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Abstract. Let W be a finite or an affine Coxeter group and Wc the set of all the fully
commutative elements in W . For any left cell L of W containing some fully commutative
element, our main result of the paper is to prove that there exists a unique element (say wL)
in L ∩ Wc such that any z ∈ L has the form z = xwL with `(z) = `(x) + `(wL) for some
x ∈ W . This implies that L is left connected, verifying a conjecture of Lusztig in our case.

Introduction.

Let W = (W,S) be a Coxeter group with S the distinguished generator set. The fully

commutative elements of W were defined by Stembridge: w ∈ W is fully commutative, if

any two reduced expressions of w can be transformed from each other by only applying the

relations st = ts with s, t ∈ S and o(st) = 2 (o(st) being the order of st), or equivalently,

w has no reduced expression of the form w = x(sts...)y, where sts... is a string of length

o(st) > 2 for some s 6= t in S. The fully commutative elements were studied extensively

by a number of people (see [3], [6], [7], [15], [16], [17], [18]). Let Wc be the set of all the

fully commutative elements in W .

Let W be a finite or an affine Coxeter group. The aim of this paper is to prove a

structural property for any left cell of W containing some element of Wc: if z ∈ W satisfies
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z ∼
L

w for some w ∈ F ′c (see 1.8) then z is a left extension of w (see 1.1 and Theorem 2.1).

So any w ∈ F ′c is the unique shortest element in the left cell of W containing it and that

F ′c forms a representative set for all the left cells L of W with L ∩Wc 6= ∅.
A subset K of W is left connected, if for any x, y ∈ K, there exists a sequence of

elements x0 = x, x1, ..., xr = y in K with some r > 0 such that xi−1x
−1
i ∈ S for every

1 6 i 6 r. Lusztig conjectured in [2] that if W is an affine Weyl group then any left

cell L of W is left connected. The conjecture is supported by all the existing data. Then

Theorem 2.1 verifies the conjecture in the case where L contains some element of Wc.

Since the generalized Coxeter elements are fully commutative, this paper generalizes

a result in my previous paper [14, Theorem 4.5]; the latter described any left cell of W

containing some generalized Coxeter element.

Note that the conclusion of Theorem 2.1 was proved in [17] for the case where W is a

Weyl or an affine Weyl group, using the knowledge of distinguished involutions of W in

Wc. The proof given in the present paper is independent of that in [17], without assuming

the knowledge of distinguished involutions in Wc, and is applicable to a more general case:

W is a finite or an affine Coxeter group.

The contents of the paper are organized as follows. We collect some notations, terms

and known results concerning cells and fully commutative elements of a Coxeter group W

in Section 1. Then the main result of the paper is proved in Section 2.

§1. Some results on fully commutative elements.

Let (W,S) be a Coxeter system. In the Introduction we defined the set Wc of all the

fully commutative elements of W . In this section, we collect some notations, terms and

known results for later use.

1.1. Let 6 be the Bruhat–Chevalley order and `(w) the length function on W . Given

J ⊆ S, let wJ be the longest element in the subgroup WJ of W generated by J . Call J

fully commutative if the element wJ is so.

For w, x, y ∈ W , we use the notation w = x · y to mean w = xy and `(w) = `(x) + `(y).

In this case, we say that w is a left (resp., right) extension of y (resp., x), and say that y
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(resp., x) is a left (resp., right) retraction of w. More generally, we say z is a retraction of

w (or w is an extension of z), if w = x · z · y for some x, y ∈ W .

We have the following results on the elements in Wc:

Lemma. (see [17, Lemma 1.1]) For w ∈ Wc, let w = s1s2...sr be a reduced expression of

w with si ∈ S.

(1) The multi-set {s1, s2, ..., sr} only depends on w but not on the choice of a reduced

expression.

(2) For any s ∈ S with sw ∈ Wc, the equation sw = ws holds if and only if ssi = sis

for any 1 6 i 6 r.

(3) If s, t ∈ S satisfy sw = wt ∈ Wc, then s = t.

(4) If w ∈ Wc then any retraction of w is also in Wc. In particular, if w ∈ Wc has an

expression w = x · wJ · y with x, y ∈ W and J ⊆ S, then J is fully commutative.

1.2. Let 6
L

(resp., 6
R

, 6
LR

) be the preorder on W defined as in [8], and let ∼
L

(resp., ∼
R

,

∼
LR

) be the equivalence relation on W determined by 6
L

(resp., 6
R

, 6
LR

). The corresponding

equivalence classes are called left (resp., right, two-sided) cells of W .

1.3. For any w ∈ W , let L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.
Assume m = o(st) > 2 for some s, t ∈ S. A sequence of elements

ys, yst, ysts, . . .︸ ︷︷ ︸
m−1 terms

is called a right {s, t}-string ( or just a right string ) if y ∈ W satisfies R(y) ∩ {s, t} = ∅.
We say that z is obtained from w by a right {s, t}-star operation (or a right star

operation for brevity), if z, w are two neighboring terms in a right {s, t}-string. Clearly,

a resulting element z of a right {s, t}-star operation on w, when it exists, need not be

unique unless w is a terminal term of the right {s, t}-string containing it.

Similarly, we can define a left {s, t}-string and a left {s, t}-star operation on an element.

Lemma. (1) If x, y ∈ W can be obtained from each other by successively applying left

(resp., right) star operations, then x ∼
L

y (resp., x ∼
R

y).
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(2) The set Wc is invariant under star operations.

Proof. (1) follows easily from the definition of the relations ∼
L

and ∼
R

on W . (2) is just

[17, Proposition 2.10]. ¤

From now on, we always assume that W is a finite or an affine Coxeter group unless

otherwise specified.

1.4. In [10], [11], Lusztig defined a function a : W −→ N∪ {∞} and proved the following

results (we further assume that W is a Weyl or an affine Weyl group when the results

involve the function a).

(a) a(wJ) = `(wJ) for J ⊆ S with WJ finite (see [10, Proposition 2.4] and [11, Proposi-

tion 1.2]). In particular, when J is fully commutative, we have a(wJ) = |J |, the cardinality

of the set J .

(b) If x 6
LR

y in W , then a(x) > a(y). So x ∼
LR

y implies a(x) = a(y) (see [10, Theorem

5.4]).

(c) If w = x · y then w 6
L

y and w 6
R

x.

(d) If x 6
L

y and if either x ∼
LR

y or a(x) = a(y) then x ∼
L

y (see [11, Corollary 1.9], [12,

Subsection 1.7 (i)] and [1, Corollary 3.3]).

(e) The relation x 6
L

y (resp., x 6
R

y) implies R(x) ⊇ R(y) (resp., L(x) ⊇ L(y)). In

particular, the relation x ∼
L

y (resp., x ∼
R

y) implies R(x) = R(y) (resp., L(x) = L(y))

(see [8, Proposition 2.4]).

By the notation x–—y in W , we mean that max{deg Px,y, deg Py,x} = 1
2 (|`(x)−`(y)|−1),

where Px,y is the celebrated Kazhdan–Lusztig polynomial associated to the ordered pair

(x, y) in W , and we stipulate that the degree of the zero polynomial is −∞.

(f) If x, y ∈ W with x–—y are in some right {s, t}-strings (not necessarily in the same

right string) for some s, t ∈ S with st 6= ts, then there exist some x′, y′ ∈ W which are

obtained from x, y respectively by a right {s, t}-star operation and satisfy x′–—y′ (see [10

Subsection 10.4]).

1.5. By a graph, we mean a finite set of nodes together with a finite set of edges. Two

nodes of a graph are adjacent if they are joined by an edge. A directed graph (or a
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digraph for brevity) is a graph with each edge oriented. A directed edge (i.e., an edge with

orientation) with two incident nodes v,v′ is denoted by an ordered pair (v,v′), if the

orientation is from v to v′. A node s of a digraph G is a source (resp., a sink) if (s, s′)

(resp., (s′, s)) is a directed edge of G for any node s′ adjacent to s. A source or a sink of G

is also called an extreme node. A directed path ξ of G is a sequence of nodes v0,v1, ...,vr

in G with r > 0 such that (vi−1,vi) is a directed edge of G for 1 6 i 6 r. A subdigraph

of a digraph G is a digraph which can be obtained from G by removing some nodes and

all the directed edges incident to these removed nodes.

1.6. To an expression

(1.6.1) χ : w = s1s2...sr

(not necessarily reduced) of any w ∈ W with si ∈ S, we associate a digraph G(χ)

as follows. The node set V(χ) of G(χ) is {si | 1 6 i 6 r} (with the convention that

si 6= sj for any i 6= j), and the directed edge set E(χ) of G(χ) consists of all the ordered

pairs (si, sj) satisfying the conditions i < j, sisj 6= sjsi and that there does not exist any

i = h0 < h1 < ... < ht = j with t > 1 such that shp−1shp 6= shpshp−1 for every 1 6 p 6 t.

The digraph G(χ) so obtained usually depends on the choice of an expression χ of w.

However, if two expressions of w can be obtained from each other by only applying the

relations of the form st = ts for some s, t ∈ S with o(st) = 2, then their corresponding

digraphs are the same. In particular, when w is in Wc and an expression χ of w in (1.6.1)

is reduced, the digraph G(χ) only depends on the element w, but not on the particular

choice of a reduced expression χ of w. In this case, it makes sense to denote G(χ), V(χ),

E(χ) by G(w), V(w), E(w), respectively. Call G(w) the associated digraph of w.

By the above construction of a digraph G(w) for w ∈ Wc, there exists a natural map

φ : si 7→ si from V(w) to S and hence V(w) can be regarded as a multi-set in S.

Note that the above definition of the digraph G(w) can be regarded as a reformulation

of Viennot’s notion of a heap (see [19]). The digraph G(w) is also a certain kind of

dependence graph (see [5] for example).

1.7. By [18, Proposition 2.3], we see that an element w of W is in Wc if and only if there
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exists some (and hence any) reduced expression χ : w = s1s2...sr such that the following

two conditions hold:

(1.7.1) for any pair i < j with si = sj , there exists a directed path in G(χ) connecting

the nodes si and sj .

(1.7.2) for any directed path si1 , si2 , ..., sim
in G(χ) with sih

= sih+2 for 1 6 h 6 m − 2

and m = o(si1si2) > 2, there always exists another directed path with si1 , sim
two extreme

nodes.

For w ∈ Wc, L(w) (resp., R(w)) (see 1.3) is exactly the set of all s ∈ S with φ−1(s)

containing a source (resp., a sink) of G(w). Let s ∈ L(w) (resp., s ∈ R(w)). Then both

L(w) + L(sw) and L(w) * L(sw) (resp., R(w) + R(ws) and R(w) * R(ws)) hold if

and only if the removal of the source (resp., sink) s from G(w) yields a new source (resp.,

sink) in the resulting digraph.

For w ∈ Wc, there is an expression w = x · wJ · y for some J ⊆ S and x, y ∈ W if and

only if there is a node set J of G(w) with φ(J) = J and |J| = |J | such that

(1.7.3) for any s 6= t in J, there is no directed path connecting s and t in G(w).

Denote by n(w) the maximum possible cardinality of a node set J of G(w) satisfying

condition (1.7.3). Then n(w) is also the maximum possible value of `(wJ) in an expression

w = x · wJ · y, or equivalently, the maximum size of an antichain in the corresponding

heap.

1.8. Let Fc be the set of all the elements w in Wc such that L(sw) ⊂ L(w) (or equivalently,

L(sw) = L(w) \ {s}) for any s ∈ L(w). Denote by F ′c the set of all the elements w in Fc

such that n(sw) < n(w) = |L(w)| for any s ∈ L(w). Let F ′′c = Fc \ F ′c.

Proposition. Assume that W is a finite or an affine Coxeter group.

(1) If w ∈ F ′c then any right retraction of w is also in F ′c (see [17, Lemma 3.14]).

(2) If W is irreducible and w ∈ F ′′c , then s 6 w for any s ∈ S (see [17, Lemma 3.11]).

Now assume that W is a Weyl or an affine Weyl group.

(3) a(w) = n(w) for any w ∈ Wc (see [17, Theorem 3.1], [4, Theorem 4.1]).

(4) a(w) = |L(w)| for any w ∈ Fc (see [17, Corollary 3.18]).
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The next result is concerned with some further properties of w ∈ F ′c.

Lemma 1.9. (see [17, Lemma 3.15]) Let W be a Weyl or an affine Weyl group.

(1) For any w ∈ F ′c, there exists a sequence of elements x0 = w, x1, ..., xr = wK in

F ′c with K = L(w) such that xi can be obtained from xi−1 by a right star operation and

xi < xi−1 for every 1 6 i 6 r.

(2) For any w ∈ Wc, there exists some y ∈ F ′c such that y is a left retraction of w with

y ∼
L

w and n(y) = n(w).

§2. Left cells of W containing some element of Wc.

In this section, we consider all the left cells of W containing some w ∈ Wc. Since any

w ∈ Wc has the form w = x · y with w ∼
L

y for some y ∈ F ′c and x ∈ Wc (see Lemma 1.9

(2)), we may assume w ∈ F ′c without loss of generality. Say an element x ∈ W satisfies

condition (A), if

(A) x <
L

sx (i.e., x 6
L

sx but x 6∼
L

y) for any s ∈ L(x).

The main result of the paper is to prove

Theorem 2.1. Let W be an irreducible finite or affine Coxeter group. Let w ∈ F ′c and

z ∈ W satisfy z ∼
L

w.

(1) If the element z satisfies condition (A), then z = w.

(2) If z ∈ F ′c then z = w.

(3) In general, we have z = x · w for some x ∈ Wc.

We break the proof of Theorem 2.1 up into some lemmas.

Lemma 2.2. Suppose that we are given w ∈ F ′c with m = `(w). Let z ∈ W satisfy z ∼
L

w

and condition (A). Assume that we are in the following case:

(1) W is an irreducible Weyl or affine Weyl group;

(2) m > |L(w)| and the assertion of Theorem 2.1 has been proved when `(w) < m;

(3) w = wJ · y satisfies n(w) = J and y ∈ Wc;

(4) w, z can be transformed to w′ = ws′, z′ = zs respectively by a right {s, s′}-star
operation with s′ ∈ R(y) and w′ ∼

L
z′, where s, s′ ∈ S satisfy ss′ 6= s′s.
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Then we have

(a) z = x · wJ′ · y with J ′ = J \ {s} for some x ∈ W ;

(b) the element s commutes with but is not equal to any v ∈ S with v 6 wJ′ · ys′.

Proof. Note that any x ∈ F ′c satisfies condition (A) by Proposition 1.8 (3) and 1.4 (d).

We have w′ ∈ F ′c by Proposition 1.8 (1).

We claim that z′ does not satisfy condition (A). For otherwise, one would have z′ =

w′ = ws′ by the assumption (2) with w′, z′ in the place of w, z respectively. By the

condition s′ ∈ R(y) ⊆ R(w), we have s ∈ R(ws′) since the transformation of sending w to

ws′ is a right {s, s′}-star operation. So z = z′s = ws′s is a right retraction of w and hence

is in F ′c by Proposition 1.8 (1). Since `(z) < `(w) = m, we have z = w by the assumption

(2) with z, w in the place of w, z respectively, which is impossible.

So there exists some t ∈ L(z′) satisfying tz′ ∼
L

z′. We have R(z) = R(w) by 1.4 (e) and

the condition z ∼
L

w. Then s′ ∈ R(z) and z′ = z · s. There is a reduced expression of z′:

(2.2.1) z′ = s1...sas′s with si ∈ S.

We claim that we have a reduced expression of tz′:

(2.2.2) tz′ = s1...sas.

For otherwise, we would have a reduced expression either tz′ = s1...sas′ or tz′ = s1...ŝi...sas′s

for some 1 6 i 6 a by the exchange condition on W , where ŝi means the deletion of the

factor si. If tz′ = s1...sas′, then we would have z′ <
L

tz′ by [10 Corollary 5.5], a contradic-

tion. Also, if tz′ = s1...ŝi...sas′s, then tz = s1...ŝi...sas′, which can be obtained from tz′

by a right {s, s′}-star operation, and hence tz ∼
R

tz′ ∼
L

z′ ∼
R

z. This would imply tz ∼
LR

z

and hence tz ∼
L

z by 1.4 (c)–(d), contradicting condition (A) on z since t ∈ L(z′) = L(z)

by 1.4 (e).

By 1.4 (d), we can write tz′ = x · z′′ for some x, z′′ ∈ W , where z′′ satisfies conditions

z′′ ∼
L

tz′ and (A). Since z′′ ∼
L

w′, w′ ∈ F ′c and `(w′) < `(w), we have z′′ = w′ by the

assumption (2) with w′, z′′ in the place of w, z respectively. So tz′ = x ·w′. We can write
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y = y′ · s′ for some y′ ∈ W by the fact that s′ ∈ R(y). Then

(2.2.3) z′ = t · x · wJ · y′

by the assumption (3). Hence

(2.2.4) z = (t · x · wJ · y′)s.

By the fact s ∈ R(ws′) = R(wJy′) and by the exchange condition on W , we have either

(2.2.5) z = t · x · wJ′ · y′ with J ′ ⊂ J and |J ′| = |J | − 1

or

(2.2.6) z = t · x · wJ · y′′ with y′′ < y′ and `(y′′) = `(y′)− 1.

We claim that the case (2.2.6) could not occur. For otherwise, since |J | = a(w) = a(z)

by 1.4 (b) and Proposition 1.8 (3), we would have z ∼
L

tz by 1.4 (d), contradicting the

assumption that z satisfies condition (A) since t ∈ L(z). In particular, we have

(2.2.7) wJ ′y
′s = wJ · y′ = w′ ∈ F ′c ⊆ Wc.

This implies J \ J ′ = {s} by Lemma 1.1 (3). So we get from (2.2.3) and (2.2.7) that

(2.2.8) z′ = t · x · wJ′ · y′ · s

and hence

(2.2.9) tz′ = x · wJ′ · y′ · s.

On the other hand, we have

(2.2.10) tz′ = (t · x · wJ′ · y′)s′ · s
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by (2.2.8) and (2.2.1)–(2.2.2). Comparing (2.2.9) with (2.2.10), we get

(2.2.11) t · x · wJ′ · y′ = x · wJ′ · y′ · s′.

This implies by (2.2.5) and (2.2.11) that

(2.2.12) z = t · x · wJ ′ · y′ = x · wJ ′ · y′ · s′ = x · wJ′ · y

So (a) is proved.

For (b), the conclusion that s commutes with any v ∈ S with v 6 wJ′ · y′ follows by

(2.2.7) and Lemma 1.1 (2). If s 6 wJ′ · y′, then s 6 y′ and thus `(wJ · y′) < `(wJ) + `(y′)

by J = J ′ ∪ {s}, which is absurd. So s 66 wJ′ · y′ = wJ ′ · ys′. ¤

Lemma 2.3. Keep all the assumptions of Lemma 2.2 on the elements w ∈ F ′c and z ∈ W

(in particular, w = wJ · y and J = J ′ ∪ {s} = L(w)). Then the element w can also

be transformed to wu′ by a right {u, u′}-star operation for some u ∈ S, u′ ∈ R(y) with

uu′ 6= u′u and s /∈ {u, u′}.

Proof. We have a reduced expression y = y′·s′ of y for some y′ ∈ W . Let w1 = sw = wJ ′ ·y.

Then w1 ∈ Wc. By (2.2.7), we have w = s · w1 = wJ ′y
′ss′. We claim that w1 can be

transformed to w1u
′ by a right {u, u′}-star operation for some u′ ∈ R(y) and u ∈ S

with uu′ 6= u′u. For otherwise, we would have w−1
1 ∈ Fc. Then |L(w1)| + 1 = |L(w)| >

|R(w)| = |R(w1)| = |L(w−1
1 )| > |R(w−1

1 )| = |L(w1)| by the assumptions that w ∈ F ′c and

`(w) > |L(w)|, by the fact that s is not a sink of G(w) (since {s, s′}∩R(w) = {s′} by the

assumption in Lemma 2.2 (4)), and by Proposition 1.8 (4). This implies |L(w1)| = |R(w1)|
and hence w−1

1 ∈ F ′′c (see 1.8) by the fact that `(w−1
1 ) > |L(w−1

1 )|. On the other hand, we

have s 66 w1 = wJ′ · y = wJ′ · y′ · s′ by Lemma 2.2 (b). This is impossible by Proposition

1.8 (2). Our claim is proved. The claim implies that u, u′ 6 w1. Since s 
 w1, we have

s /∈ {u, u′}. Hence w = s · w1 also can be transformed to wu′ by a right {u, u′}-star

operation. ¤

Lemma 2.4. Theorem 2.1 is true when W = H3,H4, I2(m) (m = 5 or > 7).
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Proof. By [9, Proposition 3.8], we see that the result is true in the case where w ∈ F ′c

has a unique reduced expression. In particular, the result is true when W = I2(m). It

remains to consider the case where W ∈ {H3,H4}, and w ∈ F ′c has more than one reduced

expression. Now assume that we are in such a case. Let W1 be the set of all the fully

commutative elements of W each of which has more than one reduced expression. Then

we get the following facts:

(i) First we claim that W1 is a single two-sided cell of W .

By [15, 3.5], we know that W1 is a union of two-sided cells of W . Then the claim

follows by [1, Section 3] for W = H4, where W1 is the two-sided cell E in the notation of

[1]; and by a direct calculation for W = H3, where W1 consists of 25 elements, which is a

union of 5 left (resp., right) cells.

(ii) Next we claim that W1 = {y ∈ Wc | n(y) = 2}.

This is because n(w) 6 2 for any w ∈ W , n(x) = 1 for any x ∈ Wc \W1 and n(y) > 1

for any y ∈ W1.

(iii) Let w ∈ W1. When W = H3, let S = {s1, s2, s3} satisfy (s1s2)5 = (s2s3)3 = 1.

Define z = s1s3 · s2 · s1 · s2 · s3. Then we claim that w is in F ′c if and only if w is a

right retraction of z with L(w) = {s1, s3}. When W = H4, let S = {s1, s2, s3, s4} satisfy

(s1s2)5 = (s2s3)3 = (s3s4)3 = 1. Define z1 = s1s3 · s2 · s1 · s2 · s3 · s4, z2 = s1s4 and

z3 = s2s4 · s3. Then we claim that w is in F ′c if and only if w is a right retraction of zi

with |L(w)| = 2 for some 1 6 i 6 3. For, by (ii), we see that w ∈ W1 is in F ′c if and only

if |L(w)| = 2 and n(sw) = 1 for any s ∈ L(w). Then the above two claims follow by a

direct calculation.

By 1.4 (c)–(d), the above (i)–(ii) and Lemma 1.9 (2), we see that any z ∈ W1 can be

written in the form z = x ·w for some w ∈ F ′c ∩W1 and some x ∈ W with z ∼
L

w. This, in

particular, implies that z ∈ W1 satisfies condition (A) only if z ∈ F ′c. By (iii), we see that

any w ∈ F ′c ∩W1 satisfies condition (A). By comparing their generalized τ -invariants (see

[13, Section 4] for the definition), we see that two elements x, y of F ′c ∩W1 satisfy x ∼
L

y

if and only if x = y. Hence our result on H3 and H4 follows. ¤
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2.5. Proof of Theorem 2.1. By Lemma 2.4, we need only consider the case where W is

an irreducible Weyl or affine Weyl group. Now assume that we are in such a case.

First we prove (2)–(3) under the assumption of (1). Since any element of F ′c satisfies

condition (A) by 1.4 (d) and Proposition 1.8 (3)–(4), assertion (2) is an immediate con-

sequence of (1). For (3), we can write z = x · z′ for some x, z′ ∈ W with z′ satisfying the

conditions z′ ∼
L

z and (A). Then we have z′ = w by (1) and hence z = x · w.

So it remains to prove (1). We can write w = wJ · y with J = L(w) for some y ∈ Wc.

Hence |J | = n(w) = a(w) by Proposition 1.8 (3)–(4). We apply induction on `(y) > 0.

When `(y) = 0, we have w = wJ . The condition z ∼
L

w implies that R(z) = R(w) = J

and |J | = a(z) by 1.4 (e), (b), (a). Hence z = x ·wJ for some x ∈ W . Then condition (A)

on z further implies z = wJ . Next assume `(y) > 0. By Lemma 1.9 (1), the element w

can be transformed to w′ = ws′ by a right {s, s′}-star operation for some s ∈ S, s′ ∈ R(y)

with ss′ 6= s′s. Then w′ ∈ F ′c by Proposition 1.8 (1). At least one (say z′) of zs′ and zs

is obtained from z by a right {s, s′}-star operation and satisfies z′ ∼
L

w′ by 1.4 (e)–(f). If

z′ = zs′, then z′ is a right retraction of z with z′ ∼
R

z by the fact that s′ ∈ R(w) = R(z).

For any r ∈ L(z′), we have r ∈ L(z) by 1.4 (e), hence z′ ∼
R

z <
L

rz 6
R

rzs′ = rz′ by the

assumption that z satisfies condition (A). This implies z′ <
LR

rz′ and further z′ <
L

rz, i.e.,

z′ also satisfies condition (A). By the inductive hypothesis, we have z′ = w′ and hence

z = z′s′ = w′s′ = w, as required.

Now assume z′ = zs. Then all the assumptions (1)–(4) of Lemma 2.2 on w, z hold,

where the assumptions (1)–(3) hold by our inductive hypothesis, while the assumption (4)

holds by the above discussion and the assumption z′ = zs. Hence by Lemmas 2.2 and 2.3,

we have z = x ·wJ′ ·y with J ′ = J \{s} for some x ∈ W , and w can also be transformed to

w′′ = wu′ by a right {u, u′}-star operation for some u ∈ S and u′ ∈ R(y) with uu′ 6= u′u

and s /∈ {u, u′}. By the same argument as above, we can prove the following assertions:

(i) w′′ ∈ F ′c;

(ii) at least one (say z′′) of zu′ and zu is obtained from z by a right {u, u′}-star operation

and satisfies z′′ ∼
L

w′′;

(iii) if z′′ = zu′ then z′′ = w′′ and hence z = w;
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(iv) if z′′ = zu then z = x′ · wJ′′ · y with J ′′ = J \ {u} for some x′ ∈ W .

We claim that the cases of z = x·wJ ′ ·y and z = x′ ·wJ ′′ ·y can’t happen simultaneously.

For otherwise, we would have x·u = x′ ·s. Since s 6= u, this implies s ∈ R(x), contradicting

the fact that xwJ = x ·wJ (see (2.2.3)). So we must have z = w by the assertions (ii)–(iv).

This completes our proof. ¤

Theorem 2.1 tells us that any w ∈ F ′c is the unique shortest element in the left cell Lw

of W containing w and that any z ∈ Lw has the form z = x · w for some x ∈ W .

Remark 2.6. (1) The proof of Lemma 2.2 follows the line of the corresponding part in

the proof of [14, Theorem 4.7]. However, the remaining part in the proof of Theorem 2.1

is new.

(2) Corollaries 4.10 and 4.11 in [17] are the consequence of Theorem 2.1.
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