ̃(m, p, n). Denote Σ̃i(m, p, n) :=

ψ̃−1(Γ̃i(m, p, n)) for i = 1, 2. Then the map ψ̃ gives rise to a bijection from Σ̃2(m, p, n)

to Γ̃2(m, p, n); and also the map S 7→ (Γr
S , gcd{m, δ(S)}) induces a bijection from

Σ̃1(m, p, n) to Γ̃1(m, p, n)× Λ(m, p).

Proof. This follows by Theorem 2.4 and Lemma 2.7. ¤

Remark 2.10. (1) By Theorem 2.9, we have an effective way to find a represen-

tative S for any given congruence class in Σ(m, p, n). Fix a connected rooted graph

Γr = ([n], E, a) with |E| = n (hence Γr contains a unique circle) and a number

k ∈ Λ(m, p). We choose an arrow (say (h, l)) on the circle of Γr and take S =

{t(h, l; k), s(a; 1), t(i, j; 0) | (i, j) ∈ E \ {(h, l)}}. Then we see by Theorem 2.4 that

S is in Σ(m, p, n) with Γr
S
∼= Γr and δ(S) = k. If the circle of Γr contains more than

two nodes, then the congruence class of S is determined by Γr alone. If Γr contains a

two-nodes circle, then the congruence class of S is determined by both Γr and k.

(2) Comparing with Theorem 2.9, we showed in [7] the following results concerning

the congruence classes of presentations for the groups G(m, 1, n) and G(m, m, n):

(a) The map (S, P ) → Γr
S induces a bijection from the set of all the congruence

classes of presentations for the group G(m, 1, n) to the set of isomorphism classes of

rooted trees with n nodes (see [7, Theorem 3.2]).

(b) The map (S, P ) → ΓS induces a bijection from the set of all the congruence

classes of presentations for the group G(m,m, n) to the set of isomorphism classes of

connected graphs with n nodes and n edges (or equivalently with n nodes and exactly

one circle) (see [7, Theorem 3.4]).

§3. Circle operations on the set Σ(m, p, n).
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In the subsequent sections of the paper, we want to find, for any S ∈ Σ(m, p, n),

a relation set P on S such that the pair (S, P ) forms a presentation of G(m, p, n). A

crucial tool to do this is an operation, called a circle operation on the set Σ(m, p, n).

We shall introduce such an operation in the present section.

3.1. Assume that X is a reflection set of G(m, p, n) such that ΓX contains exactly one

circle, say the edges of the circle are {ch, ch+1}, 1 6 h 6 r (the subscripts are modulo r)

for some integer 2 6 r 6 n. Then X contains the reflections s(ch, ch+1; kh) with some

integers kh, 1 6 h 6 r (the subscripts are modulo r). Denote δ(X) := |∑r
h=1 kh|. We

see that δ(X) is independent of the choice of an orientation for the circle in ΓX .

3.2. Suppose that ΓX in 3.1 also contains an edge {c0, c1} with c0 6= c2, cr. Hence

X contains a reflection s(c0, c1; k0) for some k0 ∈ Z. Let Y = (X \ {s(cr, c1; kr)}) ∪
{s(cr, c0; kr − k0)} Then the graph ΓY can be obtained from ΓX by replacing the edge

{cr, c1} by {cr, c0}. We see that the graph ΓY also contains exactly one circle with

δ(Y ) = δ(X). We call the transformation X 7→ Y a circle expansion and the reverse

transformation Y 7→ X a circle contraction. We call both transformations circle oper-

ations. It is easily seen that the graph ΓX is connected if and only if so is ΓY . Since

s(cr, c0; kr − k0) = s(c0, c1; k0)s(cr, c1; kr)s(c0, c1; k0), we have 〈Y 〉 = 〈X〉.
We see that a circle contraction on X is applicable whenever X has a circle with at

least three nodes. Also, a circle expansion on X is applicable whenever there exist a

circle and an edge in ΓX which have a unique common end node.

Recall the notation Σ(m, p, n) defined in 2.6. The following result shows that a circle

operation, when applicable, stabilizes the set Σ(m, p, n).

Lemma 3.3. For X ∈ Σ(m, p, n), let Y be obtained from X by a sequence of circle

operations. Then 〈Y 〉 = 〈X〉 and δ(Y ) = δ(X). Hence Y ∈ Σ(m, p, n).

Proof. This follows by the above discussion and by Theorem 2.4. ¤

Next two results are concerned with the action of circle operations on Σ(m, p, n).
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Lemma 3.4. Any X ∈ Σ(m, p, n) can be transformed to some X ′ in Σ(m, p, n) by

applying a sequence of circle expansions so that the graph ΓX′ becomes a circle.

Proof. We know by Lemma 2.2 that the graph ΓX is connected and contains exactly

one circle. If ΓX is itself a circle then there is nothing to do. Otherwise, let c1, c2, ..., cr

be the nodes on the circle of ΓX such that X contains reflections th = s(ch, ch+1; kh)

for any 1 6 h 6 r (the subscripts are modulo r) and some kh ∈ Z. Then X also

contains a reflection t = s(cj , c; k) for some 1 6 j 6 r, c ∈ {1, 2, ..., n} \ {c1, ..., cr} and

k ∈ Z. Let s = ttj−1t and let X ′′ = (X \ {tj−1}) ∪ {s}. Then X ′′ is obtained from X

by a circle expansion with δ(X ′′) = δ(X). Hence X ′′ ∈ Σ(m, p, n) by the assumption

X ∈ Σ(m, p, n) and by Theorem 2.4. There are r + 1 nodes on the circle of ΓX′′ . By

induction on n − r > 0, we can eventually transform X to some X ′ ∈ Σ(m, p, n) with

ΓX′ a circle by successively applying circle expansions on X. ¤

Lemma 3.5. Any X ∈ Σ(m, p, n) can be transformed to some X ′ in Σ(m, p, n) by a

sequence of circle operations such that the graph Γr
X′ is a string with a two-nodes circle

at one end and with the rooted node on the circle and not adjacent to any node outside

the circle.

Proof. By Lemma 3.4, we may assume without loss of generality that the graph ΓX

is a circle, say c1, c2, ..., cn are nodes of ΓX such that X consists of the reflections

th = s(ch, ch+1; kh) for 1 6 h 6 n (the subscripts are modulo n) and s = s(c1; k). Let

t′n−1 = tntn−1tn and t′j = t′j+1tjt
′
j+1 for 2 6 j < n− 1. Let Xn−1 = (X \ {tn})∪{t′n−1}

and Xj = (Xj+1 \ {t′j+1}) ∪ {t′j} for 2 6 j < n − 1. Denote Xn = X. Then Xj is

obtained from Xj+1 by a circle contraction and Xj ∈ Σ(m, p, n) for 2 6 j < n. Hence

X ′ = X2 is a required element in Σ(m, p, n). ¤

§4. The basic relations on any S ∈ G(m, p, n).

In the present section, we introduce the concept of basic relations on any S ∈
Σ(m, p, n) and discuss some relations among these basic relations.
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4.1. It is well known that the group G(m, p, n) has a presentation (S, P ), where S =

{s(h, h + 1; 0), s(1, 2; 1), s(1; 1) | 1 6 h < n}, and P consists of the following relations:

denote th = s(h, h + 1; 0), 1 6 h < n, t′1 = s(1, 2; 1), s = s(1; 1), and q = m/p.

(i) sq = 1;

(ii) t2h = t′21 = 1 for 1 6 h < n;

(iii) titj = tjti if j 6= i± 1;

(iv) titi+1ti = ti+1titi+1 for 1 6 i < n− 1;

(v) sti = tis for i > 1;

(vi) t′1t1t2t
′
1t1t2 = t2t

′
1t1t2t

′
1t1;

(vii) t′1ti = tit
′
1 for i > 2;

(viii) t′1t2t
′
1 = t2t

′
1t2;

(ix) st′1t1 = t′1t1s;

(x) t1st
′
1t1t

′
1t1...... = st′1t1t

′
1t1......, where each side contains p + 1 factors.

Relation (x) can be rewritten as

(4.1.1) (t′1t1)
p−1 = s−1t1st

′
1.

By (ix), this implies that (t′1t1)
p−1 = t1st

′
1s
−1 and hence s−1t1st

′
1 = t1st

′
1s
−1, i.e.,

(4.1.2) t1st1s = st′1st
′
1.

So t1st1st1 = st′1st
′
1t1 = st1s by (ix). We get

(4.1.3) t1st1s = st1st1.

By (4.1.2) and (4.1.3), we further deduce

(4.1.4) t′1st
′
1s = st′1st

′
1.

More generally, we can show that for any a, b ∈ Z, the relations
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(4.1.5) t′1s
at′1s

b = sbt′1s
at′1 and t1s

at1s
b = sbt1s

at1

hold.

By (i), (ix), (x) and (4.1.5), we have

(t′1t1)
(p−1)q = (s−1t1st

′
1)

q = s−qt1s
qt′1(t1t

′
1)

q−1 = (t1t′1)
q.

Then we get

(4.1.6) (t′1t1)
m = 1.

4.2. Recall that in Section 2 we listed all the o.b. relations on any S ∈ Σ(m, p, n). Let

S = {s = s(a; k), th | 1 6 h 6 n}. Note that by Lemma 2.2, all the th’s are reflections

of type I. Also, a is the rooted node of Γr
S . In the present section, we shall list some

more relations on S.

(A) sm/p = 1;

(B) t2i = 1 for 1 6 i 6 n;

(C) titj = tjti if the edges e(ti) and e(tj) have no common end node;

(D) titjti = tjtitj if the edges e(ti) and e(tj) have exactly one common end node;

(E) (titj)m/d = 1 if ti 6= tj with e(ti) and e(tj) having two common end nodes, where

d = gcd{m, δ(S)} (comparing with relation (4.1.6) by noting that the edges e(t1) and

e(t′1) have two common end nodes, and δ(S) = 1 in (4.1.6));

(F) stisti = tistis if a is an end node of e(ti) (comparing with relations (4.1.3)-

(4.1.4));

(G) sti = tis if a is not an end node of e(ti);

(H) ti ·tjtltj = tjtltj ·ti for any triple X = {ti, tj , tl} ⊆ S with ΓX having a branching

node (by a branching node, we mean a node of ΓX such that there are more than two

other nodes of ΓX connecting this node by edges);



Complex Reflection Groups 17

(I) s · titjti = titjti · s, if e(ti) and e(tj) have exactly one common end node a (note

that the node a is rooted);

We call relations (A)-(B) the order relations, (C)-(G) the braid relations, (H) the

branching relations, and (I) the root-braid relations on S.

4.3. Given S ∈ Σ(m, p, n) and take any node a of ΓS , there exists a sequence of nodes

ξa : a0 = a, a1, ..., ar = a with r > 1 and ah 6= ah+1 for 0 6 h < r such that S

contains reflections th = s(ah−1, ah; kh) for 1 6 h 6 r with some integers kh, where

tl 6= tl+1 for 1 6 l < r. Since the graph ΓS is connected and contains a unique circle,

the sequence ξa always exists, which contains all the nodes on the circle of ΓS and is

uniquely determined by the set S and the node a up to an orientation of the circle. We

call ξa a generalized circle sequence (or g.c.s. in short) of S at the node a for a fixed

orientation of the circle of ΓS . In particular, when a is the rooted node of Γr
S , ξa is also

called a root-circle sequence of S. It is easily seen that the node a is on the circle of ΓS

if and only if t1 6= tr.

Let c, c′ be the smallest, resp., the largest integer with the node ac, resp., ac′ lying

on the circle of ΓS . Then a is on the circle of ΓS if and only if c = 0 and c′ = r. Denote

by shj the element thth+1...tj−1tjtj−1...th for 1 6 h < j 6 r.

The following relation is called a circle relation on S (at the node pair {a, aj}):
(J) (s1jsj+1,r)

m
gcd{m,δ(S)} = 1.

Note that relation (E) can be regarded as a special case of (J), where the circle of

ΓS contains only two nodes and the node a is on the circle.

Assume that a is the rooted node of Γr
S . Then the relation (K) below is called a

root-circle relation on S (at the node aj).

(K) ss1jsj+1,r = s1jsj+1,rs,

and the relation (L) below is called a circle-root relation on S (at the node aj).

(L) (sj+1,rs1j)p−1 = s−δ(S)s1js
δ(S)sj+1,r.

In any of the above relations (J)-(L), the integer j is required to satisfy c < j < c′, i.e.,
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the node aj is on the circle of ΓS but is not the node at the entry for the path from the

node a to the circle. Then {a, aj} is called an admissible node pair of Γr
S , at which we

are allowed to talk about relations (J)-(L) on S, where a is required to be the rooted

node of Γr
S for relations (K)-(L).

The following relations are called the branching-circle relations on S (at the nodes

a, aj for (M) (a), at the node a for (M) (b) and at the node aj for (M) (c)):

(M) (a) us1ju · vsj+1,rv = vsj+1,rv · us1ju,

(b) us1jsj+1,rus1jsj+1,r = s1jsj+1,rus1jsj+1,ru, and

(c) vs1jsj+1,rvs1jsj+1,r = s1jsj+1,rvs1jsj+1,rv,

if there are some u, v ∈ S with e(u), e(v) incident to the g.c.s. ξa of ΓS at the nodes

a, aj respectively for some c < j < c′ with c, c′ defined as above.

We call all the relations (A)-(M) above the basic relations on S.

In the remaining part of the section, we always assume that the o.b. relations on S

hold.

4.4. Note that the validity of relations (J), (K) and (M) on S at an admissible node

pair {a, aj} is independent of the choice of an orientation of the circle of ΓS in the

following sense: any of such relations is true for one orientation of the circle if and only

if it is true for the other orientation of the circle. The reasons for this are based on the

following facts:

(1) (s1jsj+1,r)−1 = sj+1,rs1j ;

(2) anyone of s−1 and s can be expressed as a positive power of the other.

(3) uv = vu in the case of (M)(a).

However, the relations (L) on S may hold only for one orientation of the circle of ΓS .

When c+1 < j < c′ (resp., c < j < c′− 1), by left-multiplying and right-multiplying

simultaneously both sides of (J) by the reflection tj (resp., tj+1), we get the correspond-

ing circle relation on S at the node pair {a, aj−1} (resp., {a, aj+1}). This implies that

the circle relation on S holds at one node pair {a, aj} for some c < j < c′ if and only if
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they hold at the node pairs {a, aj} for all c < j < c′. Similar assertion is true concerning

the relations (K) and (L) on S.

Assume c > 0. Thus we have a g.c.s. ξa1 : a1, a2, ..., ar−1 = a1 of ΓS at the node a1.

We can talk about the circle relations on S at the node pair {a1, aj} for c < j < c′. Since

s2jsj+1,r−1 = t1 · s1jsj+1,r · t1, we see that the circle relation (s1jsj+1,r)
m

gcd{m,δ(S)} = 1

holds if and only if (s2jsj+1,r−1)
m

gcd{m,δ(S)} = 1 holds.

Next assume c = 0. Then a is on the circle of ΓS and hence all the node pairs {ai, aj},
0 6 i 6= j < r, are admissible for ΓS . It is easily seen that the circle relations on S at

all these node pairs are mutually equivalent.

The above discussion implies the following

Lemma 4.5. Assume that S ∈ Σ(m, p, n) satisfies all the o.b. relations. Then relation

(J) on S holds at one admissible node pair if and only if it holds at all the admissible

node pairs.

The above discussion also implies the following

Lemma 4.6. Assume that S ∈ Σ(m, p, n) satisfies all the o.b. relations. Then in the

setup of 4.3 with a the rooted node of Γr
S, relations (K) (resp., (L)) on S ∈ Σ(m, p, n)

for different j, c < j < c′, are mutually equivalent.

Next result asserts that relation (J) is a consequence of some other basic relations.

Lemma 4.7. In the setup of 4.3 with a the rooted node of Γr
S, the o.b. relations together

with relations (K) and (L) on S imply relation (J) on S.

Proof. Denote δ = δ(S), q = m
p and d = gcd{m, δ}. The o.b. relations on S implies

(4.7.1) ss1jss1j = s1jss1js and ssj+1,rssj+1,r = sj+1,rssj+1,rs.

This, together with the o.b. relations and relations (K), (L) on S, implies
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(sj+1,rs1j)(p−1) q
d = (s−δs1js

δsj+1,r)
q
d = s−

qδ
d s1js

qδ
d sj+1,r(s1jsj+1,r)

q
d−1 = (s1jsj+1,r)

q
d .

So we get relation (J): (s1jsj+1,r)
m
d = 1 on S. ¤

Next two results are concerned with the branching relations (H) and the branching-

circle relations (M) on S ∈ Σ(m, p, n), which can be shown by the same arguments as

those in [7].

Lemma 4.8. (see [7, Lemma 4.8]) For S ∈ Σ(m, p, n), assume that all the o.b. relations

on S hold. For any branching node v of ΓS, fix some tv ∈ S of type I with e(tv) incident

to v. Then the branching relations (H) on S is equivalent to the following relations:

(H′) The relation tv · tt′t = tt′t · tv holds for any t 6= t′ in S \ {tv} of type I with

Γ{tv,t,t′} having v as a branching node.

Lemma 4.9. (see [7, Lemma 4.12]) For S ∈ Σ(m, p, n) with the circle of ΓS containing

more than two nodes, the branching-circle relations (M) on S are a consequence of the

o.b. and branching relations on S.

Now consider the root-braid relations (I) on S ∈ Σ(m, p, n).

Lemma 4.10. For S ∈ Σ(m, p, n), assume that all the o.b. and branching relations on

S hold and that the rooted node v of Γr
S (hence s = s(v; k) ∈ S for some k ∈ Z) is also a

branching node. Fix some tv ∈ S of type I with e(tv) incident to v. Then the root-braid

relations (I) on S are equivalent to the following relations:

(I′) s · tvttv = tvttv · s for any t ∈ ΓS \ {tv} of type I with e(t), e(tv) having just one

common end node v.

Proof. It is clear that relations (I) imply (I′). Now assume relations (I′). We have to

show the relation s · tt′t = tt′t · s for any t′ 6= t in S \ {tv} of type I with e(t′) and e(t)

having just one common end node v. Indeed, we have

s ·tt′t = tt′t ·s ⇐⇒ s ·tvtt′ttv = tvtt′ttv ·s ⇐⇒ s ·tvttv ·tvt′tv ·tvttv = tvttv ·tvt′tv ·tvttv ·s,
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where the two equivalences follow by a branching relation, resp., an order relation on

S, while the last equation is a consequence of (I′). ¤

§5. Equivalence of the basic relation sets under circle operations.

In the present section, we want to show that if S, S′ ∈ Σ(m, p, n) can be obtained

from one to another by a circle operation then S satisfies all the basic relations if and

only if so does S′.

5.1. Keep the setup of 4.3 on S ∈ Σ(m, p, n): the node a, the g.c.s. ξa, the numbers

c, c′, j with c < j < c′ in ΓS , and the reflections s, th for 1 6 h 6 r. Assume that a is

the rooted node of Γr
S . Let S′ ∈ Σ(m, p, n) be obtained from S by a circle operation

such that the node aj is still on the circle of ΓS′ . Then a is also the rooted node of Γr
S′ .

Concerning the root-circle relations (K) and the circle-root relations (L) on both S and

S′, we need only consider the following five cases:

(1) S′ = (S \ {th}) ∪ {t}, where c + 1 < h 6 j and t = thth−1th.

(2) S′ = (S \ {th}) ∪ {t}, where c < h < j and t = thth+1th.

(3) S′ = (S \ {tc+1}) ∪ {t}, where t = tc+1tc′tc+1.

(4) S′ = (S \ {tc+1}) ∪ {t}, where t = tctc+1tc.

(5) S′ = (S \ {th}) ∪ {t}, where c < h 6 j, t = tht′th for some t′ = s(a′, a′′; k′) ∈ S

with |{a′, a′′} ∩ {ah−1, ah}| = 1.

In any of the above five cases, one can check easily the equations sa,aj = s′a,aj
,

saj ,a = s′aj ,a and δ(S) = δ(S′) by assuming the o.b. relations and the branching

relations on both S and S′, where sa,aj := s1j and saj ,a := sj+1,r; and then s′a,aj
(resp.,

s′aj ,a) is defined for S′ in the same way as sa,aj (resp., saj ,a) for S in 4.3. This implies

that at the node aj , the root-circle relation (K) (resp., the circle-root relation (L))

on S at the node aj holds if and only if the corresponding root-circle relation (resp.,

circle-root relation) on S′ at the node aj holds.

The following examples illustrate the above discussion.
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Examples 5.2. Assume that S ∈ Σ(m, p, n) contains {s = s(1; h), ti = s(ai−1, ai; hi) |
1 6 i 6 6} for some h, hi ∈ Z such that (a0, a1, ..., a6) = (a, b, c, d, e, b, a) is a root-circle

sequence of S. Then b, c, d, e are the nodes on the circle of Γr
S and t1 = t6. We have

sa,d = t1t2t3t2t1 and sd,a = t4t5t6t5t4

(i) Let t = t2t3t2 and S(1) = (S \ {t3}) ∪ {t}. Then S(1) is obtained from S by a

circle contraction. A root-circle sequence for S1 is (a(1)
0 , ..., a

(1)
5 ) = (a, b, d, e, b, a) with

the nodes b, d, e on the circle of Γr
S(1) . we have s1

a,d = t1tt1 and s
(1)
d,a = t4t5t6t5t4.

(ii) Let t = t1t2t1 and S(2) = (S \ {t2}) ∪ {t}. Then S(2) is obtained from S by a

circle expansion. A root-circle sequence for S(2) is (a(2)
0 , ..., a

(2)
5 ) = (a, c, d, e, b, a) all of

whose terms are on the circle of Γr
S(2) . We have s

(2)
a,d = tt3t and s

(2)
d,a = t4t5t6t5t4.

(iii) Let t = t2t5t2 and S(3) = (S \ {t2}) ∪ {t}. Then S(3) is obtained from S by a

circle contraction. A root-circle sequence for S(3) is (a(3)
0 , ..., a

(3)
7 ) = (a, b, e, c, d, e, b, a)

with c, d, e on the circle of Γr
S(3) . We have s

(3)
a,d = t1t5tt3tt5t1 and s

(3)
d,a = t4t5t6t5t4.

We see that a is the rooted node in any of Γr
S and Γr

S(i) , i = 1, 2, 3. Then by the

facts of sa,d = s
(i)
a,d, sd,a = s

(i)
d,a and δ(S) = δ(S(i)), i = 1, 2, 3, it is easily seen that at

the node d, the circle-root relation (sd,asa,d)p−1 = s−δ(S)sa,ds
δ(S)sd,a on S holds if and

only if the circle-root relation (s(i)
d,as

(i)
a,d)

p−1 = s−δ(S(i))s
(i)
a,ds

δ(S(i))s
(i)
d,a on S(i) holds for

any i = 1, 2, 3. Also, at the node d, the root-circle relation ssa,dsd,a = sa,dsd,as on S

holds if and only if the root-circle relation ss
(i)
a,ds

(i)
d,a = s

(i)
a,ds

(i)
d,as on S(i) holds for any

i = 1, 2, 3.

Hence we get the following

Lemma 5.3. Assume that S, S′ ∈ Σ(m, p, n) can be obtained from one to the other by

a circle operation. Then

(1) Γr
S and Γr

S′ have the same rooted node, say a.

(2) S satisfies the circle-root relation (L) (resp., the root-circle relation (K)) at a

node v if and only if S′ satisfies the corresponding circle-root (resp., root-circle) relation
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at the node v, provided that {a, v} is an admissible node pair of both ΓS and ΓS′ .

5.4. Suppose that S ∈ Σ(m, p, n) contains the reflections th = s(ch, ch+1; kh) (the

subscripts are modulo r) for 1 6 h 6 r and some integers kh, where r > 2, and c1, ..., cr

are the nodes on the circle of ΓS . Let t = t1trt1 and let S′ = (S \ {tr}) ∪ {t}. Then S′

is obtained from S by a circle contraction.

Proposition 5.5. In the above setup, the reflection set S satisfies all the basic relations

(see 4.2–4.3) if and only if so does the reflection set S′.

Proof. Under the assumption of the o.b. and branching relations on both S and S′,

the root-circle relations (K) (resp., the circle-root relations (L)) on S′ are equivalent to

those on S by Lemma 5.3.

(I) First assume S satisfies all the basic relations. We want to show that S′ also

satisfies all the basic relations. Since any basic relation on S′ not involving t is just a

basic relation on S, we need only to check all the basic relations on S′ involving t. Note

e(t) = {c2, cr}.
The order relation t2 = 1 follows by the order relations t21 = 1 = t2r on S.

Let s ∈ S′ \ {t} be of type I with the edge e(s) not incident to e(t). We must show

st = ts. We see that e(s) is incident to either both or none of e(t1), e(tr). The result

is obvious if e(s) is incident to none of e(t1), e(tr). In the case when e(s) is incident

to both e(t1) and e(tr), we see that c1 is a branching node of ΓS to which the edges

e(t1), e(tr), e(s) are incident. Then we have ts = t1trt1s = st1trt1 = st by a branching

relation on S.

Let s ∈ S′ \ {t} be of type I with e(s) incident to e(t) at exactly one node in ΓS′ .

We want to show sts = tst, i.e., st1trt1s = t1trt1st1trt1. This can be shown by the

o.b. relations on S and by the fact that either the relations st1 = t1s, strs = trstr, or

st1s = t1st1, str = trs hold. When r = 3, e(t2) and e(t) form the two-nodes circle of ΓS′ .

The braid relation (t2t)m/d = 1 on S′ is the same as the circle relation (t2t1t3t1)m/d = 1
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on S since gcd{m, δ(S′)} = d = gcd{m, δ(S)}.
Let s ∈ S′ \ {t} be of type II. When e(t) is not incident to the rooted node of Γr

S′ ,

relation st = ts follows by relations t1s = st1 and trs = str on S if the node c1 is not

rooted, or by the root-braid relation t1trt1s = st1trt1 on S if c1 is rooted. Now assume

that e(t) is incident to the rooted node of ΓS′ , i.e., either the node c2 or cr is rooted. If

c2 is rooted then we have

stst = tsts ⇐⇒ strt1trstrt1tr = trt1trstrt1trs ⇐⇒ st1st1 = t1st1s.

The last equation is just a braid relation on S. So we get relation stst = tsts.

Similarly we can show the relation stst = tsts if the node cr is rooted.

So we have shown all the o.b. relations on S′ involving t.

Now we want to show the branching relations on S′ involving t. If c2 is a branching

node in ΓS′ , then by Lemma 4.8, we need only show the relation st1tt1 = t1tt1s for any

s ∈ S′ \ {t1, t} of type I with e(s) incident to c2 and not to cr. This follows by the

relations t21 = 1 and str = trs on S. If cr is a branching node in ΓS′ , then we must

show the relation tss′s = ss′st for any s, s′ ∈ S′ \ {t} of type I with e(s), e(s′) incident

to cr and not to c2. This follows by the braid relations t1s = st1, t1s
′ = s′t1 and the

branching relation trss
′s = ss′str on S.

We need not check the circle relations on S′ by Lemma 4.7.

Next we show the branching-circle relations on S′ involving t. By Lemma 4.9, we

need only consider the case of r = 3. In this case, e(t) and e(t2) form a two-nodes

circle. If there exists some u ∈ S′ \ {t, t2} of type I with e(u) incident to c2 then the

branching-circle relation ut2tut2t = t2tut2tu on S′ is the same as the branching-circle

relation ut2t1t3t1ut2t1t3t1 = t2t1t3t1ut2t1t3t1u on S. Similarly for the case when there

exists some v ∈ S′ \ {t, t2} of type I with e(v) incident to cr. If both of such u, v

exist then the branching-circle relation utuvt2v = vt2vutu on S′ is also the same as the

branching-circle relation ut1t3t1uvt2v = vt2vut1t3t1u on S.
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(II) Next assume all the basic relations on S′. We want to check all the basic relations

on S. We need only deal with the ones involving tr = t1tt1. By the first paragraph of

the proof and by Lemmas 4.8, 4.10, we need only check the following relations:

(1) t2r = 1;

(2) trs = str for s ∈ S \ {tr} of type I with e(s), e(tr) having no common end node;

(3) trstr = strs for s ∈ S \ {tr} of type I with e(s), e(tr) having exactly one common

end node;

(4) s · t1trt1 = t1trt1 · s if s ∈ S is of type I with e(s) incident to the circle of ΓS at

the node c1;

(5) s · trtr−1tr = trtr−1tr · s if s ∈ S is of type I with e(s) incident to the circle of ΓS

at the node cr.

(6) s · trtr−1tr = trtr−1tr · s in the case of s = s(cr; k) ∈ S.

(7) s · trt1tr = trt1tr · s in the case of s = s(c1; k) ∈ S.

(8) strstr = trstrs in either case (7) or (8).

The proof for the above relations is similar to what we did in part (I) and hence is

left to the readers. Note that the branching-circle relations (M) on S is a consequence

of the o.b. and branching relations on S by Lemma 4.9 and that the circle relation (J)

on S is a consequence of the o.b. relations and relations (K), (L) on S by Lemma 4.7.

Hence they need not be checked. ¤

§6. The case of two-nodes circle containing the rooted node.

We shall show our second main result, i.e., Theorem 6.2, in the present section. To

do so, we need the following result.

Proposition 6.1. Let S ∈ Σ(m, p, n) be such that Γr
S is a string with a two-nodes circle

at one end and that the rooted node is on the circle and is not adjacent to any node

outside the circle. Let PS be the set of all the basic relations on S. Then (S, PS) forms

a presentation of G(m, p, n).
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Let us first show our second main result under the assumption of Proposition 6.1.

Theorem 6.2. Let S ∈ Σ(m, p, n) and let PS be the set of all the basic relations on S.

Then (S, P ) forms a presentation of the group G(m, p, n).

Proof. By Lemma 3.3, any X ∈ Σ(m, p, n) can be transformed to some X ′ ∈ Σ(m, p, n)

by a sequence of circle operations, where Γr
X′ is a string with a two-nodes circle at one

end and that the rooted node is on the circle and is not adjacent to any node outside

the circle. By Proposition 6.1, we know that (X ′, PX′) is a presentation of G(m, p, n).

Then by Proposition 5.5, this implies that (X,PX) is a presentation of G(m, p, n). ¤

We shall show Proposition 6.1 in the remaining part of the section.

[1, Appendix 2] tells us that the conclusion of Proposition 6.1 is true in the case of

δ(S) = 1 (see 4.1). Now we must show that our result holds in general case: δ(S) ∈ N
with gcd{δ(S), p} = 1.

6.3. Let S = {s, t′1, th | 1 6 h < n} ∈ Σ(m, p, n) be given as in 4.1. So S satisfies all the

relations (i)-(x) in 4.1 and hence also (4.1.1)-(4.1.6). Fix any q ∈ N with gcd{p, q} = 1.

Let t′ = (t′1t1)
qt1 = s(1, 2; q) and let X = (S \ {t′1}) ∪ {t′}, i.e., from S, t′1 is replaced

by t′. Then X ∈ Σ(m, p, n). It is easily seen that Γr
X
∼= Γr

S is a string with a two-nodes

circle at one end: e(t1) and e(t′) are two edges of the circle of Γr
X with δ(X) = q; the

node corresponding to s is rooted which is on the circle and is not adjacent to any node

outside the circle.

Lemma 6.4. The reflection set X defined above satisfies relations (i)-(ix) in 4.1 with

t′ in the place of t′1, and also the following relations:

(x′) (t′t1)p−1 = s−qt1s
qt′, where q = δ(X) satisfies the condition gcd{p, q} = 1.

(xi′) t′st′s = st′st′ and t1st1s = st1st1.

(xii′) (t′t1)
m
d , where d = gcd{m, q}.

Proof. Relation t′2 = 1 holds since t′ is conjugate to t′1 and t′1
2 = 1. Then it remains

to show the following relations:



Complex Reflection Groups 27

(vi′) t′t1t2t′t1t2 = t2t
′t1t2t′t1;

(vii′) t′ti = tit
′ for i > 2;

(viii′) t′t2t′ = t2t
′t2;

(ix′) st′t1 = t′t1s;

and (x′)-(xii′).

(vi′) can be shown by repeatedly applying the relation:

(6.4.1) t′1t1t2(t
′
1t1)

kt2 = t2(t′1t1)
kt2t

′
1t1 for any k > 0.

The latter can be shown by repeatedly applying 4.1 (vi).

(vii′) is an easy consequence of relations 4.1 (iii), (vii).

(viii′) is a special case of the following relation:

(6.4.2) (t′1t1)
kt′1t2(t

′
1t1)

kt′1 = t2(t′1t1)
kt′1t2 for any k > 0.

Now we show (6.4.2) by induction on k > 0. When k = 0, it is just relation 4.1 (viii).

Now assume k > 0. Then by inductive hypothesis, we get

(t′1t1)
kt′1t2(t

′
1t1)

kt′1 = t′1t1 · t2(t′1t1)k−1t′1t2 · t1t′1.
Now we have

t′1t1 · t2(t′1t1)k−1t′1t2 · t1t′1 = t2(t′1t1)
kt′1t2

⇐⇒t′1t1t2(t
′
1t1)

k−1t′1 = t2(t′1t1)
kt′1t2t

′
1t1t2

⇐⇒t′1t1t2(t
′
1t1)

k−1t′1 = t2(t′1t1)
kt2t

′
1t1t2t1

⇐⇒t′1t1t2(t
′
1t1)

kt2 = t2(t′1t1)
kt2t

′
1t1

The last equation is just (6.4.1). So (viii′) is proved.

(ix′) can be shown by repeatedly applying relations 4.1 (ix) and (4.1.3).

Relation (x′) is amount to

(6.4.3) (t′1t1)
q(p−1) = s−qt1s

q(t′1t1)
q−1t′1.
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Now (6.4.3) follows by 4.1 (x), (i), (ix) and (4.1.3)-(4,1,4). So we get (x′).

Concerning relations (xi′), t1st1s = st1st1 is just (4.1.3), and t′st′s = st′st′ is amount

to

(6.4.4) (t′1t1)
q−1t′1s(t

′
1t1)

q−1t′1s = s(t′1t1)
q−1t′1s(t

′
1t1)

q−1t′1.

Now (6.4.4) follows by 4.1 (ii), (xi) and (4.1.4). Hence (xi′) follows.

Finally, we have (t′t1)
m
d = (t′1t1)

qm
d = 1 by (4.1.6). Thus (xii′) is proved. ¤

6.5. The relations on X mentioned in Lemma 6.4 form the full set of basic relations on

X.

By the basic relations on X, we can easily deduce the following relations

(6.5.1) sat′sbt′ = t′sbt′sa and sat1s
bt1 = t1s

bt1s
a for any a, b ∈ Z.

(6.5.2)

(t′t1)kt′t2(t′t1)kt′ = t2(t′t1)kt′t2 and (t1t′)kt1t2(t1t′)kt1 = t2(t1t′)kt1t2 for any k > 0.

Since gcd{p, q} = 1, there are some a, b ∈ Z such that the equation ap+bq = 1 holds.

Lemma 6.6. t′1 = s−at′sa(t1t′)b−1.

Proof.

s−at′sa(t1t′)b−1 = s−a(t′1t1)
q−1t′1s

a(t1t′1)
q(b−1) = s−at′1s

a(t1t′1)
(q−1)+q(b−1)

= s−at′1s
a(t′1t1)

pa = s−at′1s
a
(
(t′1t1)

p−1
)a

(t′1t1)
a

= s−at′1s
a(s−1t1st

′
1)

a(t′1t1)
a = s−at′1s

a · s−at1s
at′1(t1t

′
1)

a−1 · (t′1t1)a

= t′1. ¤
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Lemma 6.7. In the setup of 6.4, the basic relations on X imply the basic relations on

S under the transition t′1 = s−at′sa(t1t′)b−1.

Proof. We need only check all the basic relations on S involving t′1. Since t′2 = 1 and

t′1 is conjugate to t′, we have t′1
2 = 1. By the commutativity of s, t′, t1 with ti, i > 2,

we get t′1ti = tit
′
1 for any i > 2. Next we have

st′1t1 = t′1t1s ⇐⇒ s1−at′sa(t1t′)b−1t1 = s−at′sa(t1t′)b−1t1s ⇐⇒ st′sat1 = t′sat1s

⇐⇒ t′st′sa = sat1st1 ⇐⇒ sat′st′ = sat1st1 ⇐⇒ t1t
′s = st1t

′.

The last equation follows by the basic relations st′t1 = t′t1s and t′2 = t21 = 1 on X. So

we get relation st′1t1 = t′1t1s.

(t′1t1)
p−1 = (s−at′sa(t1t′)b−1t1)p−1 = s−a(p−1)t′sa(p−1)t1(t′t1)b(p−1)−1

= s−a(p−1)t′sa(p−1)t1
(
(t′t1)p−1

)b
(t1t′) = s−a(p−1)t′sa(p−1)t1(s−qt1s

qt′)b(t1t′)

= s−a(p−1)t′sa(p−1)t1s
−bqt1s

bqt′(t1t′)b = s−a(p−1)t′ · t1s−bqt1s
a(p−1) · sbqt′(t1t′)b

= sa−1t′s1−at′(t1t′)b = s−1t1t
′ · sat′s1−at′(t1t′)b−1

= s−1t1t
′ · t′s1−at′sa(t1t′)b−1 = s−1t1s · s−at′sa(t1t′)b−1 = s−1t1st

′
1.

This implies relation (t′1t1)
p−1 = s−1t1st

′
1.

t′1t2t
′
1 = t2t

′
1t2 ⇐⇒ s−at′sa(t1t′)b−1t2s

−at′sa(t1t′)b−1 = t2s
−at′sa(t1t′)b−1t2

⇐⇒ t′(t1t′)b−1t2t
′(t1t′)b−1 = t2t

′(t1t′)b−1t2.

The last equation follows by (6.5.2). So relation t′1t2t
′
1 = t2t

′
1t2 is proved.

Finally we want to show the relation

(6.7.1) t′1t1t2t
′
1t1t2 = t2t

′
1t1t2t

′
1t1.

To do so, we need the following result.



30 Jian-yi Shi

Lemma 6.8.

(6.8.1) (t′t1)bt′t2t1t′t2t1sa = sat′t2t1t′t2t1(t′t1)b ∀ a, b ∈ Z.

Now we show (6.7.1) by assuming Lemma 6.8. (6.7.1) is amount to the relation

(6.7.2)

(t′t1)b−1sat′s−a ·t1t2 ·(t′t1)b−1sat′s−a ·t1t2 = t2 ·(t′t1)b−1sat′s−a ·t1t2 ·(t′t1)b−1sat′s−a ·t1.

We can show that (6.7.2) is equivalent to

(6.7.3) t′s−at′(t1t′)b−2t2t1t
′t2 = t2t1t

′t2(t1t′)b−2t1s
−at1

by repeatedly applying the o.b. relations on X, the relations t′t1s = st′t1 and (6.5.1)–

(6.5.2). Finally, (6.7.3) follows by Lemma 6.8. ¤

Proof of Lemma 6.8. Since the orders of the elements t′t1 and s are finite, we need only

show (6.8.1) in the case of a, b ∈ N. First we show (6.8.1) in the case of a = 0:

(6.8.2) (t′t1)bt′t2t1t′t2t1 = t′t2t1t′t2t1(t′t1)b ∀ a, b ∈ N.

Equation (6.8.2) is trivial when b = 0. To show (6.8.2) for b > 0, we need only show

it in the case of b = 1. But equation t′t1t′t2t1t′t2t1 = t′t2t1t′t2t1t′t1 follows by the basic

relation t1t
′t2t1t′t2 = t2t1t

′t2t1t′ on X.

Next we show (6.8.1) in the case of a > 0. By the above discussion, we need only

show the equation

(6.8.3) (t′t1)bt′t2t1t′t2t1s = s(t′t1)bt′t2t1t′t2t1,
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which is equivalent to

(6.8.4) t1t
′t1t′t2t1t′t2 = t2t1t

′t2t1t′t1t′.

The last equation follows by the basic relation t2t1t
′t2t1t′ = t1t

′t2t1t′t2 on X. ¤

Remark 6.9. (1) Let S = {s, th | 1 6 h 6 n} ∈ Σ(m, p, n) be given as in 4.2 and let PS

be the set of all the basic relations (A)-(M) on S (see 4.2-4.3). Then the presentation

(S, PS) of G(m, p, n) is not essential in general (see 1.7).

For example, let (B′) be any one of the relations in (B). Then (B′) is equivalent to

(B) under the assumption of (D).

Let (K′) (resp., (L′)) be a relation in (K) (resp., (L)) at any one admissible node

pair. Then Lemma 4.6 tells us that (K′) (resp., (L′)) is equivalent to (K) (resp., (L))

under the assumption of the o.b. relations on S.

A subset (H′) of (H) in Lemma 4.8 is equivalent to (H) under the assumption of the

o.b. relations on S. Also, a subset (I′) of (I) in Lemma 4.10 is equivalent to (I) under

the assumption of the o.b. and branching relations on S.

(E) is a special case of (J), while (J) is a consequence of the o.b. relations and

relations (K)-(L) on S by Lemma 4.7.

Let (M′) be relations (M) if Γr
S has a two-nodes circle and be the empty set of

relations if otherwise.

If Γr
S has a two-nodes circle with the rooted node on the circle and not adjacent to

any node outside the circle and that gcd{δ(S), q} = 1, then by the arguments similar

to those for (4.1.3)-(4.1.4), we can show that relation (F) is a consequence of (L) and

the other o.b. relations on S. Let (F′) be the empty set of relations if Γr
S is in such a

case and be relation (F) if otherwise.

Let P ′S be the collection of relations (A), (B′), (C), (D), (F′), (G), (H′), (I′), (K′),

(L′), (M′). Then (S, P ′S) is again a presentation of G(m, p, n). It is interesting to ask if
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the presentation (S, P ′S) should always be essential.

(2) Among all the presentations (S, PS) of G(m, p, n), we would like to single out two

kinds of presentations whose relation sets have simpler forms: one is as that in 4.1; the

other is when ΓS is a circle. In the latter case, the relation set PS can only consist of

some o.b. relations, one root-braid relation, one root-circle relation and one circle-root

relation.
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