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Abstract. The main goal of the paper is to show that the fully commutative elements in

the affine Coxeter group eCn form a union of two-sided cells. Then we completely answer
the question of when the fully commutative elements of W form or do not form a union
of two-sided cells in the case where W is either a finite or an affine Coxeter group.

Let W be a Coxeter group with S the distinguished generator set. The fully com-

mutative elements of W were defined by Stembridge: w ∈ W is fully commutative if

any two reduced expressions of w can be transformed from each other by only applying

the relations st = ts with s, t ∈ S and o(st) = 2, or equivalently, w has no reduced

expression of the form w = x(sts...)y, where sts... is a string of length o(st) > 2 (o(st)

being the order of st) for some s 6= t in S. The fully commutative elements were studied

extensively by a number of people (see [3, 6, 8, 16]). Now let W be either a finite or

an affine Coxeter group and let Wc be the set of all the fully commutative elements in

W . We consider the relation between Wc and the two-sided cells of W (in the sense

of Kazhdan and Lusztig, see [9]). It is well known that when W is either the finite

Coxeter group An (n > 1), Bl (l > 2), I2(m) (m > 2), or the affine Coxeter group

Ãn (n > 1), Wc is a union of two-sided cells of W (see [12, §1.7, Theorems 16.2.8 and

17.4], [13, Theorem 3.1] and [8, Theorem 3.1.1]). On the other hand, since Wc is not a

union of two-sided cells of W when W = D4 (see [2]), it should also be the case when
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W contains a standard parabolic subgroup of type D4, i.e., W is Dn, D̃n, B̃n, Em,

Ẽm (n > 4, m = 6, 7, 8). Recently, R. M. Green asked the following question (see [7,

§4]): whether or not Wc is a union of two-sided cells of W for W = C̃n ? The present

paper will give an affirmative answer to the question (Theorem 3.4). Furthermore, we

completely answer the question of when Wc is or is not a union of two-sided cells of W

in the case where W is either a finite or an affine Coxeter group.

The contents of the paper are organized as follows. Section 1 contains preliminaries;

some definitions and results are collected there. Then we show some properties of the

elements in C̃n preserved under star operations in Section 2. Finally, we prove our main

result in Section 3.

§1. Preliminaries.

1.1. The affine Coxeter group C̃n can be identified with the following permutation

group over the integer set Z (see [13, §1.4]).

C̃n = {σ : Z −→ Z | (i + 2n + 2)σ = (i)σ + 2n + 2 and (−i)σ = −(i)σ for i ∈ Z},

where we assume n > 2 throughout the paper. Its Coxeter generator set S = {si | 0 6

i 6 n} is given as follows. For k ∈ Z and 1 6 i < n, we have

(k)si =





k, if k 6≡ ±i,±(i + 1) (mod 2n + 2);
k + 1, if k ≡ i,−i− 1 (mod 2n + 2);
k − 1, if k ≡ i + 1,−i (mod 2n + 2).

(k)s0 =





k, if k 6≡ ±1 (mod 2n + 2);
k + 2, if k ≡ −1 (mod 2n + 2);
k − 2, if k ≡ 1 (mod 2n + 2).

(k)sn =





k, if k 6≡ n, n + 2 (mod 2n + 2);
k + 2, if k ≡ n (mod 2n + 2);
k − 2, if k ≡ n + 2 (mod 2n + 2).

1.2. In 1.2–1.4, let W be a Coxeter group with S the distinguished generator set. Let

`(w) be the length function of W and 6 the Bruhat order on W with respect to S. For
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any w ∈ W , let L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}. When

W = C̃n and 0 6 i 6 n, we have si ∈ L(w) if and only if (i)w > (i + 1)w (see [13,

Proposition 1.6]). In particular, this implies that s0 ∈ L(w) if and only if (−1)w > (1)w

and that sn ∈ L(w) if and only if (n)w > (n + 2)w. The set R(w) can be described

similarly by using the fact R(w) = L(w−1).

1.3. Following [10], for any s, t ∈ S with the order m = o(st) of the product st greater

than 2, we call any of the sequences sy, tsy, stsy, ... and ty, sty, tsty, ... ( each has m− 1

terms) an {s, t}-string if L(y) ∩ {s, t} = ∅. When w is a term of some {s, t}-string,

a transformation sending w to one of its neighboring terms in the string is called an

{s, t}-star operation (or a star operation in short). Note that a star operation defined

here is slightly different from that by Kazhdan and Lusztig in [9]; the latter was defined

only in the case of m = 3. For any w ∈ W , let M(w) be the set of all the elements y

such that there exists a sequence of elements z0 = w, z1, ..., zt = y in W with t > 0 such

that zi is obtained from zi−1 by a star operation for every 1 6 i 6 t. The sequence

z0, z1, . . . , zt is called a path in M(w) from w to y (or a path in M(w)). Two elements

x, y ∈ W have the same generalized τ -invariants if for any path z0 = x−1, z1, . . . , zt in

M(x−1), there is a path z′0 = y−1, z′1, . . . , z
′
t in M(y−1) with L(z′i) = L(zi) for every

0 ≤ i ≤ t, and if the same condition holds when interchanging the roles of x with y.

1.4. The preorders ≤
L
, ≤

R
, ≤

LR
and the associated equivalence relations ∼

L
, ∼

R
, ∼

LR
on

(W,S) are defined as in [9]. The equivalence classes of W with respect to ∼
L

( resp.,

∼
R

, resp., ∼
LR

) are called left cells ( resp., right cells, resp., two-sided cells ). It follows

easily from the definition of a left cell that x ∼
L

y for any w ∈ W and any x, y ∈ M(w).

It is well known that if x, y ∈ W satisfy x ∼
L

y then x, y have the same generalized

τ -invariants (see [14, Proposition 4.2]).

1.5. For w ∈ C̃n, call an integer sequence ξ : i1, i2, ..., ir a w-chain if

(1) i1 < i2 < ... < ir and (i1)w > (i2)w > ... > (ir)w;

(2) either (2a) ij + ik 6≡ 0 (mod 2n + 2) for any 1 6 j < k 6 r,
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or (2b) r is even and ij + ir+1−j ≡ 0 (mod 2n + 2) for 1 6 j 6 r;

(3) ih 6≡ 0, n + 1 (mod 2n + 2) for 1 6 h 6 r.

Note that condition (1) implies that i1, i2, ..., ir are pairwise noncongruent modulo

2n + 2.

A w-chain ξ as above is of type I (resp., II) if it satisfies (2a) (resp., (2b)). Define

the length of ξ to be r (resp., r
2 + 1) if ξ is of type I (resp., II). Comparing with the

terminology in [13], a w-chain of type II is just a union of chains in a special chain pair

of w defined in [13, §2.4], and a w-chain of type I is a chain of w in [13], but not all the

chains of w in [13] are of type I.

1.6. For a w-chain ξ : i1, i2, ..., ip and q ∈ Z, the sequences ξq : q(2n + 2) + i1, q(2n +

2) + i2, ..., q(2n + 2) + ir and ξ′q : q(2n + 2)− ir, q(2n + 2)− ir−1, ..., q(2n + 2)− i1 with

some q ∈ Z are also w-chains. Call ξq a chain-shifting of ξ, call ξ′q a chain-reflection of

ξ, and call both chain-replacements of ξ.

§2. Some properties preserved by star operations.

In the present section, we show some properties of the elements in C̃n which are

preserved by star operations (see Lemmas 2.2 and 2.3). The property in Lemma 2.3 is

crucial in the proof of Theorem 3.4.

For w, x, y ∈ C̃n, we use the notation w = x·y to mean w = xy and `(w) = `(x)+`(y).

According to [13, Theorem 3.2], we have the following

Lemma 2.1. Let w ∈ C̃n. Then w is not fully commutative if and only if there exists

a w-chain of length > 3. More precisely, w = x · sisi+1si · y for some x, y ∈ C̃n and

1 6 i < n − 1 if and only if there exists a w-chain of type I and length > 3. Also,

w = x · sksk+1sksk+1 · y for some x, y ∈ C̃n and k ∈ {0, n− 1} if and only if there exists

a w-chain of type II and length > 3.

Since the terminology used here and in [13] are different, we have to use the present

terminology to illustrate how [13, Theorem 3.2] implies Lemma 2.1. In [13, §2.4], we

defined a chain pair P , P ′ of w, where P is a w-chain of type I and P ′ = {2n+2−x | x ∈
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P} such that P ∩ P ′ = ∅. In [13, §2.5], we also defined d′(w)1 as the maximal possible

value for |P ∪P ′|+ ε(w,P ), where P, P ′ range over chain pairs of w, and ε(w, P ) is 1 or

0 according as P could be or could not be a part of some w-chain of type II. Let J be a

proper subset of {0, 1, ..., n} consisting of consecutive integers and let wJ be the longest

element in the subgroup of C̃n generated by si, i ∈ J . In [13, (2.9.3)], we defined the

value d′1(wJ) in [13] which is 2|J | + 2 if 0, n /∈ J and 2|J | + 1 (correction: the number

2|J |+1 was misprinted as 2(|J |+1)+1 in [13, (2.9.2)]) if otherwise. Then [13, Theorem

3.2] tells us that there exists an expression w = x · wJ · y for some x, y ∈ C̃n and some

consecutive integer subset J of {0, 1, ..., n} with d′1(wJ) = d′1(w) and that there does not

exist any expression of the form w = x′ ·wI · y′ for any x′, y′ ∈ C̃n and any consecutive

integer subset I of {0, 1, ..., n} with d′1(wI) > d′1(w). This implies that w is not fully

commutative if and only if d′1(w) > 5, and the latter holds if and only if there exists a

w-chain of length > 3.

Now we consider some properties of elements in C̃n preserved by star operations.

Lemma 2.2. Assume that y, w ∈ C̃n can be obtained from each other by an {si, si+1}-
star operation for some 1 6 i < n − 1. If there exists a w-chain ξ, then there exists a

y-chain of the same type and length as ξ.

Proof. Let ξ : i1, i2, ..., ir. Then y = stw for some t ∈ {i, i+1}. If either `(y) = `(w)+1

or

(∗) (t, t + 1) /∈ {(q(2n + 2) + ih, q(2n + 2) + ih+1), (q(2n + 2)− ih+1, q(2n + 2)− ih)}
for any 1 6 h < r and q ∈ Z

then (i1)st, (i2)st, ..., (ir)st is a y-chain of the same type as the w-chain ξ. Now assume

that we are not in any of the above cases, that is, we assume that `(y) = `(w)− 1 and

that (t, t + 1) ∈ {(q(2n + 2) + ih, q(2n + 2) + ih+1), (q(2n + 2) − ih+1, q(2n + 2) − ih)}
for some 1 6 h < r and q ∈ Z. The result will be shown by finding some w-chain ξ′

of the same type and length as ξ and satisfying condition (∗) with ξ′ in the place of ξ.

Applying a suitable chain-replacement on ξ if necessary, we have (ih, ih+1) = (t, t + 1)
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for some 1 6 h < r. Then either (t)w > (t−1)w > (t+1)w or (t)w > (t+2)w > (t+1)w

holds by the assumption that stw can be obtained from w by a star operation. Clearly,

for any 1 6 j 6 r, we have ij 6≡ t− 1 ( mod 2n + 2) in the former case, and ij 6≡ t + 2 (

mod 2n + 2) in the latter case. We only deal with the former case and then the latter

case can be done similarly, so we assume we are in the former case. First assume that

ik 6= q(2n+2)−(t−1) for any 1 6 k 6 r and q ∈ Z. When ξ is of type I, we replace ih by

t−1 in ξ. When ξ is of type II, we replace ih, ir+1−h by ih−1, ir+1−h+1 respectively in ξ.

Next assume that ik = q(2n+2)−(t−1) for some 1 6 k 6 r and q ∈ Z (hence ξ is of type

I). When q > 0, i.e., k > h+1, we replace ξ by q(2n+2)− ir, q(2n+2)− ir−1, ..., q(2n+

2)− ik, ih+1, ih+2, ..., ik−1, q(2n + 2)− ih, ..., q(2n + 2)− i1. When q 6 0, i.e., k < h, we

replace ξ by i1, ..., ik−1, q(2n+2)− ih, q(2n+2)− ih−1, ..., q(2n+2)− ik, ih+1, ih+2, ..., ir.

In either case, we get a new w-chain, say ξ′, which is of the same type and length as ξ.

Also, ξ′ satisfies condition (∗) with ξ′ in the place of ξ. This proves our result. ¤

The conclusion of Lemma 2.2 no longer holds in general if w, y ∈ C̃n can be obtained

from each other either by an {s0, s1}-star operation or by an {sn−1, sn}-star operation.

However, we have the following

Lemma 2.3. Suppose that y, w ∈ C̃n can be obtained from each other by an {si, si+1}-
star operation with 0 6 i 6 n−1. If there exists a w-chain of length > 3 then there also

exists a y-chain of length > 3.

Proof. When 1 6 i < n − 1, the result follows from Lemma 2.2. So it remains to

consider the case of i = 0, n − 1. We shall only deal with the case of i = n − 1. Then

the case of i = 0 can be discussed similarly. Now assume i = n− 1. Let ξ : i1, i2, ..., ir

be a w-chain with r > 3. Assume that y = stw with t ∈ {n − 1, n}. We may assume

that (i1)st, (i2)st, ..., (ir)st is not a y-chain (hence `(y) = `(w) − 1) since otherwise we

are done. Then what we want to do is to find a w-chain ξ′ : j1, j2, ..., ju with u > 3

such that (j1)st, (j2)st, ..., (ju)st is a y-chain. Applying a suitable chain-replacement

if necessary, we may assume that either t = n − 1, (ih, ih+1) = (n − 1, n) or t = n,
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(ih, ih+1) = (n, n + 2) holds.

(1) First assume t = n − 1 and (ih, ih+1) = (n − 1, n). We claim that ξ is of

type I. For otherwise, ξ is of type II. Since n − 1, n are two terms of ξ, ξ should also

contain two terms q(2n + 2) − n, q(2n + 2) − n + 1 for some q ∈ Z. If q > 0 then

n − 1, n, n + 2, n + 3 would form a w-chain. If q 6 0 then we would have (n)w <

(n− 1)w < (n + 3)w < (n + 2)w. None of these cases could happen since sn−1w can be

obtained from w by an {sn−1, sn}-star operation. This proves the claim. We have either

(n + 3)w < (n)w < (n + 2)w < (n − 1)w or (n)w < (n + 3)w < (n − 1)w < (n + 2)w.

In the former case, n is replaced by n + 2 in ξ. In the latter case, if h > 1 then ξ is

replaced by ξ′ : i1, ..., ih−1, n− 1, n + 3, 2n + 2− ih−1, ..., 2n + 2− i1; if h = 1 then ξ is

replaced by ξ′ : 2n + 2− ir, 2n + 2− ir−1, ..., 2n + 2− i3, n− 1, n + 3, i3, ..., ir.

(2) Next assume t = n and (ih, ih+1) = (n, n + 2). Then ξ has type II and r = 2h is

even with h > 1. We have either (n+2)w < (n+3)w < (n− 1)w < (n)w or (n+2)w <

(n−1)w < (n+3)w < (n)w. In either case, ξ is replaced by ξ′ : i1, i2, ..., ih−1, n−1, n+2.

Clearly, in any of the above cases, we get a required w-chain ξ′. This proves our

result. ¤

Remark 2.4. By Lemmas 2.3 and 2.1, we see that the property of being fully commu-

tative (or equivalently, being not fully commutative) is preserved under star operations

on the elements in C̃n.

§3. Main results.

Let W be a finite or an affine Coxeter group. In this section, we shall answer the

question of when the fully commutative elements of W is or is not a union of two-sided

cells. The main part of the section is concerned with the case of W = C̃n.

Call J ⊂ S fully commutative, if st = ts for any s, t ∈ J .

Lemma 3.1. Let w ∈ C̃n be with J = L(w) fully commutative. If L(sw) ⊂ L(w) for

any s ∈ J then w is fully commutative.

Proof. By 1.2 and the assumption on w, we have
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(i) (i− 1)w < (i + 1)w < (i)w < (i + 2)w if si ∈ J and 1 6 i < n;

(ii) (−2)w < (1)w < 0 < (−1)w < (2)w if s0 ∈ J ;

(iii) (n− 1)w < (n + 2)w < n + 1 < (n)w < (n + 3)w if sn ∈ J ;

By 1.2, we also have

(iv) (k)w < (k + 1)w if sk /∈ J and 1 6 k < n, (−1)w < 0 < (1)w if s0 /∈ J , and

(n)w < n + 1 < (n + 2)w if sn /∈ J .

Suppose that J = {sij
| 1 6 j 6 r, i1 < i2 < ... < ir}. Then we see from (i)–(iv) that

(v) (i1−δi1,0)w < (i2)w < ... < (ir)w and (i1+1)w < (i2+1)w < ... < (ir+1+δir,n)w,

where δhj = 0 or 1 according as h 6= j or h = j.

(vi) (h)w < (j)w < (k)w for any −1 6 h < j < k 6 n + 2 with j /∈ {im, im + 1 | 1 6

m 6 r}.
Let Ii = S \ {si} and Jj = Ij \ {sj+1} (set difference) for 0 6 i 6 n and 0 6 j < n.

Let WI be the subgroup of C̃n generated by I for I ⊆ S. Then we see that

(vii) if s0 /∈ J , then 0 < (h)w < 2n + 2 for 0 < h < 2n + 2 and so w ∈ WI0 ;

(viii) if sn /∈ J , then −n− 1 < (h)w < n+1 for −n− 1 < h < n+1 and so w ∈ WIn ;

(ix) if {sj , sj+1}∩J = ∅ with some 1 6 j < n−1, then −(j +1)w < (h)w < (j +1)w

for −j − 1 < h < j + 1 and (j + 1)w < (k)w < (2n + 1− j)w for j + 1 < k < 2n + 1− j.

This implies that (j + 1)w = j + 1 and hence w ∈ WJj ;

In any of the cases (vii)–(ix), any w-chain can be chain-replaced into the closed

interval [a, a+2n] for some integer a. More precisely, we can take a = 1 (resp., a = −n,

resp., a = −j) in the case (vii) (resp., (viii), resp., (ix)). Then it is easily seen from

(v)–(vi) that there is no w-chain of length > 3 in any of the cases (vii)–(ix).

(x) If n is even and J = {s0, s2, s4, ..., sn}, then (1)w < (3)w < ... < (n − 1)w <

(n + 2)w < (n + 4)w < ... < (2n)w < (2n + 3)w = 2n + 2 + (1)w and (−1)w <

(2)w < (4)w < ... < (n)w < (n + 3)w < (n + 5)w < ... < (2n + 1)w = 2n + 2 +

(−1)w. Let Z2n+2 be the set of residue classes of Z modulo 2n + 2. Then Z2n+2

is a disjoint union of two subsets E1 = {1, 3, ..., n− 1, n + 2, n + 4, ..., 2n} and E2 =
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{−1, 2, 4, ..., n, n + 3, n + 5, ..., 2n− 1}. For any w-chain ξ : i1, i2, ..., ir, denote by ξ the

set {ij | 1 6 j 6 r}. Then we see that the set ξ ∩ Ek contains at most one element for

any k = 1, 2. This implies that there is no w-chain of length > 3 in this case.

Since at least one of the cases (vii)–(x) must occur by the fully commutativity of J ,

we conclude that w is fully commutative by Lemma 2.1. ¤

Lemma 3.2. Let w ∈ C̃n be not fully commutative. Then there exists some element

y ∈ M(w) such that L(y) is not fully commutative.

Proof. The result is obvious when either n > 2, `(w) = 3, or n = 2, `(w) = 4, since

y = w must be a required element in M(w). Now assume `(w) > 3. If L(w) is not

fully commutative then y = w is a required element in M(w). Now assume that L(w)

is fully commutative. By Lemma 3.1, there exists some s ∈ L(w) with L(sw) * L(w).

Hence w′ = sw is in M(w). By Lemma 2.1, there exists a w-chain of length > 3. Then

by Lemma 2.3, there exists a w′-chain of length > 3. So our result follows by applying

induction on `(w) > 3 when n > 2, or on `(w) > 4 when n = 2. ¤

Corollary 3.3. An element w ∈ C̃n is not fully commutative if and only if there exists

some y ∈ M(w) such that L(y) is not fully commutative.

Proof. The implication “ =⇒ ” follows by Lemma 3.2. Then the reverse implication

follows by Remark 2.4. ¤

Let Wc be the set of all the fully commutative elements in C̃n and let W ′
c be the

complementary set of Wc in C̃n.

Theorem 3.4. The set Wc is a union of two-sided cells of C̃n.

Proof. Suppose not. Then there must exist some x ∈ Wc and y ∈ W ′
c satisfying x ∼

LR
y.

We know that the intersection of the left cell containing x and the right cell containing y

is non-empty (it follows easily by the associativity of the Hecke algebra of W and by [11,

Corollary 1.9]). So we may take some z with x ∼
L

z ∼
R

y. We see that an element x ∈ C̃n

is fully commutative if and only if the element x−1 is too. So there is no loss in assuming
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x ∼
L

y to begin with. By Corollary 3.3, we see that there exists some y′ ∈ M(y−1) with

L(y′) not fully commutative and that L(x′) is fully commutative for any x′ ∈ M(x−1).

This contradicts the fact that x, y have the same generalized τ -invariants (see 1.4). So

our result follows. ¤

3.5. By the knowledge of their two-sided cells, we see that an element w of W is not

fully commutative if and only if there exists some y ∈ M(w) such that L(y) is not fully

commutative in the case where W is one of the following groups: An, Ãn (n > 1, see

[12, Propositions 16.2.4 and 9.3.7] and [13, Theorem 3.1]), Bm (m > 2, see [8, Theorem

3.1.1]), F4 (see [17]), I2(m) (m > 2, see [12, §1.7]), H3 and H4 (see [1]), G̃2 (see [10]).

So in this case, we conclude that the fully commutative elements of W do form a union

of two-sided cells.

3.6. Let W be a finite or affine Coxeter group with a branching Coxeter graph, i.e.,

W is one of the following groups: Dn, D̃n (n > 4), B̃l (l > 3), Em, Ẽm (m = 6, 7, 8).

Then the fully commutative elements do not form a union of two-sided cells. This is

because the group W either contains a standard parabolic subgroup D4 or is B̃3 and

because the fully commutative elements in any of the groups D4 and B̃3 do not form a

union of two-sided cells. Let {s1, s2, s3, s4} be the Coxeter generator set of the group

D4 with o(s1s2) = o(s2s3) = o(s2s4) = 3. Then s1s3s4 ∼
LR

s1s2s1, where s1s3s4 is

fully commutative, but s1s2s1 is not (see [2]). Let S = {s0, s1, s2, s3} be the Coxeter

generator set of the group B̃3 with o(s0s2) = o(s1s2) = 3 and o(s2s3) = 4. Then

s0s1s3 ∼
LR

s0s2s0, where s0s1s3 is fully commutative but s0s2s0 is not (see [4]).

3.7. In the affine Coxeter group F̃4, the fully commutative elements do not form a

union of two-sided cells. For, let {s0, s1, s2, s3, s4} be a Coxeter generator set of F̃4

with o(s0s1) = o(s1s2) = o(s3s4) = 3 and o(s2s3) = 4. Then s0s1s0 ∼
LR

s0s2s4 (see [15,

§5.4]). Clearly, s0s2s4 is fully commutative, but s0s1s0 is not.
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