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Abstract. In [7], Lusztig defined two functions a and a′ on a Coxeter group W and

conjectured that they are the same. In the present paper, we give a counter-example to

Lusztig’s conjecture. Then we propose a new conjecture for the description of two-sided

cells of W which can be regarded as an improvement of Lusztig’s conjecture. Some examples

are given to support our conjecture.

In his study of Hecke algebras with unequal parameters (see [7]), Lusztig defined two

functions a and a′ on a Coxeter group (W,S). The function a is defined in terms of

structural coefficients of the Hecke algebra associated to W , while the function a′ is

determined by the values of a on the finite standard parabolic subgroups of W . Then

Lusztig conjectured in [7, Subsection 13.12] that a(w) = a′(w) for any w ∈ W (see

Conjecture 2.1).

In the present paper, we give a counter-example to the above conjecture of Lusztig

in the case where W is the affine Weyl group of type Ã10 (see Theorem 4.1). Then

we propose a conjecture for the description of two-sided cells in a Coxeter group (see

Conjecture 4.3), which can be regarded as an improvement of the above conjecture of

Lusztig. Some examples are given to support our conjecture (see Theorem 4.8).

The contents are organized as follows. In Section 1, we introduce the function a on a

Coxeter group W in terms of the Hecke algebra associated to W . Then we state some
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conjectures of Lusztig involving the function a in Section 2. The affine Weyl group Ãn−1,

n > 2, is introduced in Section 3. Finally, in Section 4, we provide a counter-example in

Ã10 against Conjecture 2.1 and also propose a new conjecture to replace Conjecture 2.1.

§1. Function a on a Coxeter group.

The concepts introduced in this section follow Lusztig in [7].

1.1. Let W be a Coxeter group with S its Coxeter generator set. For w ∈ W , let `(w)

be the smallest integer q > 0 such that w = s1s2 · · · sq with si ∈ S. Call `(w) the length

of w and w = s1s2 · · · sq a reduced expression of w if q = `(w). A map L : W → Z is

said to be a weight function for W if L(ww′) = L(w) + L(w′) for any w,w′ ∈ W such

that `(ww′) = `(w) + `(w′). Any weight function for W satisfy the equation L(s) = L(t)

whenever s, t ∈ S are conjugate in W . Hence L is a multiple of ` if the elements of S are

pairwise conjugate.

Let A = Z[v, v−1] be the ring of Laurent polynomials in an indeterminate v. For

s ∈ S, set vs = vL(s) ∈ A. Let H be the A-algebra defined by the generators Ts (s ∈ S)

and the relations

(Ts − vs)(Ts + v−1
s ) = 0 for s ∈ S

TsTs′Ts · · · = Ts′TsTs′ · · · (both sides have o(ss′) factors)

where o(ss′) is the order of the product ss′ for any s 6= s′ in S such that o(ss′) < ∞; H

is called the Hecke algebra associated to W , L.

For w ∈ W , we define Tw ∈ H by Tw = Ts1Ts2 · · ·Tsq , where w = s1s2 · · · sq is a

reduced expression in W . Then Tw is independent of the choice of a reduced expression

and hence is well-defined. The set {Tw | w ∈ W} forms an A-basis of H.

1.2. Let : A → A be the ring involution which sends vn to v−n for any n ∈ Z. Then

there is a unique ring homomorphism : H → H which is A-semilinear with respect to

: A → A and satisfies Tw = T−1
w−1 for any w ∈ W .
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1.3. For any n ∈ Z, let A6n =
⊕

m6n Zvm, A<n =
⊕

m<n Zvm, H60 =
⊕

w∈W A60Tw

and H<0 =
⊕

w∈W A<0Tw.

It is known that for any w ∈ W , there exists a unique element cw ∈ H60 such that

cw = cw and cw ≡ Tw mod H<0. The set {cw | w ∈ W} forms another A-basis of H.

1.4. For z ∈ W , define Dz ∈ HomA(H,A) by Dz(cw) = 0 if w ∈ W \{z} and Dz(cz) = 1.

For w,w′ ∈ W , we write w ←−L w′ (respectively, w ←−R w′) if Dw(cscw′) 6= 0

(respectively, Dw(cw′cs) 6= 0) for some s ∈ S. We write w 6L w′ (respectively, w 6R

w′) if there exist w = w0, w1, ..., wr = w′ in W such that wi−1 ←−L wi (respectively,

wi−1 ←−R wi) for any 1 6 i 6 r. We write w 6LR w′ if there exist w = w0, w1, ..., wr =

w′ in W such that either wi−1 ←−L wi or wi−1 ←−R wi for any 1 6 i 6 r.

The relations 6L, 6R, 6LR are preorders on W . Let ∼L, ∼R, ∼LR be the associated

equivalence relations. The equivalence classes on W for ∼L, ∼R, ∼LR are called left

cells, right cells, two-sided cells of W , L, respectively. The preorder 6L (respectively,

6R, 6LR) on W induces a partial ordering on the set of left cells (respectively, right

cells, two-sided cells) of W .

1.5. From now on, assume L(s) > 0 for s ∈ S. For x, y, z ∈ W , define hx,y,z ∈ A by

cxcy =
∑
z∈W

hx,y,zcz.

We say that W , L is bounded if there exists some N ∈ N such that v−Nhx,y,z ∈ A60

for all x, y, z ∈ W . It is known that W , L is bounded when W is either a finite or an

affine Coxeter group.

From now on, assume that W , L is bounded. Then for any z ∈ W , there exists a

unique integer a(z), 0 6 a(z) 6 N such that

hx,y,z ∈ va(z)Z[v−1] for all x, y ∈ W,

hx,y,z /∈ va(z)−1Z[v−1] for some x, y ∈ W.
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The function a plays an important role in the theory of the A-algebra H, in particular,

in the study of cells of W . When W is either a finite or an affine Coxeter group and

when L is constant on S, the function a is constant on any two-sided cell Ω of W (see

[4, Theorem 5.4]).

§2. Some conjectures of Lusztig involving the a-function.

For x, y, z ∈ W , the notation z = x · y means that z = xy and `(z) = `(x) + `(y). In

this case, we have z 6L y and z 6R x.

For w ∈ W , let Z(w) be the set of all y ∈ W such that w = u · y · u′ (i.e., `(w) =

`(u)+ `(y)+ `(u′)) for some u, u′ ∈ W and some y ∈ WI with WI finite, where WI is the

subgroup of W generated by I ⊂ S. Define a′(w) = maxy∈Z(w) a(y). Lusztig proposed

the following

Conjecture 2.1. (see [7, Subsection 13.12]) We have a(w) = a′(w) for any w ∈ W .

2.2. In [7, Chapter 14], Lusztig proposed a number of conjectures involving the function

a, the followings are two of them:

P4. If z′ 6LR z in W then a(z′) > a(z). Hence, if z′ ∼LR z then a(z′) = a(z).

P11. If z′ 6LR z and a(z′) = a(z) in W then z′ ∼LR z.

Conjectures P4 and P11 hold when W is either a finite or an affine Weyl group and

the weight function L is constant on S (see [4, Theorem 5.4] and [6, Corollary 1.9]).

We have w 6LR y for any y ∈ Z(w). So if P4 is true, then the inequality a(w) > a′(w)

holds in general.

2.3. Denote x <LR y in W , if x 6LR y and x �LR y. Denote y 6 w in W , if there

is a reduced expression w = s1s2 · · · sr with si ∈ S such that y = si1si2 · · · sit for some

1 6 i1 < i2 < · · · < it 6 r. Call 6 the Bruhat-Chevalley ordering on W . For any w ∈ W ,

set

L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.

Consider the following set:
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(2.3.1) Y (W ) = {w ∈ W | w <LR sw,wt for any s ∈ L(w), t ∈ R(w)}.

Lemma 2.4. Suppose that P4 and P11 hold for W . Then Conjecture 2.1 holds if and

only if any z ∈ Y (W ) lies in WI for some I ⊂ S with WI finite.

Proof. Under our assumption, the set Y (w) can be described as follows.

(2.4.1) Y (W ) = {w ∈ W | a(sw), a(wt) < a(w) for any s ∈ L(w), t ∈ R(w)}.

First assume that Conjecture 2.1 holds. Let z ∈ Y (W ). Then there exists an ex-

pression z = u · y · u′ for some u, u′ ∈ W and some y ∈ WI , I ⊂ S with WI finite and

a(y) = a(z). By the assumption of z ∈ Y (W ), we must have u = u′ = 1. So z ∈ WI , as

required.

Next assume that any z ∈ Y (W ) lies in WI for some I ⊂ S with WI finite. It is easily

seen that any w ∈ W has an expression w = u ·y ·u′ for some u, u′, y ∈ W with y ∈ Y (w)

and a(y) = a(w). Hence y ∈ WI for some I ⊂ S with WI finite by our assumption. So

a(w) > a′(w) > a(y) = a(w), Conjecture 2.1 holds. ¤

§3. The affine Weyl group of type Ãn−1, n > 2.

The most part of the results stated in 3.1-3.4 can be found in [8].

3.1. Let W be the affine Weyl group of type Ãn−1, n > 2 (by abuse of notation, we

denote W by Ãn−1). Lusztig described Ãn−1 as a permutation group on the set Z as

follows (see [3, Subsection 3.6] and [8, Chapter 4]):

Ãn−1 =

{
w : Z → Z

∣∣∣∣∣(i + n)w = (i)w + n ∀ i ∈ Z;
n∑

k=1

(k)w =
n∑

k=1

k

}
.

Any w ∈ Ãn−1 can be identified with an ∞×∞ permutation matrix (aij)i,j∈Z, where

aij =
{

1, if j = (i)w,

0, otherwise.
(see [8, Subsection 4.1])
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The Coxeter generator set S = {s0, s1, ..., sn−1} of Ãn−1 are given by setting

(t)si =


t, if t 6≡ i, i + 1 (mod n),
t + 1, if t ≡ i (mod n),
t − 1, if t ≡ i + 1 (mod n).

for 0 6 i < n and t ∈ Z.

For any w ∈ Ãn−1 and 0 6 i < n, we have

(3.1.1)
si ∈ L(w) ⇐⇒ (i)w > (i + 1)w,

si ∈ R(w) ⇐⇒ (i)w−1 > (i + 1)w−1.
(see [8, Corollary 4.2.3])

For any i, j ∈ Z, the condition aij = 1 implies that ai+qn,j+qn = 1 for all q ∈ Z. In

particular, for any (maximal) proper subset J ⊂ S, the matrix (aij)i,j∈Z of an element

z of WJ contains an n × n diagonal matrix block M(z) which is a permutation matrix

and determines the matrix z by periodically extension. More precisely, there exists some

1 6 c 6 n such that M(z) = (aij)c<i,j6c+n is a permutation matrix.

3.2. Fix a positive integer n. A partition of n is by definition a weakly decreasing

sequence of non-negative integers λ = (λ1, λ2, ..., λr) with
∑r

i=1 λi = n. Two partitions

are regarded as the same if one can be obtained from the other by adding some zero

parts at the end. Let Λn be the set of all partitions of n and let Λ =
⋃

n>1 Λn. Let

λ = (λ1, λ2, ..., λr) and µ = (µ1, µ2, ..., µt) be in Λ. Write λ 6 µ, if λ1 + · · · + λk 6

µ1 + · · · + µk for any k > 1, where we stipulate λp = µq = 0 for p > r and q > t. This

defines a partial ordering on the set Λ.

3.3. For any w ∈ Ãn−1, call {i1, i2, ..., it} ⊂ Z to be a w-chain, if i1 < i2 < · · · < it and

(i1)w > (i2)w > · · · > (it)w. In terms of matrix entries, by a w-chain {i1, i2, ..., it}, it

means that the non-zero entries of the matrix w at the rows i1, i2, ..., it are going down

to the left monotonously. Let k ∈ N. By a (w, k)-chain-family, we mean a union of k

w-chains
⋃k

j=1{ij1, ij2, ..., ijmj} such that ijh 6≡ ij′h′ (mod n) for any (j, h) 6= (j′, h′).

Let dk(w) be the maximal possible cardinal of a (w, k)-chain-family. Then dk(w) 6 n

for any k > 1 and there is some r ∈ N such that d1(w) < d2(w) < · · · < dr(w) = n. Let

λ1(w) = d1(w) and λi(w) = di(w)− di−1(w) for 1 < i 6 r. By a result of C. Greene (see

[2]), we see that λ(w) = (λ1(w), λ2(w), ..., λr(w)) is a partition of n. So Lusztig defined
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a map ψ : Ãn−1 → Λn by sending w to λ(w) (see [3, Subsection 3.6] and [8, Definition

5.3]).

The above definitions of a w-chain, a (w, k)-chain-family and a partition ψ(w) is also

applicable to any permutation in the symmetric group Sm over the set {1, 2, ...,m} (or

equivalently, to any m × m permutation matrix).

A submatrix w′ = (aij)i∈I,j∈J of w = (aij)i,j∈Z with I, J ⊂ Z is called n-distinguished

if h 6≡ k (mod n) for any h 6= k either both in I or both in J (hence |I|, |J | 6 n).

The following fact can be seen easily: suppose that w′ is an n-distinguished submatrix

(aij)i∈I,j∈J of w = (aij)i,j∈Z ∈ Ãn−1, then any w′-chain is also a w-chain. This implies

that ψ(w′) 6 ψ(w).

3.4. For any λ ∈ Λn, it is known (see [5, Theorem 6] and [8, Theorem 17.4]) that the

inverse image ψ−1(λ) forms a two-sided cell (denoted by Ωλ) of Ãn−1. Moreover, we see

by [11, Theorem B] that the map ψ induces an order-reversing bijection from the set

Cell(Ãn−1) of two-sided cells of Ãn−1 to the set Λn, that is,

(3.4.1) λ > µ in Λn ⇐⇒ Ωλ 6LR Ωµ in Cell(Ãn−1).

Note that for any proper subset I of S, the subgroup WI of Ãn−1 is always finite.

Lemma 3.5. If w ∈ Ãn−1 has an expression w = u · y · u′ for some u, u′ ∈ Ãn−1 and

some y ∈ WI , I ⊂ S, with ψ(w) = ψ(y), then the matrix w has an n-distinguished n× n

permutation submatrix w′ with ψ(w′) = ψ(w).

Proof. The ∞×∞ matrix y satisfies ψ(y) = ψ(w) by our assumption. There is a sequence

w0 = y, w1, ..., wr = w in Ãn−1 with some r > 0 such that for every 1 6 i 6 r, either

wi = ti ·wi−1 or wi = wi−1 · ti for some ti ∈ S. In general, we have ψ(w′) 6 ψ(w) for any

n-distinguished n×n permutation submatrix w′ of w. So by induction on `(w)−`(y) > 0,

we need only to show that if w, y ∈ Ãn−1 satisfy that y ∈ {sw,wt | s ∈ L(w), t ∈ R(w)}

and that y′ is an n-distinguished n × n permutation submatrix of y, then w has an n-

distinguished n × n permutation submatrix w′ with ψ(w′) > ψ(y′). Say y = (bij)i,j∈Z
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and y′ = (bij)i∈I,j∈J with I, J ⊂ Z and |I| = |J | = n. By symmetry, we need only to

consider the case where w = sc ·y for some sc ∈ L(w) with 0 6 c < n. Then w is obtained

from y by transposing the (c + qn)-th row and the (c + 1 + qn)-th row for all q ∈ Z.

Take the n-distinguished n×n submatrix w′ = (aij)i∈I′,j∈J of the matrix w = (aij)i,j∈Z

with I ′ = (I)sc. Then w′ is an n-distinguished n × n permutation submatrix of w and

satisfies w′ = y′ except that (c ∪ c + 1) ∩ I consists of two consecutive integers, where

a = {a + qn | q ∈ Z} for any a ∈ Z. In the latter case, we have w′ = s · y′ in Sn for some

s ∈ L(w′). So ψ(w′) > ψ(y′) in either case by (3.4.1). ¤

Remark 3.6. I wonder if the converse for the result in Lemma 3.5 holds. That is,

when the matrix w ∈ Ãn−1 has an n-distinguished n×n permutation submatrix w′ with

ψ(w′) = ψ(w), is there always an expression w = u · y · u′ for some u, u′ ∈ Ãn−1 and

y ∈ WI , I ⊂ S such that ψ(y) = ψ(w′) ?

§4. A counter-example to Conjecture 2.1.

For any I ⊆ S with WI finite, denote by wI the longest element in WI . When

I = {si1 , si2 , ..., sir}, we simply write wI by wi1i2···ir .

Theorem 4.1. Conjecture 2.1 does not hold in general.

Proof. We need only to provide a counter-example to Conjecture 2.1. Take w = w1456789 ·

s3s4s10s9 · s8s7s6s5s6s7s8 · s2s1s3s2 · s0s1s10s0 · s2s1s3s2 in Ã10 (i.e., n = 11 in Ãn−1).

As a permutation on Z, we have

((1)w, (2)w, ..., (11)w) = (2, 1, 9, 15, 14, 8, 7, 6, 0,−1, 5).

The matrix form of w is as in Fig. 1. We shall provide two proofs for the failure of

Conjecture 2.1 for the element w.

First Proof: We have

L(w) = {s1, s4, s5, s6, s7, s8, s9} and R(w) = {s10, s0, s1, s2, s3, s5, s6, s7, s8}.

Hence L(w) ∪ R(w) = S. This implies w /∈ WI for any I ⊂ S. It is easily seen from

Figure 1 that ψ(sw), ψ(wt) < ψ(w) for any s ∈ L(w) and t ∈ R(w). Hence w ∈ Y (W )
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by (3.4.1). So Conjecture 2.1 fails to hold for w by Lemma 2.4 (note that the weight

function L of Ãn−1 on S is always constant and hence Ãn−1 satisfies P4 and P11 by [4,

Theorem 5.4] and [6, Corollary 1.9]).

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1
1

1

1st col.

1st row

Figure 1.

Second Proof: {4, 5, 6, 7, 8, 9, 10} and {3, 6, 7, 8, 11} ∪ {4, 5, 12, 13, 20, 21} are respec-

tively (w, 1)- and (w, 2)-chain-families of maximal possible cardinal. So d1(w) = 7 and

d2(w) = 11. Hence ψ(w) = (7, 4). We see from Figure 1 that there is no 11-distinguished

11 × 11 permutation submatrix w′ with ψ(w′) = (7, 4). This implies the failure of Con-

jecture 2.1 for w by Lemma 3.5. ¤

Now that Conjecture 2.1 fails to hold in general, it is desirable to propose a new

conjecture to replace it. We shall do it in the remaining part of the section.

4.2. Let Cell(W ) be the set of all two-sided cells in W . Then Cell(W ) is a poset with

respect to the partial ordering 6LR.

For w ∈ W , denote by Ω(w) the two-sided cell of W containing w. Define

T (w) = {Ω ∈ Cell(W ) | Ω ∩ Z(w) 6= ∅},

B(w) = {Ω ∈ Cell(W ) | Ω 6LR Ω′, ∀Ω′ ∈ T (w)}.
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Then Ω(w) ∈ B(w).

Conjecture 4.3. (1) For any w ∈ W , there is a unique maximal element (denoted by

Ω′(w)) in the set B(w) with respect to the partial ordering 6LR.

(2) The equation Ω(w) = Ω′(w) holds for any w ∈ W .

4.4. Let S be the set of all I ⊆ S with WI finite. For any w ∈ W , define

E(w) = {Ω(wI) ∈ Cell(W ) | w = u · wI · u′ for some u, u′ ∈ W, I ∈ S},

F (w) = {Ω ∈ Cell(W ) | Ω 6LR Ω′, ∀Ω′ ∈ E(w)}.

We consider the following auxiliary statement.

Statement 4.5. (1) For any w ∈ W , there is a unique maximal element (say Ω′′(w))

in the set F (w) with respect to the partial ordering 6LR.

(2) The equation Ω(w) = Ω′′(w) holds for any w ∈ W .

Statement 4.5 is stronger than Conjecture 4.3.

Lemma 4.6. Statement 4.5 implies Conjecture 4.3.

Proof. We have the relations E(w) ⊆ T (w) and B(w) ⊆ F (w) for any w ∈ W in general.

Now assume that Statement 4.5 is true. Then Ω(w) is the unique maximal element in

F (w) under the partial ordering 6LR. Since Ω(w) ∈ B(w), Ω(w) is also the unique

maximal element in B(w). So Conjecture 4.3 is also true. ¤

We have some examples to support both Conjecture 4.3 and Statement 4.5.

Theorem 4.7. (see [10, Theorem 3.1]) Let w ∈ Ãn−1 be with d1(w) < d2(w) < · · · <

dt(w) = n. Then for any k, 1 6 k 6 t, there exists an expression

w = x · wJ · y

for some x, y ∈ Ãn−1 and J ∈ S with dk(w) = dk(wJ). On the other hand, w 6= x′ ·wI ·y′

for any x′, y′ ∈ Ãn−1 and I ∈ S with dh(wI) > dh(w) for some h, 1 6 h 6 t.
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Theorem 4.8. Both Conjecture 4.3 and Statement 4.5 are true for W ∈ {Ãn−1, D̃4}.

Proof. By Lemma 4.6, we need only to verify Statement 4.5 for W ∈ {Ãn−1, D̃4}. State-

ment 4.5 for W = Ãn−1 is an immediate consequence of Theorem 4.7 and (3.4.1). Now

assume W = D̃4. Let s0, s1, s2, s3, s4 be the Coxeter generator set of W with s2 corre-

sponding to the branching node of its Coxeter graph. Then any w ∈ W with a(w) 6= 7

has an expression w = x · wJ · y for some x, y ∈ W and J ∈ S with a(w) = a(wJ) by [9,

Theorem 1.1] and [12, Theorem B]. Let W(i) = {z ∈ W | a(z) = i} for any i ∈ N. Then

by a result of J. Du in [1, Theorem 4.6], W(7) is a two-sided cell of W such that any

w ∈ W(7) has an expression w = x · sis2sksis2sisjs2si · y for some x, y ∈ W and some

distinct i, j, k ∈ {0, 1, 3, 4}, where z := sis2sksis2sisjs2si = wik2 · sjs2si = sis2sk · wij2.

We have Ω(wik2) 6= Ω(wij2) in E(w) by [1, Theorem 3.9]. Hence F (w) = {W(7),W(12)}.

So Ω(w) = W(7) is the unique maximal element in F (w) with respect to 6LR. This

verifies Statement 4.5 for W = D̃4. ¤

One may find more examples to support Statements 4.5 and hence Conjecture 4.3.

However, Statement 4.5 is not true in general. The following is a counter-example.

Example 4.9. In the Weyl group W of type B3, let s, r, t be its Coxeter generators

satisfying that (sr)3 = (rt)4 = (st)2 = 1. Take the weight function L on W to be the

length function `. Consider the element w = srtrsr. We have

w ∼L tsrtrsr ∼L trtrsr ∼R trtrs ∼R trtr := wrt,

So Ω(w) = Ω(wrt). It is easily seen that E(w) = {Ω(wI) | I ∈ {{s, r}, {s, t}, {s}, {r}, {t}, {∅}}.

Clearly, F (w) contains the element Ω(wsr) with Ω(wrt) <LR Ω(wsr). This violates State-

ment 4.5.

Remark 4.10. Under the assumption of P4 and P11, Conjecture 2.1 amounts to assert

that T (w) ∩ B(w) = {Ω(w)} for any w ∈ W . Hence Conjecture 2.1 implies Conjecture

4.3 in this case. Now Theorem 4.1 shows that it is possible that Ω(w) /∈ T (w) for some

w ∈ W , negating Conjecture 2.1. So one can only expect the validity of Conjecture 4.3.
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