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The cells of affine Weyl groups have been studied for more than one decade. They
have been described explicitly in cases of type Ãn ( n ≥ 1 ) [13][9] and of rank ≤ 3
[1][4][10]. But there are only some partial results for an arbitrary irreducible affine Weyl
group [2][7][8][16][17]. In [18], we constructed an algorithm to find a representative set of
left cells of certain crystallographic group W in a given two-sided cell. This provides us a
practicable way to describe the cells of more groups. In the present paper, we shall apply
it to the case when W is the affine Weyl group Wa(D̃4) ( or denoted by Wa for brevity )
of type D̃4. We shall give an explicit description for all the left cells of Wa by finding a
representative set of left cells of Wa. Before this paper, Du Jie gave an explicit description
for all the two-sided cells of Wa, but he was unable to find the left cells of this group
[5]. Chen Chengdong recently described all the left cells of Wa in terms of certain special
reduced expressions of elements [3]. Comparing with their results, our description on the
cells of Wa is neater and easier expressable in nature. Moreover, by doing the above work,
we develop some technical skill in performing the mentioned algorithm. In particular, we
could avoid any computation of non-trivial Kazhdan-Lusztig polynomials throughout this
work.

The content of the present paper is organized as below. Section 1 is the preliminaries.
Some basic concepts and results concerning our algorithm are stated there. In section 2,
we introduce the alcove forms of elements of Wa and also state some properties of elements
of Wa in terms of alcove forms, which are quite useful in the subsequent sections. Then
in sections 3–5, we apply our algorithm to find a representative set Σ of left cells of Wa.
Finally, in section 6, we describe all the left cells of Wa by making use of the set Σ.

1. Preliminaries.
1.1 Let W = (W,S) be a Coxeter group with S its Coxeter generator set. Let ≤ be the
Bruhat order on W . For w ∈ W, we denote by `(w) the length of w. Let A = Z[u] be
the ring of polynomials in an indeterminate u with integer coefficients. For each ordered
pair y, w ∈ W, there exists a unique polynomial Py,w ∈ A, called a Kazhdan-Lusztig
polynomial, which satisfies the conditions: Py,w = 0 if y 
 w, Pw,w = 1, and deg Py,w ≤
(1/2)(`(w)−`(y)−1) if y < w. These polynomials satisfy the following recurrence formula.
Let y, w ∈ W and assume sw < w for some s ∈ W. Then we have

(1.1.1) Py,w = ucPsy,sw + u1−cPy,sw −
∑

y≤z<sw
sz<z

µ(z, sw)u(1/2)(`(w)−`(z))Py,z
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where µ(z, sw) denotes the coefficient of u(1/2)(`(sw)−`(z)−1) in Pz,sw; c = 1 if sy > y
and c = 0 if sy < y ( see [6] ). We denote y—w if either deg Py,w or deg Pw,y reaches
(1/2)(|`(w)− `(y)| − 1).

From formula (1.1.1), we see that checking the relation y—w for y, w ∈ W usually
involves very complicated computation of Kazhdan-Lusztig polynomials. But the following
fact is simple and useful: if x, y ∈ W satisfy y < x and `(y) = `(x) − 1, then we have
y—x. Another result concerning this relation will be stated in Proposition 1.14.
1.2 The preorders ≤

L
, ≤

R
, ≤

LR
on W and the associated equivalence relations ∼

L
,∼
R

, ∼
LR

on W

are defined in [6]. The equivalence classes for ∼
L

( resp. ∼
R

, ∼
LR

) on W are called left cells

( resp. right cells, two-sided cells ).
1.3 Now we take W = Wa to be an irreducible affine Weyl group. Lusztig defined a
function a : Wa −→ N which satisfies the following properties:
(1) a(z) ≤ |Φ|/2, for any z ∈ Wa, where Φ is the root system determined by Wa;
(2) x ≤

LR
y =⇒ a(x) ≥ a(y). In particular, x ∼

LR
y =⇒ a(x) = a(y). So we may define the

a-value a(Γ) on a ( left, right or two-sided ) cell Γ of Wa by a(x) for any x ∈ Γ.
(3) a(x) = a(y) and x ≤

L
y ( resp. x ≤

R
y ) =⇒ x ∼

L
y ( resp. x ∼

R
y ).

(4) Let δ(z) = deg Pe,z for z ∈ Wa, where e is the identity of the group Wa. Then the
inequality

(1.3.1) `(z)− 2δ(z)− a(z) ≥ 0

holds for any z ∈ Wa. The set

(1.3.2) D = {w ∈ Wa|`(w)− 2δ(w)− a(w) = 0}

is a finite set of involutions. Each left ( resp. right ) cell of Wa contains a unique element
of D [11].
(5) For any proper subset I of S, let wI be the longest element in the subgroup WI

generated by I. Then wI ∈ D and a(wI) = `(wI).
The above properties of function a were shown by Lusztig in his paper [10][11]. Now

we state two more properties of this function which are simple consequences of properties
(2), (3) and (5).

Let W(i) = {w ∈ Wa | a(w) = i} for any non-negative integer i. Then by (2), W(i) is a
union of some two-sided cells of Wa.

To each element x ∈ Wa, we associate two subsets of S as below.

(1.3.3) L(x) = {s ∈ S | sx < x} and R(x) = {s ∈ S | xs < x}.

(6) If W(i) contains an element of the form wI for some I ⊂ S, then {w ∈ W(i) | R(w) = I}
forms a single left cell of Wa.
(7) Let x = yz with `(x) = `(y) + `(z) for x, y, z ∈ Wa. Then x ≤

L
z, x ≤

R
y and hence

a(x) ≥ a(y), a(z). In particular, if I = R(x) ( resp. I = L(x) ), then a(x) ≥ `(wI).
1.4 Let G be the connected reductive algebraic group over C whose type is dual to the
type of Φ ( see 1.3(1) ). Then the following result is due to Lusztig [12].

Theorem. There exists a bijection u 7→ c(u) from the set of unipotent conjugacy classes
in G to the set of two-sided cells in Wa. This bijection satisfies the equation a(c(u)) =
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dim Bu, where u is any element in u, and dim Bu is the dimension of the variety of Borel
subgroups of G containing u.

1.5 To each element x ∈ Wa, we associate a set Σ(x) of all left cells Γ of Wa satisfying
the condition that there is some element y ∈ Γ with y—x, R(y) * R(x) and a(y) = a(x).

Then the following result is known

Theorem [18]. If x ∼
L

y in Wa, then R(x) = R(y) and Σ(x) = Σ(y).

1.6 A subset K ⊂ Wa is called a representative set of left cells of Wa ( resp. of Wa in a
two-sided cell Ω ), if |K ∩ Γ| = 1 for any left cell Γ of Wa ( resp. of Wa in Ω ), where the
notation |X| stands for the cardinality of the set X.

The main purpose of the present paper is to describe the left cells of the affine Weyl
group Wa of type D̃4 by finding a representative set of left cells of Wa. By 1.3(4), we know
that the set D forms such a set. But finding the set D should involve very complicated
computation of Kazhdan-Lusztig polynomials. Thus instead, the author formulated an
algorithm to find a representative set of left cells of certain crystallographic group in a
given two-sided cell ( see [18] ). We shall state the algorithm in the case of Wa right now.

The algorithm is based on the following result which is a consequence of Theorem 1.5.

Theorem [18]. Let Ω be a two-sided cell of Wa. Assume that a non-empty subset M ⊂ Ω
satisfies the following conditions.
(1) x �

L
y for any x 6= y in M ;

(2) If for a given element y ∈ Wa, there is some element x ∈ M satisfying conditions
y—x, R(y) * R(x) and a(y) = a(x), then there is some z ∈ M with y ∼

L
z.

Then M is a representative set of left cells of Wa in Ω.

1.7 To each element x ∈ Wa, we define a set M(x) of all elements y for each of which
there are a sequence of elements x0 = x, x1, . . . , xr = y in Wa with some r ≥ 0, where
for every i, 1 ≤ i ≤ r, the conditions x−1

i−1xi ∈ S and R(xi−1)
+
*R(xi) are satisfied.

The following result is well-known.

Proposition [18]. Given x.x′ ∈ Wa. If there are elements y, z ∈ M(x) and y′, z′ ∈ M(x′)
such that y—y′, z—z′, R(y) * R(y′) and R(z′) * R(z), then x ∼

R
x′. In particular, we

have a(x) = a(x′).

1.8 A subset P ⊂ Wa is said to be distinguished if P 6= ∅ and x �
L

y for any x 6= y in P .

Given a subset P of Wa. The following are two processes on P.

(A) Find a largest possible subset Q from the set
⋃

x∈P

M(x) with Q distinguished.

(B) For each x ∈ P , find elements y ∈ Wa such that y—x, R(y) % R(x) and a(y) = a(x),
add these elements y on the set P to form a set P ′ and then take a largest possible subset
Q from P ′ with Q distinguished.
1.9 A subset P of Wa is called A-saturated ( resp. B-saturated ) if Process (A) ( resp.
Process (B) ) can’t produce any element z satisfying z �

L
x for all x ∈ P .

Clearly, a set of the form
⋃

x∈K

M(x) for any K ⊂ Wa is always A-saturated.

It follows from Theorem 1.6 that a representative set of left cells of Wa in a two-sided
cell Ω is exactly a distinguished subset of Ω which is both A- and B-saturated. So to get
such a set, we may use the following
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1.10 ALGORITHM [18] (1) Find a non-empty subset P of Ω ( Usually we take P to be
distinguished for avoiding unnecessary complication if possible );
(2) Perform Processes (A) and (B) alternately on P until the resulting distinguished set
can’t be further enlarged by both processes.
1.11 We define a graph M(x) associated to each x ∈ Wa as follows. Its vertex set is
M(x). Its edge set consists of all two-elements subsets {y, z} ⊂ M(x) with y−1z ∈ S and

R(y)+*R(z), To each vertex y ∈ M(x), we are given a subset R(y) of S. To each edge

{y, z} of M(x), we are given an element s ∈ S with s = y−1z.
1.12 Two graphs M(x) and M(x′) are called quasi-isomorphic if there exists a bijection
φ from the set M(x) to the set M(x′) satisfying the following conditions.

(1) R(w) = R(φ(w)) for w ∈ M(x).
(2) For y, z ∈ M(x), {y, z} is an edge of M(x) if and only if {φ(y), φ(z)} is an edge

of M(x′).

1.13 By a path in graph M(x), we mean a sequence of vertices z0, z1, . . . , zt in M(x) such
that {zi−1, zi} is an edge of M(x) for any i, 1 ≤ i ≤ t. Two elements x, x′ ∈ Wa are said
to have the same generalized τ -invariant if for any path z0 = x, z1, . . . , zt in graph M(x),
there is a path z′0 = x′, z′1, . . . , z

′
t in M(x′) with R(z′i) = R(zi) for every i, 0 ≤ i ≤ t, and

if the same condition holds when interchanging the roles of x with x′.
The following result is known.

Proposition [18]. The elements in the same left cell of Wa have the same generalized
τ -invariant.

1.14 Suppose that the product st of two generators s, t ∈ S has order 3. We call an ordered
pair of the form (ys, yst) or (yt, yts) an {s, t}-string if y ∈ Wa satisfies R(y) ∩ {s, t} = ∅.

Now we are given two {s, t}-strings (x1, x2) and (y1, y2). Then we have the following
known result.

Proposition [18]. (1) x1—y1 ⇐⇒ x2—y2;
(2) x1—y2 ⇐⇒ x2—y1;
(3) x1 ∼

L
y1 ⇐⇒ x2 ∼

L
y2;

(4) x1 ∼
L

y2 ⇐⇒ x2 ∼
L

y1.

1.15 Say a set Σ of left cells of Wa to be represented by a set M of elements of Wa if Σ
is the set of all left cells Γ of Wa with Γ ∩M 6= ∅.

As an easy consequence of Theorem 1.5, we have

Proposition. If x ∼
L

y in Wa, then M(x) and M(y) represent the same set of left cells

of Wa.

1.16 We state some results of a Coxeter group (W,S) which will be useful in performing
Processes (A) and (B) on a set.

(1) If x, y ∈ W satisfy x—y and R(x)+*R(y), then x−1y ∈ S. More precisely, we have

x−1y ∈ R(x)∨R(y), where the notation X ∨Y stands for the symmetric difference of two
sets X and Y .
(2)If x, y ∈ W satisfy y—x, R(y) % R(x) and a(x) = a(y), then we have either y−1x ∈ S
or y < x with `(x)− `(y) odd, and we also have L(y) = L(x).

The following known result are concerning the Bruhat order on elements of (W,S).
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(a) Let y ≤ w in W . Then for any reduced form w = s1s2 · · · sr with si ∈ S, there is a
subsequence i1, i2, · · · , it of 1, 2, · · · , r such that y = si1si2 · · · sit is a reduced expression
of y.
(b) Suppose J = L(w) ( resp. J = R(w) ) for w ∈ W . Then there is some x ∈ W with
w = wJ ·x ( resp. w = x·wJ ) and `(w) = `(wJ) + `(x).

Now let w ∈ W with J = L(w). By (b), we can find a reduced expression

w = s1s2 · · · sr, si ∈ S

with wJ = s1s2 · · · st, where t = `(wJ ). Denote wj = s1s2 · · · sj for t ≤ j ≤ r. Let Pj be
the set of all elements y with y ≤ wj and L(y) ⊇ J. Then Pt = {wJ}. Suppose that the
set Pk has been found for t ≤ k < r. Then by (a), we have

Pk+1 = Pk

⋃
{xsk+1 | x ∈ Pk, sk+1 /∈ R(x)}.

This provides an inductive procedure to find all the elements y with y ≤ w and L(y) ⊇
L(w) for any given w ∈ W .

2. Alcove forms of elements of Wa(D̃4).
Although any element of Wa can be expressed as a product of generators in S, there are

some disadvantages for such an expression in practical usage. For example, it is not easy
to tell whether such an expression is reduced or not, and it is also difficult to determine
the sets L(w) and R(w) directly from such an expression of an element w ∈ Wa. In the
present section, we shall introduce the alcove forms of elements of Wa by which one can
overcome the above obscurities,
2.1 Let E be the euclidean space spanned by the root system Φ of type D`, ` ≥ 4. Let
〈 , 〉 be an inner product in E. The affine Weyl group Wa of type D̃` can be regarded as
a group of right isometric transformations on E. More precisely, let W be the Weyl group
of Φ generated by the reflections sα on E for α ∈ Φ: sα sends x ∈ E to x − 〈x, α∨〉α,
where α∨ = 2α/〈α, α〉. We denote by N the group of all translations Tλ on E: Tλ sends
x to x + λ, where λ ranges over the root lattice ZΦ. Then Wa can be regarded as the
semi-direct product N oW. There is a canonical homomorphism from Wa to W : w 7→ w̄.

Let Φ+ be a positive root system of Φ with ∆ = {α1, . . . , α`} its simple root system,
where the indices of simple roots are compatible with the following Dynkin diagram:

◦ −̀1

◦——◦—— · · · · · ·——◦——◦
1 2 −̀3 −̀2

◦ `

Let −α0 be the highest root in Φ+. We define s0 = sα0T−α0 and si = sαi , 1 ≤ i ≤ `.
Then the generator set S of Wa can be taken as S = {s0, s1, . . . , s`}.
2.2 For α ∈ Φ+ and m, k ∈ Z with m > 0, we define a stripe of E as below.

Hm
α;k = Hm

−α;−k = {v ∈ E | k < 〈v, α∨〉 < k + m}.

By an alcove, we mean a non-empty set of E of the form

⋂

α∈Φ

H1
α;kα
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with all kα ∈ Z. The action of Wa on E induces an action on the set of all alcoves of
E which is simply transitive. This enables us to identify an element w ∈ Wa with the
corresponding alcove

Aw =
⋂

α∈Φ

H1
α;k(w,α)

for some set of integers k(w, α). This correspondence is determined uniquely by the
following properties.
(a) k(e, α) = 0, ∀α ∈ Φ, where e is the identity of Wa;
(b) If w′ = wsi ( 0 ≤ i ≤ ` ), then

k(w′, α) = k(w, (α)s̄i) + ε(α, i)

with

ε(α, i) =





0 if α 6= ±αi;
−1 if α = αi;
1 if α = −αi,

where s̄i = si if 1 ≤ i ≤ `, and s̄0 = sα0 ( see [14] )
2.3 An alcove

⋂
α∈Φ H1

α;kα
of E is determined completely by a Φ-tuple (kα)α∈Φ( resp. a

Φ+-tuple (kα)α∈Φ+) over Z. So we can simply write (kα)α∈Φ ( resp. (kα)α∈Φ+) for an
alcove

⋂
α∈Φ H1

α;kα
. Note that not any Φ-tuple (kα)α∈Φ over Z gives rise to an alcove of

E in the above way. It is so if and only if the following conditions are satisfied.
(a) k−α = −kα for any α ∈ Φ;
(b) for any α, β ∈ Φ with α + β ∈ Φ, the inequality

kα + kβ ≤ kα+β ≤ kα + kβ + 1

holds ( see [14] ).
2.4 Property (2.2)(b) actually defines a set of operators {si | 0 ≤ i ≤ `} on the alcoves of
E:

si : (kα)α∈Φ 7−→ (k(α)s̄i
+ ε(α, i))α∈Φ.

These operators could be described graphically. We shall only deal with the case of ` = 4
which is actually needed in the present paper. We denote a root α =

∑4
i=1 aiαi by its

coordinate form (a1, a2, a3, a4). Now we arrange the entries of a Φ+-tuple (kα)α∈Φ+ in the
following way.

k(1,1,1,0)
k(1,1,0,0) k(0,1,1,0)

k(1,0,0,0) k(0,1,0,0) k(0,0,1,0)
k(1,2,1,1) k(0,1,1,1) k(0,0,0,1)

k(1,1,1,1) k(0,1,0,1)
k(1,1,0,1)

a
b c

Then the effect of the operator si on a Φ+-tuple w = d e f are listed as in the
t u v
x y
z
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following table:

s s0 s1 s2 s3 s4

−y c ∗ b x
−u −z e a d f a e z u

ws ∗ −x ∗ −d−1 b ∗ b −e−1 c ∗ c −f−1 ∗ y ∗
−t+1 −b ∗ ∗ x ∗ x ∗ y ∗ y ∗ ∗ c −v−1

−e −a u z t v z u a e
−c y ∗ x b

where the entries in the ∗ positions remain unchanged.
2.5 It is known that any permutation on the set {si | i = 0, 1, 3, 4} can be extended to a
unique automorphism of Wa which fixes s2. Let S be the group of all permutations σ on
the set {0, 1, 2, 3, 4} satisfying σ(2) = 2. Let fσ be the automorphism of Wa satisfying
fσ(si) = sσ(i) for any si ∈ S. We denote f(ij) simply by fij , where (ij) is the transposition
of i and j for i 6= j in {0, 1, 3, 4}. Then the effect of the fij ’s on

a
b c

an element w = d e f are listed as below.
t u v
x y
z

{i, j} {0, 1} {0, 3} {0, 4} {1, 3} {1, 4} {3, 4}
−z −u ∗ ∗ u z
−x ∗ ∗ −x ∗ ∗ c b y ∗ ∗ y

fij(w) −t ∗ ∗ ∗ ∗ −t ∗ ∗ ∗ f ∗ d v ∗ ∗ ∗ ∗ v
−d ∗ ∗ −f −a ∗ −v −z −t ∗ z ∗ ∗ a d ∗ ∗ f
−b ∗ −c ∗ −y −x ∗ ∗ ∗ b ∗ c
−a ∗ −u u ∗ a

2.6 For w, w′ ∈ Wa, we say that w′ is a left extension of w if `(w′) = `(w) + `(w′w−1).
Then the following results on the alcove form (k(w,α))α∈Φ of an element w ∈ Wa are
known.

Proposition [14][15]. (1) `(w) =
∑

α∈Φ+ |k(w, α)|, where the notation |x| stands for the
absolute value of x;
(2) R(w) = {si | k(w,αi) < 0}.
(3) Let w′ = (k(w′, α))α∈Φ ∈ Wa. Then w′ is a left extension of w if and only if the
inequalities k(w′, α)k(w, α) ≥ 0 and |k(w′, α)| ≥ |k(w, α)| hold for any α ∈ Φ.

3. Left cells in W(i), i ∈ {0, 1, 3, 4, 12}.
From now on, we always assume that Wa is the affine Weyl group of type D̃4. We shall

apply Algorithm 1.10 to find a representative set of left cells of Wa in each of its two-sided
cells Ω.
3.1 Let W(i) = {w ∈ Wa | a(w) = i} for i ≥ 0. Then from the knowledge of unipotent
classes of the complex connected reductive algebraic group of type D4 and from Theorem
1.4, we see that W(i) = ∅ unless i ∈ { 0, 1, 2, 3, 4, 6, 7, 12 }. W(i) is a single two-sided
cell of Wa if i ∈ { 0, 1, 3, 4, 7, 12 }. On the other hand, W(i) is a union of three two-sided
cells of Wa if i ∈ { 2, 6 }.
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3.2 The case W(0) = {e} is trivial. The two-sided cell W(1) consists of all non-identity
elements y of Wa each of which has a unique reduced expression. The set S forms a
representative set of left cells of Wa in W(1) ( see [8] ). The set W(12) can be described as
follows

W(12) = {w ∈ Wa | k(w, α) 6= 0 ∀α ∈ Φ}
(3.2.1) = {w ∈ Wa | w = x·wJ ·y for some J ⊂ S and x, y ∈ Wa with

`(wJ ) = 12 and `(w) = `(x) + `(wJ) + `(y)}

It is known that the set

(3.2.2) N = {w ∈ W(12) |L(w) = J satisfies `(wJ) = 12 and

sw /∈ W(12) for any s ∈ J}

forms a representative set of left cells of Wa in W(12) which has cardinality 192 ( see [16][17]
).

For the sake of brevity, we shall denote each generator si of Wa by i ( boldfaced ) in
the remaining part of this paper. Let T = {0, 1, 3, 4}.
3.3 Now we consider W(3). The set of elements of W(3) of the form wJ with J ⊂ S is

(3.3.1) P = {020, 121, 323, 424, 013, 014, 034, 134}.

Graph M(i j k) with distinct i, j, k, m ∈ T are

i, j, k
2

—— 2
m

—— m

Figure 1. M(i j k)

where the vertices x are represented by boxes, inside which we describe the corresponding
subset R(x) of S, the vertex x with R(x) = {i, j, k} is the element i j k. The graphs
M(i 2 i) with i ∈ T are all infinite and are quasi-isomorphic to each other. By 1.3(6) and
Proposition 1.13, we can find a subgraph M of graph M(121) such that its vertex set M

is a largest distinguished subset in the set
⋃

i∈T

M(i 2 i)

0, 1
2
–– 0, 2

3
–– 0, 3

0

∣∣∣∣
1, 2

3
–– 1, 3

2
–– 2, 3

4
–– 3, 4

4

∣∣∣∣
1, 4

2
–– 2, 4

0
–– 0, 4

Figure 2. M

where the vertex x with R(x) = {1, 2} is the element 121.
Let

(3.3.2) I = { {i, j, k} ⊂ T | i, j, k are distinct}.
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Then the A-saturated set

(3.3.3) M
⋃


 ⋃

{i,j,k}∈I

M(i j k)




is distinguished by Proposition 1.13. It is easily checked that this set is also B-saturated.
In fact, by 1.3(6) and by symmetry, one need only show that if y ∈ Wa satisfies y—01324,
R(y) % {4} and a(y) = 3, then there exists some element z of the set in (3.3.3) with y ∼

L
z.

This could be done by using 1.16 (2). Hence the set in (3.3.3) forms a representative set
of left cells of Wa in W(3) by Theorem 1.6.
3.4 Next we consider W(4). There exists only one element in W(4), i.e. 0134, which has
the form wJ . The graph M(0134) is as below.

0, 1, 3, 4
2

—— 2

Figure 3. M(0134)

The set M(0134) is distinguished and A-saturated. But it is not B-saturated. In fact, let
y = 01342 and yi = y i, i ∈ T. Then yi—y, R(yi) = {2, i} % {2} = R(y) and a(yi) = 4,
where the assertion a(yi) = 4 can be shown by Propositions 1.7 and 1.14 from the graph

0, 1, 3, 4
2

—— 2
i−−− 2, i

j
—— i, j

Figure 4.

where i, j ∈ T are distinct, and the vertex x with R(x) = {2, i} is the element yi. The
graphs M(yi), i ∈ T, are finite which are all the same, i.e.

0, 2
3
–– 0, 3

0
–– 2, 3

1 1

4 0, 1 1, 3 4

0 3

0, 4 1, 2 3, 4

4

∣∣∣∣
0 1, 4 3

1

∣∣∣∣
2, 4

Figure 5. M(y0)

where the vertex x with R(x) = {2, i} is the element yi for any i ∈ T. Note that the
above graph could be drawn tetrahedrally which looks more symmetric. The union set
M(0134)

⋃
M(y0) is distinguished and A-saturated. But it is still not B-saturated. Let

yij = yi · j for distinct i, j ∈ T. Then R(yij) = {i, j}, and the yij ’s are vertices of graph
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M(y0). Let k, m, i, j be four numbers with {k,m, i, j} = T and let zijk = yij ·k. Then
zijk—yij and R(zijk) = { i, j, k } % { i, j } = R(yij). We have graphs M(zijk) as below.

i, j, k
2

—— 2
m

—— m

Figure 6. M(zijk)

where the vertex x with R(x) = { i, j, k} is the element zijk. By Propositions 1.7 and 1.14,
we see from Figures 5 and 6 that a(zijk) = 4 = a(yij). We have zijk = zi′j′k′ if and only if
i′, j′, k′ is a permutation of i, j, k. Thus we get four distinct graphs: M(zijk), {i, j, k} ∈ I
( see (3.3.1) ). It is easily checked that the set

M(0134)
⋃

M(y0)
⋃


 ⋃

{i,j,k}∈I

zijk




is distinguished which is both A- and B-saturated. Thus by Theorem 1.6, this forms a
representative set of left cells of Wa in W(4).

4. Left cells in W(2) and W(6).
Since neither W(2) nor W(6) is a single two-sided cell of Wa, we shall deal with these

two sets in a different way. As a starting set in the algorithm, P couldn’t be chosen the
set of all the elements of W(i) ( i = 2, 6 ) of the form wJ . This is because the latter set in
W(i) may not be wholely contained in some two-sided cell of Wa.
4.1 Let us first consider the set W(2). It contains six elements of the form wJ : 01, 03, 04,
13, 14 and 34. We start with the set P = {01} and consider the two-sided cell Ω1 of Wa

containing 01. Graph M(01) is the left one in Figure 7.

0, 1 3, 4

2

∣∣∣∣ 2

∣∣∣∣
3

3
–– 2

4
–– 4 0

0
–– 2

1
–– 1

M(01) M(y′)

Figure 7.

Its vertex set M(01) is distinguished and A-saturated. But it is not B-saturated. In fact,
let y = 0123 and y′ = y ·4. Then we have y′—y and R(y′) = {3, 4} % {3} = R(y). By
observing graphs M(01) and M(y′) ( see Figure 7 ), we see from Propositions 1.7 and 1.14
that y′ ∼

R
y and hence y′ ∈ Ω1. Now by 1.3(6), we have 34 ∼

L
y′. Thus by Proposition 1.15,

the set M(34) represents the same set of left cells of Wa as the set M(y′) does. We see
by Proposition 1.13 that the union M(01)

⋃
M(34) is distinguished and A-saturated. It

is easily checked that this set is also B-saturated ( By symmetry, we need only check that
if y ∈ Wa satisfies y—x, R(y) % R(x) and a(y) = 2 for x = 0123, then R(y) = {3, 4} ).
Hence it forms a representative set of left cells of Wa in Ω1.
4.2 It is known that any S-preserving automorphism of Wa stablizes the sets W(i), i ≥ 0,
and induces a permutation on the set of two-sided cells of Wa in each W(i). Let Ω2 =
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f13(Ω1) and Ω3 = f14(Ω1) ( see 2.5 ). Then both Ω2 and Ω3 are two-sided cells of Wa in
W(2). Ω1, Ω2 and Ω3 are all distinct since each of them contains exactly one of the sets
{01, 34}, {03, 14} and {04, 13}, and no two of these Ωi’s contain the same one. Clearly, the
image of the set M(01)

⋃
M(34) under the map f13 ( resp. f14 ), i.e. M(03)

⋃
M(14) (

resp. M(04)
⋃

M(13) ) forms a representative set of left cells of Wa in Ω2 ( resp. Ω3 ).
4.3 Next we consider the set W(6). There are six elements of the form wJ in W(6). They
are w{i,j,2} with distinct i, j ∈ T. Let Ω′1 be the two-sided cell of Wa in W(6) containing
w{0,1,2} = 020120. Graph M(020120) is as in Figure 8.

0, 1, 4
4
–– 0, 1, 2

3
–– 0, 1, 3

2

∣∣∣∣ 2

∣∣∣∣
2, 4 1, 3

3
–– 1, 2

4
–– 1, 4 2, 3

3

∣∣∣∣ 1

∣∣∣∣ 0

∣∣∣∣ 1

∣∣∣∣ 4

∣∣∣∣
3, 4

2
–– 2, 3 0, 1 2, 4

2
–– 3, 4

0

∣∣∣∣ 1

∣∣∣∣ 0

∣∣∣∣
0, 3

3
–– 0, 2

4
–– 0, 4

Figure 8. M(020120)

where the vertex x with R(x) = {0, 1, 2} is the element 020120. The A-saturated set
M(020120) is distinguished by Proposition 1.13, but it is not B-saturated. In fact, take
the elements w = 0201203, y = 02012032421 and z = 02012042321 in M(020120). Let w′ = w·4,
y′ = y ·0 and z′ = z ·0. Then w′—w, y′—y, z′—z, R(w′) = {0, 1, 3, 4} % {0, 1, 3} = R(w),
R(y′) = {0, 1, 4} % {1, 4} = R(y) and R(z′) = {0, 1, 3} % {1, 3} = R(z). Graphs M(w′),
M(y′) and M(z′) are as in Figure 9.

0, 1, 3, 4
2

—— 2 0, 1, 4
2

—— 2
3

—— 3 0, 1, 3
2

—— 2
4

—— 4

M(w′) M(y′) M(z′)

Figure 9.

where the vertex x with R(x) = {0, 1, 3, 4}, {0, 1, 4} and {0, 1, 3} are w′, y′ and z′, respec-
tively. Thus by Propositions 1.7 and 1.14, we get w′ ∼

R
w, y′ ∼

R
y and z′ ∼

R
z. In particular,

we have w′, y′, z′ ∈ Ω′1.
4.4 By Proposition 1.13, we see that the A-saturated set

(4.4.1) M̃(020120) = M(020120)
⋃

M(w′)
⋃

M(y′)
⋃

M(z′)

is distinguished. But it is still not B-saturated. In fact, let v = z ·4. Then v—z and
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R(v) = {1, 3, 4} % {1, 3} = R(z). Graph M(v) is displayed in Figure 10.

0, 3, 4
0
–– 2, 3, 4

1
–– 1, 3, 4

2

∣∣∣∣ 2

∣∣∣∣
0, 2 1, 4

1
–– 2, 4

0
–– 0, 4 1, 2

1

∣∣∣∣ 4

∣∣∣∣ 3

∣∣∣∣ 4

∣∣∣∣ 0

∣∣∣∣
0, 1

2
–– 1, 2 3, 4 0, 2

2
–– 0, 1

3

∣∣∣∣ 4

∣∣∣∣ 3

∣∣∣∣
1, 3

1
–– 2, 3

0
–– 0, 3

Figure 10. M(v)

where the vertex x with R(x) = {1, 3, 4} is the element v. By Propositions 1.7 and 1.14,
we see that v ∼

R
z and hence the set M(v) is contained in Ω′1. Now R(v·1) = R(w{2,3,4}) =

{2, 3, 4}. By 1.3 (6), we have w{2,3,4} ∼
L

v ·1. In particular, this implies that w{2,3,4} =

323423 ∈ Ω′1. Moreover, by Proposition 1.15, the sets M(323423) and M(v) ( = M(v ·1) )
represent the same set of left cells of Wa.
4.5 The set M(323423) is the image of the set M(020120) under the automorphism f =
f(03)(14) of Wa ( see 2.5 ). This implies that the two-sided cell Ω′1 is stable under f . Let
w′′ = f(w′), y′′ = f(y′) and z′′ = f(z′). Then w′′, y′′, z′′ ∈ Ω′1. Graphs M(w′′), M(y′′)
and M(z′′) are as in Figure 11.

0, 1, 3, 4
2

—— 2 1, 3, 4
2

—— 2
0

—— 0 0, 3, 4
2

—— 2
1

—— 1

M(w′′) M(y′′) M(z′′)

Figure 11.

It is easily seen by Proposition 1.13 that the union set

M(020120)
⋃

M(323423)
⋃

M(y′)
⋃

M(y′′)
⋃

M(z′)
⋃

M(z′′)
⋃

M(x)

is distinguished, where x ∈ {w′, w′′}. But since graphs M(w′) and M(w′′) are quasi-
isomorphic, it is not clear whether the sets M(w′) and M(w′′) represent the same set of
left cells of Wa or not.
4.6 For x ∈ Wa, we denote by Γw the left cell of Wa containing w.

Lemma. The left cells of Wa represented by the sets M(w′) and M(w′′) are disjoint.

Proof. Let α = w′ ·2 = 020120342 ∈ M(w′) and β = w′′ ·2 = 323423012 ∈ M(w′′). It is
enough to show α �

L
β. By Theorem 1.5, we need only show Σ(α) 6= Σ(β). Observe the

graph

0, 1, 2
3

—— 0, 1, 3
4−−− 0, 1, 3, 4

2
—— 2
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where the vertex x with R(x) = {0, 1, 2} ( resp. R(x) = {2} ) is the element 020120 (
resp. α ). We see from Proposition 1.14 that 020120—α and hence Γ020120 ∈ Σ(α). On
the other hand, it is easily seen by 1.16(2) that there is no element x ∈ Wa satisfying both
conditions x—β and R(x) = {0, 1, 2}. So Γ020120 /∈ Σ(β). Our result follows. ¤

4.7 Let M̃(323423) = f(M̃(020120)). Then by Lemma 4.6, we see that the union set
M̃(020120)

⋃
M̃(323423) is distinguished and A-saturated.

Proposition. M̃(020120)
⋃

M̃(323423) forms a representative set of left cells of Wa in Ω′1.

The proposition is amount to assert that the set M̃(020120)
⋃

M̃(323423) is B-saturated.
We postpone the proof of this assertion to §5.
4.8 Now let us assume Proposition 4.7. Let Ω′2 = f03(Ω′1) and Ω′3 = f04(Ω′1). Then both
Ω′2 and Ω′3 are two-sided cells of Wa in W(6). We assert that Ω′1, Ω′2 and Ω′3 are all dis-
tinct since each of them contains exactly one of the sets {020120, 323423}, {323123, 020420}
and {424124, 323023}, and no two of these Ω′i’s contains the same one. Clearly, the set
f03(M̃(020120)

⋃
M̃(323423)) forms a representative set of left cells of Wa in Ω′2. A similar

result holds for Ω′3.

5. Left cells in W(7).
Unfortunately, there is no element of the form wJ in W(7). So the previous method

can’t be carried on to the case of W(7). We must find some suitable starting set of our
algorithm.
5.1 Let us consider the element w = 020120321. We know a(w) = 7 by a result of Du [ 5,
Lemma 2.9 ]. Graph M(w) is as in Figure 12.

0, 1, 3

0
2

∣∣∣∣ 1

1, 2, 3 0, 1, 2 0, 2, 3

4

∣∣∣∣ 4

∣∣∣∣ 4

∣∣∣∣
1, 3, 4 0, 1, 4 0, 3, 4

2

∣∣∣∣ 2

∣∣∣∣ 2

∣∣∣∣
2, 4 2, 4 2, 4

0

∣∣∣∣ 3

∣∣∣∣ 1

∣∣∣∣
0, 4 3, 4 1, 4

2

∣∣∣∣ 4

∣∣∣∣ 2

∣∣∣∣
0, 2

3
–– 0, 3

0
–– 2, 3

1
–– 1, 3

3
–– 1, 2

1 0

0, 1

Figure 12. M(w)

where the vertex x with R(x) = {1, 2, 3} is the element w. Note that the above graph
could be drawn tetrahedrally which looks more symmetric. The A-saturated set M(w) is
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distinguished by Proposition 1.13. But it is not B-saturated. Take α = w·0, β = w·42021 ∈
M(w). Let α′ = α · 4 and β′ = β · 3. Then α′—α, β′—β, R(α′) = {0, 1, 3, 4} % {0, 1, 3} =
R(α) and R(β′) = {0, 1, 3} % {0, 1} = R(β). Graphs M(α′) and M(β′) are as follows.

0, 1, 3, 4
2

—— 2 0, 1, 3
2

—— 2
4

—— 4

M(α′) M(β′)

Figure 13.

By Propositions 1.7 and 1.14, we see from Figures 12 and 13 that α′ ∼
R

α and β′ ∼
R

β. This

implies

(5.1.1) M(w) = M(w)
⋃

M(α′)
⋃

M(β′) ⊂ W(7).

The A-saturated set M(w) is distinguished by Proposition 1.13.
5.2 We have f01(w) = w·01 ∈ M(w). Moreover, it is easily seen that f01(M(w)) = M(w).
Let S′ = {1, (01)}, where 1 is the identity of the group S ( see 2.5 ). Then S′ is the
stablizer of M(w) in S. Let R ⊂ S be the set of distinguished left coset representatives
of S with respect to S′, i.e. R = {σ ∈ S | σ(0) < σ(1)}. For σ ∈ R, we denote the set
fσ(M(x)) by Mσ(x) for x ∈ {w,α′, β′} and fσ(M(w)) by Mσ(w).
5.3 Let us record some facts on elements of M(w) which are useful in the proof of the
subsequent lemmas.
(1) α is the unique element x in M(w) satisfying the following properties: (i) |R(x)| = 3;
(ii) If {x, y} is an edge of graph M(w), then |R(y)| = 3 and 2 ∈ R(y). These properties
are preserved under the action of S on α.
(2) α′ = α · 4 is the unique element x of Wa satisfying the conditions x—α and R(x) =
{0, 1, 3, 4}.
(3) β′ = β ·3 is the unique element x of Wa satisfying the conditions x—β, R(x) = {0, 1, 3}
and a(x) = 7.
(4) Let γ = α′ · 2. Then R(γ) = {2} and the elements y with y—γ, R(y) % R(γ) and
a(y) = 7 are all contained in the set M(w).

5.4 Lemma. Let σ, σ′ ∈ R. Then sets Mσ(w) and Mσ′(w) represent the same set of left
cells of Wa in W(7) if and only if R(fσ(α)) = R(fσ′(α)).

Proof. It is enough to show our result in the case of σ′ = 1. Note that if Mσ(w) and M(w)
represent the same set of left cells of Wa in W(7), then graphs M(fσ(w)) and M(w) must
be quasi-isomorphic. Hence the direction “ =⇒ ” is obvious since we see from 5.3(1) that
the equality R(fσ(α)) = R(α) is a necessary condition for graphs M(w) and M(fσ(w))
to be quasi-isomorphic. Now assume R(fσ(α)) = R(α). Then σ ∈ {1, (03), (13)}. The
case σ = 1 is trivial. By symmetry, it suffices to show our result in the case of σ = (03).
By Proposition 2.6, we see from the alcove forms of elements that the element f03(α ·2)
is a left extension of w ( see 2.6 ). Then we have f03(α · 2) ∼

L
w by 1.3(3). Hence

M(f03(α ·2)) = M(03)(w). This implies that the sets M(w) and M(03)(w) represent the
same set of left cells of Wa in W(7). Now we can assert by 5.3(2),(3) and Theorem 1.5 that
M(w) and M (03)(w) also represent the same set of left cell of Wa in W(7). ¤

5.5 Let Mσ(x) ( resp. Mσ(w) ) be the set of left cells of Wa represented by the set Mσ(x)
( resp. Mσ(w) ) for x ∈ {w, α′, β′} and σ ∈ R. We denote M1(x) simply by M(x).
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Lemma. Let σ, σ′ ∈ R. If Mσ(w) 6= Mσ′(w), then Mσ(w)
⋂Mσ′(w) = ∅.

Proof. It suffices to show our assertion in the case of σ′ = 1. Thus by our assumption, we
have σ 6= 1. By Lemma 5.4, we see that R(fσ(α)) 6= R(α). So by 5.3(1) and Proposition
1.13, we have

(5.5.1) M(w)
⋂
Mσ(w) = ∅.

On the other hand, we have R(β′) = R(α) and hence R(fσ(β′)) = R(fσ(α)). Thus
R(β′) 6= R(fσ(β′)) and so we have

(5.5.2) M(β′)
⋂
M(fσ(β′)) = ∅

by Proposition 1.13 and by observing graph M(β′). Finally, by (5.5.1), 5.3(4) and Theorem
1.5, we have γ �

L
fσ(γ) and hence

(5.5.3) M(α′)
⋂
M(fσ(α′)) = ∅

by observing graph M(α′). Thus our result follows from (5.5.1), (5.5.2), (5.5.3) and Figures
12, 13. ¤
5.6 By Lemmas 5.4 and 5.5, we get a largest possible distinguished subset M from the set⋃

σ∈R

Mσ(w), which is

(5.6.1) M = M(w)
⋃

M (14)

⋃
M (34)(w)

⋃
M (014)(w)

Proposition. The set M forms a representative set of left cells of Wa in W(7).

Before showing this proposition, we first consider the following

5.7 Lemma. Given any x ∈ M(w). If y ∈ Wa satisfies y—x, R(y) % R(x) and a(y) = 7,

then there is some z ∈ M with z ∼
L

y.

Let K be the set of all elements of Wa of the form y = xs for some x ∈ M(w) and
s ∈ S − R(x) ( set difference ) with R(y) ⊃ R(x) and y /∈ W(12) ( i.e. k(y, α) = 0 for
some α ∈ Φ by (3.2.1) ). Let K ′ be the set of all elements y of Wa such that y < x, y—x,
R(y) % R(x) and y /∈ W(12) for some x ∈ M(w). Then by 3.1 and 1.16(2), we see that
Lemma 5.7 is equivalent to

5.8 Lemma. For any y ∈ K
⋃

K ′, there is some x ∈ M with x ∼
L

y.

Proof. First assume y ∈ K. Then y ∈ W(7) by 1.3(7) and 3.1. By Proposition 2.6(3), we
can see from the alcove form of y that y is a left extension of some z′ ∈

⋃

σ∈R

Mσ(w), i.e.

y ∼
L

z′ by 1.3(3),(7). This implies y ∼
L

z for some z ∈ M by the choice of the set M .

Next assume y ∈ K ′. Note that there is a unique maximal element in M(w) with
respect to the Bruhat order. This maximal element is d = 02012032142021324 ∈ M(β′).
Consider the set H of all elements z of Wa such that z < d, L(z) = {0, 1, 2}, z /∈ W(12) and
|R(z)| ≥ 2. Then H

⋂
W(7) ⊇ K ′. The set H can be found by the inductive procedure
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given in 1.16 and by expressing elements in alcove forms. By direct checking, we see that
each element z of H satisfies one of the following conditions.
(1) z is a left extension of some element in

⋃

σ∈R

Mσ(w);

(2) z belongs to the set described in (4.4.1);
(3) z ∼

R
h with h = 020120342102;

(4) z ∼
R

k with k = 02012042324.

By a result of Du ( see [5, the proof of Lemma 3.7 ], and note that there Du showed
f03(h), f03(k) ∈ W(6) in our notations), we see that the elements z ∈ H satisfying condition
(3) or (4) are in W(6). Also, the elements z ∈ H satisfying condition (2) are in W(6) since
the set in (4.4.1) is in W(6). This implies that y ∈ K ′ ⊆ H

⋂
W(7) satisfies condition (1).

So y ∼
L

z for some z ∈ M by the argument given in the first paragraph of this proof. ¤

5.9 The proof of Proposition 5.6. We know that the set M is both distinguished and
A-saturated. Thus it remains to show that M is also B-saturated. Since M is a largest
possible distinguished subset of

⋃

σ∈R

Mσ(w) and the latter set is S-stable, it is enough to

show Lemma 5.7. But Lemma 5.7 is equivalent to Lemma 5.8 which has been shown. So
our result follows. ¤
5.10 From Lemma 5.4 and Proposition 5.6, the discription of the set W(7) by Du ( see [
5, the proof of Theorem 4.6 ] ) could be restated in more explicit way when elements of
Wa are expressed in alcove forms.

Proposition. The set W(7) consists of all elements y of Wa such that y is a left extension
of some element in

⋃

σ∈R

Mσ(w) and satisfies k(y, α) = 0 for some α ∈ Φ.

5.11 Now we shall show Proposition 4.7.

Proof of Proposition 4.7. Let us denote M1 = M(020120), M2 = M(323423), M̃1 =
M̃(020120), M̃2 = M̃(323423) and M̃ = M̃1

⋃
M̃2.

We say that a set Q ⊂ Wa has property (L), if the left cells represented by Q are
contained in the set of left cells represented by M̃ .

Clearly, if Q has property (L), then any subset of Q also has property (L); if both sets
Q and P have property (L), then so does their union Q

⋃
P .

Let N be the set of all elements y ∈ Wa such that there is some x ∈ M̃1 with y—x,
R(y) % R(x) and a(y) = 6. Then Proposition 4.7 is amount to the following statement
(a) The set N

⋃
f(03)(14)(N) has property (L).

Since the set M̃ is stable under the automorphism f(03)(14), statement (a) is equivalent
to the statement
(b) The set N has property (L).

Let N1 be the set of all elements of Wa of the form y = xs with R(y) ⊃ R(x) and
a(y) = 6 for some x ∈ M̃1 and s ∈ S − R(x). Let N2 be the set of all elements y of Wa

such that y < x, y—x, a(y) = 6 and R(y) % R(x) for some x ∈ M̃1. Then N = N1

⋃
N2

by 1.16(2). So statement (b) is equivalent to the statement
(c) Both N1 and N2 have property (L).

Note that if we remove the restriction a(y) = 6 in the definitions of the sets Ni, i = 1, 2,
then by 1.3(2), we have the inequality a(y) ≥ 6 for y ∈ N1

⋃
N2. Thus by 3.1, (3.2.1) and
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Proposition 5.10, the requirement a(y) = 6 is amount to that k(y, α) = 0 for some α ∈ Φ
and that y is not a left extension of any element of

⋃

σ∈R

Mσ(w). This can be checked by

the alcove form of y quite easily. So the set N1 can be found easily. But finding the set
N2 is somewhat difficult since checking the condition y—x on y for a given x involves
very complicated computation of Kazhdan-Lusztig polynomials. So instead to find N2

and to check the property (L) of N2, we shall find a larger set , say Q, containing N2 and
check Q to have property (L), by which we deduce that N2 has property (L) immediately.
Finding the set Q will be easier and will not involve any computation of Kazhdan-Lusztig
polynomials.Note that such a trick has already been used in the proof of Lemma 5.8. The
sets Q, N2 here play the same roles as the sets H, K ′ there.

Let us first show N1 to have property (L). By a direct computation, we get the inclusion

(5.10.1) N1 ⊂ M(k)
⋃

M(k · 01)
⋃

M(h)
⋃

M̃1.

where elements k, h are as defined in the proof of Lemma 5.8. Since R(k) = {2, 3, 4},
R(h) = {0, 1, 2} and k, h ∈ W(6), this implies by 1.3(6) that k ∼

L
323423 and h ∼

L
020120.

So by Proposition 1.15, the sets M(k) and M2 ( resp. M(h) and M1 ) represent the same
set of left cells of Wa. This implies immediately that both sets M(k) and M(h) have
property (L). Next note that k · 01—k · 0, R(k · 01) = {0, 1, 3, 4} % {0, 3, 4} = R(k · 0),
k · 0 ∈ M(k) and a(k · 01) = 6. Also, note that for α = 323423 · 0 ∈ M2, there is a unique
element x ∈ W(6) satisfying x—α and R(x) = {0, 1, 3, 4} % {0, 3, 4} = R(α). Actually, we
have x = α · 1. Since α ∼

L
k · 0, this implies α · 1 ∼

L
k · 01 by Theorem 1.5. But α · 1 ∈ M̃2.

So the set M(k · 01) has property (L). Thus the set on the right hand side of (5.10.1) has
property (L) and hence so does the set N1.

Now we want to show that N2 has property (L). There are two maximal elements
in the set M̃1 with respect to the Bruhat order. They are b1 = 02012042320124 and
b2 = 02012032421023. Let Qi ( i = 1, 2 ) be the set of all elements y of Wa such that
y < bi, |R(y)| ≥ 2, L(y) = {0, 1, 2} and a(y) = 6. Then Q1

⋃
Q2 ⊇ N2. Thus to show N2

has property (L), it is enough to show that both Q1 and Q2 have property (L). Since the
automorphism f34 of Wa stablizes the set M̃ and maps Q1 onto Q2, we need only show
that Q1 has property (L). By a direct computation, we get the inclusion

(5.10.2) Q1 ⊂ M(k)
⋃

M(k · 01)
⋃

M(h)
⋃

M̃1.

Since we have shown that the set on the right hand side has property (L), this implies
that Q1 has property (L). Hence Proposition 4.7 follows. ¤

6. Description of left cells of Wa(D̃4).
So far, we have got a representative set of left cells of Wa in each of its two-sided cells.

By taking a union of all these sets, we get a representative set of left cells of the whole
group Wa which is denoted by Σ. The numbers n(Ω) of left cells of Wa in the two-sided
cells Ω are listed in the following table.

Ω W(0) W(1) Ωi ( ⊂ W(2) ) W(3) W(4) Ω′i ( ⊂ W(6) ) W(7) W(12)

i=1,2,3 i=1,2,3

n(Ω) 1 5 8 22 24 48 96 192
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So the total number of left cells of Wa is 508.
Now we ask how to use the set Σ to describe left cells of Wa explicitly. In other words,

for any given element x of Wa, how can one tell what left cell it belongs to?
6.1 We may assume x 6= e since otherwise it is trivial. If x ∈ W(12), i.e. k(x, α) 6= 0 for all
α ∈ Φ, then by [ 17, Corollary 1.2 ], there is a unique element y ∈ Σ which has the same
sign type as x does ( see [15] for the definition of a sign type ). We can conclude x ∈ Γy (
see 4.6 ). Now assume x /∈ W(12). By Proposition 1.13, there is some element y ∈ Σ such
that x and y have the same generalized τ -invariant ( This could be checked by comparing
graphs M(x), M(y) and the positions of x, y in the respective graphs ). We can conclude
x ∈ Γy except for the cases when M(x) is quasi-isomorphic to one of the following graphs.

(1) 0, 1, 3, 4
2

—— 2 ;

(2) i, j, k
2

—— 2
m

—— m , where {i, j, k, m} = T ( see 3.2 ).
(3) M(121) or M(013420).
6.2 Let yij = i 2 i j 2 i k m and yijk = i 2 i j 2 i k 2 j i m for distinct i, j, k, m ∈ T . The following
facts could be deduced from the previous results or by directly checking.
(1) R(yij) = R(yijk) = {0, 1, 3, 4}, a(yij) = 6 and a(yijk) = 7 for any distinct i, j, k ∈ T .

(2) Graphs M(yij) and M(yijk) are all quasi-isomorphic to 0, 1, 3, 4
2

—— 2 for any dis-
tinct i, j, k ∈ T .
(3) If x /∈ W(12) and R(x) = {0, 1, 3, 4}, then a(x) ∈ {4, 6, 7}.
(4) yij ∼

L
yi′j′ ⇐⇒ yij = yi′j′ ⇐⇒ {i′, j′} = {i, j}.

(5) yij ∈ Σ for any distinct i, j ∈ T.
(6) yij is a shortest element in the left cell Γyij . Conversely, if Γ is a left cell of Wa in W(6)

with R(Γ) = {0, 1, 3, 4}, then any shortest element of Γ has the form yij for some distinct
i, j ∈ T .
(7) yijk ∼

L
yi′j′k′ ⇐⇒ {i′, j′, k′} = {i, j, k}.

(8) yijk ∈ Σ ⇐⇒ (i, j, k) is in the set {(0, 1, 3), (0, 4, 3), (0, 1, 4), (4, 1, 3)}.
(9) yijk ∈ W(7) is a shortest element in the left cell Γyijk

. Conversely, if Γ is a left cell of
Wa in W(7) with R(Γ) = {0, 1, 3, 4}, then any shortest element of Γ has the form yijk for
some distinct i, j, k ∈ T .
(10) yijk is a left extension of yi′j′ ⇐⇒ {i′, j′} ⊂ {i, j, k}.
6.3 The following result is a direct consequence of the above facts, which could be used
to determine the left cell of Wa containing a given element x in the exceptional case (1).

Proposition. Let x ∈ Wa satisfy the conditions x /∈ W(12) and R(x) = {0, 1, 3, 4} with

graph M(x): 0, 1, 3, 4
2

—— 2 .
(1) If x is not a left extension of yij for any distinct i, j ∈ T , then x ∈ Γ0134.
(2) If x is a left extension of some yij but is not a left extension of any yi′j′ with {i′, j′} 6=
{i, j}, then x ∈ Γyij .
(3) If x is a left extension of both yij and yi′j′ with {i, j} 6= {i′, j′}, then {i, j}⋂{i′, j′} 6= ∅.
We may assume j = j′ without loss of generality. Then x ∈ Γymnp , where m, n, p is a
permutation of i, j, i′ such that ymnp ∈ Σ.

6.4 For any distinct i, j, k, m ∈ T , we define the following elements:

wijk = i j k m 2 i j k, xijk = i 2 i j 2 i k m 2 i j k,
zijk = i 2 i j 2 i k 2 j i m 2 i j k.

The following results could be shown by the results in previous sections or by directly
checking.
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(1) R(wijk) = R(xijk) = R(zijk) = {i, j, k}, a(wijk) = 4, a(xijk) = 6 and a(zijk) = 7 for
any distinct i, j, k ∈ T .
(2) Graphs M(wijk), M(xijk) and M(zijk) are all quasi-isomorphic to i, j, k

2
—— 2

m
—— m

for any distinct i, j, k, m ∈ T .
(3) If an element x ∈ Wa satisfies x /∈ W(12) and R(x) = {i, j, k} for some distinct
i, j, k ∈ T , then a(x) ∈ {3, 4, 6, 7}.
(4) wijk ∼

L
wi′j′k′ ⇐⇒ wijk = wi′j′k′ ⇐⇒ {i, j, k} = {i′, j′, k′}.

(5) wijk ∈ Σ for any distinct i, j, k ∈ T .
(6) wijk is the shortest element in the left cell Γwijk

. Any element of Γwijk
is a left

extension of wijk.
(7) xijk ∼

L
xi′j′k′ ⇐⇒ xijk = xi′j′k′ ⇐⇒ {i, j} = {i′, j′} and k = k′.

(8) xijk ∈ Σ for any distinct i, j, k ∈ T .
(9) xijk is the shortest element in the left cell Γxijk

. Any element of Γxijk
is a left extension

of xijk.
(10) zijk = zi′j′k′ ⇐⇒ {i, j} = {i′, j′} and k = k′.
(11) zijk ∼

L
zi′j′k′ ⇐⇒ {i, j, k} = {i′, j′, k′}.

(12) zijk ∈ Σ ⇐⇒ either (i, j, k) or (j, i, k) is in the set { (0, 1, 3), (0, 1, 4), (0, 4, 3), (1, 4, 3) }.
(13) zijk is a shortest element in the left cell Γzijk

. Any shortest element of the left cell
Γzijk

has the form zi′j′k′ for some permutation i′, j′, k′ of i, j, k.
(14) xijk is a left extension of wi′j′k′ ⇐⇒ {i, j, k} = {i′, j′, k′}.
(15) zijk is a left extension of xi′j′k′ ⇐⇒ {i, j, k} = {i′, j′, k′} and k 6= k′.
6.5 The following proposition is a consequence of the above results, which could be used
to determine the left cell of Wa containing a given element x in the exceptional case (2).

Proposition. Let x ∈ Wa satisfy x /∈ W(12) and R(x) = {i, j, k} with graph M(x) quasi-

isomorphic to i, j, k
2

—— 2
m

—— m for some distinct i, j, k,m ∈ T.

(1) If x is not a left extension of wijk, then x ∈ Γijk.
(2) If x is a left extension of wijk but is not a left extension of xi′j′k′ for any permutation
i′, j′, k′ of i, j, k, then x ∈ Γwijk

.
(3) If x is a left extension of xijk but is not a left extension of xi′j′k′ for any permutation
i′, j′, k′ of i, j, k with k 6= k′, then x ∈ Γxijk

.
(4) If x is a left extension of both xijk and xi′j′k′ with {i, j, k} = {i′, j′, k′} and k 6= k′,
then x ∈ Γzmnp , where {m, n, p} = {i, j, k} and zmnp ∈ Σ.

6.6 When x ∈ Wa is in the exceptional case (3), there are two elements y, y′ ∈ Σ which
have the same generalized τ -invariant as x, where y ∈ M(121) and y′ ∈ M(013420). There
are two ways to determine the left cell Γx. One is to see whether graph M(x) is finite or
not. We have

(6.6.1) Γx =
{

Γy′ if M(x) is finite;
Γy otherwise.

Another is to see whether x is a left extension of y′. We have

(6.6.2) Γx =
{

Γy′ if x is a left extension of y′;
Γy otherwise.

The second way is based on the fact that y′ is the unique shortest element in the left cell
Γy′ and that any element of Γy′ is a left extension of y′.
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