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Abstract. Let W be an irreducible finite or affine Weyl group of simply-laced type.
We show that any w ∈ W with a(w) 6 6 satisfies Condition (C): w = x · wJ · y for
some x, y ∈ W and some J ⊆ S with WJ finite and `(wJ ) = a(w) (see 0.1-0.2 for the
notation wJ , WJ , `(w) and a(w)). We also show that if L is a left cell of W all of whose
elements satisfy Condition (C), then the distinguished involution dL of W in L satisfies

dL = λ(z−1, z) = z′−1 · wJ · z′ for any z = wJ · z′ ∈ Emin(L) with J = L(z) (see 1.6. for
the notation λ(z−1, z), and 0.3. for L(z), Emin(L) and E(L)), verifying a conjecture of
mine in [10, Conjecture 8.10] in our case. If E(L) = Emin(L) then we show that the left
cell L is left-connected, verifying a conjecture of Lusztig in our case.

§0. Introduction.

0.1. Let N (respectively, Z) be the set of all non-negative integers (respectively, in-

tegers). Let W be a Coxeter group with S a distinguished generator set. In order

to construct representations of W and the associated Hecke algebra H, Kazhdan and

Lusztig defined the concept of left, right and two-sided cells of W (see [4]). Later Lusztig

defined a function a : W → N and a finite set of distinguished involutions of W , both

of which play an important role in the representation theory of W and H (see [5] [6]).

Lusztig proved in [6] that each left cell of W contains a unique distinguished involution.

0.2. Let 6 (respectively, `) be the Bruhat-Chevalley order (respectively, the length

function) on W . For any J ⊆ S, denote by wJ the longest element in the subgroup WJ

of W generated by J whenever WJ is finite. For x, y ∈ W , we use the notation w = x ·y
to mean w = xy and `(w) = `(x) + `(y). Consider the following condition on w ∈ W :
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(C) w = x · wJ · y for some x, y ∈ W and some J ⊆ S with `(wJ) = a(w).

0.3. In the present paper, we focus our attention on the case where W is an irreducible

finite or affine Weyl group of simply-laced type, i.e., W ∈ {Ãl, Al, D̃m, Dm, Ẽi, Ei | l >

1,m > 4, i = 6, 7, 8}.
A subset K of W is left-connected, if for any x, y ∈ K, there exist x0 = x, x1, ..., xr = y

in K such that xi−1x
−1
i ∈ S for every 1 6 i 6 r.

For any w ∈ W , define L(w) = {s ∈ S | sw < w}. For any left cell L of W , define

E(L) = {w ∈ L | sw /∈ L ∀ s ∈ L(w)} and Emin(L) = {w ∈ L | `(w) 6 `(x) ∀ x ∈ L}.
By the exchanging condition on a Coxeter system (see [3, Subsection 1.7]), one can

show, for any w ∈ W , that the group WJ with J := L(w) is always finite and that

w = wJ · (wJw) (see Lemma 1.11).

The main results of the paper can be stated as follows.

Theorem A. Suppose that Condition (C) holds on all elements in a left cell L of W .

(1) If w = wJ · x ∈ Emin(L) with J = L(w), then the distinguished involution (see

(1.4.2) for the definition) in L has the expression x−1 · wJ · x.

(2) If Emin(L) = E(L) then L is left-connected.

Theorem B. Let W be an irreducible finite or affine Weyl group of simply-laced type.

Let L be a left cell of W with m := a(L) 6 6.

(1) Any w ∈ L satisfies Condition (C).

(2) Any w ∈ E(L) has the form w = wJ · y for some y ∈ W and some J ⊆ S with

`(wJ ) = m.

0.4. Let W be a group as in Theorem B. By Theorems A, B, we see that any distin-

guished involution d of W with a(d) 6 6 has an expression described as in Theorem A

(1).

The assertions of Theorems A, B have been verified in the following cases:

(a) W is a finite or affine Weyl group and L is a left cell of W containing a fully-

commutative element (see [13]).
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(b) The group W is as in (a) and L is a left cell of W contained in the lowest two-sided

cell of W under a certain partial order (see [8] and 1.3).

The equation Emin(L) = E(L) always holds for any left cell L of W in cases (a)–(b)

above (see [8], [13]). Hence these left cells of W are left-connected by Theorem A (2).

0.5. Under the assumption of Theorem B on the left cell L, we conjecture that the

equation Emin(L) = E(L) in Theorem A (2) always holds for any left cell L of W with

a(L) 6 6. This conjecture has been verified in the case where W = Ẽi, i = 6, 7, 8, and

a(L) = 4 (see [14, Lemma 6.4]). Hence by Theorem A (2), we conclude that these left

cells L are left-connected.

The above facts support a conjecture of Lusztig in [1] that any left cell of an affine

Weyl group is left-connected.

In general, the assertions (1)–(2) of Theorem B are not valid without the assumptions

that a(w) 6 6 and W is of simply-laced type. There exist counter-examples in the

following two cases: one is when W = Ã5 and a(w) = 7, and the other is when W = B3

and a(w) = 4 (see Remark 2.5). So the assertions (1)–(2) of Theorem B are the best

possible in this sense.

0.6. The assertions (1) and (2) in Theorem B are equivalent (see Lemma 2.1). The

major part of the paper is devoted to prove Theorem B (2), or equivalently, Proposition

2.4. Let Γ be the Coxeter graph of W . Under the assumption in Proposition 2.4, let

w = wJ · wI · x ∈ W be with J = L(w) and I = L(wJw). By considering all the

possible subgraphs Γ′ of Γ with the vertex sets I ∪ J , the proof of Proposition 2.4 is

based on a case-by-case analysis. By Lemma 1.10, we need only to show that for any

w = wJ ·y ∈ W with J = L(w) and a(w) > `(wJ) 6 5, there exists some z ∈ J such that

either {zw, w} is a primitive pair, or zw can be obtained from w by a star operation.

0.7. The contents are organized as follows. Section 1 is the preliminaries, some notation,

concept and known results are collected there for later use. We prove Theorem A,

and also prove Theorem B by assuming Proposition 2.4 in Section 2. After a short

preparation in Section 3, we prove Proposition 2.4 in Sections 4–6 in the cases where
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w ∈ W satisfies U(k), k = 2, 3, 4, 5, respectively (see 3.3 for the notation U(k)).

§1. Preliminaries.

1.1. Let (W,S,Γ) be the Coxeter system of an irreducible finite or affine Weyl group

W with S a distinguished generator set and Γ the corresponding Coxeter graph. We

further assume that W is of simply-laced type, i.e., one of types A, D, E, Ã, D̃, Ẽ.

To any w ∈ W , we associate two subsets of S as follows.

L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.

1.2. Let A = Z[u, u−1] be the ring of all Laurent polynomials in an indeterminate u

with integer coefficients. The Hecke algebra H of W over A is an associative A-algebra

with two sets of A-bases {Tx | x ∈ W} and {Cw | w ∈ W}, satisfying the relations

(1.2.1)
{

TwTw′ = Tww′ , if `(ww′) = `(w) + `(w′),
(Ts − u−1)(Ts + u) = 0, for s ∈ S,

and

(1.2.2) Cw =
∑

y6w

u`(w)−`(y)Py,w(u−2)Ty,

where Py,w ∈ Z[u] satisfies that Pw,w = 1, Py,w = 0 if y 66 w and deg Py,w 6 1
2 (`(w)−

`(y)− 1) if y < w. The Py,w’s are called Kazhdan-Lusztig polynomials (see [4]). Denote

y—–w or w—–y, if y < w and deg Py,w = 1
2 (`(w) − `(y) − 1). The relation w—–y

is not easy to be checked in general since it involves the complicated computation of

Kazhdan-Lusztig polynomials. However, we have

(1.2.3) w—–y if y < w and `(y) = `(w)− 1.

1.3. The preorders 6
L
, 6

R
, 6

LR
and the associated equivalence relations ∼

L
,∼
R

, ∼
LR

on W

are defined as in [4]. The equivalence classes of W with respect to ∼
L

( respectively,

∼
R

, ∼
LR

) are called left cells ( respectively, right cells, two-sided cells ). The preorder 6
L

(respectively, 6
R

, 6
LR

) on W induces a partial order on the set of all left (respectively,

right, two-sided) cells of W .
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1.4. For any x, y, z ∈ W , define hx,y,z ∈ A by

CxCy =
∑

z

hx,y,zCz.

In [5], Lusztig defined a function a : W → N by

(1.4.1) a(z) = min{k ∈ N | ukhx,y,z ∈ Z[u], ∀ x, y ∈ W} for z ∈ W.

The following are some known properties of the function a:

(1) If x 6
LR

y then a(x) > a(y). In particular, x ∼
LR

y implies a(x) = a(y). So we may

define the a-value a(X) on a left (respectively, right, two-sided) cell X of W to be a(x)

for any x ∈ X (see [5]).

(2) a(wJ) = `(wJ) for any J ⊆ S with WJ finite (see [5]).

(3) If x, y, w ∈ W satisfy w = x · y (see Introduction) then call w a left (respectively,

right) extension of y (respectively, x), and call y (respectively, x) a left (respectively,

right) retraction of w. In this case, we have the relations x >
R

w 6
L

y and a(w) >

a(x), a(y) (see [5]).

(4) If a(x) = a(y) and x 6
L

y (respectively, x 6
R

y) then x ∼
L

y ( respectively, x ∼
R

y)

(see [6]).

Let δ(z) = deg P1,z for z ∈ W , where 1 is the identity of the group W . Define

(1.4.2) D = {w ∈ W | `(w) = 2δ(w) + a(w)}.

Then Lusztig proved in [6] that

(5) D is a finite set of involutions (called distinguished involutions by Lusztig) and

that each left (respectively, right) cell of W contains a unique element of D.

For any x ∈ W , we have

(6) hx−1,x,d 6= 0 for d ∈ D with d ∼
L

x (see [6]).

1.5. For any left cell L of W , define
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E(L) = {w ∈ L | sw /∈ L, ∀ s ∈ L(w)},

Emin(L) = {w ∈ L | `(w) 6 `(x), ∀ x ∈ L}.

By 1.4 (3)–(4), we can equivalently define E(L) = {w ∈ L | a(sw) < a(w), ∀ s ∈
L(w)}. Clearly, the relation Emin(L) ⊆ E(L) holds in general. The equality Emin(L) =

E(L) holds if and only if all the elements in E(L) have the same length.

1.6. We proved in [8] that for any x, y ∈ W , there exists a unique element w ∈ W

satisfying that hx,y,w 6= 0 and that any z ∈ W with hx,y,z 6= 0 satisfies z 6 w. Denote

such an element w by λ(x, y). Given a reduced expression x = srsr−1 · · · s1 of x with

si ∈ S, define a sequence y0 = y, y1, ..., yr in W such that for every 1 6 i 6 r, we set

yi = yi−1 if yi−1 > siyi−1 and yi = siyi−1 if yi−1 < siyi−1. Then we showed in [8] that

λ(x, y) is equal to the last term yr of the sequence and that λ(x, y) is a left (respectively,

right) extension of y (respectively, x).

In particular, we have

(1.6.1) d 6 λ(x−1, x) for any d ∈ D and x ∈ W with d ∼
L

x

by 1.4 (6). We conjectured in [10, Conjecture 8.10] that d = λ(x−1, x) for any x ∈
Emin(Ld), where Ld is the left cell of W containing d.

1.7. Given s 6= t in S with o(st) = 3, a set of the form {sy, tsy} or {ty, sty} is called a

left {s, t}-string (or a left string in short), if y ∈ W satisfies L(y) ∩ {s, t} = ∅.
An element x is obtained from w by a left {s, t}-star operation (or a left star operation

in short), if {x, w} is a left {s, t}-string. Note that the resulting element x of a left {s, t}-
star operation on w is unique whenever it exists.

Let us reformulate a result by Kazhdan-Lusztig as follows.

Lemma 1.8. (see [4, Theorem 4.2]) Let w1, w2, y1, y2 ∈ W and s, t ∈ S be with o(st) =

3. If both {w1, w2} and {y1, y2} are left {s, t}-strings, then w1—–y1 if and only if

w2—–y2.
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1.9. Two elements x, y ∈ W form a left primitive pair, if there exist two sequences of

elements x0 = x, x1, ..., xr and y0 = y, y1, ..., yr in W such that the following conditions

are satisfied.

(a) Both {xi−1, xi} and {yi−1, yi} are left {si, ti}-strings for every 1 6 i 6 r and

some si, ti ∈ S with o(siti) = 3.

(b) xi—–yi (see 1.2) for some (and then for all by Lemma 1.8) 0 6 i 6 r.

(c) Either L(x) * L(y) and L(yr) * L(xr), or L(y) * L(x) and L(xr) * L(yr) hold.

Note that elements in a left string forms a left primitive pair, where we take r = 0

in the above definition.

The following result is well known.

Lemma 1.10. (see [10, Section 3]) If {x, y} is a left primitive pair, then x ∼
L

y.

Similarly, we can define a right {s, t}-string, a right {s, t}-star operation and a right

primitive pair. We also have the ‘ right-handed ’ versions of the results in Lemmas 1.8

and 1.10.

Since only the “ left-handed ” versions of these concepts will be applied in this paper,

we shall omit the adjective “ left ”by simply call them a string, a star operation and a

primitive pair respectively from now on.

Next two results will be useful in subsequent sections.

Lemma 1.11. Any w ∈ W can be expressed uniquely in the form w = wJ · w1 with

J = L(w) for some w1 ∈ W .

Proof. We prove our result via the Tits representation of the Coxeter system (W,S) (see

[3, Subsection 5.3]). The root system of W has the form Φ = {(αs)x | s ∈ S, x ∈ W}
with ∆S = {αs | s ∈ S} a simple system. Let Φ+ and Φ− be the corresponding positive

and negative systems of Φ respectively. It is known by [3, Proposition 5.6] that for any

w ∈ W , `(w) is equal to the cardinality of the set {α ∈ Φ+ | (α)w ∈ Φ−}. For any

I ⊆ S, let ∆I := {αs | s ∈ I} and let Φ+
I be the set of all elements in Φ+ which are in

the space spanned by ∆I . Then (∆J )w ⊆ Φ− and hence (Φ+
J ) ⊆ Φ−. This implies that
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the subgroup WJ of W generated by J is finite by the fact that `(wJ) = |Φ+
J | 6 `(w).

Hence w = wJ · w1 for some w1 ∈ W by the exchanging condition on Coxeter groups

(see [3, Subsection 1.7]). ¤

Lemma 1.12. Let w ∈ W and s ∈ S.

(1) If s /∈ L(w) then (L(sw) \ {s}) ⊆ L(w);

(2) Let w = wJ ·w1 be with J = L(w). Then for any s ∈ L(w1), there is some t ∈ J

with st 6= ts.

Proof. It is well known that in a Coxeter system (W,S), if x, y ∈ W and r ∈ S satisfy

xr > x and ry > y then xry > xy (see [9, Theorem 1]).

For any t ∈ (L(sw) \ {s}), we have sw > tsw, and also tsw > tw by the above result,

the assumption sw > w and the fact ts > t. This implies `(tw) 6 `(sw)− 2 = `(w)− 1

and hence tw < w, proving (1). Then (2) follows by the facts that J ∩ L(w1) = ∅ and

that {r ∈ L(w1) | rs = rs ∀ s ∈ J} ⊂ L(w) = J . ¤

§2. Proof of Theorems A, B.

In this section, we prove Theorem A, and also prove Theorem B by assuming Propo-

sition 2.4. Assume that W is an irreducible finite or affine Weyl group of simply-laced

type throughout the section.

Lemma 2.1. In Theorem B, the assertions (1) and (2) are equivalent.

Proof. Let L be a left cell of W with a(L) = m. Let us first prove (2) by assuming

(1). If w ∈ E(L), then there exists an expression w = x · wJ · y with `(wJ) = m for

some x, y ∈ W and some J ⊆ S by (1). We claim x = 1. For otherwise, take any

s ∈ L(x). Then s ∈ L(w) and m = a(w) > a(sw) = a(sx · wJ · y) > a(wJ) = m by 1.4

(2)-(3), which implies a(w) = a(sw) and hence w ∼
L

sw by 1.4 (3)–(4), contradicting

the assumption of w ∈ E(L). The claim is proved and hence (2) follows. Next let us

prove (1) by assuming (2). Given w ∈ L, we can find some x, y ∈ W with w = x · y and

y ∈ E(L). Then y = wJ · y′ for some y′ ∈ W and some J ⊆ S with `(wJ) = m by (2).

Hence w = x · wJ · y′, as required. ¤
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2.2. Proof of Theorem A. We first show assertion (1). Let d be the distinguished

involution of W in L. By our assumption, we can write d = x ·wJ · y for some x, y ∈ W

and J ⊆ S with `(wJ) = a(w) := m. Choose an expression of such kind with `(y)

smallest possible. Then wJ · y ∼
L

d by 1.4 (2)–(4). We also have `(x) > `(y) by the fact

that both d and wJ are involutions. Hence

(2.2.1) `(d) > 2`(y) + m.

We claim that wJ ·y is in Emin(L). For, take any z ∈ Emin(L) with z ∼
L

d. By Lemma

2.1, we can write z = wI · z′ for some z′ ∈ W and I ⊆ S with `(wI) = m. By 1.6 (in

particular, by (1.6.1)), we have d 6 λ(z−1, z) = λ(z′−1
, wI · z′) and hence

(2.2.2) `(d) 6 `(λ(z−1, z)) = `(λ(z′−1
, wI · z′)) 6 2`(z′) + `(wI) = 2`(z′) + m

Since wJ · y ∼
L

d ∼
L

z, this implies that

(2.2.3) 2`(y) + m > 2`(z′) + m > `(d) > 2`(y) + m

by (2.2.1)–(2.2.2). So all the equalities in (2.2.3) should hold. Hence wJ · y is in the

set Emin(L), as claimed. This further implies that d = λ(z−1, z) = z′−1 ·wI · z′ for any

z = wI · z′ ∈ Emin(L), proving assertion (1).

Next we prove assertion (2). Let dL be the distinguished involution of W in L. For

any w ∈ L, there exists a left retraction w′ of w in E(L). Hence by 1.4 (3), there

exist a sequence of elements x0 = w, x1, ..., xr = w′ in L such that xi−1x
−1
i ∈ S and

`(xi) = `(xi−1) − 1 for 1 6 i 6 r. By our assumption, we have w′ ∈ Emin(L). By

assertion (1), we have dL = λ(w′−1
, w′), which is a left extension of w′ (see 1.4 (3)

and 1.6). Hence there exist y0 = w′, y1, ..., yt = dL in L such that yi−1y
−1
i ∈ S and

`(yi) = `(yi−1) + 1 for 1 6 i 6 t. So L is left-connected. ¤

Next we want to prove Theorem B. First consider the case of W ∈ {D̃4, Ãn−1 | n > 2}.

Proposition 2.3. Assertion (1) in Theorem B holds when W ∈ {D̃4, Ãn−1 | n > 2}.
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Proof. (a) First assume W = Ãn−1, n > 2. By a partition λ of n, we mean a sequence

of integers λ1 > · · · > λr > 1 with
∑r

i=1 λi = n. Write λ = (λ1, ..., λr) and call

λi a part of λ. Let Λn be the set of all partitions of n. A partition λ can also be

denoted by (ae1
1 ae2

2 · · · aek

k ) with a1 > a2 > · · · > ak if the ai’s are all distinct parts

of λ with multiplicities ei > 0, 1 6 i 6 k. By [7, Theorem 17.4], there exists a

surjection φ : Ãn−1 → Λn which induces a bijection from the set of two-sided cells

of Ãn−1 to Λn, where the two-sided cell consisting of the identity element of Ãn−1

corresponds to the partition (1n), and the lowest two-sided cell of Ãn−1 under the

partial order 6
LR

corresponds to the partition (n) (see 1.3). The Coxeter graph Γ of

Ãn−1 is a circle with the nodes 0, 1, 2, ..., n − 1 arranging on the circle clockwise. Any

J ⊂ S (identifying S with {0, 1, ..., n − 1}) can be decomposed into a disjoint union

J = ∪r
i=1Ji of non-empty maximal subsets Ji consisting of consecutive nodes along

the circle Γ. We may assume |J1| > · · · > |Jr| by relabelling Ji’s if necessary. Then

φ(wJ) = (|J1|+ 1, |J2|+ 1, ..., |Jr|+ 1, 1, ..., 1) ∈ Λn by adding a proper number of parts

1 at the end. We have a(wJ) = `(wJ) =
∑r

i=1

(|Ji|+1
2

)
by 1.4 (2), where

(
k
h

)
:= k!

h!(k−h)! .

In general, for any w ∈ Ãn−1 with φ(w) = (λ1, ..., λr) ∈ Λn, we have

(2.3.1) a(w) =
r∑

i=1

(
λi

2

)
(see [10, (6.27)]).

So the inequality a(w) 6 6 holds if and only if the partition φ(w) is in the following list:

(2.3.2) (41n−4), (321n−6), (3231n−9), (261n−12), (3221n−7), (251n−10),
(321n−5), (241n−8), (31n−3), (231n−6), (221n−4), (21n−2), (1n),

Note that any partition λ = (λ1, ..., λr, 1, ..., 1) in (2.3.2) with λr > 1 satisfies that

(2.3.3) for any µ1 > · · · > µk > 0 in N with
∑k

i=1 µi =
∑k

i=1 λi and k 6 r, the

equation µj = λj holds for every 1 6 j 6 k.

The result in [11, Theorem 3.1] asserts that if w ∈ Ãn−1 is such that φ(w) =

(λ1, ..., λr), then for any 1 6 k 6 r, there exists an expression w = x · wJk
· y with
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some x, y ∈ Ãn−1, Jk ⊂ S such that φ(wJk
) = (µ1, ..., µk, 1, ..., 1) ∈ Λn satisfies

∑k
i=1 µi =

∑k
i=1 λi. By this result, we see that if λ ∈ Λn satisfies (2.3.3) then any

w ∈ φ−1(λ) satisfies Condition (C). In particular, Theorem B (1) holds for any w ∈ Ãn−1

with a(w) 6 6.

(b) Next assume W = D̃4 with its Coxeter graph as in Fig. 1.

First assume L(w) = {s, r} with a(w) > 2. Then w = srt ·w1 for some 1 6= w1 ∈ D̃4

with L(w1) ⊆ {u, v, s, r}. If s ∈ L(w1) then rw can be obtained from w by an {r, t}-
star operation and hence rw ∼

L
w. Similarly we can show that sw ∼

L
w in the case of

r ∈ L(w1). Now assume L(w1) ⊆ {u, v}. We claim that L(w1) = {u, v}. For otherwise,

|L(w1)| = 1, say L(w1) = {u} without loss of generality. Then w = srtut · w2 for

some w2 ∈ D̃4, which would imply L(w) ⊇ {s, r, u}, contradicting the assumption of

L(w) = {s, r}. The claim is proved. Next we claim that {sw,w} is a primitive pair.

For, let z0 = w, z1 = t · z0, z2 = u · z1, z′0 = sw, z′1 = rz′0, z′2 = tz′1. Then {z0, z1},
{z′0, z′1} are {t, r}-strings, and {z1, z2}, {z′1, z′2} are {t, u}-strings. We see that z0—–z′0

by (1.2.3) and hence zi—–z′i for i = 1, 2 by Lemma 1.8. We have L(z0) * L(z′0) and

L(z′2) * L(z2) since s ∈ L(z0)\L(z′0) and v ∈ L(z′2)\L(z2) by Lemma 1.12. This proves

the claim (In the subsequent discussion, we shall indicate many pairs of elements to be

primitive. Their proofs are more or less similar to that in the above, which will be left

to the readers in most cases). So sw ∼
L

w.

s

r

t

u

v

Fig. 1.

Next assume L(w) = {s, r, u} with a(w) > 3. Then w = srut · w1 for some 1 6= w1 ∈
D̃4. We claim that L(w1) ∩ {s, r, u} 6= ∅. For otherwise, L(w1) ∩ {s, r, u} = ∅. Then

w = srutvt ·w2 for some w2 ∈ D̃4, which would imply L(w) ⊇ {s, r, u, v}, contradicting
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the assumption of L(w) = {s, r, u}. The claim is proved. We may assume s ∈ L(w1)

without loss of generality. Then w = sruts · w2 for some w2 ∈ D̃4. If w2 is a right

extension of ut then rw can be obtained from w by an {r, t}-star operation; otherwise,

{rw, w} is a primitive pair. We have rw ∼
L

w in either case.

Next assume L(w) = {s, t} with a(w) > 3. Then w = sts · w1 for some w1 ∈ D̃4.

Set I = L(w1). If |I| = 1, then w = stsrt · w2 for some w2 ∈ D̃4 by relabelling S if

necessary. Hence tw can be obtained from w by a {t, r}-star operation. If |I| > 2, then

either w = stsrut ·w2 or w = stsruv ·w2 for some w2 ∈ D̃4 by relabelling S if necessary.

Thus {sw,w} is a primitive pair and hence sw ∼
L

w.

Finally, assume a(w) > 4. Then a(w) > 6 since there is no element w in D̃4 with

a(w) = 5 by [12]. By the results of [12], we see that any w ∈ D̃4 with a(w) > 6 has an

expression of the form w = x · wJ · y for some x, y ∈ D̃4 and J ⊂ S with `(wJ) = 6.

Hence Theorem B (1) holds for W = D̃4. ¤

Proposition 2.4. Let W be an irreducible finite or affine Weyl group of simply-laced

type. For w ∈ W , write w = wJ · w1 with J = L(w) for some w1 ∈ W . If w satisfies

a(w) > `(wJ ) 6 5 then there exists some s ∈ J such that sw ∼
L

w.

The proof of Proposition 2.4 is long and shall be given by a case-by-case argument

in Sections 4–6.

Remark 2.5. (1) In Proposition 2.4, it cannot be removed for the assumption of W

having simply-laced type. For example, in the Weyl group W = B3, let S = {s, r, t}
satisfy o(sr) = 3 and o(rt) = 4. Take w = srtrsr. Then a(w) = 4 by observing

w ∼
L

tsrtrsr ∼
L

trtrsr ∼
R

trtrs ∼
R

trtr := wrt,

while a(wrt) = `(wrt) = 4 by 1.4 (2). However, w has no expression of the form

w = x · wrt · y for any x, y ∈ W .

(2) A more general statement than Proposition 2.4 is as follows:

(2.5.1) For any w ∈ W with J = L(w) ⊆ S and `(wJ) < a(w), there exists some s ∈ J

with sw ∼
L

w.
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However, the statement (2.5.1) is not always true, even when W is of simply-laced

type. A counter-example occurs when W = Ã5. Let S = {s0, s1, s2, s3, s4, s5} be a

Coxeter generator set satisfying o(s0s5) = o(sisi+1) = 3 for 0 6 i < 5. Take w =

w234 · s1s2s5s4 = s3s2s4s3 · w12w45, where w234 := s2s3s2s4s3s2, w12 = s1s2s1 and

w45 = s4s5s4. Then φ(w) = (42), the partition having one part 4 and one part 2.

Hence a(w) = 7 by (2.3.1). The element w satisfies a(sw) < a(w) for any s ∈ L(w) =

{s2, s3, s4}. But `(w234) = 6 < a(w). Note that the partition (42) does not satisfy

Condition (2.3.3).

(3) In the group Ãn−1, we can show that a partition λ ∈ Λn satisfy Condition (2.3.3)

if and only if all elements in φ−1(λ) satisfy Condition (C). This generalizes Theorem B.

We can prove Theorem B by assuming Proposition 2.4.

2.6. Proof of Theorem B. Assertions (1)–(2) follow by Proposition 2.3 and Lemma 2.1

when W ∈ {Ãn−1, D̃4 | n > 2}. Now assume W /∈ {Ãn−1, D̃4 | n > 2}. By Lemma

2.1, it is enough to show assertion (1) for w ∈ W with a(w) 6 6. Apply induction

on `(w) > 0. Assertion (1) clearly holds when `(w) = 0, (i.e., w = 1). Now assume

`(w) > 0. We may write w = wJ ·w1 with J = L(w) for some w1 ∈ W by Lemma 1.11.

If a(w) = `(wJ) then we are done. If a(w) > `(wJ) then `(wJ) 6 5 and hence sw ∼
L

w

for some s ∈ J by Proposition 2.4. Since a(sw) = a(w) 6 6 by 1.4 (1), assertion (1)

holds for sw by inductive hypothesis and by the fact `(sw) < `(w), So sw = x · wI · y
for some I ⊂ S and some x, y ∈ W with a(sw) = `(wI). Hence w = sx ·wI · y, assertion

(1) holds also for w. ¤

§3. Some more results on Coxeter groups.

The remaining part of the paper shall be devoted to proving Proposition 2.4. Since

the assertion of Proposition 2.4 in the case of W ∈ {D̃4, Ãn−1 | n > 2} is a direct

consequence of Proposition 2.3, we shall always assume W /∈ {D̃4, Ãn−1 | n > 2} from

now on unless otherwise specified, hence the Coxeter graph Γ of W contains no circle

and the number of edges incident to any given node in Γ is at most 3.

In this section, we collect some more results on Coxeter groups for later use.



14 Jian-yi Shi

Lemma 3.1. Suppose that Γ is the Coxeter graph of W and that w ∈ W , s, t ∈ S

satisfy L(w) = {s}, st 6= ts and t /∈ L(sw). Then one of the following cases must occur:

(1) w = v1v2 · · · vc for some c > 1 with v1 = s and a subgraph of Γ in Fig. 2 (a).

(2) w is a right extension of v1v2 · · · vcvc+1vc+2 for some c > 1 with v1 = s and a

subgraph of Γ in Fig. 2 (b). In this case, if t is a branching node then W = D̃n for

some n > 4 and w is a retraction of (v1v2 · · · vcvc+1vc+2vcvc−1 · · · v1tv0v
′
0t)

k for some

k > 1, where Γ is as in Fig. 2 (c).

Proof. This follows directly from the classification of an irreducible finite and affine

Weyl group of simply-laced type and by the assumption that W /∈ {D̃4, Ãn−1 | n > 2}.
¤

v2 cv1vt
v

v

v2 cv

c+2

c+1
v1t 2

v

vc+2

c+1

cvvv1t
0v

0v’

(a) (b) (c)

Fig. 2.

Lemma 3.2. Assume that w ∈ W satisfies w 6= wJ for any J ⊆ S. Set J := L(w).

Then I := L(wJw) 6= ∅ and w = wJ · wI · w1 for some w1 ∈ W . We have zw ∼
L

w for

some z ∈ J if one of the following cases occurs:

(1) There exist some s ∈ J and x ∈ I with sx 6= xs such that s, x commute with any

z ∈ J \ {s} (see Fig. 3 (a)).

(2) There are some x 6= y in I and some r 6= s in J such that x, y, s, r commute with

any z ∈ J \{s, r} and that xs 6= sx, ys 6= sy, sr 6= rs (hence rx = xr, ry = yr, xy = yx

since the Coxeter graph of W contains no circle, see Fig. 3 (b)).

(3) There exist some x ∈ I and some r 6= s in J with sr = rs, rx 6= xr, sx 6= xs and

r ∈ L(w1) such that s, r, x commute with any z ∈ (J ∪ I) \ {s, r, x} (see Fig. 3 (c)).

(4) There exist some x ∈ I and r, s ∈ J with sr 6= rs, sx 6= xs, rx = xr, s ∈ L(w1)

such that s, r, x commute with any z ∈ (J ∪ I) \ {s, r, x} (see Fig. 3 (d)).
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Proof. The assertions I 6= ∅ and w = wJ · wI · w1 follow by Lemma 1.11 and the

assumption w 6= wJ . In the case (2) with s, r ∈ J and sr 6= rs, if w1 is a right extension

of sx (respectively, sy) then sw can be obtained from w by an {s, y}- (respectively,

{s, x}-) star operation; otherwise, we claim that {rw,w} is a primitive pair. For, we

have w = rsr · xy · w1. Let z0 = w, z1 = x · z0, z′0 = rz0, z′1 = sz′0. Then both {z0, z1}
and {z′0, z′1} are {s, x}-strings. We have z0—–z′0 by (1.2.3) and hence z1—–z′1 by Lemma

1.8. So L(z0) * L(z′0) and L(z′1) * L(z1) since r ∈ L(z0) \ L(z′0) and y ∈ L(z′1) \ L(z1)

by Lemma 1.12. This proves the claim. So rw ∼
L

w by Lemma 1.10. In all the other

cases, sw can be obtained from w by an {s, x}-star operation. So the result follows by

1.7 and Lemma 1.10. ¤

xs

r

s

x

y

r

s
x

r

s x

(a) (b) (c) (d)

Fig. 3.

3.3. For any w = wJ · wI · w1 ∈ W with J = L(w) and I = L(wJw), denote by U(k)

(respectively, U(k; i)) the collection of the assumptions (i)–(ii) (respectively, (i)–(iii))

on W and/or w below:

(i) W /∈ {D̃4, Ãn−1 | n > 2};
(ii) a(w) > k = `(wJ );

(iii) i = `(wI);

In the subsequent sections, we shall frequently apply the results (iv)–(v) below:

(iv) The classification of irreducible finite and affine Weyl groups;

(v) Lemmas 3.1 and 3.2.

§4. On the elements w satisfying U(2) or U(3).

Sections 4–6 are devoted to the proof of Proposition 2.4. The proof is divided into a

series of lemmas. In these sections, we always assume W being an irreducible finite or

affine Weyl group of simply-laced type with W /∈ {Ãn−1, D̃4 | n > 2}.
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In the present section, we consider the case where w ∈ W satisfies U(2) or U(3) (see

3.3 for the notation). The results of the section are contained in Lemmas 4.1–4.3.

Lemma 4.1. Let w ∈ W satisfy U(2) with L(w) = {s, r} (hence sr = rs). Then

either sw ∼
L

w or rw ∼
L

w holds.

Proof. By Lemma 3.2 (1), we need only to consider the case where w satisfies U(2; 1),

i.e., w = sr ·t ·w1 with L(srw) = {t}, w1 ∈ W , tz 6= zt for any z ∈ {s, r}. By U(2) on w,

we need only to consider the case where w1 is a right extension of v1v2 · · · vcvc+1vc+2 for

some c > 1, where vi, 1 6 i 6 c + 2, are as in Fig. 2 (b). Then we claim that {sw, w} is

a primitive pair. For, let z0 = w, z1 = t ·w and zi = vi−1 ·zi−1 for 1 < i 6 c+2. Also, let

z′0 = sw, z′1 = rz′0, z′2 = tz′1, z′i = vi−2z
′
i−1 for 2 < i 6 c+2. We see that z′c+2 is obtained

from z′0 by the same sequence of star operations as zc+2 from z0. We have z0—–z′0 by

(1.2.3) and hence zi—–z′i for 1 6 i 6 c + 2 by Lemma 1.8. We also have L(z0) * L(z′0)

and L(z′c+2) * L(zc+2) since s ∈ L(z0) \ L(z′0) and vc+2 ∈ L(z′c+2) \ L(zc+2) by Lemma

1.12. This proves our claim. Hence sw ∼
L

w by Lemma 1.10. ¤

Lemma 4.2. Assume that w ∈ W satisfies U(3) with L(w) = J := {s, r, u} and |J | = 3.

Then there exists some z ∈ J with zw ∼
L

w.

Proof. By Lemmas 1.11, 3.2 and U(3) on w, we need only to consider the cases where

any t ∈ L(wJw) commutes with at most one element in {s, r, u}, i.e., the cases (1)–(2)

below by 3.3 (iv):

(1) w = sru · t ·w1 for some w1 ∈ W , where L(wJw) = {t}, and Γ has a subgraph in

Fig. 4 (a) or (b).

(2) w = sru · tv ·w1 for some w1 ∈ W , where L(wJw) = {t, v}, and Γ has a subgraph

in Fig. 4 (c).
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Fig. 4.

First assume that we are in the case of Fig. 4 (a). We have L(w1) ∩ J ⊆ {s, r} by

U(3; 1) on w. If L(w1) ∩ J 6= ∅, then either sw or rw can be obtained from w by a star

operation. Now assume L(w1)∩ J = ∅. Then by 3.3 (iv)–(v) and U(3; 1) on w, we have

w1 = v1v2 · · · vc · w2 for some w2 ∈ W and c > 2 with u = vc, and Γ has a subgraph in

Fig. 2 (a).

We claim that {sw, w} is a primitive pair. For, let z0 = w, z1 = t · z0, zi = vi−1 · zi−1

for 1 < i 6 c. Also, let z′0 = sw, z′1 = rz′0, z′2 = tz′1, z′i = vi−2z
′
i−1 for 2 < i 6 c. We

see that z′c is obtained from z′0 by the same sequence of star operations as zc from z0.

We have z′0—–z0 by (1.2.3) and hence zi—–z′i for 1 6 i 6 c by Lemma 1.8. We also

have L(z0) * L(z′0) and L(z′c) * L(zc) since s ∈ L(z0) \ L(z′0) and vc ∈ L(z′c) \ L(zc) by

Lemma 1.12 and the facts u = vc and vc−1vc 6= vcvc−1. So our claim is proved.

Next assume that we are in the case of Fig. 4 (b). Then by U(3; 1) on w, we must

have L(w1)∩J 6= ∅, say s ∈ L(w1) without loss of generality. We can show that {rw,w}
is a primitive pair by considering the elements z0 = w, z1 = t · z0, z′0 = rw, z′1 = uz′0

and the facts z0––z′0, z′1—–z1, r ∈ L(z0) \ L(z′0) and s ∈ L(z′1) \ L(z1).

Finally assume that we are in the case of Fig. 4 (c). If L(w1) ∩ {s, r} 6= ∅, then

uw can be obtained from w by a star operation. If L(w1) ∩ {s, r} = ∅, then by 3.3

(iv)–(v) and U(3; 1) on w, we need only to consider the case of u ∈ L(w1) with one of

the following cases occurring:

(i) w1 is a right extension of either ut or uv.

(ii) w = sur · tv · uy · tx · szy · w2 for some w2 ∈ W with W = Ẽ7 as in Fig. 5 (a).

(iii) w = sur · tv · uyz · w2 for some w2 ∈ W with W = D̃6 as in Fig. 5 (b).
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rvut

s

yxz
u vt

y

s

z

r

(a) (b)

Fig. 5.

In the case (i), either rw or sw can be obtained from w by a star operation; while

in any of the cases (ii)–(iii), {uw, w} is a primitive pair. As an example, let us explain

why {uw, w} is a primitive pair in the case (ii). Let z0 = w, z1 = t · z0, z2 = v · z1,

z3 = y · z2, z4 = u · z3, z5 = x · z4, z6 = t · z5, z7 = s · z6, z8 = z · z7, z′0 = uw, z′1 = sz′0,

z′2 = rz′1, z′3 = tz′2, z′4 = vz′3, z′5 = yz′4, z′6 = uz′5, z′7 = tz′6, z′8 = xz′7. Then z′8 is obtained

from z′0 by the same sequence of star operations as z8 from z0. We have z′0—–z0 by

(1.2.3) and hence z′i—–zi for 1 6 i 6 8 by Lemma 1.8. We also have L(z0) * L(z′0)

and L(z′8) * L(z8) since u ∈ L(z0) \ L(z′0) and y ∈ L(z′8) \ L(z8) by Lemma 1.12. This

implies that {uw, w} is a primitive pair.

So our result follows by Lemma 1.10. ¤

Lemma 4.3. Assume that w ∈ W satisfies U(3) with L(w) = J := {s, t} (hence

st 6= ts). Then there exists some z ∈ J with zw ∼
L

w.

Proof. By 3.3 (iv)–(v) and U(3) on w, we need only to consider the following cases:

(1) w = sts · r ·w1 for some w1 ∈ W with L(w1)∩ J = ∅, where Γ has a subgraph in

Fig. 6 (a);

(2) w = sts · rv · w1 for some w1 ∈ W with L(w1) ∩ J = ∅, where Γ has a subgraph

in Fig. 6 (b).

s rt sv t r

c+2

c+1r

r

rcrt 1s

(a) (b) (c)

Fig. 6.
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By Lemma 1.11, 3.3 (iv)–(v) and U(3) on w, we have w1 = r2r3 · · · rcrc+1rc+2 · w2

for some w2 ∈ W and c > 0, where Γ has a subgraph in Fig. 6 (c) with r1 = r

(by relabelling s, t if necessary in the case (2)). We claim that {sw,w} is a primitive

pair. For, let z0 = w, zi = ri · zi−1 for 1 6 i 6 c + 1, and let z′0 = sw, z′1 = tz′0,

z′i = ri−1z
′
i−1 for 1 < i 6 c + 1. Then z′c+1 is obtained from z′0 by the same sequence of

star operations as zc+1 from z0. So z′0—–z0 by (1.2.3) and hence z′i—–zi for 1 6 i 6 c+1

by Lemma 1.8. We have L(z0) * L(z′0) and L(z′c+1) * L(zc+1) since s ∈ L(z0) \ L(z′0)

and rc+2 ∈ L(z′c+1) \ L(zc+1) by Lemma 1.12. This proves the claim.

So our result follows by Lemma 1.10. ¤

§5. On the elements w satisfying U(4).

Again assume that (W,S) is an irreducible finite or affine Weyl group of simply-laced

type with W /∈ {Ãn−1, D̃4 | n > 2} throughout the section.

As before, any w ∈ W not of the form wK , K ⊆ S, can be written as w = wJ ·wI ·w1

with J = L(w), I = L(wJw) 6= ∅ and some w1 ∈ W by Lemma 1.11.

Lemma 5.1. Assume that w ∈ W satisfies U(4; 1). Then zw ∼
L

w for some z ∈ J .

Proof. Write w = wJ · wI · w1 with J = L(w), I = L(wJw) and some w1 ∈ W . By 3.3

(iv)–(v) and U(4; 1) on w, we need only to consider the case of Γ having a subgraph

Γ′ as one in Fig. 7 (1)–(4), where J (respectively, I) is the vertex set of Γ′ at the left

(respectively, right) column:
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Fig. 7.
By Lemma 1.11 and U(4; 1) on w, we see that L(w1) ∩ J 6= ∅ in any of the cases

(2)–(3). In the case (2), we have L(w1) ∩ J ⊆ {s, r, t}. We may assume s ∈ L(w1)
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without loss of generality. Then {rw,w} is a primitive pair. In the case (3), we have

L(w1) ∩ J ⊆ {t, r}. If t ∈ L(w1), then {sw, w} is a primitive pair; if L(w1) ∩ J = {r},
then we must have w = srst · v · rs · w2 for some w2 ∈ W by Lemma 1.11, 3.3 (iv)–(v)

and U(4; 1) on w. In this case, tw can be obtained from w by a {t, v}-star operation.

If L(w1) ∩ J 6= ∅ in the case (1), then either rw or sw can be obtained from w by

a star operation; if r ∈ L(w1) in the case (4), then rw can be obtained from w by an

{r, v}-star operation. If L(w1) ∩ J = ∅ in any of the cases (1), (4), then by 3.3 (iv)–(v)

and U(4; 1) on w, one of the following cases must occur:

(i) w1 = v1v2 · · · vc · w2 in the case (1) for some w2 ∈ W and c > 2 with vc ∈ {t, u},
where Γ has a subgraph in Fig. 8 (a);

(ii) w1 = v1v2 · · · vc · w2 in the case (4) for some w2 ∈ W and c > 2 with vc = t,

where Γ has a subgraph in Fig. 8 (b);

(iii) w1 = v1v2 · · · vcvc+1vc+2 · w2 in the case (4) for some w2 ∈ W and c > 0 with

t 6= vi, 1 6 i 6 c + 2, where Γ has a subgraph in Fig. 8 (c).

v v1 vc

s

r
s r v v1 vc s r v v1 vc

vc+1

vc+2

(a) (b) (c)

Fig. 8.

In either of the cases (i)-(iii), {sw, w} is a primitive pair. So our result follows by

Lemma 1.10. ¤

Lemma 5.2. If w ∈ W satisfies U(4; 2), then zw ∼
L

w for some z ∈ J .

Proof. We may write w = wJ ·wI ·w1 for some w1 ∈ W with J = L(w) and I = L(wJw)

by Lemma 1.11. By 3.3 (iv)–(v) and U(4; 2) on w, we need only to consider the case of Γ

having a subgraph Γ′ as one in Fig. 9 (1)–(7), where the vertices at the left (respectively,

right) column of Γ′ belong to J (respectively, I).
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Fig. 9.

First assume the case (1). Hence W = D̃5. Since a(w) > 4, w can be a right retraction

of neither αk,h := (srtu·vxv)k ·(srvxtuxv)h ·tu nor βk,h := (srtu·vxv)k ·(tuxvsrvx)h ·sr
for any k > 0, h > 0 by 1.4 (3) and by the fact of a(αk,h) = a(βk,h) = 4. Thus w must

be a right extension of z = (srtu · vxv)k · z′ for some z′ ∈ {sv, rv, tx, ux} and k > 0.

Say z′ = sv without loss of generality. Hence

w =
{

sv · rtu · vxv · (srtu · vxv)k−1 · s · w2, if k is even,
rv · stu · vxv · (srtu · vxv)k−1 · s · w2, if k is odd,

for some w2 ∈ W . Hence sw (respectively, rw) can be obtained from w by an {s, v}-
(respectively, {r, v}-) star operation if k is even (respectively, odd).

Next assume the case (2). If L(w1)∩J 6= ∅, we may assume s ∈ L(w1) without loss of

generality, then rw can be obtained from w by an {r, v}-star operation. If L(w1)∩J = ∅,
then either v or x is a branching node of Γ. If both v and x are branching nodes of Γ,

then W = D̃c+2 for some c > 4. By 3.3 (iv)–(v) and U(4; 2) on w, we see that

w = v0v1vc+1vc+2 · v2vc · v3v4 · · · vcvc+1vc+2vcvc−1 · w2

= v0v1v2v3 · · · vc−1 · vc+1vc+2vcvc+1vc+2vc · vc−1vc · w2

for some w2 ∈ W with (s, r, t, u, v, x) = (v0, v1, vc+1, vc+2, v2, vc) up to a graph auto-

morphism on Γ, where Γ is in Fig. 10 (c). We claim that {v0w, w} is a primitive pair.

For, let z0 = w, z′0 = v0w, zi = vi+1 ·zi−1 and z′i = viz
′
i−1 for 1 6 i 6 c−1. Then z′c−1 is

obtained from z′0 by the same sequence of star operations as zc−1 from z0. So z′0—–z0 by
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(1.2.3) and hence z′i—–zi for any 1 6 i < c by Lemma 1.8. Also, we have L(z0) * L(z′0)

and L(z′c−1) * L(zc−1) since v0 ∈ L(z0) \ L(z′0) and vc+1 ∈ L(z′c−1) \ L(zc−1). This

proves our claim. Now assume that exactly one (say v without loss of generality) of v, x

is a branching node of Γ, then by Lemma 1.11, we have w = srtu · vx · y1y2 · · · yc for

some c > 2 with Γ having a subgraph in Fig. 10 (a) and yc ∈ {t, u}, Then {w, sw} is a

primitive pair.

s

r

v y1
y yc−1 c

y yt x r y cc−11v

s

v v

v

v
4 c

c+2

c+1

v

v

v v

0

1

2 3

(a) (b) (c)

Fig. 10.

Next assume the case (3). By 3.3 (iv)–(v) and U(4; 2) on w, either L(w1)∩{s, t} 6= ∅,
or w1 is a right extension of rv or rx. In the former case, rw can be obtained from w

by a star operation; in the latter case, tw or sw could be obtained from w by a star

operation.

Next assume the case (4). By U(4; 2) on w, we must have L(w1)∩J 6= ∅. If s ∈ L(w1),

then rw can be obtained from w by an {r, v}-star operation; if L(w1)∩ {t, u} 6= ∅, then

either {tw,w} or {uw, w} is a primitive pair. If L(w1) ∩ J = {r}, then w1 is a right

extension of either rx or rv. Hence sw can be obtained from w by an {s, v}-star

operation in the former case, and {tw, w} is a primitive pair in the latter case.

Assume the case (5). If L(w1) ∩ {s, r} 6= ∅, then either sw or rw can be obtained

from w by a star operation. Now assume L(w1)∩{s, r} = ∅. By 3.3 (iv)–(v) and U(4; 2)

on w, one of the following cases must occur by relabelling elements of S if necessary:

(i) w = srst ·uv ·u1u2 · · ·uc ·w2 for some w2 ∈ W and some c > 2 with t = uc, where

Γ has a subgraph in Fig. 11 (a);
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Fig. 11.

(ii) w = srst · uv · u1u2 · · ·ucuc+1uc+2 · w2 for some w2 ∈ W and some c > 0, where

Γ has a subgraph in Fig. 11 (b), and t 6= ui for any 1 6 i 6 c + 2.

In either of the cases (i), (ii), {rw, w} is a primitive pair.

Now assume the case (6). If s ∈ L(w1), then sw can be obtained from w by an

{s, u}-star operation; if ∅ 6= L(w1) ∩ J ⊆ {r, t}, then either {sw, w} or {rw, w} is a

primitive pair. Now assume L(w1) ∩ {s, r, t} = ∅. By 3.3 (iv)–(v) and U(4; 2) on w, we

have w = srst · uv · u1u2 · · ·ucuc+1uc+2 ·w2 for some w2 ∈ W and some c > 0, where Γ

has a subgraph in Fig. 12. Hence {rw, w} is a primitive pair.

r s u u uc1
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u

c+1

c+2

t v

Fig. 12.

Finally assume the case (7). By U(4; 2) on w, we have L(w1) ∩ {t, r} 6= ∅. If

t ∈ L(w1), then {sw, w} is a primitive pair. If L(w1) ∩ {r, t} = {r}, then w1 must be

a right extension of rv, rusr or rsu1, where u1 ∈ S \ {r, t} satisfies either u1u 6= uu1

or u1v 6= vu1. When w1 is a right extension of rv (respectively, rusr), the element

rw (respectively, tw) can be obtained from w by an {r, u}- (respectively, {t, v}-) star

operation; when w1 is a right extension of rsu1, {sw, w} is a primitive pair.

Hence our result follows by Lemma 1.10. ¤

Lemma 5.3. If w ∈ W satisfies U(4; 3), then zw ∼
L

w for some z ∈ J .

Proof. Write w = wJ · wI · w1 with J = L(w) and I = L(wJw) for some w1 ∈ W . By

3.3 (iv)–(v) and U(4; 3) on w, we need only to consider the case of Γ having a subgraph
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Γ′ as one in Fig. 13 (a)–(c), where J (respectively, I) consists of all vertices of Γ′ at the

left (respectively, right) column:
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Fig. 13.

In the case (a), we have L(w1)∩J 6= ∅ by U(4; 3) on w. If L(w1)∩{s, u} 6= ∅ then either

rw or tw can be obtained from w by a star operation. Now assume L(w1) ∩ J ⊆ {r, t}.
By 3.3 (iv)–(v) and U(4; 3) on w, we see that w1 is a right extension of rv, ry, ty, tx

or rtzp, where the last case occurs only when W = D̃8 (see Fig. 13 (d)). If w1 is a

right extension of rv, ry, ty or tx then at least one of the elements tw, sw, uw, rw can

be obtained from w by a star operation. If w1 is a right extension of rtzp, then {sw, w}
is a primitive pair.

In the case (b), we have W = Ẽ6. If L(w1) ∩ {s, t, u} 6= ∅, then rw can be obtained

from w by a star operation. If L(w1) ∩ {s, t, u} = ∅, then L(w1) = {r}. By 3.3 (iv)–(v)

and U(4; 3) on w, we see that w1 must be a right extension of rvyr, rvxr or rxyr.

Say rvyr without loss of generality. Then uw can be obtained from w by a {u, x}-star

operation.

In the case (c), W ∈ {Ei, Ẽi | i = 6, 7, 8}. By U(4; 3) on w, we have L(w1)∩{s, r, t} 6=
∅. If s ∈ L(w1), then sw can be obtained from w by an {s, u}-star operation. If

t ∈ L(w1), then {sw, w} is a primitive pair. Now assume L(w1) ∩ {s, r, t} = {r}. Then

w1 must be a right extension of either rv or rx by 3.3 (iv)–(v) and U(4; 3) on w. We

have a primitive pair {rw,w} if w1 is a right extension of rv. The element rw can be

obtained from w by an {r, v}-star operation if w1 is a right extension of rx. ¤

§6. On the elements w satisfying U(5).
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Let w = wJ · wI · w1 ∈ W be with J = L(w) and I = L(wJw) for some w1 ∈ W .

Then w satisfies U(5) only if the Coxeter graph of W has a subgraph Γ′ as one in Fig.

14 with I ∪ J its vertex set, where all vertices of Γ′ at left (respectively, right) column

belong to J (respectively, I).
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Lemma 6.1. If w ∈ W satisfies U(5), then zw ∼
L

w for some z ∈ J .

Proof. We prove our result by a case-by-case argument. By 1.7, Lemma 1.10, 3.3 (iv)–

(v) and U(5) on w, we need only to show that in any of the cases (1)-(28), there exists

some z ∈ J such that either {zw,w} is a primitive pair, or zw is obtained from w by a

star operation.

(1) If L(w1)∩{s, r} 6= ∅, then sw or rw can be obtained from w by a star operation.

If L(w1) ∩ {s, r} = ∅, then by 3.3 (iv)–(v) and U(5; 1) on w, the graph Γ contains x
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as a branching node and any y ∈ L(w1) satisfies yx 6= xy, hence there is an expression

w = wJwI · x1x2 · · ·xc · w2 for some c > 2 and w2 ∈ W such that xc ∈ {t, u, v} and Γ

has a subgraph as in Fig. 15 (a). Then {sw, w} is a primitive pair.

(2) By 3.3 (iv)–(v) and U(5; 1) on w, we have ∅ 6= L(w1) ⊆ {s, r, t}, say s ∈ L(w1)

without loss of generality. Then {rw,w} is a primitive pair.

(3) If L(w1) ∩ {s, r, t, u} 6= ∅, we may assume s ∈ L(w1) without loss of generality,

then rw can be obtained from w by an {r, x}-star operation. If L(w1) ∩ {s, r, t, u} = ∅,
then by 3.3 (iv)–(v) and U(5; 2) on w, we see that at least one (say x without loss of

generality) of x, y is a branching node of Γ such that w1 = x1x2 · · ·xc ·w2 for some c > 2

and w2 ∈ W satisfying xc ∈ {t, u, v}, where Γ has a subgraph as in Fig. 15 (a). Hence

{sw, w} is a primitive pair.
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Fig. 15.

(4) By 3.3 (iv)–(v) and U(5; 2) on w, we must have ∅ 6= L(w1) ∩ J ⊆ {s, r, t}. If

L(w1)∩{s, t} 6= ∅, then rw can be obtained from w by a star operation. If L(w1)∩J =

{r}, then by 3.3 (iv)–(v) and U(5; 2) on w, the element w1 must be a right extension of

either rx or ry. Hence either tw or sw can be obtained from w by a star operation.

(5) First assume L(w1)∩{s, r, t} 6= ∅, say s ∈ L(w1) without loss of generality. If w1

is a right extension of srtxs then sw can be obtained from w by an {s, x}-star operation;

otherwise, {rw, w} is a primitive pair. If L(w1) ∩ {u, v} 6= ∅, say u ∈ L(w1), then vw

can be obtained from w by a {v, y}-star operation. If L(w1)∩{s, r, t, u, v} = ∅, then by

3.3 (iv)–(v) and U(5; 2) on w, we see that W = D̃n, n > 7, y is a branching node of Γ

and w1 = y1y2 · · · ycyc+1yc+2yc+3yc+1 · w2 for some c > 1 such that Γ is in Fig. 15 (b),

{yc, yc+2, yc+3} = {s, r, t} and yc+1 = x. We claim that {uw, w} is a primitive pair. For,

let z0 = w, z1 = y · z0, zi = yi−1 · zi−1 for 1 < i 6 c, and z′0 = uw, z′1 = vz′0, z′2 = yz′1,

z′i = yi−2z
′
i−1 for 2 < i 6 c. Then z′c is obtained from z′0 by the same sequence of star
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operations as zc from z0. We have z0—–z′0 by (1.2.3) and hence z′i—–zi for any 1 6 i 6 c

by Lemma 1.8. We also have L(z0) * L(z′0) and L(z′c) * L(zc) since u ∈ L(z0) \ L(z′0)

and yc ∈ L(z′c) \ L(zc) by Lemma 1.12. This proves our claim.

(6) W = D̃6. If L(w1)∩{s, r, u, v} 6= ∅, then {tw,w} is a primitive pair. If L(w1)∩J =

{t}, then by 3.3 (iv)–(v) and U(5; 2) on w, the element w1 must be a right extension of

either tx or ty, say tx without loss of generality. Then {uw,w} is a primitive pair.

(7) By 3.3 (iv)–(v) and U(5; 2) on w, we have L(w1) ⊆ {s, r, t, u}. If u ∈ L(w1)

then tw can be obtained from w by a {t, y}-star operation. If L(w1) ∩ {s, r} 6= ∅, say

s ∈ L(w1) without loss of generality, then {rw, w} is a primitive pair. If we are not in

any of the above cases, then by 3.3 (iv)–(v) and U(5; 2) on w, we see that w1 must be

a right extension of either tx or ty. In the former case, uw can be obtained from w by

a {u, y}-star operation; while in the latter case, {sw, w} is a primitive pair.

(8) If L(w1) ∩ {s, u} 6= ∅, say s ∈ L(w1) without loss of generality, then rw can

be obtained from w by an {r, x}-star operation. If L(w1) ∩ {s, u} = ∅, then by 3.3

(iv)–(v) and U(5; 3) on w, we see that w1 must be a right extension of rx, ry, ty, tz or

pv, where the last case occurs only if W = Ẽ8 with Γ in Fig. 15 (c). If w1 is a right

extension of rx (respectively, ry), then tw (respectively, sw) can be obtained from w

by a {t, y}- (respectively, {s, x}-) star operation. Similarly for the cases where w1 is a

right extension of ty or tz. If w1 is a right extension of pv then {sw, w} is a primitive

pair.

(9) We have W ∈ {Dn, D̃n, Ẽ8 | n > 8}. If s ∈ L(w1) then rw can be obtained from

w by an {r, x}-star operation. If L(w1) ∩ {u, v} 6= ∅, say u ∈ L(w1) without loss of

generality, then {vw, w} is a primitive pair. If L(w1)∩{s, u, v} = ∅, then by 3.3 (iv)–(v)

and U(5; 3) on w, we see that w1 must be a right extension of rx, ry, ty or tz. If w1

is a right extension of rx (respectively, ry, tz), then tw (respectively, sw, rw) can be

obtained from w by a {t, y}- (respectively, {s, x}-, {r, y}- ) star operation. If w1 is a

right extension of ty, then {uw, w} is a primitive pair.

(10) If L(w1) ∩ {s, t, u, v} 6= ∅, then at least one of rw, vw and uw can be obtained
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from w by a star operation. If L(w1) = {r}, then by 3.3 (iv)–(v) and U(5; 3) on w, the

element w1 must be a right extension of either rx or ry. When w1 is a right extension

of rx (respectively, ry), the element tw (respectively, sw) can be obtained from w by

a {t, y}- (respectively, {s, x}-) star operation. If L(w1) ∩ {s, r, t, u, v} = ∅, then by 3.3

(iv)–(v) and U(5; 3) on w, we see that z is a branching node of Γ, W ∈ {Dn, D̃n | n > 9},
and w1 = z1z2 · · · zc ·w2 for some w2 ∈ W and c > 3, where Γ has a subgraph as in Fig.

16 (a) with (zc−1, zc) ∈ {(s, x), (t, y)}. In this case, {uw, w} is a primitive pair.

(11) We have W = Ẽ7. If L(w1) ∩ {s, v} 6= ∅, then either rw or uw can be obtained

from w by a star operation. If t ∈ L(w1), then {rw, w} is a primitive pair. If we are

not in any of the above cases, then w1 must be a right extension of rx, ry, uy or uz by

3.3 (iv)–(v) and U(5; 3) on w. If w1 is a right extension of ry (respectively, uy), then

sw (respectively, vw) can be obtained from w by an {s, x}- (respectively, {v, z}-) star

operation. If w1 is a right extension of rx (respectively, uz), then {uw,w} (respectively,

{rw, w}) is a primitive pair.
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Fig. 16.

(12) By U(5; 4) on w, we have L(w1) ∩ J 6= ∅. If L(w1) ∩ {s, v} 6= ∅, then either rw

or uw can be obtained from w by a star operation. If L(w1) ∩ J ⊆ {r, t, u}, then by

3.3 (iv)–(v) and U(5; 4) on w, the element w1 must be a right extension of rx, ry, ty,

tp, up, uz or rtus′v′, where the last case occurs only if W = D̃10 and Γ is as in Fig.

16 (c). Then tw (respectively, sw, uw, rw, vw, tw) can be obtained from w by a star

operation if w1 is a right extension of rx (respectively, ry, ty, tp, up, uz). If w1 is a

right extension of rtus′v′ then {sw,w} is a primitive pair.

(13) If L(w1)∩{s, r} 6= ∅, then sw or rw can be obtained from w by a star operation.

If L(w1)∩{s, r} = ∅, then by 3.3 (iv)–(v) and U(5; 1) on w, we see that x is a branching
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node of Γ and any y ∈ L(w1) satisfies yx 6= xy, hence w1 = x1x2 · · ·xc · w2 for some

c > 3 and w2 ∈ W such that {xc−1, xc} = {t, u} and Γ has a subgraph as in Fig. 15

(a). Then {sw, w} is a primitive pair (comparing with case (1)).

(14) We claim that L(w1) ∩ {r, t} 6= ∅. For otherwise, by Lemma 1.11, 3.3 (iv)–(v)

and U(5; 1) on w, Γ would have a subgraph as in Fig. 16 (b) with v a branching node,

w1 = v1v2 · · · vc for some c > 2, and vi = u for at most one i, 1 < i 6 c. Then a(w) = 5,

a contradiction. The claim is proved. Now that L(w1) ∩ {r, t} 6= ∅. If t ∈ L(w1) then

{sw, w} is a primitive pair. If L(w1)∩{r, t} = {r}, then w1 = rs ·w2 for some w2 ∈ W ,

so tw can be obtained from w by a {t, v}-star operation.

(15) By 3.3 (iv)–(v) and U(5; 1) on w, we see that L(w1) ⊆ {r, t, u} and that w1

is a right extension of rtv, ruv, tuv or rs. Then at least one of {rw, w}, {sw, w} and

{uw, w} is a primitive pair.

(16) We have L(w1) ∩ {r, t, u} 6= ∅ by 3.3 (iv)–(v) and U(5; 2) on w. If u ∈ L(w1),

then tw can be obtained from w by a {t, x}-star operation. If L(w1)∩ {r, t, u} ⊆ {t, r},
then w1 must be a right extension of rs, tv or tx by 3.3 (iv)–(v) and U(5; 2) on w.

When w1 is a right extension of rs (respectively, tv), the element tw (respectively, uw)

can be obtained from w by a {t, v}- (respectively, {u, x}-) star operation. When w1 is

a right extension of tx, we have a primitive pair {sw,w}.
(17) By 3.3 (iv)–(v) and U(5; 2) on w, we have W ∈ {Ei, Ẽi | i = 6, 7, 8} and

∅ 6= L(w1) ⊆ {t, r, u} with t the unique branching node of Γ. If L(w1)∩{r, u} 6= ∅, then

{sw, w} is a primitive pair. If L(w1) = {t}, then by 3.3 (iv)–(v) and U(5; 2) on w, we

see that w1 is a right extension of tvx, tvst or txst. Then either {rw, w} or {sw, w} is

a primitive pair.

(18) We have L(w1) ∩ J 6= ∅ by U(5; 2) on w. If L(w1) ∩ {s, u} 6= ∅, then either

{rw, w} or {tw, w} is a primitive pair. If L(w1) ∩ {s, u} = ∅, then by 3.3 (iv)–(v) and

U(5; 2) on w, we see that w1 must be a right extension of trv, trytyr, rtx or rtzrzt,

where w1 is a right extension of trytyr (respectively, rtzrzt) only if Γ has a subgraph

as in Fig. 17 (a) (respectively, Fig. 17 (b)). By symmetry, we need only to consider
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the case where w1 is a right extension of trv or trytyr. If w1 is a right extension of trv

then uw can be obtained from w by a {u, x}-star operation. If w1 is a right extension

of trytyr then {rw,w} is a primitive pair.
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Fig. 17.

(19) We have L(w1) ∩ J ⊆ {s, r, t}. If L(w1) ∩ {s, r, t} 6= ∅, then sw, rw or uw can

be obtained from w by a star operation. If L(w1) ∩ {s, r, t} = ∅, then by 3.3 (iv)–(v)

and U(5; 2) on w, we see that w1 = x1x2 · · ·xc · w2 for some c > 4 and w2 ∈ W with

(xc−2, xc−1, xc) ∈ {(y, t, u), (u, t, y)} and Γ having a subgraph as in Fig. 15 (a). Then

{sw, w} is a primitive pair (comparing with case (13)).

(20) We have L(w1)∩J ⊆ {s, r, t}. If t ∈ L(w1) (respectively, r ∈ L(w1)) then {sw, w}
(respectively, {rw, w}) is a primitive pair. If s ∈ L(w1) then sw can be obtained from

w by an {s, y}-star operation. Now assume L(w1) ∩ J = ∅. By 3.3 (iv)–(v) and U(5; 2)

on w, we see that w1 is a right extension of either (i) y1y2 · · · yc with yc = u for some

c > 2 and Γ has a subgraph as in Fig. 18 (a), or (ii) y1y2 · · · ycyc+1yc+2 with yi 6= u for

any 1 6 i 6 c + 2, some c > 0 and Γ has a subgraph as in Fig. 18 (b). In either case,

{rw, w} is a primitive pair (comparing with case (14)).

y1ys yc y1ys yc y

yc+1

c+2

(a) (b)

Fig. 18.

(21) We have L(w1) ∩ J ⊆ {r, t} by 3.3 (iv)–(v) and U(5; 2) on w. If t ∈ L(w1),

then {sw, w} is a primitive pair. If L(w1)∩ J = {r}, then w1 must be a right extension

of either rv or rxsr. In the former case, rw can be obtained from w by an {r, x}-star
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operation; in the latter case, tw can be obtained from w by a {t, v}-star operation

(comparing with case (14)).

(22) If s ∈ L(w1) then sw can be obtained from w by an {s, y}-star operation. If

s /∈ L(w1) then by 3.3 (iv)–(v) and U(5; 2) on w, we see that w1 is a right extension

of tuv, trv, ruv, rsy or y1y2 · · · ycyc+1yc+2 for some c > 1, where in the last case, Γ

has a subgraph as in Fig. 18 (b). Hence at least one of {sw,w}, {rw, w}, {uw, w} is a

primitive pair (comparing with case 15).

(23) We have W = D̃5 and L(w1) ⊆ {r, t, u}. If L(w1) ∩ {t, u} 6= ∅ then {sw,w} is a

primitive pair. Now assume L(w1) = {r}. By 3.3 (iv)–(v) and U(5; 2) on w, we see that

w1 is a right extension of either rxv or rxsr. In the former case, rw can be obtained

from w by an {r, x}-star operation; while in the latter case, {tw,w} is a primitive pair

(comparing with case 15).

(24) If u ∈ L(w1) (respectively, s ∈ L(w1)) then tw (respectively, sw) can be obtained

from w by a {t, x}- (respectively, {s, y}-) star operation. If r ∈ L(w1) then {rw, w} is a

primitive pair. If L(w1)∩J = {t} then w1 must be a right extension of either tv or tx by

3.3 (iv)–(v) and U(5; 3) on w, hence either uw can be obtained from w by a {u, x}-star

operation, or {rw,w} is a primitive pair. Now assume L(w1) ∩ J = ∅. By 3.3 (iv)–(v)

and U(5; 3) on w, we see that w1 must be a right extension of y1y2 · · · ycyc+1yc+2 for

some c > 0 with Γ having a subgraph as in Fig. 18 (b). So {rw,w} is a primitive pair

(comparing with case 16).

(25) We have W ∈ {Dn, D̃n, E8, Ẽ8 | n > 7}. By 3.3 (iv)–(v) and U(5; 3) on w,

we have ∅ 6= L(w1) ∩ J ⊆ {r, t, u}. If u ∈ L(w1), then tw can be obtained from w by

a {t, x}-star operation. If L(w1) ∩ J ⊆ {r, t}, then w1 must be a right extension of

tv, tx, rv or rysr. When w1 is a right extension of tv (respectively, rv), the element

uw (respectively, rw) can be obtained from w by a {u, x}- (respectively, {r, y}-) star

operation. When w1 is a right extension of tx or rysr, {sw, w} is a primitive pair

(comparing with case 16).

(26) We have W = Ẽ6 and ∅ 6= L(w1) ⊆ J . If s ∈ L(w1) then sw can be obtained
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from w by an {s, y}-star operation. If L(w1) ∩ {r, u} 6= ∅ then {sw,w} is a primitive

pair. Now assume L(w1) = {t}. Then by 3.3 (iv)–(v) and U(5; 3) on w, we see that

w1 must be a right extension of tv or tx. Hence {tw,w} is a primitive pair (comparing

with case 17).

(27) We have W ∈ {Ei, Ẽi | i = 7, 8} and ∅ 6= L(w1) ⊆ J by 3.3 (iv)–(v) and U(5; 3)

on w. If r ∈ L(w1) then rw can be obtained from w by an {r, y}-star operation. If

u ∈ L(w1) (respectively, L(w1) ∩ {s, t} 6= ∅) then {rw, w} (respectively, {tw,w}) is a

primitive pair. (comparing with case 18).

(28) By 3.3 (iv)–(v) and U(5; 3) on w, we see that w1 must be a right extension

of sx, rx, ty, tu or srxy. If w1 is a right extension of sx (respectively, rx, ty) then

rw (respectively, sw, tw) can be obtained from w by an {r, x}- (respectively, {s, x}-,
{t, y}-) star operation. If w1 is a right extension of tu (respectively, srxy) then {sw, w}
(respectively, {uw, w}) is a primitive pair (comparing with case 19). ¤

Now we are ready to prove Proposition 2.4.

6.2. Proof of Proposition 2.4. Let w = wJ · w1 ∈ W be as in Proposition 2.4 with

n := a(w) > m := `(wJ ) 6 5. By Lemma 2.1 and Proposition 2.3, we may assume

W /∈ {Ãn−1, D̃4 | n > 2}. Then w satisfies U(m). If m = 1, say J = {s}, then sw can

be obtained from w by a star operation. If m > 1, then our result follows by Lemmas

4.1-4.3, 5.1-5.3 and 6.1. ¤
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