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Abstract. In the present paper, we give a graph-theoretic description for representatives
of all the congruence classes of presentations (or r.c.p. for brevity) for the imprimitive
complex reflection groups G(m, 1, n) and G(m, m, n). We have three main results. The
first main result is to establish a bijection between the set of all the congruence classes of
presentations for the group G(m, 1, n) and the set of isomorphism classes of all the rooted
trees of n nodes. The next main result is to establish a bijection between the set of all the
congruence classes of presentations for the group G(m, m, n) and the set of isomorphism
classes of all the connected graphs with n nodes and n edges. Then the last main result is
to show that any generator set S of G = G(m, 1, n) or G(m, m, n) of n reflections, together
with the respective basic relations on S, form a presentation of G.

In the paper [5], I introduced two concepts for any complex reflection group G gen-

erated by more than two reflections: one is the equivalence of simple root systems, and

the other is the congruence of presentations. According to the definition, the equivalent

simple root systems of G determine the congruent presentations of G. Then I, together

with my students, Wang Li and Zeng Peng, found all the inequivalent simple root sys-

tems for all the primitive complex reflection groups except the group G34 (see [5][8][9]).

We also described explicitly r.c.p. for the groups G12, G24, G25, G26, G7, G15, G27. Then
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in [6], I further described explicitly r.c.p. for the groups G19, G11, G32 (here and later

the notations for the complex reflection groups follow Shephard-Todd in [7], also see [1]

[2]). In the present paper, we shall describe r.c.p. for the imprimitive complex reflection

groups G(m, 1, n) and G(m,m, n). We first associate a reflection set X of G(m, 1, n) to

a graph ΓX . Let Σ(m, 1, n) (resp. Σ(m,m, n)) be the set of all the generator sets of

G(m, 1, n) (resp. G(m, m, n)) consisting of reflections with minimal possible cardinality.

We show that any X ∈ Σ(m, 1, n) consists of n− 1 reflections of type I and one reflec-

tion of order m with the graph ΓX a tree of n nodes (see Lemma 2.1). Hence we can

associate each X ∈ Σ(m, 1, n) to a rooted tree of n nodes with the reflection of order

m corresponding to the rooted node (see 1.6). On the other hand, we show that any

X ∈ Σ(m,m, n) consists of n reflections of type I with the number δ(X) (see 2.11 for

the definition) coprime to m such that the graph ΓX is connected and contains exactly

one circle (see 2.10 and Theorem 2.19). Hence we can associate each X ∈ Σ(m,m, n) to

a connected graph with n nodes and exactly one circle. Then our first main result is to

establish a bijection from the set of all the congruence classes of presentations for the

group G(m, 1, n) to the set of isomorphism classes of rooted trees of n nodes (see Theo-

rem 3.2). Also, our second main result is to establish a bijection from the set of all the

congruence classes of presentations of the group G(m,m, n) to the set of isomorphism

classes of connected graphs with n nodes and exactly one circle (see Theorem 3.4).

When a complex reflection group G is given, the congruence for a presentation (S, P )

of G is entirely determined by the generator set S, not by the relation set P . However,

in order to make a presentation of G more accessible, a proper choice of a relation set

P is important in practice. To do this, we introduce the concept of basic relations on

a generator set of the groups G(m, 1, n) and G(m,m, n). Then the third main result of

the paper is to show that for G = G(m, 1, n), G(m,m, n), any generator set S, together

with the set P of basic relations on S form a presentation of G (see Theorems 4.18 and

4.21).
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The technical tools in proving our main results are two operations on the reflection

sets of G(m, 1, n). One is called a terminal node operation, and the other is called a

circle operation (see 2.5 and 2.11). Two facts are crucial in getting our results: one is

that the set Σ(m, 1, n) is transitive under the terminal node operations (2.5 and Lemma

2.6); the other is that the set Σ(m,m, n) is transitive under the circle operations (2.11

and Lemma 2.14). These two facts enable us to reduce ourselves to certain simpler

cases: for the group G(m, 1, n), we reduce to the case where the graph ΓX for some

X ∈ Σ(m, 1, n) is a string with the rooted node at one end; for G(m,m, n), we reduce

to the case where ΓX for some X ∈ Σ(m,m, n) is a string with a two-nodes circle at

one end.

The contents are organized as follows. Section 1 is the preliminaries, some concepts

and known results are collected there. In Sections 2 we describe the generator sets for

the groups G(m, 1, n) and G(m,m, n). We establish a bijection between the congruence

classes of presentations for each of these groups and the isomorphism classes of certain

graphs in Section 3. Finally, we show that any generator set S of G = G(m, 1, n) or

G(m, m, n), together with the respective basic relations on S, form a presentation of G.

§1. Preliminaries.

1.1. Let V be a complex vector space of dimension n. A reflection on V is a linear

transformation on V of finite order with exactly n−1 eigenvalues equal to 1. A reflection

group G on V is a finite group generated by reflections on V . A reflection group G on

V is called a real group or a Coxeter group if there is a G-invariant R-subspace V0 of

V such that the canonical map C⊗R V0 → V is bijective. If this is not the case, G will

be called complex. (Note that, according to this definition, a real reflection group is not

complex.)

Since G is finite, there exists a unitary inner product ( , ) on V invariant under G.

From now on we assume that such an inner product is fixed.
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1.2. A reflection group G in V is imprimitive, if G acts on V irreducibly and there

exists a decomposition V = V1 ⊕ ......⊕ Vr of nontrivial proper subspaces Vi, 1 6 i 6 r,

of V such that G permutes {Vi | 1 6 i 6 r} (see [2]).

1.3. Let Sn be the symmetric group on n letters 1, 2, ..., n. For σ ∈ Sn, we denote

by [(a1, ..., an)|σ] the n × n monomial matrix with non-zero entries ai in the (i, (i)σ)-

positions. For p|m (read “ p divides m ”) in N, we set

G(m, p, n) =
{

[(a1, ..., an)|σ]
∣∣∣∣ai ∈ C, am

i = 1;
(∏

j
aj

)m/p

= 1; σ ∈ Sn

}

G(m, p, n) is the matrix form of an imprimitive reflection group acting on V with respect

to an orthonormal basis e1, e2, ..., en, which is Coxeter only when either m 6 2 or

(m, p, n) = (m,m, 2). We have G(m, p, n) = G(1, 1, n) n A(m, p, n), where A(m, p, n)

consists of all the diagonal matrices of G(m, p, n), and G(1, 1, n) ∼= Sn.

In particular, take p = 1,m, we get two special imprimitive reflection groups G(m, 1, n)

and G(m,m, n) with G(m,m, n) ⊂ G(m, 1, n). These two infinite families of groups are

the main objects we shall study in the present paper.

In the present paper, we shall always assume m, n > 2 when we consider the groups

G(m, 1, n) or G(m,m, n) unless otherwise specified.

1.4. For an orthonormal basis e1, ..., en of V and ζm = e2πi/m, let

R(m, m, n) =
{

1√
2

(
ζh
mei − ζk

mej

)∣∣∣∣ 1 6 i 6= j 6 n, h, k ∈ Z
}

R(m,n) =
{

ζk
mei

∣∣ 1 6 i 6 n, k ∈ Z}
,

R(m, 1, n) = R(m,m, n) ∪R(m,n).

Then R(m,m, n) and R(m, 1, n) are root systems of the groups G(m,m, n) and G(m, 1, n)

respectively, where the roots in R(m,m, n) have order 2 and those in R(m,n) have order

m (see [2, 4.9] for the definition of a root system).

1.5. There are two kinds of reflections in the group G(m, 1, n) as follows.
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(i) One is with respect to a root in R(m, m, n). It is of the form s(i, j; k) =

[(1, ..., 1, ζ−k
m , 1, ..., 1, ζk

m, 1, ..., 1)|(i, j)], where ζ−k
m , ζk

m are the ith, resp. jth components

of the n-tuple and (i, j) is the transposition of i and j for some k ∈ Z and 1 6 i < j 6 n.

Call s(i, j; k) a reflection of type I. Clearly, any reflection of type I has order 2. We also

set s(j, i; k) = s(i, j;−k) for any 1 6 i < j 6 n and k ∈ Z.

(ii) The other type of reflection is with respect to a root in R(m,n). It is of the form

s(i; k) = [(1, ..., 1, ζk
m, 1, ..., 1)|1] for some k ∈ Z, where ζk

m occurs as the ith component

of the n-tuple and 1 is the identity element of Sn. Call s(i; k) a reflection of type II.

s(i; k) has order m/gcd(m, k).

All the reflections of type I lie in the subgroup G(m, m, n).

1.6. For any Z ⊆ {1, 2, ..., n} with r = |Z| > 0, let VZ be the subspace of V spanned by

{ei | i ∈ Z}. Let RZ(m,m, n) = R(m,m, n) ∩ VZ and RZ(m, 1, n) = R(m, 1, n) ∩ VZ .

Then RZ(m,m, n) (assuming r > 1) and RZ(m, 1, n) are root subsystems of R(m, m, n)

and R(m, 1, n) respectively. Let GZ(m, 1, n) (resp. GZ(m,m, n)) be the subgroup of

G(m, 1, n) (resp. G(m,m, n)) generated by the reflections with respect to the roots

in RZ(m, 1, n) (resp. RZ(m,m, n)). Then GZ(m, 1, n) ∼= G(m, 1, r). When r > 1,

we also have GZ(m, m, n) ∼= G(m,m, r). To any set of reflections of GZ(m, 1, n) of

type I, say X = {s(ih, jh; kh) | h ∈ J} for some index set J , we associate a digraph

ΓZ,X = (NX , EX) as follows. Its node set NX is Z, and its arrow set EX consists of all

the ordered pairs (i, j), i < j, with labels k for any s(i, j; k) ∈ X (hence, if s(i, j; k) ∈ X

and i > j, then ΓZ,X = (NX , EX) contains an arrow (j, i) with the label −k). Denote

by ΓZ,X the underlying graph of ΓZ,X which is obtained from ΓZ,X by replacing all the

labelled arrows by unlabelled edges.

Clearly, the graph ΓZ,X has no loop but may have multi-edges between two nodes.

The above definition of a graph can be extended: to any set X of reflections of

GZ(m, 1, n), we define a graph ΓZ,X to be ΓZ,X′ , where X ′ is the subset of X consisting

of all the reflections of type I. When X contains exactly one reflection of type II (say
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s(i; p)), we define another graph, denoted by Γr
Z,X , which is obtained from ΓZ,X by

rooting the node i, i.e., Γr
Z,X is a rooted graph with the rooted node i. Sometimes we

denote Γr
Z,X by (Z, EX , i).

When Z = {1, 2, ..., n}, we simply denote ΓX (resp. Γr
X) for ΓZ,X (resp. Γr

Z,X).

Note that when S is the generator set in a presentation (G,S) of G = G(m, 1, n), G(m, m, n),

the graph defined here is different from a Coxeter-like graph given in [1, Appendix 2]:

in a Coxeter-like graph, all the generating reflections are represented by nodes; while in

a graph defined here, most of the generating reflections are represented by edges.

1.7. For a reflection group G, a presentation of G by generators and relations (or a

presentation in short) is by definition a pair (S, P ), where

(1) S is a finite generator set for G which consists of reflections, and S has minimal

cardinality with this property.

(2) P is a finite set of relations on S, and any other relation on S is a consequence

of the relations in P .

A presentation (S, P ) of G is essential if (S, P0) is not a presentation of G for any

proper subset P0 of P .

Two presentations (S, P ) and (S′, P ′) for G are congruent, if there exists a bijection

η : S −→ S′ such that for any s, t ∈ S,

(∗) 〈s, t〉 ∼= 〈η(s), η(t)〉, where the notation 〈x, y〉 stands for the subgroup generated

by x, y.

In this case, we see by taking s = t that the order o(r) of r is equal to the order

o(η(r)) of η(r) for any r ∈ S.

If there does not exist such a bijection η, then we say that these two presentations

are non-congruent.

When a reflection group G is a Coxeter group, the presentation of G as a Coxeter

system is one presentation of G defined here. However, G may have some other presen-

tations not congruent to the presentation of G as a Coxeter system. For example, let
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G be the symmetric group Sn. Then one can show that the set of all the congruence

classes of presentations of Sn is in one-to-one correspondence to the set of isomorphism

classes of trees of n nodes. The presentation of Sn as a Coxeter system corresponds to

the string of n nodes.

Given any reflection group G, by the above definition of a presentation, we see that

for any generator set S of G with minimal possible cardinality, one can always find a

relation set P on S such that (S, P ) is a (essential) presentation of G. The congruence

of the presentation (S, P ) is entirely determined by the generator set S. So it makes

sense to talk about the congruence relations among the generator sets of a reflection

group G.

1.8. For any non-zero vector v ∈ V , denote by lv the one dimensional subspace Cv

of V spanned by v, call it a line. In particular, denote li = lei for 1 6 i 6 n. Let

L = {li | 1 6 i 6 n}. Then the reflection s(i, j; k) in G(m, 1, n) interchanges the lines li,

lj and leaves all the other lines lh, h 6= i, j, in L stable. The reflection s(i; k) stabilizes

all the lines in L. More generally, any element of G(m, 1, n) gives rise to a permutation

on the set L, and the action of G(m, 1, n) (resp. G(m,m, n)) on L is transitive.

Let X be a set of reflections of G(m, 1, n) and let 〈X〉 be the subgroup of G(m, 1, n)

generated by X. Then the action of 〈X〉 on L is transitive if and only if the graph ΓX

is connected. In particular, the graph ΓX must be connected when X is the generator

set of a presentation of G(m, 1, n).

§2. The generator sets in the presentations for G(m, 1, n) and G(m,m, n).

In the present section, we shall describe the generator set S in a presentation (S, P )

for the group G(m, 1, n) or G(m, m, n).

Lemma 2.1. The generator set S of a presentation (S, P ) of the group G(m, 1, n)

consists of n−1 reflections of type I and one reflection of order m (m, n > 2 as assumed

in 1.3). Hence the graph ΓS is a tree.
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Proof. By the definition of a presentation and by [1, Appendix 2], the set S is of

cardinality n. Let a1 (resp. a2) be the number of reflections in S of type I (resp. of

order m). Then we have a2 > 1 by the fact that any reflection of G(m, 1, n) is conjugate

to a power of some generating reflection (see [5, Section 1.5]). Hence a1 6 n − 1. So

the graph ΓS has at most n − 1 edges. Since the action of the group G(m, 1, n) on L

is transitive (see 1.8), the graph ΓS must be connected and hence has at least n − 1

edges since it has n nodes. So a1 = n− 1 and hence a2 = 1. The last assertion follows

immediately. ¤

2.2. According to Lemma 2.1, we can define the graph Γr
S which is a rooted tree for

any presentation (S, P ) of the group G(m, 1, n) (see 1.6). The generator set S consists

of n− 1 reflections s(ih, jh; kh), 1 6 h < n, of type I and one reflection s(p; k) for some

1 6 p 6 n and k ∈ Z with k coprime to m (hence o(s(p; k)) = m, see 1.5 (ii)). By the

fact that the graph Γr
S is a rooted tree, we have {ih, jh} 6= {il, jl} for any h 6= l. So for

any 1 6 h 6= l < n, we have

〈s(ih, jh; kh), s(il, jl; kl)〉 ∼=
{ Z2 × Z2, if {ih, jh} ∩ {il, jl} = ∅,

S3, if {ih, jh} ∩ {il, jl} 6= ∅.
Also, we have

〈s(ih, jh; kh), s(p; k)〉 ∼=
{ Z2 × Zm, if p /∈ {ih, jh},

G(m, 1, 2), if p ∈ {ih, jh}.
Here Zm is the cyclic group of order m.

2.3. Two rooted graphs (N,E, a) and (N ′, E′, a′) are isomorphic, if there exists a

bijective map φ : N → N ′ such that φ(a) = a′ and that for any v, w ∈ N , {v, w} is in

E if and only if {φ(v), φ(w)} is in E′.

The next result is concerned with a subgroup of G(m, 1, n) generated by a set X of

n− 1 reflections of type I with the graph ΓX connected.

Lemma 2.4. Let a1, a2, ..., an be a permutation of 1, 2, ..., n and let X = {s(ah, ah+1; kh) |
1 6 h < n} be a reflection set of G(m, 1, n) with some integers kh. Then the subgroup

G = 〈X〉 of G(m, 1, n) generated by X is isomorphic to the symmetric group Sn.
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Proof. We know that G(m, 1, n) = A(m, 1, n)oG(1, 1, n). The natural homomorphism

π : G(m, 1, n) → G(1, 1, n) ∼= Sn sends s(ah, ah+1; kh), 1 6 h < n, to sh = s(ah, ah+1; 0).

Since s1, s2, ..., sn−1 generate the group G(1, 1, n), we have π(G) ∼= Sn. Hence |G| >

|Sn|, where |X| denotes the cardinality of a set X. On the other hand, we have the

following relations: for any 1 6 h 6 l < n,

(i) s(ah, ah+1; kh)s(al, al+1; kl) = s(al, al+1; kl)s(ah, ah+1; kh) if l 6= h, h + 1;

(ii) s(ah, ah+1; kh)s(al, al+1; kl)s(ah, ah+1; kh) = s(al, al+1; kl)s(ah, ah+1; kh)s(al, al+1; kl)

if l = h + 1;

(iii) s(ah, ah+1; kh)2 = 1.

We know that the generator set S = {s1, ..., sn−1} together with the following set of

relations:

(1) shsl = slsh if l 6= h, h + 1;

(2) shslsh = slshsl if l = h + 1;

(3) s2
h = 1.

form a presentation of Sn as a Coxeter system. This implies that G is also a homomor-

phic image of Sn, in particular, |G| 6 |Sn|. We get |G| = |Sn|. So the map π : G → Sn

is an isomorphism. Our result follows. ¤

2.5. Let X be a set of reflections of G(m, 1, n) such that the graph ΓX is connected and

has two terminal nodes i, j (by a terminal node i of a graph, we mean that there is only

one edge incident to i in the graph). Let a1 = i, a2, ..., ar = j be a sequence of nodes such

that X contains the following reflections: th = s(ah, ah+1; kh) for 1 6 h < r and some

integers kh. Let s = t1t2...tr−2tr−1tr−2...t1. Then s = s(a1, ar; k) with k =
∑r−1

h=1 kh is a

reflection of G(m, 1, n). Let X ′ = (X \{tr−1})∪{s} (resp. X ′′ = (X \{t1})∪{s}). Then

the graph ΓX′ (resp. ΓX′′) is also a connected graph which can be obtained from ΓX

by replacing the edge {ar−1, ar} (resp. {a1, a2}) by {a1, ar}. Call the transformation

ΓX 7→ ΓX′ (resp. ΓX 7→ ΓX′′) a terminal node operation on ΓX . In this case, we see
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that the graph ΓX is a tree if and only if ΓX′ (resp. ΓX′′) is a tree. Also, we have

〈X ′〉 = 〈X〉 (resp. 〈X ′′〉 = 〈X〉).

By abuse of terminology, we also say that the set X ′ (resp. X ′′) is obtained from

X by a terminal node operation. In this case, it is not necessarily true that X is also

obtained from X ′ (resp. X ′′) by a terminal node operation, it is the case only when the

node ar−1 (resp. a2) is a terminus in ΓX′ (resp. ΓX′′).

A terminal node operation on X is applicable whenever the graph ΓX is connected

and contains at least two terminal nodes. In particular, this is the case when ΓX is a

tree (n > 2 as assumed).

Let X, Y be two sets of reflections in G(m, 1, n). We say that X is obtained from

Y (or equivalently, Y is transformed to X) by a sequence of terminal node operations,

if there exists a sequence of reflection sets X1 = Y,X2, ..., Xr = X of G(m, 1, n) with

some r > 1 such that for every 1 < h 6 r, Xh either is obtained from or gives rise to

Xh−1 by a terminal node operation.

Lemma 2.6. Let X,Y be two subsets of G(m, 1, n), each consisting of n−1 reflections

of type I such that the graphs ΓX and ΓY are trees. Then Y can be transformed to

some Y ′ by a sequence of terminal node operations such that the graphs ΓX and ΓY ′ are

isomorphic.

Proof. We may assume ΓX is a string without loss of generality. If ΓY is also a string

then we can just take Y ′ = Y . Now assume that we are not in that case. Fix a terminal

node, say a1, of ΓY . Take another terminal node, say a2, of ΓY . Then we can apply a

terminal node operation on Y with respect to a1, a2 to get Y1 such that {a1, a2} is an

edge with a2 a terminal node in ΓY1 . If ΓY1 is still not a string, we can take a terminal

node a3 6= a2 in ΓY1 . Applying a terminal node operation on Y1 with respect to a2, a3,

we get Y2 such that {a2, a3} is an edge with a3 a terminal node in ΓY2 . Continuing such

a process, we can eventually get a reflection set Yr for some r > 1 with ΓYr a string by
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a sequence of terminal node operations on Y . Then Y ′ = Yr is as required. ¤

Note that for the reflection set X in Lemma 2.4, the graph ΓX is a string. The

following result generalizes Lemma 2.4.

Lemma 2.7. Let X be a set of n− 1 reflections of G(m, 1, n) such that the graph ΓX

is a tree. Then the subgroup 〈X〉 of G(m, 1, n) generated by X is isomorphic to Sn.

Proof. The tree ΓX contains exactly n − 1 edge. Hence all the reflections in X have

type I. If the graph ΓX is a string then this is just the result of Lemma 2.4. Now assume

that we are not in the case. Then by Lemma 2.6, we can transform X to some X ′ by a

sequence of terminal node operations such that ΓX′ is a string. Since 〈X ′〉= 〈X〉, our

result follows by Lemma 2.4. ¤

The next result is the converse of Lemma 2.1.

Theorem 2.8. Let X be a subset of G(m, 1, n) consisting of n − 1 reflections of type

I and one reflection of order m ( m > 2 as assumed) such that the graph ΓX is a tree.

Then X generates the group G(m, 1, n).

Proof. Let X ′ be the set of n− 1 reflections of type I in X. Then the graph ΓX′ = ΓX

is a tree. The natural map π : G(m, 1, n) → G(1, 1, n) sends 〈X ′〉 isomorphically onto

G(1, 1, n) by Lemmas 2.4, 2.7 and their proof. The reflection of order m in X has

the form s(i; k) for some integers i, k with 1 6 i 6 n and k coprime to m. Since

the graph ΓX′ is a tree and hence connected, the reflection s(j; k) for any 1 6 j 6 n

can be obtained from s(i; k) by 〈X ′〉-conjugation, hence s(j; k) ∈ 〈X〉. Now A(m, 1, n)

can be generated by all these s(j; k)’s and so it is contained in 〈X〉. This implies

〈X〉 ⊇ 〈X ′〉A(m, 1, n) = G(m, 1, n) ⊇ 〈X〉. Our result follows. ¤

By Theorem 2.8, the following result can be used to show that the set of all the gen-

erator sets of G(m, 1, n) are transitively permuted under the terminal node operations

up to congruence.
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Lemma 2.9. Let X,Y be two subsets of G(m, 1, n), each consisting of n−1 reflections

of type I and one reflection of order m such that the graphs ΓX and ΓY are trees. So we

can define rooted trees Γr
X and Γr

Y . Then Y can be transformed to some Y ′ by a sequence

of terminal node operations such that the rooted trees Γr
X and Γr

Y ′ are isomorphic.

Proof. We may assume without loss of generality that Γr
X is a string with the rooted

node at one end. By Lemma 2.6, we can transform Y to some Y ′′ by a sequence of

terminal node operations such that ΓY ′′ is a string. Assume that a1, a2, ..., an are nodes

of Γr
Y ′′ with the node ai rooted such that {ah, ah+1}, 1 6 h < n, are edges of Γr

Y ′′ .

If i ∈ {1, n} then we can just take Y ′ = Y ′′. Otherwise, we can apply the terminal

node operations on Y ′′ with respect to the node pairs {a1, an}, {a2, a1},...,{ai−1, ai−2}
in turn. Then the result is just a required set Y ′. ¤

2.10. By Lemma 2.7 and [1, Appendix 2], we see that any presentation (S, P ) of

G(m, m, n) must satisfy |S| = n. That is, ΓS is a connected graph with n nodes and

n edges. So ΓS must be a connected graph with exactly one circle, where we allow a

circle to have just two nodes, i.e., a pair of nodes with double edges. In the remaining

part of this section, we shall give a necessary and sufficient condition for a set X of n

reflections with ΓX connected to generate the group G(m,m, n). To do this, we shall

first introduce a new operation on X.

2.11. Assume that X is a reflection set of G(m,m, n) such that ΓX is connected and

contains exactly one circle, say the edges of the circle are {ah, ah+1}, 1 6 h 6 r (the

subscripts are modulo r) for some integer 2 6 r 6 n. Then X contains the reflections

s(ah, ah+1; kh) with some integers kh for any 1 6 h 6 r (the subscripts are modulo r).

Denote by δ(X) the absolute value of
∑r

h=1 kh.

Suppose that ΓX also contains an edge {a0, a1} with a0 6= a2, ar. Hence X contains

a reflection s(a0, a1; k0) for some k0 ∈ Z. Let Y = (X \ {s(ar, a1; kr)}) ∪ {s(ar, a0; kr −
k0)} Then the graph ΓY can be obtained from ΓX by replacing the edge {ar, a1} by
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{ar, a0}. Clearly, the graph ΓY is also connected and contains exactly one circle with

δ(Y ) = δ(X). Call the transformation X 7→ Y a circle expansion and call the reverse

transformation Y 7→ X a circle contraction. Call both transformations circle operations.

Since s(ar, a0; kr − k0) = s(a0, a1; k0)s(ar, a1; kr)s(a0, a1; k0), we have 〈Y 〉 = 〈X〉.
Clearly, a circle contraction on X is applicable whenever X has a circle with at least

three nodes. Also, a circle expansion on X is applicable whenever ΓX contains a circle

which is incident to some edge at one node.

2.12. Let ∆ be the set of all the reflection sets X of G(m,m, n) with ΓX connected

and containing exactly one circle. Then all applicable circle operations stabilize the set

∆. The fibres of the function δ : ∆ → Z>0 (the set of non-negative integers) are stable

under the circle operations. Assume that Y is obtained from X ∈ ∆ by a sequence of

circle operations. Then 〈Y 〉 = 〈X〉. Hence we get

Lemma 2.13. Let X and Y be in ∆ such that Y can be obtained from X by a sequence

of circle operations. Then we have 〈Y 〉 = 〈X〉 and δ(Y ) = δ(X).

Lemma 2.14. Let X be a reflection set of G(m,m, n) such that the graph ΓX is con-

nected and contains exactly one circle. Then X can be transformed to some X ′ by a

sequence of circle operations such that the graph ΓX′ is a string with a two-nodes circle

at one end.

Proof. First we can apply a sequence of circle expansions to transform X to some

X ′′ such that the graph ΓX′′ is a circle. Let c1, c2, ..., cn be the nodes of ΓX′′ such

that X ′′ consists of the reflections th = s(ch, ch+1; kh) for 1 6 h 6 n (the subscripts

are modulo n). Let t′n−1 = tntn−1tn and t′j = t′j+1tjt
′
j+1 for 2 6 j < n − 1. Let

Xn−1 = (X ′′ \{tn})∪{t′n−1} and Xj = (Xj+1 \{t′j+1})∪{t′j} for 2 6 j < n−1. Denote

Xn = X ′′. Then Xj is obtained from Xj+1 by a circle contraction and Xj ∈ Σ(m, m, n)

for 2 6 j < n. Clearly, X ′ = X2 is a required element in Σ(m, m, n). ¤

2.15. Let X = {s(h, h + 1; kh), s(1, 2; k′1) | 1 6 h < n} for some integers k′1, k1, ..., kn−1.
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Then the graph ΓX is a string with a two-nodes circle at one end. We want to describe

the subgroup 〈X〉 of G(m,m, n) generated by X.

Denote th = s(h, h + 1; kh), 1 6 h < n, and t′1 = s(1, 2; k′1). Let ζ = e2πi/m. For any

1 < i 6 n and k ∈ Z, denote α(i; k) = [(ζ−k, 1, ..., 1, ζk, 1, ..., 1)|1], where ζk is the ith

component of the n-tuple. Then we have t′1t1 = α(2; k′1 − k1). Denote p = k′1 − k1. We

have α(i; ap) = α(i; p)a = ti−1ti−2...t2(t′1t1)
at2...ti−1 for any 2 6 i 6 n and a ∈ Z. For

c2, ..., cn ∈ Z, denote β(c2, ..., cn) = [(ζcp, ζc2p, ..., ζcnp)|1], where c = −∑n
i=2 ci. Then

β(c2, ..., cn) =
∏n

i=2 α(i; cip) =
∏n

i=2 α(i; p)ci . Let N = {β(c2, ..., cn) | ci ∈ Z}. Clearly,

N is closed under multiplication and inversion. So N itself forms an abelian group. By

the above discussion, we see that N is a subgroup of 〈X〉. For any c2, ..., cn ∈ Z and

t ∈ X, we have β(c′2, ..., c
′
n) = tβ(c2, ..., cn)t, where, if t = th with 2 6 h < n then the

sequence c′2, ..., c
′
n can be obtained from c2, ..., cn by transposing the terms ch and ch+1;

if t ∈ {t′1, t1} then

c′i =
{

ci, if i > 2,

−∑n
j=2 cj , if i = 2.

This implies that N is an abelian normal subgroup of 〈X〉.

Lemma 2.16. In the above setup, we have 〈X〉 = N o 〈t1, ..., tn−1〉.

Proof. We have just shown that N / 〈X〉. We know by Lemma 2.4 and its proof that

〈t1, ..., tn−1〉 is a subgroup of 〈X〉 and that the natural map G(m,m, n) → G(1, 1, n)

sends 〈t1, ..., tn−1〉 isomorphically onto G(1, 1, n). So the intersection of N and 〈t1, ..., tn−1〉
is the trivial subgroup {1}. Hence N〈t1, ..., tn−1〉 = N o 〈t1, ..., tn−1〉, which is a sub-

group of 〈X〉. It remains to show that 〈X〉 ⊆ N o 〈t1, ..., tn−1〉. To do this, it is enough

to show that t · (N o 〈t1, ..., tn−1〉) ⊆ N o 〈t1, ..., tn−1〉 for any t ∈ X. It is also enough

to show that tβ(c2, ..., cn) ⊆ N o 〈t1, ..., tn−1〉 for any t ∈ X and ci ∈ Z. When t = th

for some 1 6 h < n, we have tβ(c2, ..., cn) = (thβ(c2, ..., cn)th)th ⊆ Nth; when t = t′1,

we have tβ(c2, ..., cn) = α(2; p)t1β(c2, ..., cn) = (α(2; p)t1β(c2, ..., cn)t1)t1 ⊆ Nt1 since

α(2; p) = β(1, 0, ..., 0) ∈ N . This proves our result. ¤
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Remark 2.17. The above lemma can be generalized: The set X could be taken a

more general reflection set X ′ = {s(ah, ah+1; kh), s(a1, a2; k′1) | 1 6 h < n}, where

k′1, k1, ..., kn−1 are any fixed integers, and a1, ..., an is any permutation of 1, 2, ..., n.

Actually, such a more general subgroup 〈X ′〉 of G(m,m, n) is T -conjugate to a subgroup

of the form 〈X〉 in Lemma 2.16, where T is the permutation matrix in G(m, m, n)

corresponding to the permutation a1, a2, ..., an. Hence we also have a decomposition

〈X ′〉 = N ′ o 〈s1, ..., sn−1〉, where sh = s(ah, ah+1; kh) for 1 6 h < n, and N ′ =

〈X ′〉 ∩A(m, m, n) = T 〈X〉T−1 ∩A(m,m, n) = TNT−1 = N .

Corollary 2.18. Let X ′ = {s(ah, ah+1; kh), s(a1, a2; k′1) | 1 6 h < n}, where k′1, k1, ..., kn−1

are any fixed integers, and a1, ..., an is any permutation of 1, 2, ..., n. Then X ′ is a gen-

erator set of G(m, m, n) if and only if the integer k′1 − k1 is coprime to m.

Proof. By the above remark, we need only consider the case when ah = h for any

1 6 h 6 n. Hence X ′ is just the set X in Lemma 2.16. By Lemma 2.16, we see that

〈X〉 = G(m,m, n) if and only if the subgroup N of 〈X〉 in Lemma 2.16 is equal to

A(m,m, n). The latter holds if and only if the number p = k′1 − k1 in 2.15 is coprime

to m. Hence the result. ¤

Note that in the setup of Corollary 2.18, the number |k′1 − k1| is equal to δ(X ′).

Now we are ready to give a criterion for a certain reflection set to be a generator set

of G(m,m, n).

Theorem 2.19. Let X be a reflection set of G(m,m, n) such that the graph ΓX is

connected and contains exactly one circle. Then X generates G(m,m, n) if and only if

the integer δ(X) is coprime to m.

Proof. By Lemma 2.14, we can transform X to some reflection set X ′ by a sequence

of circle operations such that the graph ΓX′ is a string with a two-nodes circle at one

end. Then by Lemma 2.13, we have 〈X ′〉 = 〈X〉 and δ(X ′) = δ(X). Hence by Corollary
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2.18, we see that 〈X ′〉 = G(m, m, n) if and only if δ(X ′) is coprime to m. So our result

follows immediately. ¤

§3. The congruence classes of presentations of the group G(m, 1, n).

In the present section, we shall get two main results of the paper, which establish

a bijection from the set of all the congruence classes of presentations for the group

G(m, 1, n) (resp., G(m,m, n)) to the set of isomorphism classes of certain connected

graphs.

3.1. Let S be any generator set of G(m, 1, n) consisting of n reflections. By Lemma

2.1 and Theorem 2.8, we see that S gives rise to a presentation (S, P ) of the group

G(m, 1, n) for a certain set P of relations on S. By Lemma 2.1, S = S′ ∪ {s}, where

S′ consists of n − 1 reflections of type I with the graph ΓS′ being a tree, and s is a

reflection of order m. So we can define the rooted tree Γr
S . The set S satisfies the

following relations:

(1) t2 = 1 for any t ∈ S′;

(2) sm = 1;

(3) tt′ = t′t for any t, t′ ∈ S′ with the edges e(t), e(t′) having no common node in

Γr
S ;

(4) tt′t = t′tt′ for any t, t′ ∈ S′ with e(t), e(t′) having exactly one common node in

Γr
S ;

(5) ts = st for any t ∈ S′ with the edge e(t) not incident to the rooted node n(s);

(6) tsts = stst for any t ∈ S′ with the edge e(t) incident to the rooted node n(s).

Call all the above relations in (1)-(6) the order and braid relations (o.b. relations in

short) on S. Suppose that P is a certain relation set on S such that (S, P ) forms a

presentation of G(m, 1, n). Then the congruence class of (S, P ) is entirely determined

by the generator set S and the o.b. relations on S, the latter is entirely determined

by the isomorphism class of the rooted tree Γr
S up to congruence. In other words, two



Complex Reflection Groups 17

presentations (S1, P1) and (S2, P2) of G(m, 1, n) are congruent if and only if the rooted

trees Γr
S1

and Γr
S2

are isomorphic. On the other hand, let Γr = ([n], E, i) be a rooted

tree, where i ∈ [n] = {1, 2, ..., n}. Then |E| = n− 1. We can define a reflection set X of

G(m, 1, n) as follows. The reflection s(i, j; 0) is assigned to X if and only if {i, j} ∈ E.

Also, the reflection s(i; 1) is assigned to X. Hence X consists of n−1 reflections s(i, j; 0),

{i, j} ∈ E, of type I and one reflection s(i; 1) of order m. By Theorem 2.8, we see that

X forms a generator set of G(m, 1, n) with Γr
X = Γr. So we get the following

Theorem 3.2. The map (S, P ) → Γr
S induces a bijection from the set of all the congru-

ence classes of presentations for the group G(m, 1, n) to the set of isomorphism classes

of rooted trees with n nodes.

3.3. Next let S be any generator set of G(m,m, n) consisting of n reflections. By 2.10

and Lemma 2.7, we see that S gives rise to a presentation (S, P ) of the group G(m, m, n)

for a certain set P of relations on S. By 2.10 and Theorem 2.19 we see that the graph

ΓS is connected and contains exactly one circle with δ(S) coprime to m. The set S

satisfies the following relations:

(1) t2 = 1 for any t ∈ S;

(2) st = ts for any s, t ∈ S with the edges e(s), e(t) having no common node in ΓS ;

(3) sts = tst for any s, t ∈ S with e(s), e(t) having exactly one common node in ΓS ;

When ΓS has a two-nodes circle, say s, t ∈ S with e(s), e(t) two edges of the circle,

we have

(4) (st)m = 1.

Call all the above relations in (1)-(4) the order and braid relations (o.b.relations in

short) on S. Suppose that P is a certain relation set on S such that (S, P ) forms a

presentation of G(m,m, n). Then the congruence class of (S, P ) is entirely determined

by the generator set S and the o.b. relations on S, the latter is entirely determined by the

isomorphism class of the graph ΓS up to congruence. In other words, two presentations
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(S1, P1) and (S2, P2) of G(m,m, n) are congruent if and only if the graphs ΓS1 and ΓS2

are isomorphic. On the other hand, let Γ = ([n], E) be a connected graph with n nodes

and exactly one circle. Then |E| = n. Fix any {p.q} ∈ E in the circle of Γ. We can

define a reflection set X of G(m, m, n) as follows. The reflection s(i, j; 0) is assigned to

X for all {i, j} ∈ E \ {{p, q}}. Also, the reflection s(p, q; 1) is assigned to X. Hence X

consists of n reflections with δ(X) = 1, coprime to m. By Theorem 2.19, we see that X

forms a generator set of G(m,m, n) with ΓX = Γ. So we get the following

Theorem 3.4. The map (S, P ) → ΓS induces a bijection from the set of all the congru-

ence classes of presentations for the group G(m, m, n) to the set of isomorphism classes

of connected graphs with n nodes and n edges (or equivalently with n nodes and exactly

one circle).

§4. The relation sets of the presentations for the groups G(m, 1, n) and

G(m, m, n).

For any generator set S of the group G(m, 1, n) (resp. G(m,m, n)) of n reflections, we

can always find a set P of relations on S such that (S, P ) is a presentation of G(m, 1, n)

(resp. G(m,m, n)). However, a relation set P is not uniquely determined by S. Then

the problem is how to choose a relation set P such that (S, P ) becomes a presentation

of G(m, 1, n) (resp. G(m,m, n)). We shall find one for each generator set of the group.

4.1. It is well known that the group G(m, 1, n) has a presentation (S, P ), where S =

{s(h, h + 1; 0), s(1; 1) | 1 6 h < n}, and P consists of the following relations: denote

th = s(h, h + 1; 0), 1 6 h < n, and t0 = s(1; 1),

(i) tm0 = 1;

(ii) t2h = 1 for 1 6 h < n;

(iii) titj = tjti if j 6= i± 1;

(iv) titi+1ti = ti+1titi+1 for 1 6 i < n− 1;

(v) t0ti = tit0 for i > 1;
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(vi) t0t1t0t1 = t1t0t1t0.

4.2. Let Σ(m, 1, n) be the set of all the generator sets S of G(m, 1, n) of n reflections

such that the graph ΓS is a tree (hence S consists of n − 1 reflections of type I and

one reflection of order m by Lemma 2.1). We can define a rooted tree Γr
S for any

S ∈ Σ(m, 1, n) by 1.6. We know that the set Σ(m, 1, n) is stable under terminal node

operations. By Lemma 2.9, we see that for any X, X ′ in Σ(m, 1, n), one can find a

sequence X1 = X ′, X2, ..., Xr = X ′′ in Σ(m, 1, n) such that for every 1 < h 6 r, Xh

either is obtained from or gives rise to Xh−1 by a terminal node operation and that X is

congruent to X ′′ (see 1.7). In this sense, one can say that the terminal node operations

act on the congruence classes of Σ(m, 1, n) transitively.

4.3. Let X = {s(ih, jh; kh), s(l; k) | 1 6 h < n} be in Σ(m, 1, n). Then kh, k, l, ih, jh

are some integers with 1 6 l 6 n, 1 6 ih 6= jh 6 n, and k coprime to m. The following

relations on X hold: denote sh = s(ih, jh; kh), 1 6 h < n, and s = s(l; k),

(1) sm = 1;

(2) s2
h = 1 for 1 6 h < n;

(3) spsq = sqsp if the edges e(sp) and e(sq) have no common node;

(4) spsqsp = sqspsq if e(sp) and e(sq) have exactly one common node;

(5) ssp = sps if the edge e(sp) is not incident to the node l;

(6) sspssp = spssps if e(sp) is incident to l;

(7) s · spsqsp = spsqsp · s if e(sp) and e(sq) have exactly one common node l;

(8) sp ·sqsrsq = sqsrsq ·sp if sp, sq, sr are pairwise distinct with the edges e(sp), e(sq)

and e(sr) incident to one common node.

Call the relations (1)-(2) order relations, (3)-(6) braid relations, (7) root-braid rela-

tions, and (8) branching relations on X. Call all of them basic relations on X.

4.4. Let Σ(m, m, n) be the set of all the generator sets S of the group G(m,m, n) each of

which consists of n reflections. Given any S ∈ Σ(m,m, n), we see by 2.10 and Theorem

2.19 that the graph ΓS is connected and contains exactly one circle. Hence Σ(m, m, n)
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is a subset of the set ∆ defined in 2.12. By Lemma 2.13 and Theorem 2.19, we see that

Σ(m,m, n) is stable under the circle operations. For any S ∈ Σ(m,m, n), we can find

a relation set P on S such that (S, P ) is a presentation of G(m, m, n). The congruence

class of (S, P ) is entirely determined by the generator set S and the o.b. relations on

the set S, the latter is determined by the isomorphism class of the graph ΓS up to

congruence. So we can talk about the congruence of any S ∈ Σ(m, m, n). By Lemma

2.14, we can find, for any two S, S′ ∈ Σ(m,m, n), a sequence S1 = S′, S2, ..., Sr = S′′

in Σ(m,m, n) with S, S′′ congruent such that for every 1 < h 6 r, Sh is obtained from

Sh−1 by a circle operation. In this sense, we can say that the set Σ(m,m, n) is transitive

under circle operations.

4.5. For S ∈ Σ(m,m, n), let c1, c2, ..., cr be the nodes of the circle in ΓS such that

{ci, ci+1}, 1 6 i 6 r, are edges of ΓS , where the subscripts are modulo r. Hence S

contains the reflections ti = s(ci, ci+1; pi) for 1 6 i 6 r (the subscripts are modulo r)

and some integers pi. Let tj = s(aj , bj ; kj), r < j 6 n, be the reflections such that

S = {ti | 1 6 i 6 n}. For 1 6 i < j 6 r, denote sij = ti...tj−2tj−1tj−2...ti and

sji = ti−1...t1tr...tj+1tjtj+1...trt1...ti−1. In particular, sij = ti if j = i + 1 and sji = tj

if j = r and i = 1. Then the following relations on S hold:

(i) t2i = 1 for 1 6 i 6 n;

(ii) titj = tjti if the edges e(ti), e(tj) corresponding to ti, tj have no common node;

(iii) titjti = tjtitj if the edges e(ti), e(tj) have exactly one common node;

(iv) (sijsji)m = 1 for any 1 6 i < j 6 r;

(v) s · trt = trt · s for any branching node b of ΓS and any triple X = {s, t, r} ⊆ S

with ΓX having b as its branching node;

(vi) (a) usiju · vsjiv = vsjiv · usiju,

(b) usijsjiusijsji = sijsjiusijsjiu, and

(c) vsijsjivsijsji = sijsjivsijsjiv

if there are some u, v ∈ S with e(u), e(v) incident to the circle of ΓS at the nodes ci, cj
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respectively for some 1 6 i < j 6 r.

Call relations (i) order relations, call (ii)-(iii) braid relations, call (iv) circle relations.

(iv) in case of r = 2 is also called a braid relation, Call (v) branching relations, and call

(vi) branching-circle relations. Call all of these relations basic relations on S.

Remark 4.6. (1) When j − i > 2, we have ti(sijsji)ti = si+1,jsj,i+1 and tj(sijsji)tj =

si,j+1sj+1,i. Thus relation (sijsji)m = 1 holds if and only if (si+1,jsj,i+1)m = 1 holds if

and only if (si,j+1sj+1,i)m = 1 holds. So in (iv), we need only write down one of such

relations for a fixed pair 1 6 i < j 6 r.

(2) We shall show in Lemmas 4.8 and 4.10 that the branching and root-braid relations

can be deduced from a certain part of these relations.

(3) Note that relation (b) (resp. (c)) in (vi) holds whenever such a reflection u (resp.

v) exists. For some smaller number r, a computer programme, called MAGMA, shows

that when both u and v exist, relation (a) in (vi) implies relations (b) and (c). It is

natural to conjecture that this should hold for any positive integer r.

4.7. Let S ∈ Σ(m, 1, n) (resp. S ∈ Σ(m,m, n)) be with c a branching node in the graph

ΓS . Let c1, ..., cr be all distinct nodes with r > 2 such that {ci, c}, 1 6 i 6 r, are edges

of ΓS . Then S contains reflections ti = s(ci, c; ki) for some integers ki. We have the

following relations:

(i) titjti = tjtitj and t2i = 1 for any 1 6 i 6= j 6 r;

(ii) tl · titjti = titjti · tl for any distinct i, j, l in {1, 2, ..., r}.

The following result shows that the branching relations (7) on S ∈ Σ(m, 1, n) (resp.

the branching relations (v) on S ∈ Σ(m,m, n)) can be deduced from some part of these

relations.

Lemma 4.8. Fix p, 1 6 p 6 r. Under the assumption of condition (i), condition (ii)

is equivalent to the following condition

(ii′) sp · sisjsi = sisjsi · sp for any 1 6 i 6= j 6 r with i, j 6= p.
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Proof. It is clear that (ii) implies (ii′). Now assume (ii′). We want to show (ii). It is

easily seen by condition (i) that relation sl · sisjsi = sisjsi · sl holds in the case when

p ∈ {i, j, l}. It remains to show the relation sl·sisjsi = sisjsi·sl in the case of p /∈ {i, j, l}.
We have sl ·spsisp = spsisp ·sl, sl ·spsjsp = spsjsp ·sl and sp ·sisjsi = sisjsi ·sp. Hence

sl · spsisjsisp = sl · spsisp · spsjsp · spsisp = spsisp · spsjsp · spsisp · sl = spsisjsisp · sl.

Then spslsp · sisjsi = sisjsi · spslsp. Hence spsl · sisjsisp = spsisjsi · slsp. This implies

sl · sisjsi = sisjsi · sl. ¤

4.9. Under the setup of 4.7 with S ∈ Σ(m, 1, n), assume s = s(c; k) ∈ S. Then the

root-braid relations on S are

(iii) s · titjti = titjti · s for any distinct i, j in {1, 2, ..., r}.
The following result shows that the root-braid relations on S ∈ Σ(m, 1, n) can be

deduced from some part of the relations.

Lemma 4.10. Fix p, 1 6 p 6 r. Under the assumption of conditions 4.7 (i)-(ii),

condition (iii) is equivalent to the following condition

(iii′) s · spsjsp = spsjsp · s for any 1 6 j 6 r with j 6= p.

Proof. It is clear that (iii) implies (iii′). Now assume (iii′). We want to show (iii).

We must show s · sisjsi = sisjsi · s for any 1 6 i 6= j 6 r with i, j 6= p. We have

s · spsisp · spsjsp · spsisp = spsisp · spsjsp · spsisp · s by (iii′). Hence s · spsisjsisp =

spsisjsisp · s by 4.7 (i). This implies s · sisjsi = sisjsi · s by 4.7 (ii). ¤

4.11. Suppose that X ∈ Σ(m,m, n) contains the reflections th = s(ch, ch+1; kh) (the

subscripts are modulo r) for 1 6 h 6 r and some nodes c1, ..., cr of ΓX with r > 2. Sup-

pose that for some 1 6 i < j 6 r, there are some s, t ∈ X\{ti−1, ti, tj−1, tj} with the edge

e(s) incident to the node ci and e(t) incident to cj . Denote sij = ti...tj−2tj−1tj−2...ti

and sji = ti−1ti−2...t1tr...tj+1tjtj+1...trt1...ti−1.

The following result shows that when ΓX contains a circle with more than two nodes,

the branching-circle relations in (vi) are a consequence of the branching relations in (v).
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Lemma 4.12. In the above setup, if the reflection set X satisfies all the o.b. rela-

tions together with the branching relations sti−1titi−1 = ti−1titi−1s and ttj−1tjtj−1 =

tj−1tjtj−1t then

(1) ssjis · tsijt = tsijt · ssjis.

(2) ssjisijssjisij = sjisijssjisijs.

(3) tsjisijtsjisij = sjisijtsjisijt.

Proof. (1) holds ⇐⇒ tj ...trt1...ti−2sti−1sti−2...t1tr...tjti...tj−2ttj−1ttj−2...ti

= ti...tj−2ttj−1ttj−2...titj ...trt1...ti−2sti−1sti−2...t1tr...tj

⇐⇒ tj ...trt1...ti−2ti...tj−2sti−1sttj−1tti−2...t1tr...tj+1tjtj−2...ti

= tj ...trt1...ti−2ti...tj−2ttj−1tsti−1sti−2...t1tr...tjtj−2...ti

⇐⇒ sti−1sttj−1t = ttj−1tsti−1s.

If j > i + 1 and (i, j) 6= (1, r), then s, ti−1 commute with t, tj−1 by the o.b. relations

on X. So the last equation holds in this case. If j = i + 1 (resp., (i, j) = (1, r)), then

the last equation becomes sti−1sttit = ttitsti−1s (resp., strsttr−1t = ttr−1tstrs). The

last equation is again true by the o.b. and branching relation on X. So (1) follows.

Then (2) holds ⇐⇒
ti−1sti−1ti−2...t1tr...tjtj−1tj−2...ti+1titi+1...tj−2tj−1stjtj+1...trt1...ti−2ti−1ti−2...t1tr...tjtj−1tj−2...ti+1

= ti−2...t1tr...tjtj−1tj−2...ti+1titi+1...tj−2tj−1stjtj+1...trt1...ti−2ti−1ti−2...t1tr...tjtj−1tj−2...ti+1tisti

⇐⇒ tj ...trt1...ti−2ti−1sti−1ti−2...t1tr...tjtiti+1...tj−2tj−1tj−2...tistj ...trt1...ti−2ti−1ti−2...t1tr...tj

= tj−1tj−2...ti+1titi+1...tj−2tj−1sti−1ti−2...t1tr...tj+1tjtj+1...trt1...ti−2ti−1tj−1tj−2...ti+1tistiti+1...tj−2tj−1

⇐⇒ ti...tj−2tj ...trt1...ti−1sti−1...t1tr...tjtj−1tj−2...ti+1tisti−1ti−2...t1tr...tj+1tjtj+1...trt1...ti−2ti−1

= ti...tj−2tj−1tj−2...ti+1tisti−1ti−2...t1tr...tj+1tjtj−1tj−2...ti+1tistiti+1...tj−2tj−1tj+1...trt1...ti−2ti−1

⇐⇒ tj ...trt1...ti−2ti−1sti−1ti−2...t1tr...ti+1tisti−1ti−2...t1tr...tj+1tj

= tj−1tj−2...ti+1tisti−1ti−2...t1tr...ti+1tistiti+1...tj−2tj−1

⇐⇒ tisti−1ti−2...t1tr...ti+2ti+1ti+2...trt1...ti−2ti−1sti

= sti−1stiti−2...t1tr...ti+2ti+1ti+2...trt1...ti−2tisti−1s
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⇐⇒ ti−2...t1tr...ti+2ti+1ti+2...trt1...ti−2 = sti−2...t1tr...ti+2ti+1ti+2...trt1...ti−2s.

The last equation is true since s commutes with all the other reflections occurring in

the equation by the o.b. relations on X. So we have proved (2). Then (3) can be shown

similarly. ¤

Remark 4.13. Note that the conclusion of Lemma 4.12 still holds even when either

i + 1 = j or j + 1 = i or both i + 1 = j, j + 1 = i hold (the numbers are modulo

r), where if i + 1 = j (resp. i = 1 and j = r) then the element sij becomes ti (resp.

sji becomes tj). When all the relations i + 1 = j, i = 1 and j = r hold, we have

r = 2. Thus the conclusion of Lemma 4.12 remains valid even when r = 2. However,

in that case, it is not a consequence of the conditions sti−1titi−1 = ti−1titi−1s and

ttj−1tjtj−1 = tj−1tjtj−1t since the latter no longer hold.

4.14. Let X, X ′ ∈ Σ(m, 1, n) be such that X ′ is obtained from X by a terminal node

operation with respect to two terminal nodes i, j along a path a1 = i, a2, ..., ar = j

for some r > 2. Hence ti = s(ai, ai+1; ki) ∈ X for 1 6 i < r and some integers ki.

Denote t = t1t2...tr−2tr−1tr−2...t1. We may assume X ′ = (X \ {t1}) ∪ {t} without loss

of generality.

Lemma 4.15. In the above setup, if the reflection set X satisfies all the basic relations

then so does the reflection set X ′.

Proof. We need only check all the basic relations on X ′ involving t. To do this, we need

only check that

(1) ttr−1t = tr−1ttr−1.

(2) For any s ∈ X ′ \ {t, tr−1} with e(s) incident to some ah, 1 < h < r, we have

(4.15.1) st = ts.

(3) If s = s(ar; k) is in X then stst = tsts and s · tr−1ttr−1 = tr−1ttr−1 · s.
(4) If s = s(a1; k) is in X then stst = tsts.
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(1) is equivalent to the equation

tr−1...t2t1t2...tr−2tr−1tr−2...t2t1t2...tr−1 = tr−2...t2t1t2...tr−2.

The latter follows by the o.b.relations on t1, ..., tr−1. For (2), s is in one of the following

cases:

(i) s = th, 1 < h < r − 1;

(ii) there is some node a 6= a1, ..., ar of ΓX with e(s) = {a, ah} for some 1 < h < r.

(iii) there is some h, 1 < h < h + 1 < r with e(s) = {ah, ah+1} and s 6= th. Hence ah

and ah+1 are the nodes of a two-nodes circle in ΓX .

(4.15.1) can be checked directly in case (i). Let s = s(a, ah; k) (resp. s = s(ah, ah+1; k) 6=
th) be the reflection of X in case (ii) (resp. (iii)). Then in case (ii), ah is a branching

node of the graph ΓX and so we have

(4.15.2) s · thth−1th = thth−1th · s.

Now (4.15.1) holds⇐⇒ th−1th...tr−2tr−1tr−2...thth−1·s = s·th−1th...tr−2tr−1tr−2...thth−1

⇐⇒ tr−1tr−2...thth−1th...tr−1 · s = s · tr−1tr−2...thth−1th...tr−1 ⇐⇒ (4.15.2) holds.

In case (iii), we have

(4.15.3) th−1thth−1th+1sth+1 = th+1sth+1th−1thth−1.

Now (4.15.1) holds

⇐⇒ th−1thth+1...tr−2tr−1tr−2...th+1thth−1·s = s·th−1thth+1...tr−2tr−1tr−2...th+1thth−1

⇐⇒ tr−1...th+1thth−1thth+1...tr−1 · s = s · tr−1...th+1thth−1thth+1...tr−1

⇐⇒ (4.15.3) holds.

Finally, (3) and (4) follows by the o.b. relations on s, t1, ..., tr−1.

This shows our result. ¤

Next result is the converse of Lemma 4.15.
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Lemma 4.16. Let X, X ′ ∈ Σ(m, 1, n) be as in 4.14. If all the basic relations on X ′

hold then so do those on X.

Proof. By Lemma 4.15, we need only consider the case where a2 is not a terminal node

of ΓX′ , i.e., there exists some s ∈ X \ {t2} with e(s) incident to the node a2.

(i) First assume that the graph Γ{s,t2} contains no two-nodes circle. Concerning the

branching relations, it is sufficient, by Lemma 4.8, to show the relation s · t2t1t2 =

t2t1t2 · s, that is to show:

(4.16.1) t2st2 · t2t3...tr−1ttr−1...t2 = t2t3...tr−1ttr−1...t2 · t2st2.

This follows if the reflection s commutes with all of t3, ..., tr−1, t. Otherwise, e(s) is

incident to the node ai for some 3 < i 6 r − 1 (note that e(s) is never incident to ar

since ar is assumed a terminal node of ΓX). ai is a branching node of ΓX′ and we have

the branching relation

(4.16.2) s · ti−1titi−1 = ti−1titi−1 · s

on X ′. relation (4.16.1) is equivalent to

(4.16.3)

s · t3...ti−2 · ttr−1...titi−1ti...tr−1t · ti−2...t3 · s = t3...ti−2 · ttr−1...titi−1ti...tr−1t · ti−2...t3.

Then (4.16.3) is an easy consequence of (4.16.2) together with some o.b. relations on

X ′.

If s′ = s(a2; k) is in X, then we need also show the relations s′t1s′t1 = t1s
′t1s′ and

s′ · t1t2t1 = t1t2t1 · s′. Note t1 = t2t3...tr−1ttr−1...t3t2. So the relation s′t1s′t1 = t1s
′t1s′

is equivalent to

s′ · t2t3...tr−1ttr−1...t3t2 · s′ · t2t3...tr−1ttr−1...t3t2

=t2t3...tr−1ttr−1...t3t2 · s′ · t2t3...tr−1ttr−1...t3t2 · s′.
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The latter follows by the o.b. relations on t, s′, t2, ..., tr−1. The relation s′ · t1t2t1 =

t1t2t1 · s′ follows by the o.b. relations on s′, t, t2, ..., tr−1.

(ii) Next assume that the graph Γ{s,t2} contains a two-nodes circle. Hence r > 3. We

must show the branching-circle relation

(4.16.4) t1t2t1 · t3st3 = t3st3 · t1t2t1.

This is equivalent to

(4.16.5) t3s · t4...tr−1ttr−1...t4 · st3 = t3...tr−1ttr−1...t3

by applying some o.b. relations on X ′. Now (4.16.5) follows since s commutes with

t4, ..., tr−1, t by the o.b. relations on X ′. ¤

Theorem 4.17. For any S ∈ Σ(m, 1, n), let P be the set of basic relations on S. Then

(S, P ) forms a presentation of the group G(m, 1, n).

Proof. Let S ∈ Σ(m, 1, n) be given as in 4.1 with P the set of basic relations on S. Then

(S, P ) forms a presentation of G(m, 1, n) by [1, Appendix 2]. Suppose that X,X ′ ∈
Σ(m, 1, n) are as in 4.14 with P, P ′ the set of basic relations on X,X ′ respectively.

Then by Lemmas 4.15 and 4.16, we see that (X, P ) is a presentation of G(m, 1, n) if

and only if so is (X ′, P ′). This implies our result by the fact that the set Σ(m, 1, n) is

transitive under terminal node operations (see 4.2). ¤

4.18. Suppose that X ∈ Σ(m,m, n) contains the reflections th = s(ch, ch+1; kh) (the

subscripts are modulo r) for 1 6 h 6 r and some integers kh, where r > 2, and c1, ..., cr

are some nodes in ΓX . Let t = t1trt1 and let X ′ = (X \{tr})∪{t}. Then X ′ is obtained

from X by a circle contraction.

Lemma 4.19. In the above setup, the reflection set X satisfies all the basic relations

if and only if so does the reflection set X ′.
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Proof. First assume X satisfies all the basic relations. We want to show X ′ also satisfies

all the basic relations. We need only check all the basic relations involving t. Note

e(t) = {c2, cr}.
The order relation t2 = 1 follows by the order relations t21 = 1 = t2r on X.

Let s ∈ X ′ \ {t} be with e(s) not incident to the edge e(t). We must show st = ts.

We see that e(s) is incident to either both or none of e(t1), e(tr). The result is obvious

if e(s) is incident to none of e(t1), e(tr). In the case when e(s) is incident to both of

e(t1), e(tr), we see that c1 is a branching node of ΓX to which the edges e(t1), e(tr), e(s)

incident. Then we have ts = t1trt1s = st1trt1 = st by the branching relations on X.

Let s ∈ X ′ \{t} be with e(s) incident to e(t) at exactly one node in ΓX′ . We want to

show sts = tst, i.e., st1trt1s = t1trt1st1trt1. This can be shown by the braid relations

on X that either the relations st1 = t1s, strs = trstr, or the relations st1s = t1st1,

str = trs hold. When r = 3, e(t2) and e(t) form the two-nodes circle of ΓX′ . The circle

relation (t2t)m = 1 on X ′ is the same as the circle relation (t2t1t3t1)m = 1 on X.

So we have shown the o.b. relations on X ′ involving t.

Now we show the branching relations on X ′ involving t. If c2 is a branching node in

ΓX′ , then for any s ∈ X ′ \ {t1, t} with e(s) incident to c2 and not to cr, we need show

the relation st1tt1 = t1tt1s. This follows by the braid relation str = trs on X. If cr is

a branching node in ΓX′ , then for any s ∈ X ′ \ {t, tr−1} with e(s) incident to cr and

not to c2, we need show the relation str−1ttr−1 = tr−1ttr−1s. This follows by the braid

relation t1s = st1 and the branching relation str−1trtr−1 = tr−1trtr−1s on X.

The circle relation (ts2,r)m = 1 on X ′ is the same as the circle relation (t1trt1s2,r)m =

1 on X.

It remains to show the branching-circle relations on X ′ involving t. By Lemma 4.12,

we need only consider the case of r = 3. In this case, e(t) and e(t2) form a two-nodes

circle. If there exists some u ∈ X ′ \ {t, t2} with e(u) incident to c2 then the branching-

circle relation ut2tut2t = t2tut2tu on X ′ is the same as the branching-circle relation
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ut2t1t3t1ut2t1t3t1 = t2t1t3t1ut2t1t3t1u on X. Similarly for the case when there exists

some v ∈ X ′ \ {t, t2} with e(v) incident to cr. If both of such u, v exist then the

branching-circle relation utuvt2v = vt2vutu on X ′ is also the same as the branching-

circle relation ut1t3t1uvt2v = vt2vut1t3t1u on X.

Next assume that X ′ satisfies all the basic relations. We must show that so does

the reflection set X. We need only show all the basic relations on X which involve the

reflection tr = t1tt1. Hence we have to show the following relations:

(1) t2r = 1;

(2) trs = str for s ∈ X \ {tr} with e(s), e(tr) having no common node;

(3) trstr = strs for s ∈ X \ {tr} with e(s), e(tr) having exactly one common node;

(4) (tr · t1t2...tr−2tr−1tr−2...t2t1)m = 1;

(5) x · t1trt1 = t1trt1 ·x if x ∈ X is with e(x) incident to the circle of ΓX at the node

c1;

(6) y · trtr−1tr = trtr−1tr · y if y ∈ X is with e(y) incident to the circle of ΓX at the

node cr.

The proof for the above relations is similar to what we did before and hence is left

to the readers. Note that the branching-circle relations on X is a consequence of the

branching relations on X by Lemma 4.12 and hence they need not be checked. ¤

Theorem 4.20. Let S ∈ Σ(m,m, n) and let P be the set of all the basic relations on

S. Then (S, P ) forms a presentation of the group G(m,m, n).

Proof. Let S ∈ Σ(m,m, n) be such that ΓS is a string with a two-nodes circle at one

end. [1, Appendix 2] tells us that (S, P ) forms a presentation of G(m,m, n).

By Lemma 2.14, any reflection set X ∈ Σ(m,m, n) can be transformed to some

S′ ∈ Σ(m,m, n) by a sequence of circle contractions followed by a sequence of terminal

node operations, where ΓS′ is a string with a two-nodes circle at one end. Hence S and

S′ are congruent. So our result follows by Lemmas 4.15, 4.16 and 4.19. ¤



30 Jian-yi Shi

Remark 4.21. For any S ∈ Σ(m, 1, n) (resp. S ∈ Σ(m,m, n)), we can get a presenta-

tion (S, P ) of the group G(m, 1, n) (resp. G(m, m, n)) by Theorem 4.17 (resp. Theorem

4.20). However, such a presentation is not essential in general (see 1.7 and Lemmas 4.8,

4.12). For example, removing any n − 2 (resp., n − 1) of the n − 1 (resp., n ) order

relations of type I in P for such a presentation (S, P ) of the group G(m, 1, n) (resp.,

G(m, m, n)), denote by P ′ the resulting relation set. Then (S, P ′) still form a presen-

tation of the group. I conjecture that it will become essential after removing all the

redundant order, branching, branching-circle and root-braid relations mentioned above

and in Lemmas 4.8, 4.10, 4.12.
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