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Abstract. By the correspondence between Coxeter elements of a Coxeter system (W, S, Γ)
and the acyclic orientations of the Coxeter graph Γ, we study some properties of elements in
the set C0(W ). We show that when W is of finite, affine or hyperbolic type, any w ∈ C0(W )
satisfies w ∼

LR
wJ with `(wJ ) = |J | = m(w) for some J ⊂ S. Now assume that W is of finite

or affine type. We give an explicit description for all the distinguished involutions d of W with
d ∼

L
w for some w ∈ E(W ), which verifies a conjecture proposed in [12, Conjecture 8.10] in

our case. We show that any left cell of W containing some element of C0(W ) is left-connected,
which verifies a conjecture of Lusztig in [3] in our case.

Introduction.

Let (W,S, Γ) be a Coxeter system: a Coxeter group W with S the distinguished generator

set and Γ the Coxeter graph. We always assume S finite in the present paper. A Coxeter

element of W is by definition a product of all generators s ∈ S in any fixed order. Let C(W )

be the set of all the Coxeter elements in W and let C0(W ) =
⋃

J⊆S C(WJ), where WJ is the

standard parabolic subgroup of W generated by J . It is known that the elements of C(W )

are in 1-1 correspondence with the acyclic orientations of Γ (here and later when considering

orientations, Γ is only regarded as a graph consisting of a set of nodes and a set of edges, the
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labelings of whose edges are usually neglected, see [15, Theorem 1.5]). In the present paper,

we shall use this result to make some further investigation on the properties of the elements

in C0(W ). We mainly consider the cases where W is of finite, affine or hyperbolic type. We

show that any w ∈ C0(W ) is in the two-sided cell of W containing some element of the form

wJ with `(wJ ) = |J | = m(w) (see 1.6 and Theorem 3.5), where wJ is the longest element in

the group WJ . Now assume that W is of finite or affine type. Then we further show that

m(w) is precisely a(w), the a-value of w defined by Lusztig (see 1.3 and Theorem 3.5). We

define a subset E(W ) of C0(W ), which consists of minimal elements in certain left cells of

W (see the definition preceding Lemma 2.5). Then we give an explicit expression for any

distinguished involution d of W with d ∼
L

w for some w ∈ E(W ) (see 1.3 (f) and Theorem

4.3). More precisely, if w = wI · y with m(w) = |I|, then d = y−1 ·wI · y. The result verifies

a conjecture proposed in [12, Conjecture 8.10] in our case (see Conjecture 1.5).

A subset K of W is left-connected, if, for any x, y ∈ K, there exists a sequence of elements

x0 = x, x1, ..., xr = y in K such that xi−1x
−1
i ∈ S for 1 6 i 6 r. Lusztig conjectured that

any left cell L of an affine Weyl group (and hence also of a Weyl group) is left-connected

(see [3]). This conjecture has been verified in the following cases: (1) W has type Ãl, l > 1

[10, Theorem 18.2.1]; (2) L is in the lowest two-sided cell of W [11, Corollary 1.2]; (3) L

is of a-value 6 1 (easy). In the present paper, we show that any w ∈ E(W ) is the unique

minimal element in the left cell Lw of W containing w and that Lw is a left-connected subset

of W (see Theorems 4.7 and 4.8). This verifies the conjecture of Lusztig in the case where

L contains an element of C0(W ).

When (W,S, Γ) is of finite or affine type, we give a necessary and sufficient condition on

the relation wI ∼
LR

wJ for I, J ⊆ S with wI , wJ ∈ C0(W ).

The organization of the paper is as follows. Section 1 is served as preliminaries, where we

collect some notations, definitions, and results, that will be needed in the rest of the paper.

We deduce some graph-theoretic results in Section 2 by making use of the correspondence

between Coxeter elements and the acyclic orientations of the related graph. Assuming W

to be of finite, affine or hyperbolic type, we study the properties of w ∈ C0(W ) in terms

of m(w) and a(w) in Section 3. In Sections 4-5, we assume that W is of finite or affine
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type. In Section 4, we describe all the distinguished involutions d with d ∼
L

w for some

w ∈ E(W ). Then we show that w ∈ E(W ) is the unique minimal element in the left cell Lw

of W containing w and that Lw is left-connected. We give a brief discussion in Section 5 for

the relation ∼
LR

on the elements of C0(W ) of the form wI , I ⊂ S. Finally, in Appendix, we

list all the Coxeter graphs of finite, affine and hyperbolic types.

§1. Preliminaries.

Let (W,S, Γ) be a Coxeter system. In this section, we collect some concepts, terminologies

and known results for the subsequent usage.

1.1. Let 6 be the Bruhat order on W and let ` be the length function of W with respect to

S. Let A = Z[u, u−1] be the ring of Laurent polynomials in an indeterminate u with integer

coefficients. The Hecke algebra H(W ) associated to W is an associative algebra over A with

two A-bases {Tw | w ∈ W} and {Cw | w ∈ W}. The multiplication is determined by

TwTw′ = Tww′ , if `(ww′) = `(w) + `(w′);

(Ts − u−1)(Ts + u) = 0 for s ∈ S.

The relation between two bases are as below.

Cw =
∑

y6w

u`(w)−`(y)Py,w(u−2)Ty, for w ∈ W,

where the Py,w(u)’s are known as Kazhdan-Lusztig polynomials, satisfying that for any

w, y ∈ W , Pw,w(u) = 1, Py,w(u) = 0 for y 
 w and deg Py,w(u) 6 1/2(`(w) − `(y) − 1) for

y < w.

For w ∈ W and s ∈ S, we have

(1.1.1) CsCw =





(u−1 + u)Cw, if sw < w,

Csw +
∑

y≺w
sy<y

µ(y, w)Cy, if sw > w,

where µ(y, w) is the coefficient of u
1
2 (`(w)−`(y)−1) in Py,w(u), and the notation y ≺ w means

µ(y, w) 6= 0.
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1.2. Let 6
L

(resp. 6
R

, resp. 6
LR

) be the preorder on W defined as in [4], and let ∼
L

(resp.

∼
R

, resp. ∼
LR

) be the equivalence relation on W determined by 6
L

(resp. 6
R

, resp. 6
LR

). The

corresponding equivalence classes are called left (resp. right, resp. two-sided) cells of W . 6
L

(resp. 6
R

, resp. 6
LR

) induces a partial order on the set of left (resp. right, resp. two-sided)

cells of W .

(a) If w = x · y then w 6
L

y and w 6
R

x, where the notation w = x · y for x, y, w ∈ W

means that w = xy and `(w) = `(x) + `(y).

To each w ∈ W , we associate two sets L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S |
ws < w}.

(b) Let x, y ∈ W satisfy x−1y ∈ S (resp. xy−1 ∈ S). If R(x)+*R(y) (resp. L(x)+*L(y)),

then x ∼
R

y (resp. x ∼
L

y).

1.3. Lusztig defined a function a : W −→ N ∪ {∞} for a Coxeter group W in [6]. When W

is of finite or affine type, Lusztig showed in [6, 7] the following results.

(a) There exists some N ∈ N such that a(z) 6 N for z ∈ W .

Write CxCy =
∑

z hx,y,zCz with hx,y,z ∈ A for x, y ∈ W .

(b) For any x, y ∈ W , the coefficients of hx,y,z are all nonnegative.

(c) a(wJ) = `(wJ ) for J ⊆ S. In particular, when J consists of mutually commuting

elements, we have a(wJ) = |J |, the cardinality of the set J .

(d) If x 6
LR

y in W , then a(x) > a(y). So x ∼
LR

y implies a(x) = a(y), i.e., the function a

is constant on a two-sided cell of W .

(e) If x ∼
LR

y and x 6
L

y, then x ∼
L

y.

Let δ(z) = deg P1,z(u) for z ∈ W , where 1 is the identity element of W .

(f) D0(W ) = {z ∈ W | `(z) − 2δ(z) − a(z) = 0} is a finite set of involutions (called

distinguished involutions of W ).

(g) Each left cell of W contains a unique distinguished involution.

(h) Let d be a distinguished involution of W . Then for any x ∈ W with x ∼
L

d, we have

hx−1,x,d 6= 0.

Distinguished involutions play an important role in the representations of the group W
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and the associated Hecke algebra H(W ) (see, e.g., [7, 8, 9]).

1.4. Write TxTy =
∑

z fx,y,zTz for x, y ∈ W with fx,y,z ∈ A. There exists a unique element

w := λ(x, y) ∈ W with fx,y,w 6= 0 such that fx,y,z 6= 0 only if z 6 w. The element λ(x, y)

can be described as follows. Given a reduced expression x = s1s2 · · · sr with si ∈ S. Let

1 6 j1 < ... < jt 6 r be the subsequence of 1, ..., r satisfying:

sjk
sjk+1 · · · ŝjk+1 · · · ŝjt

· · · sry < sjk+1 · · · ŝjk+1 · · · ŝjt
· · · sry

smsm+1 · · · ŝjp · · · ŝjt · · · sry > sm+1 · · · ŝjp · · · ŝjt · · · sry

for 1 6 k 6 t and jp−1 < m < jp, 1 6 p 6 t + 1, where we stipulate j0 = 0, jt+1 =

r + 1, and ŝh means the deletion of the factor sh. Then λ(x, y) is just the element

s1 · · · ŝj1 · · · ŝj2 · · · ŝjt · · · sry (see [11, Proposition 2.3]).

The following conjecture on distinguished involutions was proposed in [12, Conjecture

8.10].

Conjecture 1.5. Let W be of finite or affine type. Let w ∈ W be such that w <
L

sw (i.e.,

w 6
L

sw and w �
L

sw, or equivalently, a(sw) < a(w)) for any s ∈ L(w). Then d = λ(w−1, w)

is the distinguished involution with d ∼
L

w.

The conjecture has been verified in the cases where w is in the lowest two-sided cell of

W with respect to the partial order 6
LR

(see [11, Theorem 6.1]). In Section 4, we shall verify

the conjecture when w is in C0(W ).

1.6. For w ∈ C0(W ), denote by m(w) the maximal possible value of `(wJ) in an expression

w = x · wJ · y.

1.7. Assume that the order m of the product of s, t ∈ S is greater than 2. A sequence of

elements

ys, yst, ysts, . . .︸ ︷︷ ︸
m−1 terms

is called a right {s, t}-string ( or just a right string ) if y ∈ W satisfies R(y) ∩ {s, t} = ∅.
We say that z is obtained from w by a right {s, t}-star operation (or a right star operation

for brevity), if z, w are two neighboring terms in a right {s, t}-string. Clearly, a resulting
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element z of a right {s, t}-star operation on w, when it exists, need not be unique unless w

is a terminus of the right {s, t}-string containing it.

Similarly, we can define a left {s, t}-string and a left {s, t}-star operation on an element.

We state a result which can reduce many problems on w ∈ C0(W ) to the case where w is

C(W ) and Γ is connected.

Let Γ = Γ1 ∪ ... ∪ Γr be the decomposition of Γ into a disjoint union of connected

components Γi, 1 6 i 6 r. Then we have the corresponding decomposition of (W,S, Γ) into

a direct product of Coxeter subsystems (Wi, Si,Γi), 1 6 i 6 r. Any w ∈ W has a unique

expression of the form w = w1w2 · · ·wr with wi ∈ Wi. It is easy to show the following

Lemma 1.8. In the above setup, we have

(1) a(w) =
∑

i a(wi).

(2) m(w) =
∑

i m(wi).

(3) Let y = y1y2 · · · yr ∈ W be with yi ∈ Wi. Then y can be obtained from w by star

operations if and only if so do yi from wi for 1 6 i 6 r.

(4) Assume that W is of finite or affine type. Then w is a distinguished involution of W

if and only if wi is a distinguished involution of Wi for 1 6 i 6 r.

1.9. By a graph, we mean a finite set of nodes together with a finite set of edges. A graph

is always assumed to be simple (i.e., no loop and no multi-edges). Two nodes of a graph

are adjacent if they are joined by an edge. In a graph G, the degree dG(v) of a node v

is the number of edges incident on v; v is a branch node if dG(v) > 2, and a terminus if

dG(v) 6 1. A directed graph (or a digraph for brevity) is a graph with each edge orientated.

An orientation α of a graph G is a digraph obtained from G by orientating all its edges. A

directed edge (i.e., an edge with orientation) with two incident nodes v, v′ is denoted by an

ordered pair (v, v′), if the orientation is from v to v′.

1.10. Given a digraph α. A node v of α is a source (resp. a sink) if (v, v′) (resp. (v′, v)) is a

directed edge of α for any node v′ adjacent to v. An isolated node is the only node which is

both a source and a sink. A source or a sink of α is also called an extreme node. A directed

path ξ of α is a sequence of nodes v0, v1, ..., vr in α such that (vi−1, vi) is a directed edge of
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α for 1 6 i 6 r. ξ is maximal if ξ is not properly contained in any other directed path of α.

ξ is a directed cycle, if v0 = vr. A digraph is acyclic if it contains no directed cycle.

Let O(G) be the set of all acyclic orientations of a graph G. The following result was

proved in [15, Theorem 1.5].

Theorem 1.11. For a Coxeter system (W,S,Γ), there is a bijective map φ : C(W ) −→
O(Γ) as follows. Let w = s1s2 · · · sl be a reduced expression of w ∈ C(W ) with sh ∈ S.

Then for any adjacent nodes si, sj in Γ, (si, sj) is a directed edge in φ(w) if and only if

i < j (here and later, we shall not distinguish an element of S and the corresponding node

in Γ).

Call α = φ(w) the associated digraph of w ∈ C(W ).

For w ∈ W , we have that w ∈ C(W ) if and only if w−1 ∈ C(W ). A node v is a sink (resp.

source) in φ(w) if and only if v is a source (resp. sink) in φ(w−1). Therefore one need only

deal with either of source and sink but not both in many cases.

§2. The values m(w), n(α) and the set E(W ).

In this section, we deduce from Theorem 1.11 some graph-theoretic results on w ∈ C0(W )

concerning the values m(w), n(α) and the set E(W ).

Lemma 2.1. Let α be an acyclic orientation of a graph G. Then

(i) Each terminus of G is an extreme node of α.

(ii) Each node of G is contained in some maximal directed path of α, which starts with a

source and ends with a sink.

(iii) Assume G = Γ for a Coxeter system (W,S, Γ). Let w ∈ C(W ) be with α the

associated digraph. Then L(w) (resp. R(w)) is exactly the set of all sources (resp. sinks) of

α.

(iv) Keep the assumption of (iii). Let s ∈ L(w) (resp. s ∈ R(w)). Then L(w)+*L(sw)

(resp. R(w)+*R(ws)) if and only if the removal of s from α yields a new source (resp. sink)

in the resulting digraph.

Proof. The proof of (i) and (ii) is straightforward. (iii) follows from Theorem 1.11. Then
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(iv) is an easy consequence of (iii). ¤

Lemma 2.2. Given w ∈ C(W ) with α the associated digraph. We have an expression

w = x · wJ · y for some J ⊆ S and x, y ∈ W if and only if the following condition holds.

(2.2.1) For any s 6= t in J , there is no directed path from s to t in α.

Proof. (=⇒) Note that here the set J must consist of mutually commuting elements. Then

our result follows immediately from Theorem 1.11.

(⇐=) Apply induction on m = |S| − |J | > 0. If m = 0, then α contains no edge and

hence w = wJ . Now assume m > 0. We claim that there exists some extreme node of α

in S \ J (the complement of J in S). For otherwise, all the extreme nodes of α belong to

J . Take any s ∈ S \ J . Then by Lemma 2.1 (ii), s belongs to some maximal directed path

of α starting with a source (say r) and ending with a sink (say t). Then r 6= t are in J ,

contradicting (2.2.1). Now assume that there is some source r of α not in J . Then w′ = rw

is in C(WI) with I = S \ {r}, whose associated digraph α′ is obtained from α by removing

the node r and all the edges incident on r. J is a subset of I satisfying condition (2.2.1)

with α′ instead of α. Since |I| − |J | = m − 1 < m, we can write w′ = x′ · wJ · y′ for some

x′, y′ ∈ WI by inductive hypothesis. So we get w = r · w′ = rx′ · wJ · y′. The case where

there is some sink of α in S \ J can be argued similarly. This proves our result. ¤

Let w ∈ C0(W ) be with α the associated digraph. Denote by n(α) or n(w) the maximal

possible cardinality of a node set J of Γ satisfying condition (2.2.1). Then an immediate

consequence of Lemma 2.2 is as below.

Corollary 2.3. m(w) = n(α) for any w ∈ C(W ) with α the associated digraph.

Next result is concerned with the number n(α) when α varies.

Lemma 2.4. Given w ∈ C(W ) with α the associated digraph. Let v ∈ S be a source (resp.

a sink) of α whose removal from α yields a new source (resp. sink) v′ in the resulting digraph

α′. Then n(α) = n(α′).

Proof. We have n(α) > n(α′) in general. Now let J ⊆ S be a set of nodes of α satisfying

condition (2.2.1) and equation |J | = n(α). By Lemma 2.2, we need only find a set J ′ ⊆ S\{v}
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with |J ′| = |J | such that for any s 6= t in J ′, there is no directed path of α′ from s to t.

When v /∈ J , we can take J ′ = J . Now assume v ∈ J . We shall show our result when v

is a source of α. The case where v is a sink of α can be argued similarly. Then (v, v′) is a

directed edge in α with v′ /∈ J . We claim that there is no directed path in α′ joining v′ with

any element v′′ in J \ {v}. There is no directed path in α′ from v′ to v′′ since there is no

directed path in α from v to v′′. If there is some directed path in α′ from v′′ to v′, then this

contradicts the assumption that v′ is a source of α′. Thus we can take J ′ = (J \ {v})∪{v′}.
Our result follows. ¤

By Lemma 2.1 (iv), we see that the above lemma is amount to asserting that the number

n(w) (i.e., n(α)) is invariant under the star operations on w.

Denote by E(W ) the set of all elements w ∈ C0(W ) such that m(sw) < m(w) for any

s ∈ L(w). The following lemma describe the elements of E(W ).

Lemma 2.5. Let w ∈ C0(W ).

(1) w ∈ E(W ) if and only if there is no expression w = x · wJ · y with |J | = m(w),

x, y ∈ W and `(x) > 0.

(2) |L(w)| = m(w) for w ∈ E(W ), that is, any w ∈ E(W ) has the form w = wI · y with

|I| = m(w) and y ∈ W .

Proof. We have an expression w = x ·wJ · y with |J | = m(w) and x, y ∈ W by the definition

of m(w). If w ∈ E(W ), then we must have `(x) = 0. On the other hand, if w /∈ E(W ), then

there exists some s ∈ L(w) with m(sw) = m(w). Hence we have an expression sw = x′ ·wI ·y′

for some I ⊂ S and x′, y′ ∈ W with |I| = m(sw) = m(w). So w = s · sw = sx′ · wI · y′ and

`(sx′) = `(s) + `(x′) > 0. This proves (1). Then (2) is an immediate consequence of (1).

¤

§3. A relation between C0(W ) and C1(W ).

In this section, assume that the Coxeter system (W,S, Γ) is of finite, affine or hyperbolic

type and that Γ is connected. Let C1(W ) be the set consisting of all the elements of C0(W )

of the form wJ , J ⊆ S. We shall show a relation between the sets C0(W ) and C1(W ). The

main result of the section is Theorem 3.5.
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Lemma 3.1. Let α be an acyclic digraph containing at most one branch node which has

degree three whenever it occurs. Assume that there is a node s of α which is not extreme.

Then there is some node v of α satisfying one of the following conditions.

(1) v is a source of α whose removal from α yields a new source.

(2) v is a sink of α whose removal from α yields a new sink.

Proof. By Lemma 2.1 (ii), there exists a maximal directed path ξ : v0, v1, ..., vr of α passing

through s. Clearly, v0 (resp. vr) is a source (resp. a sink) of α and r > 2. If either r > 2

or that ξ contains no branch node of α, then at least one of v1, vr−1 is not a branch node

of α. If v1 (or vr−1) is not a branch node of α then v1 (or vr−1) will be a new source (or

sink) after the removal of v0 (or vr) from α. Next assume r = 2 and that v1 = s is a branch

node of α. Let t be the node other than v0, v2 which is adjacent to s. Then there are two

possibilities for the directed edge incident to t, s:

(a) (t, s); (b) (s, t).

In case (a), s becomes a new sink after the removal of v2 from α. In case (b), s becomes

a new source after the removal of v0 from α. So our result follows. ¤

Lemma 3.2. Assume that there are either more than one branch nodes, or one branch node

with degree greater than 3 in Γ for a Coxeter system (W,S, Γ). Let w ∈ C0(W ) be with α

the associated digraph. Then by applying star operations, we can transform w either to an

element of C0(W ) the nodes of whose associated digraph are all extreme, or to an element

associated with one of the following digraphs.

(3.2.1)

◦ ◦↘ ↗◦—−→◦—−→ · · · · · ·—−→◦—−→◦↗ ↘◦ ◦

◦ ◦↘↗◦−→◦↗↘◦ ◦

◦ ◦↖↙◦←−◦↙↖◦ ◦
(a) (b) (c)

where the number of nodes in (a) is greater than 4.

Proof. We may assume that there is a nonextreme node in α since otherwise we have nothing

to do. Take all the possible maximal directed paths ξ : v0, v1, ..., vr in α with r > 1. We can
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remove v0 (resp. vr) to yield a new source (resp. sink) of the resulting digraph if v0 (resp.

vr) is the unique node t of α with the directed edge (t, v1) (resp. (vr−1, t)). By applying

induction on the number of nodes of α and by a case-by-case checking (see the list of graphs

in Appendix), we see that after a certain sequence of such removals of nodes from α (or

equivalently by a certain sequence of star operations on w), the resulting digraph will either

have the node set consisting of extreme nodes or be one of those in (3.2.1). This proves our

result. ¤

Lemmas 3.1 and 3.2 cover all the cases where (W,S,Γ) is of finite, affine or hyperbolic

type. Thus we can always apply star operations to transform w ∈ C0(W ) either to an

element all the nodes of whose associated digraph are extreme, or to an element whose

associated digraph is one of those in (3.2.1).

Next we consider the case where the nodes of the digraph α associated to w ∈ C0(W ) are

all extreme.

Lemma 3.3. Given w ∈ C(W ) with α the associated digraph. Assume that all the nodes

of α are extreme.

(i) w = wIwJ for some disjoint I, J ⊂ S with S = I ∪ J .

(ii) Assume |I| > |J | (resp. |I| 6 |J |) in (i). Then by applying right (resp. left) star

operations, we can transform w to the element wI (resp. wJ) unless Γ is one of the following

graphs: (A.5), (A.6) (with the number of nodes even) and (A.9)(b).

Proof. (i) Take I to be the set of all sources in α and let J = S \ I. Then I and J satisfy

the required condition.

(ii) Note that we assume Γ connected. By (1), we can write w = wIwJ for some disjoint

I, J ⊂ S with I ∪ J = S. Note that elements in I and in J occur alternately as nodes in the

graph Γ. We need only show our result in the case of |I| > |J | = m. Then the other case

can be argued similarly. By a case-by-case checking (see the list of graphs in Appendix), we

see that when Γ is not one of the three excepted graphs, the elements of J can always be

arranged into a sequence ξ : v1, v2, ..., vm satisfying:
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(3.3.1) For any i, 1 6 i 6 m, there is some ri ∈ I such that ri is adjacent to vi but not to

any vk, k > i.

Now we define a sequence of elements x0 = w, x1, ..., xm such that xi = xi−1vi for

1 6 i 6 m. Then we have vi ∈ R(xi−1)\R(xi), ri ∈ R(xi)\R(xi−1) and so R(xi)
+
*R(xi−1)

for 1 6 i 6 m. We also have xm = wI . This implies that w can be transformed to wI by

right star operations. ¤

The following result is concerned with the exceptional cases of Lemmas 3.2 and 3.3. We

shall use the concept of a primitive pair in the proof. A left (resp. right ) primitive pair

consists of two elements in a Coxeter group W which are in the same left (resp. right) cell

of W . A left or right primitive pair is also called a primitive pair. For the precise definition

of a primitive pair, we refer the reader to [16, 3.5].

Lemma 3.4. (i) Let Γ be as in (A.5) with l = 2m > 4. The subscripts of elements of

S = {si | 1 6 i 6 l} are compatible with the labelings of nodes of Γ (the same holds for

(ii)-(iv)). Let w = wIwJ be with I = {s1, s3, ..., s2m−1} and J = {s2, s4, ..., s2m}. Then

wI ∼
R

w ∼
L

wJ . So a(w) = m when W is of type Ãl−1.

(ii) Let Γ be as in (A.6). Let w = s0s1s2 · · · sl−1sl. In the case of l = 2m − 1 > 5,

let y = wIwJ , where I = {s0, s1, s3, s5, ..., s2m−3} and J = {s2, s4, s6, ..., s2m−2, s2m−1}.
Then w ∼

L
sl−1sl and y ∼

LR
wK with K = {s0, s1, s4, s6, ..., s2m−2, s2m−1}. In particular, this

implies a(w) = 2 and a(y) = m + 1.

(iii) Let Γ be as in (A.9) (c). Let w = s1s5s0s2s3s4 (resp. w = s2s3s4s0s1s5). Then

w ∼
LR

w234, where w234 := wJ with J = {s2, s3, s4}.
(iv) Let Γ be as in (A.9) (b). Let w = s2s4s1s3s5 (resp. w = s1s3s5s2s4). Then

w ∼
LR

w135.

Proof. (i) {s1w,w} is a left primitive pair in W . s1w can be transformed to wJ by left star

operations. So w ∼
L

wJ and hence a(w) = a(wJ) = |J | = m by 1.2 (b) and 1.3 (c),(d).

Similarly we can show w ∼
R

wI .

(ii) {s0w,w} is a left primitive pair in W . s0w can be transformed to sl−1sl by left star

operations. So w ∼
L

sl−1sl and a(w) = 2. On the other hand, s0s1wJ can be obtained from
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y by left star operations. Let K = (J \ {s2})
⋃{s0, s1}, which consists of m + 1 mutually

commuting elements in S. Then wK = s0s1wJs2 can be obtained from s0s1wJ by a right

{s0, s2}- star operation. This implies y ∼
LR

wK and hence a(y) = m + 1 by 1.2 (b) and 1.3

(c),(d).

(iii) Let w = s1s5s0s2s3s4, x = s1w and y = w234. Then {w, x} is a left primitive pair in

W , x = s5s0y and L(x)+*L(s0y)+*L(y). This implies w ∼
L

x ∼
L

w234 and hence w ∼
LR

w234 by

1.2 (b). The case of w = s2s3s4s0s1s5 can be argued similarly.

(iv) Let y = w135. Let x = s2w (resp. x = ws2) for w = s2s4s1s3s5 (resp. w =

s1s3s5s2s4). Then the argument is similar to that in (iii). ¤

Theorem 3.5. Let w ∈ C0(W ) be with α the associated digraph. Then w ∼
LR

wI for some

I ⊆ S with I consisting of m(w) mutually commuting elements. In particular, when W is

of finite or affine type, we have a(w) = m(w).

Proof. By Lemmas 3.1, 3.2 and 3.3, we see that any element w ∈ C0(W ) can be transformed

by star operations to an element of the form wI (I ⊆ S) unless the graph Γ contains one of

those in (A.5), (A.6), (A.9)(b),(c) as its subgraph. In these exceptional cases, we can again

transform w to an element of the form wI (I ⊆ S) via star operations, together with passing

from one element to another in a certain primitive pair. We know that if y, w ∈ C0(W ) are

obtained from one to another by a star operation then w ∼
LR

y and m(w) = m(y) by Corollary

2.3 and Lemma 2.4. We also see that if y, w ∈ C0(W ) form a primitive pair occurring as in

the proof of Lemma 3.4 then we again have w ∼
LR

y and m(w) = m(y). Finally, it is obvious

that m(wI) = |I| for any I ⊆ S consisting of mutually commuting elements. This proves

the first assertion of the theorem. Then the last assertion follows by the first one and 1.3

(c). ¤

Remark 3.6. The last conclusion of Theorem 3.5 also holds for any Coxeter system of

hyperbolic type which satisfies the conditions 1.3 (a),(b).

§4. Left cells containing some w ∈ E(W ).

In this section, assume that (W,S, Γ) is of finite or affine type and that Γ is connected.

Let w ∈ C0(W ) be with α the associated digraph.
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Recall the definition of D0(W ), E(W ) given in 1.3 (f) and in Section 2 (preceding Lemma

2.5). The main results of the section are Theorems 4.3, 4.7 and 4.8.

We know from Lemma 2.5 that any w ∈ E(W ) has the form w = wI · y for some I ⊆ S

with |I| = m(w). The first two results of the section, i.e., Lemmas 4.1 and 4.2, are concerned

with the relations among the sets I, L(y) and R(y). Lemma 4.1 is also valid for any Coxeter

group of finite, affine or hyperbolic type.

Lemma 4.1. Let w = wI · y ∈ E(W ) be with m(w) = |I|. Then for any t ∈ L(y), there are

at least two nodes s 6= r in I adjacent to t in Γ.

Proof. It is clear that for any element in L(y), there must be some element in I adjacent to it

by the condition m(w) = |I|. Suppose that the lemma fails to hold for some t ∈ L(y). Then

there is only one element (say s) in I adjacent to t. Let K = (I \ {s})∪ {t}. Then elements

in K are pairwise commutative and so sw = wK · ty. But this implies m(sw) > |K| = |I|,
contradicting the assumption of w ∈ E(W ). ¤

Lemma 4.2. Let w = wI · y be in E(W ) with |I| = m(w) and `(y) > 0.

(1) There exists at least one element s in I which is adjacent to exactly one element of

L(y).

(2) There exists some s ∈ R(y) whose removal from α yields a new sink.

Proof. Let I ′ be the subset of I consisting of all the elements s adjacent to some element of

L(y). Then I ′ 6= ∅ by Lemma 4.1 and by the assumption of `(y) > 0. If there are at least

two distinct elements of L(y) adjacent to s for any s ∈ I ′, then by Lemma 4.1, there exists

a circle in I ′∪L(y). So W must have type Ãn for some n > 1 and we must have w ∈ C(W ).

But then we have S ⊆ I ′ ∪L(y). Since I ∩L(y) = ∅ and since any of I and L(y) consists of

mutually commuting elements, this implies I = I ′ and |I| = |L(y)|, which contradicts the

assumption of w ∈ E(W ). So (1) is proved.

By (1), we can take some s ∈ I adjacent to exactly one element, say t, of L(y). Consider

a longest directed path of α passing through s, t: r0 = s, r1 = t, r2, ..., rk (note that here we

use a stronger adjective “ longest ” rather than “ maximal ”). Then rk ∈ R(y). If either

k = 1, or that rk−1 is not a branch node of α, then the removal of rk yields a new sink
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rk−1. Now assume k > 1 and that rk−1 is a branch node of α. We claim that there is

no node r′k, r′k 6= rk, of α with a directed edge (rk−1, r
′
k). Suppose that such a node r′k

does exist. We see that r1 ∈ L(y) must be a branch node by Lemma 4.1. If k = 2, i.e.,

r1 = rk−1, then W has type D̃4 and w = s0s1s2s3s4 with s2 the branch node. But this

contradicts the assumption of w ∈ E(W ). If k > 2, then W has type D̃l for some l > 4, and

we have w = s0s1s2 · · · sl−2sl−1sl (see (A.6) for the factors si). But this again contradicts

the assumption of w ∈ E(W ). Now according to the claim, we see that the removal of rk

yields a new sink rk−1. So (2) is proved. ¤

Next result describes all the distinguished involutions d of W with d ∼
L

w for some

w ∈ E(W ).

Theorem 4.3. Assume that w = wI · y is in E(W ) with m(w) = |I|. Then d = y−1 ·wI · y
is the distinguished involution of W with d ∼

L
w.

Proof. It is enough to show our result in the case of w ∈ C(W ) ∩ E(W ) by Lemma 1.8.

By Lemma 4.2, we see that there is a reduced expression y = t1t2 · · · tk with ti ∈ S such

that, let yj = t1 · · · tj for 0 6 j 6 k (with the convention that y0 = 1), we have

(4.3.1) R(wIyj)
+
*R(wIyj+1) for 0 6 j < k.

We have wIyj ∈ E(W ) with m(wIyj) = |I| for 0 6 j 6 k. Since wIyj ∈ C0(W ), the

condition (4.3.1) is amount to that for 1 6 j 6 k, tj is adjacent to some sj ∈ R(wIyj−1) in

Γ.

Now we show our result by applying induction on k > 0. It is obvious in the case of

k = 0. Now assume k > 1. By (4.3.1), there is some sk ∈ R(wIyk−1) adjacent to tk

in Γ. By inductive hypothesis, the element dk−1 = y−1
k−1 · wI · yk−1 is the distinguished

involution of W with dk−1 ∼
L

wIyk−1. To show that dk = y−1
k wIyk = tkdk−1tk is the

distinguished involution of W with dk ∼
L

w = wIyk, it is enough to show that dk−1tk is

the first term of the left {sk, tk}-string containing it by [13, Proposition 5.12]. By Lemma

4.1, we see that there are at least two factors in S ( not necessarily distinct), one being sk,

in the reduced expression dk−1 = tk−1 · · · t1 · wI · t1 · · · tk−1 which are adjacent to tk in Γ.
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Since tk 
 dk−1, sk ∈ R(dk−1) = L(dk−1) and sktk 6= tksk, we have sk ∈ L(dk−1tk) and

tk /∈ L(skdk−1tk) ∪ L(dk−1tk). That is, dk−1tk is the first term of the left {sk, tk}-string

containing it. Clearly, dk = tk · dk−1 · tk = tk · y−1
k−1 ·wI · yk−1 · tk = y−1

k ·wI · yk. This proves

our result. ¤

Let us record a result for later use, which is a consequence of a result of Lusztig (see [6,

Corollary 5.5]).

Lemma 4.4. Suppose that w ∈ W and s ∈ L(w) satisfy R(sw) $ R(w). Then w <
L

sw.

By a subexpression ζ of an expression s1s2 · · · sr with si ∈ S, we mean that ζ has the

form si1si2 · · · sit for some subsequence i1, i2, ..., it of 1, 2, ..., r.

In the expression CxCy =
∑

z hx,y,zCz with hx,y,z ∈ A, we see from (1.1.1) that if hx,y,z 6=
0 then z has a reduced expression which is a subexpression of t1t2 · · · tat′1t

′
2 · · · t′b, where

tj , t
′
k ∈ S and, x = t1t2 · · · ta, y = t′1t

′
2 · · · t′b are reduced expressions of x, y, respectively.

Lemma 4.5. Let w = wI · y ∈ E(W ) be with m(w) = |I| and let z ∈ W satisfy z ∼
L

w.

Then w 6 z.

Proof. Let z = s1s2 · · · sr be a reduced expression with si ∈ S. Then by (1.1.1) and 1.3 (b),

we have

CsrCsr−1 · · ·Cs1Cs1 · · ·Csr−1Csr = Cz−1Cz +
∑

v∈W

avCv.

for some av ∈ A+, where A+ is the set of the Laurent polynomials in u with nonnegative

integer coefficients. Since z ∼
L

w, we have

hz−1,z,y−1·wI ·y 6= 0

in the expression Cz−1Cz =
∑

x hz−1,z,xCx by 1.3 (h) and Theorem 4.3. This implies

that y−1 · wI · y has a reduced expression which is a subexpression of the expression

srsr−1 · · · s2s1s1s2 · · · sr−1sr. Let α be the associated digraph of w. By Lemma 4.1, there

are at least two distinct elements of I adjacent to s in α for any s ∈ L(y). So y−1 ·wI ·y has no

reduced expression of the form z1 ·sts ·z2 with s, t ∈ S, st 6= ts, and z1, z2 ∈ W . This implies
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that any two reduced expressions of y−1 ·wI · y can be transformed from one to another by

applying the relations of the form st = ts for various commuting pairs s, t in S. So for any

maximal directed path t1, ..., tv in α, there exists a subexpression tvtv−1 · · · t2t1t2 · · · tv−1tv

in any reduced expression of y−1 ·wI · y (note that ti ∈ I if and only if i = 1). This implies

that tvtv−1 · · · t2t1t2 · · · tv−1tv is also a subexpression of srsr−1 · · · s2s1s1s2 · · · sr−1sr. Hence

t1t2 · · · tv is a subexpression of s1s2 · · · sr. So w 6 z. ¤

The assertion of Lemma 4.5 will be further strenghtened in Theorem 4.7. Let us first

show the following

Lemma 4.6. Let w ∈ E(W ). Then the following statements are equivalent:

(1) Any z ∈ W with z ∼
L

w has an expression of the form z = x · w for some x ∈ W .

(2) If z ∈ W satisfies z ∼
L

w and

(4.6.1) z <
L

sz for any s ∈ L(z),

then z = w.

Proof. (1) =⇒ (2): Assume that z ∈ W satisfies z ∼
L

w and (4.6.1). By (1), we can write

z = x · w for some x ∈ W . If `(x) > 0, take s ∈ L(x), then s ∈ L(z) and z 6
L

sz = sx · w 6
L

w ∼
L

z by 1.2 (a). This implies sz ∼
L

z, contradicting the condition (4.6.1). So we must have

`(x) = 0, i.e., z = w.

(2) =⇒ (1): Let z ∈ W be with z ∼
L

w. If z satisfies (4.6.1), then z = w = 1 ·w, the result

is true. Now assume that z does not satisfy (4.6.1). Then there exists some s1 ∈ L(z) with

z1 := s1z ∼
L

z. If z1 still does not satisfy (4.6.1), then we can find some s2 ∈ L(z1) with

z2 := s2z1 ∼
L

z1. In this way, we find a sequence of elements z1 > z2 > ..., with zi ∼
L

w for all

i > 1. Clearly, such a sequence must be finite and hence we eventually find an element zr,

zr ∼
L

w, satisfying (4.6.1). This implies zr = w by (2). Let x = s1s2 · · · sr. Then z = x · w,

as required. ¤

Theorem 4.7. Let w ∈ E(W ). If z ∈ W satisfies the conditions z ∼
L

w and (4.6.1), then

z = w.
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Proof. We can write w = wI · y with m(w) = |I| by Lemma 4.2. Applying induction

on `(y) > 0. When `(y) = 0, we have w = wI . The condition z ∼
L

w implies that

R(z) = R(w) = I and hence z = x · wI for some x ∈ W . Then the condition (4.6.1) on z

further implies z = wI by Lemma 4.6. Next assume `(y) > 0. By Lemma 4.2, there exists

a reduced expression y = t1t2 · · · tr with ti ∈ S such that w′ := wtr can be obtained from w

by a right {s, tr}-star operation for some s ∈ R(wtr) with str 6= trs. Clearly, w′ ∈ E(W ).

At least one (say z′) of ztr and zs is obtained from z by a right {s, tr}-star operation and

satisfies z′ ∼
L

w′. If z′ = ztr, then z′ also satisfies (4.6.1) with z′ in the place of z. By

inductive hypothesis, we have z′ = w′ and hence z = z′tr = w′tr = w, the result is proved.

Now assume z′ = zs. We claim that z′ does not satisfy (4.6.1) with z′ in the place of z.

For otherwise, one would have z′ = w′ = wI · t1 · · · tr−1 by inductive hypothesis and hence

z = z′s = wI · t1 · · · tr−1s, which contradicts the fact w 6 z by Lemma 4.5 since tr 6 w and

tr 
 z. So there exists some t ∈ L(z′) satisfying tz′ ∼
L

z′. Since tr ∈ R(z) and z′ = z · s,
there is a reduced expression

(4.7.1) z′ = s′1 · · · s′atrs with s′i ∈ S.

We claim

(4.7.2) tz′ = s′1 · · · s′as.

For otherwise, we would have either tz′ = s′1 · · · s′atr or tz′ = s′1 · · · ŝ′i · · · s′atrs by the ex-

changing condition. When tz′ = s′1 · · · s′atr, we have z′ <
L

tz′ by Lemma 4.4, a contradiction.

Also, when tz′ = s′1 · · · ŝ′i · · · s′atrs, the element tz can be obtained from tz′ by a right {s, tr}-
star operation, and hence tz ∼

R
tz′ ∼

L
z′ ∼

R
z. This implies tz ∼

LR
z and hence tz ∼

L
z by 1.3

(e), contradicting the condition (4.6.1) on z since t ∈ L(z).

By the facts tz′ ∼
L

w′ and w′ ∈ E(W ), we have an expression tz′ = x·wI ·t1 · · · tr−1 for some

x ∈ W by inductive hypothesis and by Lemma 4.6. Then z′ = t ·x ·wI · t1 · · · tr−1 and hence

z = (t · x · wI · t1 · · · tr−1)s. Since z satisfies (4.6.1), we must have z = t · x · wI′ · t1 · · · tr−1

for some I ′ ⊂ I with |I ′| = |I| − 1 by the exchanging condition and by the fact s ∈



Coxeter elements and Kazhdan-Lusztig cells 19

R(wIt1 · · · tr−1). So by (4.7.1) and (4.7.2), we get z = x · wI′ · y. Since wI′t1 · · · tr−1s and

wIt1 · · · tr−1 are two reduced expressions of some element in C0(W ), this implies I \I ′ = {s}.
So far we have shown that if w can be transformed to w′ = wtr by a right {s, tr}-star

operation with tr ∈ R(y), then either z = w (if z′ = ztr) or z = x · wI′ · y with I ′ = I \ {s}
(if z′ = zs) for some x ∈ W . When z = x · wI′ · y (i.e., when z′ = zs), the element s is not

adjacent to any v ∈ S with v 6 w and v 6= tr by the fact wI′t1 · · · tr−1s = wIt1 · · · tr−1.

Suppose that we are in the case of z = x ·wI′ · y (i.e., when z′ = zs) and that the element

w can also be transformed to wt′r by a right {s′, t′r}-star operation with t′r ∈ R(y) and

{s′, t′r} 6= {s, tr}. Then s 6= s′. By the same argument as above, we can show that either

z = w or z = x′ · wI′′ · y with I ′′ = I \ {s′} for some x′ ∈ W . We claim that the case of

z = x · wI′ · y = x′ · wI′′ · y never happens. For otherwise, we would have x · s′ = x′ · s and

hence s ∈ R(x), contradicting the fact xwI = x · wI (see an expression of z′). So we must

have z = w, which shows the result.

Thus to show our result, it suffices to show that in the case of z = x · wI′ · y (i.e., when

z′ = zs), the element w can also be transformed to wt′r by a right {s′, t′r}-star operation for

some s′ ∈ S, t′r ∈ R(y) with {s′, t′r} 6= {s, tr}.
If there is a nonextreme node in the associated digraph α of w, then we can find a maximal

directed path s0, s1, ..., sb in α with b > 2. Hence by Lemma 4.1, s1 must be a branch node

of α such that (s′0, s1) is a directed edge of α for some s′0 ∈ I with s′0 6= s0. Since W is

of finite or affine type with Γ connected, and since s1 is not a node of the directed edge

(s, tr), we have dΓ(s1) = 3 and that w can be transformed to wsb by a right {sb, sb−1}-star

operation. Clearly, {sb, sb−1} 6= {s, tr} and sb ∈ R(y).

Now suppose that all the nodes of α are extreme. Since w ∈ E(W ) and since s is a

terminus of the underlying graph Γ′ of α, there must exist a terminus s′, s′ 6= s, tr, of Γ′

which is not isolated by the facts that Γ′ is a subgraph of a connected Coxeter graph of

affine type and that Γ′ is not a cycle. Let s′′ be the node of α adjacent to s′. We claim

that s′′ is a sink of α. For otherwise, s′′w could be obtained from w by a left {s′, s′′}-star

operation and hence s′′w ∼
L

w by 1.2 (b), contradicting the assumption of w ∈ E(W ). Then

w can be transformed to ws′′ by a right {s′, s′′}-star operation.
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Therefore our proof is completed. ¤

Note that in the definition of left-connectedness for a subset K of W (see Introduction),

it is equally well if we fix an element x ∈ K and let another element y run through K. Also,

note that if a left cell L of W contains an element of C0(W ) then L contains an element of

E(W ), too. The next result asserts that any left cell of W containing an element of C0(W )

is left-connected, which verifies a conjecture of Lusztig in our case (see [3]).

Theorem 4.8. Let L be a left cell of W . Then |L ∩ E(W )| 6 1. L is left-connected in the

case of |L ∩ E(W )| = 1.

Proof. The first assertion follows by Theorem 4.7. Now assume {w} = L ∩ E(W ). Then

any z ∈ L has the form z = x · w for some x ∈ W by Theorem 4.7. Take a reduced

expression x = s1s2 · · · sr with si ∈ S. Define a sequence ξ : x0, x1, ..., xr such that x0 = z

and xi = sixi−1 for 1 6 i 6 r. Then we have z = x0 6
L

x1 6
L
· · · 6

L
xr = w ∼

L
z by 1.2 (a),

i.e., ξ is in L. This implies that L is left-connected. ¤

Remark 4.9. (1) Theorem 4.7 shows that any w ∈ E(W ) is the unique minimal element

in the left cell of W containing w (in the sense of Lemma 4.6 (1)). Let w = wI · y ∈ E(W )

be with m(w) = |I|. Since λ(w−1, w) = y−1 · wI · y, Theorem 4.3 verifies Conjecture 1.5 in

the case where w ∈ C0(W ).

(2) In [6, 7], Lusztig deduced his results in 1.3 under the assumption of a certain positivity

condition on the Hecke algebra H(W ) and of an up-bounded condition on the a-values of

W (see [6, Sect. 3.1 and 7, Sect. 1.1 (d)] and also 1.3 (a), (b)). The results in this section

are mainly based on these results of Lusztig. Thus one may expect to extend our results to

the other Coxeter systems which satisfy these two conditions.

§5. The relation ∼
LR

on the elements in C1(W ).

Let (W,S,Γ) be of finite or affine type. Recall the notation C1(W ) defined preceding

Lemma 3.1. For wI , wJ ∈ C1(W ), we ask when the relation wI ∼
LR

wJ holds. Clearly, a

necessary condition for wI ∼
LR

wJ is |I| = |J |. Thus it is natural to ask in which circumstance

it is also a sufficient condition ? We give a brief answer to the problem.
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5.1. Call any of the following cases an exceptional case, where the types are for Γ, and I, J

are subsets of S with wI , wJ ∈ C1(W ).

(1) D̃l, l > 4; (2) Dl, l > 4;

(3) B̃l−1, l > 4; (4) Ẽ7 and |I| = |J | ∈ {3, 4};
(5) E7 and |I| = |J | = 3; (6) Ẽ8 and |I| = |J | = 4.

Then we have

Proposition 5.2. Let W be of finite or affine type. Then besides the above exceptional

cases, for any wI , wJ ∈ C1(W ), we have wI ∼
LR

wJ if and only if |I| = |J |.

Proof. Since W is of finite or affine type, it is enough to show one implication: if |I| = |J |
with wI , wj ∈ C1(W ) then wI ∼

LR
wJ . Note that we are assumed not in any of the exceptional

cases (1)-(6) of 5.1. So by a case-by-case checking, it is easily seen that the star operations

alone are enough to transform wI to wJ if either Γ is a tree, or Γ is a circle with |I| < (1/2)|S|.
Hence wI ∼

LR
wJ in these cases. When Γ is a circle (i.e., of type Ãl, l > 1) with |I| = (1/2)|S|,

the assertion wI ∼
LR

wJ is a consequence of [10, Theorem 17.4]. ¤

5.3. Now we consider the exceptional cases. Let (W,S,Γ) be of type D̃l (l > 4) with

the nodes of Γ indexed as in (A.6). I ⊂ S with wI ∈ C1(W ) has type A1 × ... × A1 (|I|
factors) if {s0, s1}, {sl−1, sl} * I, type D2 × A1 × ...× A1 (|I| − 1 factors) if exactly one of

{s0, s1}, {sl−1, sl} is contained in I, and type D2 × D2 × A1 × ... × A1 (|I| − 2 factors) if

{s0, s1, sl−1, sl} ⊆ I.

Proposition 5.4. (1) Let (W,S, Γ) be of type D̃l (l > 4) with Γ as in (A.6). For wI , wJ ∈
C1(W ), we have wI ∼

LR
wJ if and only if I and J have the same type, except for the

case where l is even (say l = 2k), |I| = |J | = k, and that both I and J have the type

A1×...×A1 (k factors). In this excepted case, we have wI ∼
LR

wJ if and only if {I, J} is either

{{s0,s3,s5,...,sl−3,sl−1},{s1,s3,s5,...,sl−3,sl}} or {{s0,s3,s5,...,sl−3,sl},{s1,s3,s5,...,sl−3,sl−1}}.
(2) Let (W ′, S′,Γ′) be of type Dl (l > 4) with Γ′ obtained from the graph Γ in (1) by

removing the node 0 (see (A.2)). Then for any wI , wJ ∈ C1(W ′), we have wI ∼
LR

wJ in W ′

if and only if they are so in W .
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(3) Let (W ′′, S′′, Γ′′) be of type B̃l−1 (l > 4) with Γ′′ as in (A.2). There is a natural

bijection φ from S′′ to the set S′ in (2) which preserves the labelings of the nodes in the

respective graphs. Then for any wI , wJ ∈ C1(W ′′), we have wI ∼
LR

wJ in W ′′ if and only if

wφ(I) ∼
LR

wφ(J) in W ′.

Proposition 5.5. (1) Let (W,S,Γ) be of type Ẽ7 with Γ as in (A.7)(b).

(1a) For wI , wJ ∈ C1(W ) with |I| = |J | = 3, we have wI ∼
LR

wJ if and only if I and J

are either both in or both not in the set {{s2, s5, s7}, {s0, s2, s3}}.
(1b) For wI , wJ ∈ C1(W ) with |I| = |J | = 4, we have wI ∼

LR
wJ if and only if I and J

either both contain or both do not contain s2.

(2) Let (W ′, S′,Γ′) be of type E7 with Γ′ obtained from the graph Γ in (1) by removing

the node 0 (see (A.3)(b)). Then for wI , wJ ∈ C1(W ′) with |I| = |J | = 3, we have wI ∼
LR

wJ

in W ′ if and only if they are so in W .

Proposition 5.6. Let (W,S, Γ) be of type Ẽ8 with Γ as in (A.8). Then for wI , wJ ∈ C1(W )

with |I| = |J | = 4, we have wI ∼
LR

wJ if and only if I and J either both are or both are not

{s0, s2, s5, s7}.

The results in Propositions 5.4-5.6 can be shown by [16, Algorithm 2.7], [9, Theorem 4.8]

and some related results in [1, 5, 14]. The details are omited.

Remark 5.7. Let (W,S, Γ) be of hyperbolic type. I don’t know if one can always obtain

`(wI) = `(wJ) from the relation wI ∼
LR

wJ for I, J ⊂ S ? I conjecture that the answer should

be affirmative. On the other hand, if wI , wJ ∈ C1(W ) satisfy |I| = |J |, then we can show

wI ∼
LR

wJ in all the cases except that Γ is the one in (A.2), (A.3) (b), (A.8) or (A.9) (c). It

is interesting to give a necessary and sufficient condition for the relation ∼
LR

on C1(W ), in

particular, in the excepted cases ?

Appendix.

Here we list all the graphs (up to isomorphism) occurring in the finite, affine and hyper-

bolic cases (see [2, 2.4, 2.5 and 6.9], remember that we neglect the labelings of edges in the

original Coxeter graphs). We label the nodes only for those graphs which are cited in the

context. Let n(Γ) be the number of nodes in Γ.
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(A.1) ◦——◦—– · · · · · ·—–◦——◦ (n(Γ) > 1)

(A.2)
◦ l−1
/◦——◦—– · · · · · ·—–◦——◦

1 2 l−3 l−2 \◦ l

(l > 4)

(A.3)

◦∣∣
◦——◦——◦——◦——◦

2◦∣∣
◦——◦——◦——◦——◦——◦
1 3 4 5 6 7

(a) (b)

(A.4)
◦∣∣

◦——◦——◦——◦——◦——◦——◦

(A.5)

1 i−1◦—— · · ·——◦
/ \

l ◦ ◦ i\ /◦—— · · ·——◦
l−1 i+1

(l > 3)

(A.6)
1 ◦ ◦ l−1\ /◦—–—◦–—– · · · · · · · ·—––◦——–◦

/2 3 l−3 l−2\
0 ◦ ◦ l

(l > 4)

(A.7)

◦∣∣
◦∣∣

◦——◦——◦——◦——◦

2 ◦∣∣
◦——◦——◦——◦——◦——◦——◦
0 1 3 4 5 6 7

(a) (b)

(A.8)
2 ◦∣∣

◦——◦——◦——◦——◦——◦——◦——◦
1 3 4 5 6 7 8 0
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(A9)

◦———◦∣∣ ∣∣∣∣ ∣∣∣∣ ∣∣
◦———◦

1 ◦——–——◦ 2∣∣ ∣∣
3 ◦∣∣ ∣∣

4 ◦——–——◦ 5

1 ◦ ◦ 2\ /
0 ◦——◦ 3
/ \

5 ◦ ◦ 4

◦||◦
◦————◦

(a) (b) (c) (d)

(A.10)

◦—– · · ·—–◦
/

∣∣
◦——◦

∣∣
\

∣∣
◦—– · · ·—–◦

(4 6 n(Γ) 6 9)

(A.11)

◦∣∣
◦——◦——◦——◦∣∣

◦

◦ ◦∣∣ ∣∣
◦——◦——◦——◦——◦

(a) (b)

(A.12)

◦
/◦

/◦——◦——◦——◦\◦\◦

◦ ◦∣∣ ∣∣
◦——◦——◦——◦——◦——◦

(a) (b)

(A.13)
◦∣∣

◦——◦——◦——◦——◦——◦——◦——◦

(A.14)
◦ ◦∣∣ ∣∣

◦——◦——◦——◦——◦——◦——◦

(A.15)
◦∣∣

◦——◦——◦——◦——◦——◦——◦——◦——◦

(A.16)
◦ ◦∣∣ ∣∣

◦——◦——◦——◦——◦——◦——◦——◦
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