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Abstract. The main result of the paper is to get the transition formulae between the
alcove form and the permutation form of w ∈ Wa, where Wa is an affine Weyl group of
classical type. On the other hand, we get a new characterization for the alcove form of an
affine Weyl group element which has a much simpler form compared with that in [10]. As
applications, we give an affirmative answer to a conjecture of H. Eriksson and K. Eriksson
in [4] concerning the characterization of the inverse table of w ∈ Wa; we also describe the
number πs(w) in terms of permutation form of w ∈ Wa.

Introduction.

Affine Weyl groups, as a family of infinite crystallographic Coxeter groups, play a

more and more important role in various fields of mathematics, such as Kac-Moody

algebras, algebraic groups and their representation theory, combinatorial and geometric

group theory, etc. [2; 3; 5; 7; 9; 14].

Besides the presentations as Coxeter groups (i.e., the ones by generators and relations

over the pairs of generators), there are many other presentations for the affine Weyl

groups Wa, in particular for those of the classical types, i.e., types Ãl (l > 1), B̃m

(m > 3), C̃n (n > 2) and D̃k (k > 4). Two of their presentations are particularly useful,

one is to regard Wa as a certain permutation group over the integer set Z (only applied

for the classical types); the other is to identify Wa with the set of alcoves in a euclidean

space E after removing a certain set of hyperplanes (applied for all types) [1; 8; 9; 10;

11; 12; 13].
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The relations between these two presentations has been explicitly described for the

case of type Ãl (see [9]). but not yet for the other classical types so far. The aim of

the present paper is to study these relations for the cases of types B̃m, C̃n and D̃k.

Our main result is to obtain the transition formulae between the permutation form and

the alcove form of w ∈ Wa when the type of Wa belongs to these three families (see

Theorems 4.1, 5.2, 5.4 and 5.6).

The alcove form (k(w; α))α of w ∈ Wa adopted here is essentially the same as that in

[10], but with two changes as below. The one is that the relation k(w;−α) = −k(w; α)

in [10] is replaced by k(w;−α) = −k(w; α)−1 for all the positive roots (and hence for all

the roots) α. The other is that in dealing with the case of the classical types, we replace

the root system Φ by the corresponding coroot system Φ∨ as the index set of the alcove

form of w. The reason for these changes is to make our transition formulae simpler.

The another reason for the second change is that we have got a new characterization

for the alcove form of w ∈ Wa, which is equivalent to the original one in [10, Theorem

5.2] but has a much simpler form when stated in terms of coroot system (see Theorem

1.3).

In general, the permutation form of w ∈ Wa is not unique. This depends on the

way of embedding the group Wa into the permutation group on Z (see [1; 13]). The

permutation form of w ∈ Wa we take in the present paper has the advantage that when

restricting to the corresponding Weyl group, the permutation form of an element is just

the usual one.

We give two applications of our results. One is to show that when an affine Weyl group

Wa has classical type, the entries of the alcove form of w ∈ Wa exactly comprise the

inverse table of w defined by H. Eriksson and K. Eriksson (see [4, §8.] and Theorem 4.1).

Thus our new characterization for the alcove form of w ∈ Wa gives a characterization

for the inverse table of w (see Theorem 4.5), the latter was conjectured by H. Eriksson

and K. Eriksson in the case of type C̃l in [4, 8.3.].

Let (W,S) be a Coxeter system. For any w ∈ W and s ∈ S, let πs(w) be the minimal

possible multiplicity of the factor s occurring in a reduced expression of w. There is no

general formula for the number πs(w). Then our second application is to deduce very

simple formulae for πs(w) in terms of permutation form of w when (W,S) is an affine

Weyl group of classical type (see 5.8-5.10).

Thoughout this paper, an affine Weyl group is always assumed irreducible, i.e., its

Coxeter graph is connected.

The contents of the paper are organized as follows. In Section 1, we recall some

results of [10] concerning the alcove form of an affine Weyl group element and give a

new characterization for the alcoves of a euclidean space. Then from Section 2 on, we
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pay our attention only to the affine Weyl groups Wa of the classical types. We describe

the alcove form and the permutation form of w ∈ Wa in Sections 2 and 3 respectively.

Then we show our main results of the paper in Sections 4 and 5, where we obtain the

transition formulae between the alcove form and the permutation form of w ∈ Wa in

the cases of the classical types.

§1. The alcove forms.

In this section, we collect some results concerning the alcove form of an element w

in an affine Weyl group Wa. As mentioned in the Introduction, we make some formal

changes in the definition of the alcove form of w. Thus we have to reformulate some

results in [10]. One result is new (i.e., Theorem 1.3), which gives a new characterization

for an alcove in a euclidean space.

1.1. Let Φ be an irreducible root system of rank l > 1. Let E be the euclidean space

spanned by Φ with inner product 〈 , 〉 such that |α|2 = 〈α, α〉 = 1 for any short root

α of Φ. Choose a simple root system Π = {α1, · · · , αl} of Φ and let Φ+, Φ− be the

corresponding positive and negative root systems. Let −α0 be the highest short root

of Φ. Denote by α∨ = 2α/〈α, α〉 the coroot of α ∈ Φ and by Φ∨ the coroot system

{α∨ | α ∈ Φ}. Note that a coroot system Φ∨ itself is also a root system, but with its

type dual to that of Φ. This fact will be important later when we make a change for

the index set of the alcove form of an affine Weyl group element.

For any α ∈ Φ and k ∈ Z, define a hyperplane

(1.1.1) Hα;k = {v ∈ E | 〈v, α∨〉 = k}

and a strip

(1.1.2) H1
α;k = {v ∈ E | k < 〈v, α∨〉 < k + 1}.

Then we have H−α,k = Hα;−k and H1
−α;k = H1

α;−k−1 for any α ∈ Φ and k ∈ Z. Note

that the definition of a strip H1
α;k for α ∈ Φ− given here slightly differs from that in

[10]. According to [10], we would have H1
−α;k = H1

α;−k. Thus by this new definition, we

have to re-examine some results of [10]. Note that it makes no change for the results

only involving positive roots. We call any non-empty connected simplex of

(1.1.3) E −
⋃

α∈Φ+

k∈Z

Hα;k

an alcove of E. Each alcove of E has the form
⋂

α∈Φ+

H1
α;kα

for some Φ+-tuple (kα)α∈Φ+

over Z. Since H1
−α;kα

= H1
α;−kα−1, sometimes it is more convenient to denote the alcove⋂

α∈Φ+

H1
α;kα

by
⋂

α∈Φ

H1
α;kα

with the convention that k−α = −kα − 1 for any α ∈ Φ+.
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1.2. One should note that not every Φ+-tuple (kα)α∈Φ+ over Z gives rise to an alcove

of E as above. In fact, it is well known that
⋂

α∈Φ+

H1
α;kα

is an alcove of E if and only if

for any α, β ∈ Φ+ with α + β ∈ Φ+, the inequality

(1.2.1) |α|2kα+|β|2kβ +1 6 |α+β|2(kα+β +1) 6 |α|2(kα+1)+|β|2(kβ +1)+|α+β|2−1

holds (see [10, Theorem 5.2]). Now we give a new and simpler form for this result.

Theorem 1.3.
⋂

α∈Φ+

H1
α;kα

is an alcove of E if and only if for any α, β ∈ Φ+ with

γ = (α∨ + β∨)∨ ∈ Φ+, the inequality

(1.3.1) kα + kβ 6 kγ 6 kα + kβ + 1.

holds.

Proof. By [10, Theorem 5.2], it is enough to show that the inequality systems (1.2.1)

and (1.3.1) are equivalent for any irreducible positive root system Φ+ of rank 2. Note

that when α, β, α + β ∈ Φ+ satisfy |α| = |β| = |α + β|, the inequality (1.2.1) becomes

(1.3.2) kα + kβ 6 kα+β 6 kα + kβ + 1,

and γ = (α∨ + β∨)∨ = α + β. Thus the inequalities (1.2.1) and (1.3.1) are the same

in this case. So we need only consider the case that Φ+ has type B2 or G2 and that

the lengths of the three roots involved in the inequalities are not all the same. We shall

only deal with the case of type B2 here. The case of type G2 can be done similarly and

hence is left to the reader. Now let Φ+ = {α, β, α + β, 2α + β}. Then the inequality

system (1.2.1) is

(1.3.3)
{

kα + 2kβ 6 kα+β 6 kα + 2kβ + 2,

kα + kα+β 6 2k2α+β + 1 6 kα + kα+β + 2.

and (1.3.1) is

(1.3.4)
{

kα + kβ 6 k2α+β 6 kα + kβ + 1,

kβ + k2α+β 6 kα+β 6 kβ + k2α+β + 1.

We have to show the equivalence of the inequality systems (1.3.3) and (1.3.4). First

assume (1.3.3). Adding two inequalities of (1.3.3) together on the corresponding sides

and then subtracting kα+β from all sides of the resulting inequality, we get

(1.3.5) 2(kα + kβ) 6 2k2α+β + 1 6 2(kα + kβ) + 4.
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Then the first inequality of (1.3.4) follows from (1.3.5). Rewrite the second inequality

of (1.3.3) into the form

(1.3.6) 2k2α+β 6 kα + kα+β + 1 6 2k2α+β + 2.

Then adding (1.3.6) to the first inequality of (1.3.3) on the corresponding sides and

subtracting kα from all sides of the resulting inequality, we get

(1.3.7) 2(k2α+β + kβ) 6 2kα+β + 1 6 2(k2α+β + kβ) + 4.

The second inequality of (1.3.4) follows from (1.3.7). Next assume (1.3.4). Then the

first inequality of (1.3.3) is obtained by adding two inequalities of (1.3.4) together on

the corresponding sides, followed by subtracting k2α+β from all sides of the resulting

inequality. Rewrite the second inequality of (1.3.4) into the form

(1.3.8) kα+β 6 kβ + k2α+β + 1 6 kα+β + 1.

Then the second inequality of (1.3.3) is obtained by adding (1.3.8) to the first inequality

of (1.3.4) on the corresponding sides, followed by subtracting kβ from all sides of the

resulting inequality. ¤

Note that the result still holds if we replace all the notations Φ+ by Φ in Theorem

1.3.

1.4. Let W be the Weyl group of Φ generated by all the reflections sα, α ∈ Φ, on E,

where sα sends x to x− 〈x, α∨〉α. Let Q denote the root lattice ZΦ, and N the group

consisting of all the translations Tλ on E for λ ∈ Q, where Tλ sends x to x + λ. We

denote by Wa the group of affine transformations of E generated by N and W . It is

well known that Wa is the semidirect extension of W by the normal subgroup N on

which the action of W is known.

For linear and affine transformations, we shall write operations on the right and

compose them accordingly. With this convention, we define s0 = sα0T−α0 and si = sαi ,

1 6 i 6 l. It is known that Wa (resp. W ) is a Coxeter group on the generators

s0, s1, · · · , sl (resp. s1, · · · , sl). We write S̃ = {s0, s1, · · · , sl} and S = {s1, · · · , sl}.
The group Wa is called an affine Weyl group of type X̃, where X is the type of the

coroot system Φ∨.

1.5. It is well known that the right action of Wa on E gives rise to permutations of the

set {Hα;k | α ∈ Φ, k ∈ Z}. So it induces permutations of the set U of alcoves of E. It

is also well known that U is simply transitive under Wa (see [2; 14]).

Let w = w̄ · Tλ ∈ Wa with w̄ ∈ W and λ ∈ Q. We consider the alcove

⋂

α∈Φ

H1
α;hα

=

( ⋂

α∈Φ

H1
α;kα

)
w.
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For v ∈
⋂

α∈Φ

H1
α;kα

, we have (v)w = (v)w̄ + λ. This implies that

〈(v)w, α∨〉 =
〈
v,

(
(α)w̄−1

)∨〉
+ 〈λ, α∨〉.

So we get

(1.5.1) hα = k(α)w̄−1 + 〈λ, α∨〉

for α ∈ Φ.

We see that A1 =
⋂

α∈Φ

H1
α;εα

is an alcove of E, where εα = 0 if α ∈ Φ+, and εα = −1

if α ∈ Φ− (comparing with [10, Lemma 1.1]). Denote Aw = (A1)w for any w ∈ Wa.

Thus any alcove of U has the form Aw =
⋂

α∈Φ+

H1
α;k(w;α) or Aw =

⋂

α∈Φ

H1
α;k(w;α) for some

w ∈ Wa, with the convention that

(1.5.2) k(w;−α) = −k(w; α)− 1 for any α ∈ Φ+

(comparing with [10, §1.]). Note that (1.5.2) actually holds for any α ∈ Φ. We shall

identify Wa with U as sets under the correspondence w 7→ Aw, and call (k(w; α))α∈Φ+

or (k(w; α))α∈Φ the alcove form of w. From (1.5.1), we get

(1.5.3) k(w; α) = ε(α)w̄−1 + 〈λ, α∨〉

for α ∈ Φ, where the decomposition w = w̄·Tλ is as above (comparing with [10, Theorem

3.3]). This is also equivalent to a formula given by Iwahori and Matsumoto [6].

1.6. The action of an element sj ∈ S̃ on U can be described as follows. For w ∈ Wa,

we have by (1.5.1) that

(1.6.1) k(wsj , α) =
{

k(w; (α)sj), if j 6= 0,

k(w; (α)sα0) + 〈−α0, α
∨〉, if j = 0.

for any α ∈ Φ (comparing with [10, Proposition 4.2]).

1.7. We can define the left action of Wa on U as below. For y, w ∈ Wa, we set

y(Aw) = Ayw. Then for w ∈ Wa and sj ∈ S̃, we have

(1.7.1) k(sjw, α) =
{

k(w; α), if α 6= ±(αj)w̄,

k(w; α)∓ 1, if α = ±(αj)w̄,

where w̄ is the image of w under the natural map Wa −→ Wa/N ∼= W (comparing with

[10, Proposition 4.1]).

1.8. To any w ∈ Wa, we associate two subsets of S̃: L(w) = {s ∈ S̃ | sw 6 w} and

R(w) = {s ∈ S̃ | ws 6 w}, where the notation 6 stands for the Chevalley-Bruhat order

on Wa regarded as a Coxeter group with respect to S̃. These two subsets of S̃, together

with the length function `(w), can be described in terms of the k(w; α)’s as below.
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Proposition 1.9 (comparing with [10, Propositions 3.4 and 4.3]). Let (k(w; α))α∈Φ be

the alcove form of w ∈ Wa. Then

(1) `(w) =
∑

α∈Φ+

|k(w;α)|.

(2) R(w) = {sj ∈ S̃ | either j 6= 0, k(w;αj) < 0, or j = 0, k(w;−α0) > 0}.
(3) L(w) = {sj ∈ S̃ | k(w; (αj)w̄) > 0}.

(4) k(w−1, α) =





k(w;−(α)w̄), if either α,−(α)w̄ ∈ Φ+ or α,−(α)w̄ ∈ Φ−,

k(w;−(α)w̄) + 1, if α, (α)w̄ ∈ Φ+,

k(w;−(α)w̄)− 1, if α, (α)w̄ ∈ Φ−.

§2. The cases of the classical types.

In this section, we shall first give an explicit description for all the irreducible root

systems of the classical types. Then we reformulate some results on the alcove forms of

w ∈ Wa in these cases. A significant change is made for the index set of the alcove form

of w ∈ Wa, where the root system Φ is replaced by the corresponding coroot system

Φ∨.

2.1. We set the notations Ωl = {Al−1, Bl, Cl, Dl} and Ω′l = {Bl, Cl, Dl} for l > 2, which

will be used quite often later on.

2.2. We know that there is a natural bijective map α 7→ α∨ from a root system Φ to the

corresponding coroot system Φ∨. By Theorem 1.3, it is more convenient to express the

alcove form (k(w;α))α∈Φ of w ∈ Wa by (k(w; α))α∈Φ∨ , where we set k(w;α) = k(w; α∨)

for any α ∈ Φ∨ (note (α∨)∨ = α). We make such a change from now on. Then for an

affine Weyl group Wa of type X̃, X ∈ Ωl, the index set of the alcove form of w ∈ Wa

will be the root system of type X. Note that −α∨0 is the highest coroot in Φ∨.

2.3. Let e1, e2, · · · , el be an orthonormal basis of a euclidean space E. Set e−i = −ei,

1 6 i 6 l, and e0 = 0. Define (i, j) = ej − ei for i, j ∈ [−l, l], where the notation [a, b]

stands for the interval {a, a + 1, · · · , b} for any a 6 b in Z. Then the relations

(2.3.1) (i, j) = (i, t) + (t, j) and (i, j) = (−j,−i)

hold for any i, t, j ∈ [−l, l].

2.4. The root system of type Al−1, l > 2, can be described by

Φ(Al−1) = {(i, j) | 1 6 i, j 6 l; i 6= j}.

The roots (t− 1, t), 1 < t 6 l, form a simple root system, and Φ+(Al−1) = {(i, j) | 1 6
i < j 6 l} is the corresponding positive root system. The highest root is (1, l).

2.5. The root system of type Bl, l > 3, can be described by

Φ(Bl) = {(i, j) | i, j ∈ [−l, l]; i 6= ±j}.
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The roots (t−1, t), 1 6 t 6 l, form a simple root system, and Φ+(Bl) = {(i, j) ∈ Φ(Bl) |
i < j} is the corresponding positive root system. The highest root is (−l + 1, l).

2.6. The root system of type Cl, l > 2, can be described by

Φ(Cl) = {(i, j) | i, j ∈ [−l, l] \ {0}; i 6= j}.

The roots (t − 1, t), 1 < t 6 l, and (−1, 1) form a simple root system, and Φ+(Cl) =

{(i, j) ∈ Φ(Cl) | i < j} is the corresponding positive root system. The highest root is

(−l, l).

2.7. The root system of type Dl, l > 4, can be described by

Φ(Dl) = {(i, j) | i, j ∈ [−l, l] \ {0}; i 6= ±j}.

The roots (t − 1, t), 1 < t 6 l, and (−1, 2) form a simple root system, and Φ+(Dl) =

{(i, j) ∈ Φ(Dl) | i < j} is the corresponding positive root system. The highest root is

(−l + 1, l).

2.8. Fix w ∈ Wa(X̃), X ∈ Ωl. Let Φ be the root system of type X. In the alcove

form (k(w; α))α∈Φ of w, we shall denote the entry k(w; (i, j)) simply by k(w; i, j) for

(i, j) ∈ Φ. Then the entry k(w; (i, j)x̄) becomes k(w; (i)x̄, (j)x̄) for any element x̄ of

the corresponding Weyl group, the latter is regarded as a certain permutation group

on the set [−l, l]. By (1.5.2), (2.3.1), Theorem 1.3 and the note immediately after the

Theorem, we get

Lemma 2.9. Let X ∈ Ωl for an appropriate integer l and let Φ be the root system of

type X. Then for any w ∈ Wa(X̃) and (i, j), (i, t), (t, j) ∈ Φ, we have

(1) k(w; j, i) = −k(w; i, j)− 1 = k(w;−i,−j),

(2) k(w; i, t) + k(w; t, j) 6 k(w; i, j) 6 k(w; i, t) + k(w; t, j) + 1.

§3. The permutation forms.

3.1. Let Al be the affine Weyl group of type Ãl−1, l > 2. It is well known that Al could

be regarded as a group of certain permutations on Z:

Al =

{
w : Z −→ Z

∣∣∣∣∣(i + l)w = (i)w + l for i ∈ Z;
l∑

i=1

(i)w =
l∑

i=1

i

}
.

Its simple reflection set S̃ = {r0, r1, · · · , rl−1} is given by

(i)rt =





i, if i 6≡ t, t + 1 ( mod l),
i + 1, if i ≡ t (mod l),
i− 1, if i ≡ t + 1 (mod l),
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for i ∈ Z and 0 6 t < l. Each element w ∈ Al is determined entirely by the images

(a1)w, (a2)w, · · · , (al)w of any given l integers a1, · · · , al under w, which are pairwisely

incongruent modulo l.

3.2. As a Coxeter group, the affine Weyl group Wa(X̃) of type X ∈ Ω′l has the following

presentation:

Wa(X̃) = 〈si | 0 6 i 6 l, (sisj)mij = 1, for 0 6 i 6 j 6 l〉,

where mij = 1 for i = j; mij = 3 in one of the following cases:

(i) 2 < i + 1 = j 6 l,

(ii) (i, j) = (0, l − 1) and X = Bl,

(iii) (i, j) = (1, 3), (0, l − 1) and X = Dl;

mij = 4 in one of the following cases:

(i) (i, j) = (1, 2) and X = Bl,

(ii) (i, j) = (1, 2), (0, l) and X = Cl;

mij = 2 in all the other cases. Note that the labelings of the nodes in the corre-

sponding extended Dynkin diagrams slightly differ from the usual ones (see [2; 5] for

examples).

3.3. The affine Weyl group Wa(C̃l) (l > 2) can be embedded into A2l+2 by an injective

homomorphism which sends st, 1 < t 6 l, to rt−1r2l+2−t, s1 to r0r2l+1r0, and s0 to

rlrl+1rl. Thus by identifying with its image, we can regard Wa(C̃l) as a subgroup of

A2l+2. The group Wa(C̃l) can also be regarded as the set of all the fixed points of A2l+2

under the involutive automorphism φ which sends ri to r2l+1−i for all i, 0 6 i 6 2l + 1:

Wa(C̃l) ={w ∈ A2l+2 | φ(w) = w}(3.3.1)

={w ∈ A2l+2 | (−i)w = −(i)w, ∀i ∈ Z}.

The simple reflections st, 0 6 t 6 l, of Wa(C̃l) are the permutations on Z satisfying

that for i ∈ Z and 1 < t 6 l, we have

(i)st =





i, if i 6≡ ±t,±(t− 1) ( mod 2l + 2),
i + 1, if i ≡ −t, t− 1 ( mod 2l + 2),
i− 1, if i ≡ t,−t + 1 (mod 2l + 2).

(i)s1 =





i, if i 6≡ ±1 (mod 2l + 2),
i + 2, if i ≡ −1 (mod 2l + 2),
i− 2, if i ≡ 1 ( mod 2l + 2).

(i)s0 =





i, if i 6≡ ±l (mod 2l + 2),
i + 2, if i ≡ l ( mod 2l + 2),
i− 2, if i ≡ −l (mod 2l + 2).
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3.4. The group Wa(B̃l) (l > 3) can be embedded into A2l+2 by an injective ho-

momorphism which sends st, 1 < t 6 l, to rt−1r2l+2−t, s1 to r0r2l+1r0 and s0 to

rlrl+1rlrl−1rl+2rlrl+1rl. Thus we can regard Wa(B̃l) as a subgroup of A2l+2 by identi-

fying with its image. We can also regard Wa(B̃l) as a certain fixed point set of A2l+2

under the automorphism φ (see 3.3):

Wa(B̃l) ={w ∈ A2l+2 | φ(w) = w;Nl(w) ≡ 0 (mod 2)},
(3.4.1)

={w ∈ A2l+2 | (−i)w = −(i)w, ∀i ∈ Z;Nl(w) ≡ 0 (mod 2)},

where Nl(w) is the number of the integers j with j < l+1 and (j)w > l+1. The simple

reflections st, 0 6 t 6 l, of Wa(B̃l) are the permutations on Z as below. For i ∈ Z and

1 < t 6 l, we have

(i)st =





i, if i 6≡ ±t,±(t− 1) ( mod 2l + 2),
i + 1, if i ≡ −t, t− 1 (mod 2l + 2),
i− 1, if i ≡ t,−t + 1 (mod 2l + 2).

(i)s1 =





i, if i 6≡ ±1 (mod 2l + 2),
i + 2, if i ≡ −1 (mod 2l + 2),
i− 2, if i ≡ 1 ( mod 2l + 2).

(i)s0 =





i, if i 6≡ ±(l − 1),±l (mod 2l + 2),
i + 3, if i ≡ l − 1, l (mod 2l + 2),
i− 3, if i ≡ −l,−l + 1 (mod 2l + 2).

3.5. The affine Weyl group Wa(D̃l) (l > 4) can be regarded as a subgroup of A2l+2

by an injective homomorphism which sends st, 1 < t 6 l, to rt−1r2l+2−t, s1 to

r0r2l+1r0r1r2lr0r2l+1r0 and s0 to rlrl+1rlrl−1rl+2rlrl+1rl, or equivalently, regarded as

a certain fixed point set of A2l+2 under the automorphism φ (see 3.3):

Wa(D̃l) = {w ∈ A2l+2 | φ(w) = w;N0(w) ≡ Nl(w) ≡ 0 ( mod 2)},
(3.5.1)

= {w ∈ A2l+2 | (−i)w = −(i)w, ∀i ∈ Z; N0(w) ≡ Nl(w) ≡ 0 ( mod 2)},

where N0(w) is the number of the integers j with j < 0 and (j)w > 0. The simple

reflections st, 0 6 t 6 l, of Wa(D̃l) are the permutations on Z as below. For 1 < t 6 l

and i ∈ Z, we have

(i)st =





i, if i 6≡ ±t,±(t− 1) ( mod 2l + 2),
i + 1, if i ≡ −t, t− 1 (mod 2l + 2),
i− 1, if i ≡ t,−t + 1 (mod 2l + 2).
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(i)s1 =





i, if i 6≡ ±1,±2 ( mod 2l + 2),
i + 3, if i ≡ −1,−2 ( mod 2l + 2),
i− 3, if i ≡ 1, 2 ( mod 2l + 2).

(i)s0 =





i, if i 6≡ ±l,±(l − 1) (mod 2l + 2),
i + 3, if i ≡ l − 1, l (mod 2l + 2),
i− 3, if i ≡ −l,−l + 1 (mod 2l + 2).

From the above discussion, we get the following result easily.

Lemma 3.6. Let X ∈ Ωl and w ∈ Wa(X̃) for an appropriate integer l. Define an

integer mX to be l if X = Al−1, and 2l + 2 if X ∈ Ω′l. Then regarding w as an element

of AmX , we have

(1) (i)w 6≡ (j)w (mod mX) for any i, j ∈ Z with i 6≡ j (mod mX).

In the case of X ∈ Ω′l, we have

(2) (−i)w = −(i)w for any i ∈ Z.

(3) (h(l + 1))w = h(l + 1) for any h ∈ Z.

(4) (i)w 6≡ 0, l + 1 ( mod 2l + 2) for any i ∈ Z with i 6≡ 0, l + 1 ( mod 2l + 2).

Remark 3.7. (i) Our definition of Wa(C̃l) as a group of permutations on Z is slightly

different from that given by R. Bédard (see [1]). According to R. Bédard, the group

Wa(C̃l) was embedded into the group A2l+1 instead of A2l+2. The advantage of our

definition is that the symmetry between the generators s0 and s1 in Wa(C̃l) could be

seen more explicitly in form.

(ii) The descriptions (3.3.1), (3.4.1), (3.5.1) of the groups Wa(X̃), X ∈ Ω′l, can be

shown easily by applying induction on `(w) > 0 and by the fact that the number of

inversions of w is increasing when `(w) is getting larger.

(iii) Let X ∈ Ω′l. Then regarded as a permutation on Z, an element w ∈ Wa(X̃) is

determined uniquely by the images (a1)w, · · · , (al)w of any given l integers a1, · · · , al

under w, provided that they are pairwisely incongruent modulo 2l + 2, none of which is

divisible by l + 1, and no pair of which have the sum divisible by 2l + 2.

§4. Transition from the permutation forms to the alcove forms.

Let X ∈ Ωl for an appropriate integer l (see 2.1.). In this section, we shall show the

transition formulae from the permutation form to the alcove form of w ∈ Wa(X̃). Let

Φ = Φ(X) be the root system of type X. Let mX be the integer defined as in Lemma

3.6.

Theorem 4.1. For any (i, j) ∈ Φ and w ∈ Wa(X̃), we have

(4.1.1) k(w; i, j) =
[
(j)w−1 − (i)w−1

mX

]
,
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where [x] denotes the largest integer not greater than x for a rational number x.

Proof. For any i, j ∈ Z with i 6≡ j (mod mX), we have the relation

(4.1.2)
[
(i)w−1 − (j)w−1

mX

]
= −

[
(j)w−1 − (i)w−1

mX

]
− 1

by Lemma 3.6, (1). Also, we have (i, j) ∈ Φ+ ⇐⇒ (j, i) ∈ Φ−. Thus by Lemma 2.9,

(1), we need only show our result in the case when (i, j) is a positive root. The result

is known for the case of X = Al−1 (see [9, Proposition 6.2.1]). Now assume X 6= Al−1

and hence mX = 2l + 2. We see that the set

Φ+ = {(i, j) ∈ Φ | i < j; |i| 6 |j|}.

forms a positive root system of Φ. Apply induction on `(w) > 0. When `(w) = 0, i.e.,

w = 1, we have ((1)1−1, · · · , (l)1−1) = (1, 2, · · · , l) and k(w; i, j) = 0 for all the positive

roots (i, j). The result is obviously true. Now assume `(w) > 0. Take st ∈ R(w) (see

1.8). By inductive hypothesis, the result is true for wst. First assume 1 < t 6 l. When

(i, j) 6= (t− 1, t), (−t + 1, t) with (i, j) ∈ Φ+, we have (i)st < (j)st and |(i)st| 6 |(j)st|.
Thus in this case, we get from (1.6.1) that

k(w; i, j) = k(wst; (i)st, (j)st) =
[
(j)st(wst)−1 − (i)st(wst)−1

2l + 2

]

=
[
(j)w−1 − (i)w−1

2l + 2

]
.

On the other hand, by (1.6.1), (2.3.1), (4.1.2), Lemmas 2.9 and 3.6, we have

k(w; t− 1, t) = −k(wst; t− 1, t)− 1 = −
[
(t)(wst)−1 − (t− 1)(wst)−1

2l + 2

]
− 1

= −
[
(t− 1)w−1 − (t)w−1

2l + 2

]
− 1 =

[
(t)w−1 − (t− 1)w−1

2l + 2

]

and

k(w;−t + 1, t) = k(wst;−t, t− 1) = k(wst;−t + 1, t)

=
[
(t)(wst)−1 − (−t + 1)(wst)−1

2l + 2

]

=
[
(t− 1)w−1 − (−t)w−1

2l + 2

]
=

[
(t)w−1 − (−t + 1)w−1

2l + 2

]
.

Next consider the cases t = 0, 1. Here we only deal with the case of X = Bl. The proofs

for the cases of X = Cl, Dl are similar and hence are left to the reader. In the following

calculation, we shall repeatedly apply (1.6.1), (2.3.1), (4.1.2), Lemmas 2.9 and 3.6.
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Now assume t = 1. The result can be checked easily when i, j 6= ±1 . On the other

hand, for 1 < j 6 l, we have

k(w;±1, j)=k(ws1;∓1, j)=
[
(j)(ws1)−1 − (∓1)(ws1)−1

2l + 2

]
=

[
(j)w−1 − (±1)w−1

2l + 2

]
.

We also have

k(w; 0, 1) = k(ws1; 0,−1) = −k(ws1; 0, 1)− 1

= −
[
(1)(ws0)−1 − (0)(ws0)−1

2l + 2

]
− 1 = −

[
(−1)w−1

2l + 2

]
− 1

=
[
(1)w−1 − (0)w−1

2l + 2

]
.

Finally assume t = 0. We need only check the cases when {i, j} ∩ {l − 1, l} 6= ∅ for

otherwise the result is obvious. For i ∈ [−l + 2, l − 2], we have

k(w; i, l − 1) = k(ws0; i,−l) + 1 = −k(ws0;−i, l)

= −
[
(l)(ws0)−1 − (−i)(ws0)−1

2l + 2

]
= −

[
(l + 3)w−1 − (−i)w−1

2l + 2

]

= −
[
1− (l − 1)w−1 − (i)w−1

2l + 2

]
=

[
(l − 1)w−1 − (i)w−1

2l + 2

]
.

The equation k(w; i, l) =
[

(l)w−1−(i)w−1

2l+2

]
can be shown similarly. Also, we have

k(w; l − 1, l) = k(ws0;−l,−l + 1) = k(ws0; l − 1, l)

=
[
(l)(ws0)−1 − (l − 1)(ws0)−1

2l + 2

]
=

[
(l + 3)w−1 − (l + 2)w−1

2l + 2

]

=
[
(−l + 1)w−1 − (−l)w−1

2l + 2

]
=

[
(l)w−1 − (l − 1)w−1

2l + 2

]

and

k(w;−l + 1, l) = k(ws0; l,−l + 1) + 2 = −k(ws0;−l + 1, l) + 1

= −
[
(l)(ws0)−1 − (−l + 1)(ws0)−1

2l + 2

]
+ 1

= −
[
(l + 3)w−1 − (−l − 2)w−1

2l + 2

]
+ 1

= −
[
(−l + 1)w−1 − (l)w−1

2l + 2

]
− 1 =

[
(l)w−1 − (−l + 1)w−1

2l + 2

]
.

Therefore the equation (4.1.1) holds in all the cases. ¤
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4.2. By Theorem 4.1, it is natural to extend the alcove form of w ∈ Wa(X̃) to

(k(w; i, j))i,j∈Z by setting

(4.2.1) k(w; i, j) =
[
(j)w−1 − (i)w−1

mX

]

for any X ∈ Ωl and i, j ∈ Z. Call (k(w; i, j))i,j∈Z the extended alcove form of w. The

relations in Lemma 2.9 remain valid for any i, t, j ∈ Z with i 6≡ j (mod mX). Clearly,

we have

(4.2.2) k(w; i−mX , j) = k(w; i, j + mX) = k(w; i, j) + 1

for any i, j ∈ Z. We call k(w; i, j) a basic entry of the alcove form of w if (i, j) ∈ Φ(X).

It is straightforward to deduce the following

Corollary 4.3. Let X ∈ Ωl for an appropriate integer l. Then we have

(4.3.1) k(wy; i, j) = k(w; (i)y−1, (j)y−1)

for any i, j ∈ Z and w, y ∈ Wa(X̃).

Note that in the above corollary, the element y is regarded as a permutation on Z.

4.4. The right-hand side of (4.1.1) was named the inverse table of w by H. Eriksson and

K. Eriksson in [4, §8.] as (i, j) ranges over a certain subset of Z× Z. They proposed a

conjecture in the case of X = Cl in order to characterize the inverse table of w ∈ Wa(C̃l)

as a family of integers. Then they claimed that they would be able to formulate a similar

conjecture in the cases of X = Bl, Dl. Now Theorems 1.3, 4.1 and Lemma 2.9 together

give the following characterization for the inverse table of w ∈ Wa(X̃), X ∈ Ωl.

Theorem 4.5. Let X ∈ Ωl for an appropriate integer l and let Φ be the root system

of type X. Then a family of integers (kij)(i,j)∈Φ is the inverse table of some element in

Wa(X̃) if and only if the following conditions are satisfied:

(1) kji = −kij − 1 for any (i, j) ∈ Φ;

(2) kit + ktj 6 kij 6 kit + ktj + 1 for any i, t, j, with (i, j), (i, t), (t, j) ∈ Φ.

This theorem gives an affirmative answer to the conjecture in [4, 8.3].

§5. Transition from the alcove forms to the permutation forms.

Keep the notations in 4.2. Denote the integer m = mX (see Lemma 3.6) and the root

system Φ = Φ(X) (see 2.4-2.7) for X ∈ Ωl. Fix w ∈ Wa(X̃). The aim of the present

section is to express the numbers (t)w−1, 1 6 t 6 l, in terms of the basic entries of

the alcove form of w. We actually go further by expressing these numbers in terms of

k(w; i, j)’s with (i, j) the positive roots.
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5.1. By (4.1.1), we can write

(5.1.1) (j)w−1 − (i)w−1 = m · k(w; i, j) + r(w; i, j)

for any (i, j) ∈ Z × Z, where the integer r(w; i, j) is taken from the interval [0,m − 1].

Fix t, 1 6 t 6 l. By taking the sums over j = 1, 2, · · · ,m on both sides of (5.1.1), we

get

(5.1.2)
m∑

j=1

(
(j)w−1 − (t)w−1

)
= m ·

m∑

j=1

k(w; t, j) +
m∑

j=1

r(w; t, j).

By the fact

(5.1.3) m +
m∑

j=1

r(w; t, j) =
m∑

j=1

j =
m∑

j=1

(j)w−1,

we get from (5.1.2) that

(t)w−1 =1−
m∑

j=1

k(w; t, j)

(5.1.4)

=1−
l∑

j=t+1

k(w; t, j) +


t− 1 +

t−1∑

j=1

k(w; j, t)


−

m−l−1∑

h=0

k(w; t, m− h)

=t +
t−1∑

j=1

k(w; j, t)−
l∑

j=t+1

k(w; t, j) +
m−l−1∑

h=0

k(w;−h, t).

The last equality follows by the fact k(w; t,m− h) = k(w; t,−h) + 1 = −k(w;−h, t) for

any t 6≡ h ( mod m) in Z. When X = Al−1, we have m = l and then the last sum of the

right-hand side of (5.1.4) vanishes. We get the formula in [9, Corollary 6.2.2, (i)]. Now

assume X ∈ Ω′l. Then m = 2l + 2 and (5.1.4) becomes

(5.1.5) (t)w−1 = t +
t−1∑

j=1

k(w; j, t)−
l∑

j=t+1

k(w; t, j) +
∑

16h6l
h 6=t

k(w;−h, t) + 2k(w;−t, t),

where we use the relation

(5.1.6) k(w; 0, t) + k(w;−l − 1, t) = k(w;−t, t).

which can be deduced easily from (4.2.1). On the other hand, we have

(5.1.7) (t)w−1 = k(w; 0, t)(2l + 2) + r(w; 0, t)
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by (5.1.1) and Lemma 3.6, (3). Note that k(w; 0, t) is a basic entry of the alcove form

of w only when X = Bl.

We see that all the k(w; a, b)’s occurring on the right-hand side of (5.1.5) are the basic

entries of the alcove form of w except for k(w;−t, t). On the other hand, k(w;−t, t) is

a basic entry of the alcove form of w only when X = Cl. So we get

Theorem 5.2. Let w ∈ Wa(X̃), l > 2 and t ∈ [1, l]. Then we have the following

transition formulae on w.

(1) When X = Al−1, we have

(5.2.1) (t)w−1 = t +
t−1∑

j=1

k(w; j, t)−
l∑

j=t+1

k(w; t, j),

(2) When X = Cl, we have

(5.2.2) (t)w−1 = t +
t−1∑

j=1

k(w; j, t)−
l∑

j=t+1

k(w; t, j) +
l∑

h=1

k(w;−h, t) + k(w;−t, t).

Since k(w;−t, t) is not a basic entry of the alcove form of w when X = Bl, Dl. So in

these cases, we have to calculate k(w;−t, t) via the basic entries of the alcove form of

w in order to get the required transition formulae.

5.3. Assume X = Bl, l > 3. By (5.1.7), we need only determine r(w; 0, t) in order to

calculate (t)w−1. By (4.2.1), we have

(5.3.1) k(w;−t, t) = 2k(w; 0, t) + ε(w, t),

where ε(w, t) = 0 or 1 according to r(w; 0, t) < l + 1 or > l + 1 respectively (note that

r(w; 0, t) 6= l + 1 by Lemma 3.6, (3), (4)). Let

(5.3.2) ∆(w, t) = t +
t−1∑

j=1

k(w; j, t)−
l∑

j=t+1

k(w; t, j) +
∑

16h6l
h 6=t

k(w;−h, t) + 4k(w; 0, t).

Then by (5.1.5) and (5.3.1), we have

(5.3.3) (t)w−1 = ∆(w, t) + 2ε(w, t),

where ∆(w, t) is determined entirely by the basic entries of the alcove form of w. Let

δ(w, t) be the remainder of ∆(w, t) divided by 2l + 2. Then

(5.3.4) r(w; 0, t) = δ(w, t) + 2ε(w, t)
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by the definition of ε(w, t) and by the fact 1 6 r(w; 0, t) 6 2l + 1 (see Lemma 3.6,

(3), (4)). So ε(w, t) can also be determined uniquely by δ(w, t) except for the case of

δ(w, t) = l. When δ(w, t) = l, r(w; 0, t) could be either l or l + 2 and hence ε(w, t)

could be either 0 or 1. But we see from Lemma 3.6, (1), (2) that there is exactly one

integer t with 1 6 t 6 l satisfying r(w; 0, t) ∈ {l, l + 2} for a given w ∈ Wa(B̃l). This

tells us that all the (t)w−1, 1 6 t 6 l, but one are determined uniquely by ∆(w, t). For

this exceptional t, we have δ(w, t) = l, r(w; 0, t) ∈ {l, l + 2} and (t)w−1 = ∆(w, t) or

∆(w, t)+2. But the evenness of the value Nl(w−1) (see 3.4) can determine which value

we should take for this exceptional (t)w−1.

Note that we have 1 6 δ(w, t) 6 2l− 1 for any t ∈ [1, l] by (5.3.4). So by (5.1.7) and

(5.3.4), the above results can be summarized as follows.

Theorem 5.4. In the above setup, we have

(5.4.1) (t)w−1 =





k(w; 0, t)(2l + 2) + δ(w, t), if 1 6 δ(w, t) < l,

k(w; 0, t)(2l + 2) + δ(w, t) + 2, if l < δ(w, t) 6 2l − 1,

k(w; 0, t)(2l + 2) + l + 1± 1, if δ(w, t) = l.

for any w ∈ Wa(B̃l), l > 3. In the last case, the value (t)w−1 is determined eventually

by the evenness of the number Nl(w−1).

5.5. Next assume X = Dl, l > 4. Let

(5.5.1) ∆′(w, t) = t +
t−1∑

j=1

k(w; j, t)−
l∑

j=t+1

k(w; t, j) +
∑

16i6l
i 6=t

k(w;−i, t).

Then ∆′(w, t) is determined entirely by the basic entries of the alcove form of w. By

(5.1.5) and (4.2.1), we have

(5.5.2) (t)w−1 − 2
[
2 · (t)w−1

2l + 2

]
= ∆′(w, t).

This implies by (5.1.7) that

(5.5.3) k(w; 0, t)(2l − 2) + r(w; 0, t)− 2ε′(w, t) = ∆′(w, t),

where ε′(w, t) = 0 or 1 according to r(w; 0, t) < l + 1 or > l + 1 respectively. Note that

k(w; 0, t) is not a basic entry of the alcove form of w. We see from Lemma 3.6, (1) that

r(w; 0, t)− 2ε′(w, t) is in [1, 2l− 1]. Let δ′(w, t) be the remainder of ∆′(w, t) divided by

2l − 2. Then we see from (5.5.3) that when the remainder δ′(w, t) 6= 1, the numbers

k(w; 0, t) and r(w; 0, t) − 2ε′(w, t) are determined uniquely by ∆′(w, t). On the other

hand, when δ′(w, t) 6= 1, l, the number r(w; 0, t) is also determined uniquely by ∆′(w, t).
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If δ′(w, t) = 1, then r(w; 0, t) = 1 or 2l + 1; also, if δ′(w, t) = l, then r(w; 0, t) = l or

l + 2. By Lemma 3.6, (1), (2), we see that there are exactly two integers t′, t′′ ∈ [1, l]

satisfying r(w; 0, t′) ∈ {1, 2l + 1} and r(w; 0, t′′) ∈ {l, l + 2} respectively. Thus all the

(t)w−1 (1 6 t 6 l) but two are determined entirely by ∆′(w, t) and hence by the basic

entries of the alcove form of w. Then by (5.5.3) and (5.1.7), we see that the evenness

of the values N0(w−1) and Nl(w−1) (see 3.5 and 3.4) can determine the values of these

two exceptional (t′)w−1 and (t′′)w−1.

Note that we have δ′(w, t) ∈ [0, 2l − 3] for any t ∈ [1, l]. Let λ(w, t) =
[

∆′(w,t)
2l−2

]
.

Then by (5.1.7) and (5.5.3), we can summarize our results as follows.

Theorem 5.6. In the above setup, we have

(5.6.1) (t)w−1 =





λ(w, t)(2l + 2) + δ′(w, t), if 1 < δ′(w, t) < l,

λ(w, t)(2l + 2) + δ′(w, t) + 2, if l < δ′(w, t) 6 2l − 3,

λ(w, t)(2l + 2)− 2, if δ′(w, t) = 0,

λ(w, t)(2l + 2)± 1, if δ′(w, t) = 1,

λ(w, t)(2l + 2) + l + 1± 1, if δ′(w, t) = l.

for any w ∈ Wa(D̃l), l > 4. In the last two cases, the values (t)w−1 are determined by

the evenness of the numbers N0(w−1) and Nl(w−1) respectively.

5.7. Now we consider the functions N0(w) and Nl(w) of Wa(X̃) (X ∈ Ω′l). Write, for

1 6 t 6 l,

(5.7.1) (t)w = kt(2l + 2) + rt = k′t(2l + 2)− (l + 1) + r′t

with kt, k
′
t, rt, r

′
t ∈ Z and 0 6 rt, r

′
t < 2l + 2 (By Lemma 3.6 (4), we have 1 6 ri, r

′
i <

2l + 2). Then

(5.7.2) N0(w) =
l∑

i=1

|kt| and Nl(w) =
l∑

i=1

|k′t|.

By (5.7.1), we get the inequality

(5.7.3) N0(w)− l 6 Nl(w) 6 N0(w) + l.

By the relations (−i)w = −(i)w and (i)w + (2l + 2− i)w = 2l + 2 (i ∈ Z), we also get

N0(w) = N0(w−1) and Nl(w) = Nl(w−1) for any w ∈ Wa(X̃).

5.8. We conclude the paper by an application of the permutation form of Wa(X̃),

X ∈ Ωl. Let πi(w) (0 6 i 6 l) be the minimal possible multiplicity of the factor si

occurring in a reduced expression of w ∈ Wa(X̃). We want to describe the number

πi(w). We have

π1(w) = N0(w) for X = Cl, Bl;(5.8.1)

π0(w) = Nl(w) for X = Cl.(5.8.2)
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5.9. Now assume X = Dl. Let b1, b2, · · · , bl (resp. b′1, b
′
2, · · · , b′l) be the rearrange-

ment of |k1|, |k2|, · · · , |kl| (resp. |k′1|, |k′2|, · · · , |k′l|) in (weakly) decreasing order. De-

note c0(w) = b1, c′0(w) = b′1, c1(w) =
∑l

i=2 bi and c′1(w) =
∑l

i=2 b′i. Let c(w) =

max{0, c0(w)− c1(w)} and c′(w) = max{0, c′0(w)− c′1(w)}. Then c(w), c′(w) ∈ 2Z. We

have the following formula

(5.9.1) π1(w) =
N0(w) + c(w)

2

This can be shown by applying induction on `(w) > 0 and by the following facts:

(1) N0(skw) = N0(w), c(skw) = c(w) and π1(skw) = π1(w) for k 6= 1;

(2) If L(w) = {s1}, then π1(s1w) = π1(w)−1, and that either N0(s1w) = N0(w)−2,

c(s1w) = c(w), or N0(s1w) = N0(w), c(s1w) = c(w)− 2 hold.

This, together with (5.7.2), implies

π1(w) =

{ 1
2
N0(w), if c(w) = 0,

c0(w), if c(w) > 0.

or equivalently,

(5.9.2) π1(w) = max{1
2
N0(w), c0(w)}.

Similarly, we have

(5.9.3) π0(w) = max{1
2
Nl(w), c′0(w)}.

This, together with (5.7.1) and (5.7.3), implies

(5.9.4) π1(w)− l

2
6 π0(w) 6 π1(w) +

l

2
.

The formula (5.9.3) holds also in the case of X = Bl.

5.10. We have described the numbers πi(w) in the case where X ∈ Ω′ and i = 0, 1.

This number can be described in a much simpler way in all the remaining cases:

(5.10.1) πi(w) =
{

N ′
i(w), if X = Al−1, 0 6 i < l,

N ′
i−1(w), if X ∈ Ω′l, 1 < i 6 l,

where N ′
i(w) = #{k ∈ Z | k 6 i, (k)w > i} for i ∈ Z. This can be shown by applying

induction on `(w) > 0.
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