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In their famous paper [6], Kazhdan and Lusztig introduced the concept of

equivalence classes such as left cell, right cell and two-sided cell in a Coxeter

group W . We inherit the notations 6
L
, 6

R
, 6

LR
, ∼

L
, ∼

R
and ∼

LR
in [6]. Thus

w ∼
LR

y (resp. w ∼
L

y, resp. w ∼
R

y) means that the elements w, y ∈ W are in

the same two-sided cell (resp. left cell, resp. right cell) of W , etc. Concerning

an affine Weyl group Wa, Lusztig showed that the set Cell(Wa) of two-sided

cells of Wa is in a natural 1-1 correspondence with the set U(G) of unipotent

classes in the corresponding algebraic group G [11]. We know that Cell(Wa)

is a poset under the relation 6
LR

. Also, U(G) is a poset under the relation:

v ≤ u in U(G) ⇐⇒ u ⊂ v, where v is the closure of the conjugacy class v in

the variety of unipotent elements of G. Under the Lusztig’s correspondence,

the two-sided cell c = {1Wa
} ⊂ Wa is associated to the regular unipotent

class of G, and the lowest two-sided cell W(v) (see [11]) of Wa is associated

to the trivial class {1G} ⊂ G. Thus it is natural to formulate the following

conjecture which was suggested by Lusztig (See [8, Conjecture D]) .

Key words and phrases. affine Weyl groups, two-sided cells, partial order, unipotent
classes.

Supported by the National Science Foundation of China and by the Science Foundation
of the University Doctorial Program of CNEC

Typeset by AMS-TEX

1



2 Jian-yi Shi

Conjecture A. There exists an order-preserving bijection between the set

Cell(Wa) of two-sided cells of Wa and the set U(G) of unipotent conjugacy

classes of the corresponding algebraic group G.

The above conjecture has been verified in the cases when Wa has rank

≤ 3 (see [1], [3] or by directly checking). In the present paper, we shall give

an affirmative answer of Conjecture A in the cases when Wa is of type Ãn−1

and when Wa has rank 4. That is, we have

Theorem B. If Wa is an affine Weyl group which has either type Ãn−1,

n > 1, or rank ≤ 4, then Conjecture A holds in Wa.

The proof of Theorem B is based mainly on two of our results, i.e. Theorem

1.11 and Proposition 1.12 and on the knowledge of the sets T (Ω) (defined in

1.10) for all the two-sided cells Ω of the concerned affine Weyl groups.

The content of the paper is organized as follows. In section 1, we establish

two results concerning the partially-ordered relation on the two-sided cells

of an affine Weyl group, i.e. Theorem 1.11 and Proposition 1.12. They are

crucial in the proof of our main result, Theorem B. Then we show Theorem

B in the type Ãn−1 (n > 1) case in section 2 and in the rank 4 cases in

section 3. Finally, in section 4, we make some comments on the set T (Ω),

where Ω is a two-sided cell of an affine Weyl group.

§1. Some results on the poset Cell(Wa).

1.1. Let W = (W,S) be a Coxeter system, i.e. W is a Coxeter group with

S its Coxeter generator set. We denote by ` the length function of W . Let

≤ be the Bruhat order on W . To any w ∈ W , we associate two subsets of S:

L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.
Let A = Z[u, u−1] be the ring of Laurent polynomials in an indeterminate

u with integer coefficients. Then the Hecke algebra H = H(W ) with respect

to W is by definition an associative algebra over A with an A-basis {Tw |
w ∈ W} whose multiplication rule is given by

{
TwTw′ = Tww′ , if `(ww′) = `(w) + `(w′);
(Ts − u−1)(Ts + u) = 0, for s ∈ S.
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1.2. For w ∈ W , define Cw =
∑

y≤w

u`(w)−`(y)Py,w(u−2)Ty, where the Py,w’s

are Kazhdan-Lusztig polynomials. It is known that {Cw | w ∈ W} also forms

an A-basis of H. Thus for any x, y ∈ W , we can write

CxCy =
∑

z

hx,y,zCz, with hx,y,z ∈ A.

In [8], Lusztig defined a function a : W −→ N such that for any z ∈ W ,

ua(z)hx,y,z ∈ Z[u], for any x, y ∈ W,

ua(z)−1hx,y,z /∈ Z[u], for some x, y ∈ W.

We state the following property for a Coxeter system (W,S):

(∗) There exists an integer N≥0 such that uNhx,y,z∈Z[u] for all x, y, z∈W .

Obviously, any finite Coxeter group satisfies the property (∗). Lusztig

showed that the property (∗) also holds for any affine Weyl group (see [8]).

1.3. Kazhdan-Lusztig polynomials Py,w, y, w ∈ W , satisfy the properties

that Pw,w = 1, Py,w = 0 if y � w, and deg Py,w ≤ 1
2
(`(w) − `(y) − 1) if

y < w. We denote by µ(y, w) or µ(w, y) the coefficient of u(1/2)(`(w)−`(y)−1)

in Py,w when `(y) ≤ `(w). We write y—w if µ(y, w) 6= 0.

1.4. The following results on the cells of W are well known: If x 6
L

y (resp.

x 6
R

y) in W , then R(x) ⊇ R(y) (resp. L(x) ⊇ L(y)). In particular, the

relation x ∼
L

y (resp. x ∼
R

y) implies R(x) = R(y) (resp. L(x) = L(y)) (see

[6]).

1.5. A Coxeter system (W,S) is crystallographic if it arises from some Kac-

Moody Lie algebra (or group). In that case, we have that for any s, t ∈ S,

the order o(st) of the product st is 1, 2, 3, 4, 6 or ∞. Weyl groups and affine

Weyl groups are all crystallographic. The following results were shown by

Lusztig and Springer.

Proposition 1.6. Let (W,S) be a crystallographic Coxeter system. In the

following (2) and (3), we further assume (W,S) satisfying the property (∗).
(1) For any x, y, z ∈ W , all the coefficients of the Laurent polynomial hx,y,z

are non-negative [8].
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(2) The function a is constant on a left (resp. right, resp. two-sided) cell

Γ of W (thus we may denote by a(Γ) the value a(w) for any w ∈ Γ). The

relation y �
LR

w implies the inequality a(w) < a(y) for any y, w ∈ W [10].

(3) If x, y ∈ W satisfy y 6
L

x and a(y) = a(x), then y 6
L

x [10].

(4) If x, y ∈ W satisfy x—y and x �
LR

y, then both relations x 6
L

y and x 6
R

y

hold [19].

Lemma 1.7. Let (W,S) be a crystallographic Coxeter system with the prop-

erty (∗). Let z, z′ ∈ W be such that z—z′ and let s ∈ S be such that

s ∈ R(z′) \ R(z). Let y1 ∈ W be such that y1 6
L

z′. Then there exists

x1 ∈ W such that x1 6
L

z and x1 ∼
R

y1.

Proof. Let y = y−1
1 . Then y 6

R
(z′)−1. So Cy appears with non-zero coeffi-

cient in C(z′)−1Cx and hence in CsCz−1Cx for some x ∈ W by Proposition 1.6,

(1). Again by Proposition 1.6, (1), this implies that there exists x′ ∈ W such

that Cx′ appears with non-zero coefficient in Cz−1Cx and that Cy appears

with non-zero coefficient in CsCx′ . We have x′ 6
R

z−1 and hence (x′)−1 6
L

z.

If sx′ < x′, then y = x′. We can take x1 = (x′)−1 = y1. Now assume

sx′ > x′. Then y—x′ and y 6
L

x′. If y ∼
L

x′, then y1 ∼
R

(x′)−1 6
L

z.

We can take x1 = (x′)−1. If y �
L

x′, then by Proposition 1.6, (2) and (3)

we have y �
LR

x′. By Proposition 1.6, (4), this implies y 6
R

x′ and hence

y1 6
L

(x′)−1 6
L

z. We can take x1 = y1. ¤

Theorem 1.8. Let (W,S) be a crystallographic Coxeter system with the

property (∗). Let x, y ∈ W be such that x 6
LR

y. Then there exists z ∈ W

such that z ∼
R

x and z 6
L

y.

Proof. Consider all the sequences of elements x0 = x, x1, · · · , xr = y from x

to y such that the relation xi−1 �
LR

xi holds for every i, 1 ≤ i ≤ r. Then by

Proposition 1.6, (2), we see that the upper-boundary of the lengths r of these

sequences is finite, which must be less or equal to a(x) − a(y). So we can

assume that x �
LR

y and that the result is true when x, y are replaced by x, y′

with x 6
LR

y′ 6
LR

y and y′ �
LR

y. From the definition of the relation x 6
LR

y, we
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see that there exist v, v′ such that x 6
LR

v �
LR

v′ ∼
LR

y and that either v 6
L

v′ or

v 6
R

v′ holds. Replacing if necessary v, v′ by v−1, (v′)−1, we can assume that

v 6
L

v′. Let w ∈ Wa be such that v′ ∼
R

w, w ∼
L

y (Such an element w always

exists, since in a two-sided cell of Wa, the intersection of a left cell with a

right cell is non-empty). Since w ∼
R

v′, we can find v′ = v′1, · · · , v′r = w

such that for every i, 1 < i ≤ r, v′i−1—v′i and R(v′i−1) * R(v′i). Applying

repeatedly Lemma 1.7, we find a sequence v = v1, · · · , vr such that vi 6
L

v′i
(1 ≤ i ≤ r), v1 ∼

R
v2 ∼

R
· · · ∼

R
vr. In particular, we have v ∼

R
vr 6

L
w. Since

w ∼
L

y, we have x 6
LR

v ∼
R

vr 6
L

y. Since y �
LR

vr, the theorem is known to

hold for (x, vr) instead of (x, y). Thus there exists z ∈ Wa such that x ∼
R

z,

z 6
L

vr and the theorem follows. ¤

Remark 1.9. Lemma 1.7 and Theorem 1.8 are the counterparts of [12,

Lemma 3.1 and Theorem 3.2]. So the proofs of the former are analogous

to those of the latter. But in our proof of Theorem 1.8, we don’t assume

that the number of two-sided cells of (W,S) is finite. So the conclusion of

Theorem 1.8 is valid for any crystallographic group with the property (∗),
not only for an affine Weyl group. By applying the argument analogous to

ours, we can show that the conclusion of [12, Theorem 3.2] is also valid for

any crystallographic group with the property (∗).
1.10. Let S be the set of all the subsets of S. For any I,J ⊆ S, write I ¿ J,

if for any I ∈ I, there exists some J ∈ J such that J ⊇ I.

For any two-sided cell Ω of W , let L(Ω) = {I ⊂ S | I = L(w) for some w ∈
Ω} and R(Ω) = {I ⊂ S | I = R(w) for some w ∈ Ω}. Then by the fact that

x ∼
LR

x−1 for any x ∈ W , we have L(Ω) = R(Ω) and hence we can denote

this set by T (Ω).

Theorem 1.11. Assume that (Wa, S) is an affine Weyl group. Assume that

Ω and Ω′ are two-sided cells of Wa with Ω′ 6
LR

Ω. Then T (Ω) ¿ T (Ω′).

Proof. This follows from 1.4 and Theorem 1.8. ¤

This theorem will be useful in checking whether or not some two-sided

cells Ω and Ω′ of Wa have the relation Ω′ 6
LR

Ω. Now we give one more result
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on this respect. Given I ⊆ S. If the subgroup WI of Wa generated by I is

finite, then we denote by wI the longest element of WI .

Proposition 1.12. Let Ω and Ω′ be two-sided cells of an affine Weyl group

(Wa, S). Assume that wI ∈ Ω for some I ⊆ S. Then Ω′ 6
LR

Ω if and only if

there exists some J ∈ T (Ω′) with J ⊇ I.

Proof. The implication “ =⇒ ” follows by Theorem 1.11. Now we show the

implication “ ⇐= ”. By the assumption, there exists some element w ∈ Ω′

with L(w) = J , J ⊇ I. Then we have an expression w = wI · x for some

x ∈ W with `(w) = `(wI) + `(x). This implies that w 6
LR

wI and hence

Ω′ 6
LR

Ω. ¤

§2. The proof of Theorem B in type Ãn−1 case.

In the present section, we always assume that the Coxeter system (Wa, S)

has type Ãn−1.

2.1. A partition of n (n ∈ N) is any sequence λ = (λ1, λ2, · · · , λr) of non-

negative integers in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λr and
r∑

i=1

λi = n.

We shall not distinguish between two such sequences which differ only by

a string of zeros at the end. Sometimes it is convenient to use a notation

which indicates the number of times each integer occurs as a part: λ =

(1m12m2 · · · rmr · · · ) means that exactly mi of the parts of λ equal to i. Let

Λn be the set of all the partitions of n.

For λ = (λ1, λ2, · · · , λr), µ = (µ1, µ2, · · · , µt) ∈ Λn, we write λ ≤ µ, if for

any i ≥ 1, the inequality
i∑

j=1

λj ≤
i∑

j=1

µj holds.

We write λ l µ, if λ < µ, and there does not exist any ν ∈ Λn satisfying

λ � ν � µ. It is well known that λ l µ if and only if there exist two integers

i, j, j > i ≥ 1, satisfying the following conditions.

(1) λh = µh for any h ≥ 1 with h 6= i, j.

(2) λi = µi − 1, λj = µj + 1.

(3) λi = λi+1 = · · · = λj−1 ≥ λj .
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For λ, µ ∈ Λn, we say that µ = (µ1, µ2, · · · , µt) is conjugate to λ =

(λ1, λ2, · · · , λr), if for any i, 1 ≤ i ≤ t, µi is equal to the number of parts

λj with λj ≥ i. In this case, we denote µ by λ′. In general, we have that

(λ′)′ = λ and that λ ≤ µ if and only if µ′ ≤ λ′.

2.2. Let G = GL (n,C) be the general linear group over the complex field

C of rank n. Then a unipotent conjugacy class u of G can be parametrized

by a partition λ ∈ Λn with λ′ = (λ′1, λ
′
2, · · · , λ′r) such that λ′1, λ′2, · · · , λ′r

are the sizes of the Jordan blocks of a standard form of the class u (counting

multiplicities). We denote such a class u by uλ.

It is well known that for λ, µ ∈ Λn, we have uλ ≤ uµ if and only if λ ≤ µ

[18].

2.3. Let S = {si | 0 ≤ i < n} be a Coxeter generator set of the affine

Weyl group Wa such that the order o(sisi+1) of the product sisi+1 is 3 for

0 ≤ i < n with the convention that si+n = si, i ∈ Z. It is known that

the group Wa can be identified with the following permutation group on the

integer set Z:

An =

{
w : Z 7→ Z

∣∣∣∣∣(i + n)w = (i) + n, for all i ∈ Z;
n∑

i=1

(i)w =
n∑

i=1

i

}
.

where the Coxeter generator set S = {st | 0 ≤ t ≤ n− 1} of An is given by

(i)st =





i, if i 6≡ t, t + 1 (mod n),
i + 1, if i ≡ t (mod n),
i− 1, if i ≡ t + 1 ( mod n).

To each element w ∈ An, we associate a sequence of integers d1 ≤ d2 ≤ · · · ≤
dt = n as follows.

dk = max

{
|X|

∣∣∣∣∣ X =
k⋃

i=1

Xi ⊂ Z; u 6≡ v(mod n), for all u 6= v in X;

and u < v in some Xi implies (u)w > (v)w

}
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where the notation |X| stands for the cardinality of a set X. C. Greene

showed that (d1, d2 − d1, d3 − d2, · · · , dt − dt−1) is a partition of n (see [5]).

We denote it by σ(w). This defines a map σ : An −→ Λn. It is known that

the map σ induces a bijection from the set of two-sided cells of An to the set

Λn (see [13]).

2.4. To each J ⊂ S, we associate a partition π(J) of n as below. Decompose

the set J into a disjoint union J = J1 ∪ J2 ∪ · · · ∪ Jr satisfying the following

conditions.

(1) |J1| ≥ |J2| ≥ · · · ≥ |Jr| > 0.

(2) For any i, 1 ≤ i ≤ r, we have Ji = {ski+j | 1 ≤ j ≤ hi} for some ki, hi ∈ Z
with hi ≥ 1 and ski , ski+hi+1 /∈ J .

Let λi = hi+1 for 1 ≤ i ≤ r and λk = 1 for r < k ≤ t = n+r−
r∑

j=1

λj . Then

we define π(J) = (λ1, · · · , λt). Clearly, we have π(J) ∈ Λn. Also, we see

that π(J) only dependent on J itself, not on the choice of the decomposition

of J . So the partition π(J) is well defined.

Lemma. If J ⊆ I in S, then π(J) ≤ π(I).

Proof. We may assume J ( I since otherwise there is nothing to prove. We

need only to deal with the case of |J | = |I|−1. Then the result can be shown

easily by comparing standard decompositions of I and J . ¤

2.5. Recall the definition of the map σ : An −→ Λn given above. It is easily

seen that the equality σ(wJ ) = π(J) holds for any J ⊂ S. Moreover, we have

the following result by [13].

Lemma. Let λ ∈ Λn.

(1) There exists some J ⊂ S such that π(J) = λ.

(2) The two-sided cell σ−1(λ) of An contains all the elements of the form

wJ , J ⊂ S, with π(J) = λ.

(3) For any I ∈ T (σ−1(λ)), we have π(I) ≤ λ.

Lemma 2.6. Let I = I1 ∪ I2 and J = J1 ∪ J2 be standard decompositions

of I, J ⊂ S such that I1 = {sh | 1 ≤ h ≤ k1}, I2 = {sk1+1+h | 1 ≤ h ≤ k2},
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J1 = I1 ∪ {sk1+1} and J2 = I2 \ {sk1+2}. Then wJ �
LR

wI .

Proof. wI ∼
L
sk1+k2sk1+k2−1 · · · sk1+2sk1+1wI

∼
R

sk1+k2sk1+k2−1 · · · sk1+2sk1+1wIsk1+1sk1 · · · s2

�
LR

sk1+k2+1sk1+k2 · · · sk1+2sk1+1wIsk1+1sk1 · · · s2

=sk1+k2sk1+k2−1 · · · sk1+2sk1+1wIsk1+1sk1 · · · s2s1.

Denote the last element of the above by z. Then we have σ(z) = σ(wJ) and

hence wI �
LR

z ∼
LR

wJ . ¤
To understand the above proof, we illustrate it by an example with k1 = 5

and k2 = 3 as below. Notice that an element w ∈ An can be identified with

a Z × Z matrix whose entries are all zero except for those in the positions

{(i, (i)w) | i ∈ Z} which are 1 (see [13]).

wI =




· · · · · ·
1

1
1

1· · · 1 · · ·
1

1
1

1
1

· · · · · ·




∼
L




· · · · · ·
1

1
1

1· · · 1 · · ·
1

1
1

1
1

· · · · · ·




∼
R




· · · · · ·
1

1
1

1· · · 1 · · ·
1

1
1

1
1

· · · · · ·




�
LR

z =




· · · · · ·
1

1
1

1· · · 1 · · ·
1

1
1

1
1

· · · · · ·




∼
LR




· · · · · ·
1

1
1

1· · · 1 · · ·
1

1
1

1
1

· · · · · ·




= wJ

Corollary 2.7. Assume that I, J ⊂ S satisfy π(I) l π(J). Then wJ �
LR

wI .
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Proof. Let I = I1∪· · ·∪ Ir and J = J1∪· · ·∪Jr be standard decompositions

of I and J . By Lemma 2.5, we may assume that there exists some i, j,

1 ≤ i < j ≤ r, such that Ih = Jh for any h ∈ [1, r], h 6= i, j, and Ii =

{sh | 1 ≤ h ≤ k1}, Ij = {sk1+1+h | 1 ≤ h ≤ k2}, Ji = Ii ∪ {sk1+1},
Jj = Ij \ {sk1+2}. Then by Lemma 2.6, we have wIi∪Ij

�
LR

wJi∪Jj
. This

implies immediately that wJ �
LR

wI . ¤

Lemma 2.8. Let Ω and Ω′ be two-sided cells of Wa with Ω′ 6
LR

Ω. Then

σ(Ω′) ≥ σ(Ω).

Proof. By Lemma 2.5, there exists some I ⊂ S such that wI ∈ Ω and π(I) =

σ(Ω). Also, we have T (Ω) ¿ T (Ω′) by Theorem 1.11. This implies that

there exists some J ∈ T (Ω′) with J ⊇ I. By Lemmas 2.4 and 2.5, we have

σ(Ω′) ≥ π(J) ≥ π(I) = σ(Ω). Our proof is completed. ¤

2.9. Proof of Theorem B in type Ãn−1 case. By Lemma 2.5, it is equivalent

to show the following assertions. Let λ, µ ∈ Λn.

(1) If λ ≤ µ, then we have wJ 6
LR

wI for some (and hence all) I ∈ π−1(λ)

and J ∈ π−1(µ).

(2) If σ−1(λ) 6
LR

σ−1(µ), then λ ≥ µ.

Assertion (2) is just the conclusion of Lemma 2.8. For assertion (1),

we may assume λ 6= µ since otherwise there is nothing to do. On the

other hand, for any λ < µ in Λn, there exists a sequence of partitions

ν0 = λ, ν2, · · · , νp = µ in Λn such that the relation νi−1 l νi holds for

every i, 1 ≤ i ≤ p. Thus in the proof of this assertion, we may assume λ l µ

without loss of generality. But in this case, assertion (1) follows directly from

Lemma 2.5 and Corollary 2.7. ¤

§3. The proof of Theorem B in rank 4 cases..

Besides Ã4, there are four other types for the affine Weyl groups of rank

4, i.e. B̃4, C̃4, D̃4 and F̃4. We shall prove Theorem B in these four cases in

the present section.
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The unipotent classes of a classical algebraic group G can be parametrized

by partitions of a certain integer. We denote by uλ the unipotent class of G

parametrized by a partition λ. We have uλ ≤ uµ if and only if λ ≥ µ.

3.1. The unipotent classes of the projective symplectic group PSp8(C)

(which is of type C4) are parametrized by partitions of 8 in which each odd

part occurs with even multiplicity. These partitions of 8 are (8), (62), (612),

(42), (422), (4212), (414), (322), (3212), (24), (2312), (2214), (216), (18).

Thus the unipotent classes of PSp8(C) have the partial order as in Figure 1,

(a), where a partition λ joins with a partition µ from top to bottom by an

edge if and only if λ ≥ µ if and only if uλ ≤ uµ (the same for the subsequent

diagrams).

3.2. The unipotent classes of the special orthogonal group SO9(C) (which

has type B4) are parametrized by partitions of 9 in which each even part

occurs with even multiplicity. These partitions of 9 are (9), (712), (531),

(8)

|
(62)

(612) (42)

(422)

(4212) (322)

| |
| (3212)

| |
(414) (24)

(2312)

|
(2214)

|
(216)

|
(18)

(9)

|
(712)

|
(531)

(522) (421)

| |
(514) (33)

(3213)

|
(32212)

(316) (241)

(2215)

|
(19)

(a) (b)

Figure 1.

(522), (514), (421), (33), (3213), (32212), (316), (241), (2215), (19). Thus
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the unipotent classes of SO9(C) have the partial order as in Figure 1, (b).

3.3. The unipotent classes of the projective special orthogonal group PSO8(C)

(which has type D4) are parametrized by partitions of 8 in which each even

part occurs with even multiplicity, except that each such partition in which

all parts are even gives rise to two unipotent classes. These partitions are

(71), (53), (513), (42), (3212), (3221), (315), (24), (2214), (18). Thus the

unipotent classes of PSO8(C) have the partial order as in Figure 2, (a).

3.4. The partial ordering on the unipotent classes of the reductive complex

algebraic group G(F4,C) of type F4, using Carter’s notation (see [2]), is as

in Figure 2, (b).

3.5. According to Lusztig, the unipotent classes of the algebraic group

PSp8(C) (resp. SO9(C), resp. PSO8(C), resp. G(F4,C)) are in 1-1 cor-

respondence with the two-sided cells of the affine Weyl group of type B̃4

(71)

|
(53)

|
(42) (513) (42)′

|
(3212)

|
(3221)

|
(24) (315) (24)′

|
(2214)

|
(18)

(a)

F4

|
F4(a1)

|
F4(a2)

B3 C3

F4(a3)

|
C3(a1)

Ã2+A1 B2

| |
| A2+Ã1

| |
Ã2 A2

A1+Ã1

|
Ã1

|
A1

|
1

(b)
Figure 2.
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(resp. C̃4, resp. D̃4, resp. F̃4). The following tables give these correspon-

dences explicitly, where the indexes i of the simple reflections si of the affine

Weyl groups Wa(B̃4), Wa(C̃4), Wa(D̃4) and Wa(F̃4) are compatible with the

respective extended Dynkin diagrams (see Figure 3). We denote a reflection

si simply by i for brevity. A unipotent class u of G is represented by its

corresponding partition when G is of classical type (i.e. of type B4, C4 or

D4), or by a Carter’s notation when G has type F4.The corresponding two-

sided cell c(u) is represented by a subset J ⊂ S such that wJ ∈ c(u), but

with two exceptions: to the two-sided cell Ω in Wa(D̃4) with a(Ω) = 7, we

associate an element w = 121321432 ∈ Ω; to the two-sided cell Ω′ in Wa(F̃4)

with a(Ω′) = 13, we associate an element z = 1213213234321324321 ∈ Ω′.

0 ◦
◦———◦====◦
2 3 4

1 ◦
◦====◦———◦———◦====◦
0 1 2 3 4

Type B4 Type C4

0 ◦ ◦ 3

◦
2

1 ◦ ◦ 4

◦———◦———◦=====◦———◦
0 1 2 3 4

Type D4 Type F4

Figure 3.

(1) The correspondence between the unipotent classes of PSp8(C) and the

two-sided cells of Wa(B̃4):

unip. class u (8) (62) (612) (42) (422) (4212) (322)

c(u) ∅ 1 1,3 0,1 0,1,3 3,4 1,2,4

unip. class u (3212) (414) (24) (2312) (2214) (216) (18)

c(u) 1,3,4 0,1,2 0,1,3,4 0,1,2,4 2,3,4 0,1,2,3 1,2,3,4

(2) The correspondence between the unipotent classes of SO9(C) and the

two-sided cells of Wa(C̃4):
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unip. class u (9) (712) (531) (522) (421) (514) (33)

c(u) ∅ 1 0,4 1,2 0,2,4 0,1 1,2,4

unip. class u (3213) (32212) (316) (241) (2215) (19)

c(u) 0,1,3 1,2,3 0,1,2 0,1,3,4 0,1,2,4 0,1,2,3

(3) The correspondence between the unipotent classes of PSO8(C) and the

two-sided cells of Wa(D̃4):

unip. class u (71) (53) (42) (513) (42)′ (3212)

c(u) ∅ 1 0,1 0,3 0,4 0,1,3

unip. class u (3221) (24) (315) (24)′ (2214) (18)

c(u) 0,1,3,4 0,1,2 0,2,3 0,2,4 w 1,2,3,4

(4) The correspondence between the unipotent classes of G(F4,C) and the

two-sided cells of Wa(F̃4):

unip. class u F4 F4(a1) F4(a2) B3 C3 F4(a3) C3(a1) Ã2+A1

c(u) ∅ 1 0,2 1,2 0,2,4 2,3 0,2,3 0,1,2

unip. class u B2 A2+Ã1 Ã2 A2 A1+Ã1 Ã1 A1 1

c(u) 0,1,3,4 0,1,2,4 2,3,4 1,2,3 0,2,3,4 z 0,1,2,3 1,2,3,4

3.6. Proof of Theorem B in rank 4 cases. Let G ∈ {PSp8(C), SO9(C),

PSO8(C), G(F4,C)} and let Wa be the affine Weyl group corresponding to

G as above. We need only to prove the following assertions.

(1) If u and v are two unipotent classes of G joining by an edge from top to

bottom in the above poset diagram, then c(v) 6
LR

c(u).

(2) If G = PSp8(C), then c(u414) �
LR

c(u322).

(3) If G = SO9(C), then c(u514) �
LR

c(u421).

(4) If G(F4,C), then c(u(Ã2)) �
LR

c(u(B2)).

By Theorem 1.11, assertion (2) can be shown by noting that w{1,2,4} ∈
c(u322), {1, 2, 4} /∈ T (c(u414)) and a(wI) > 6 = a(c(u414)) for any I ⊂ S

with I ) {1, 2, 4} (see [20]); assertion (3) can be shown by noting that

w{0,2,4} ∈ c(u421), {0, 2, 4} /∈ T (c(u514)) and a(wI) > 4 = a(c(u514)) for

any I ⊂ S with I ) {0, 2, 4} (see [16]); assertion (4) follows by noting

that w{0,1,3,4} ∈ c(u(B2)), {0, 1, 3, 4} /∈ T (c(u(Ã2))) and that {0, 1, 3, 4} is a

maximal proper subset of S (see [17]).
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On the other hand, assertion (1) follows by Proposition 1.12 and by the

results in [15], [16], [17] [20] except for the following cases

(a) Wa has type D̃4 and (u,v) = (u2214 ,u18).

(b) Wa has type F̃4 and (u,v) = (u(Ã1),u(A1)).

In each of the above cases, the two-sided cell c(u) contains no element of

the form wI , I ⊂ S. But in case (a), c(u18) is the lowest two-sided cell of

Wa(D̃4). So the relation c(u18) 6
LR

c(u2214) holds in this case. In case (b),

let x = 121321432132343213234 and y = x · 4012321. Then by a result of M.

Geck and K. Lux (see [4]), x is an distinguished involution of the two-sided

cell Ω = c(u(Ã1)). We see that the element y can be obtained from x by

successively applying right star operations on x (see [13] for the definition of

a right star operation) and hence y ∼
R

x. Let y′ = y · 0. Then by the fact

R(y′) = {0, 1, 2, 3} * {1, 2, 3} = R(y), we see that a(y′) ≥ a(w{0,1,2,3}) = 16

and hence y′ �
LR

y ∼
R

x. By a result of Lusztig [11, Theorem 4.8], this

implies that the element y′ must belong to one of the two-sided cells Ω′ =

c(u(A1)), Ω” = c(u(1)) of Wa(F̃4). But we see that there are some zero

entries occurring in the alcove form of the element y′ and so y′ does not

belong to the lowest two-sided cell Ω” of Wa(F̃4) by [14, Theorem 2.4]. This

implies y′ ∈ Ω′, i.e. Ω′ 6
LR

Ω. The proof is completed. ¤

§4. Comments.

The proof of Theorem B is heavily relied on the knowledge of the sets

T (Ω) for all the two-sided cells of the concerned affine Weyl groups. Thus

it is interesting to give an explicit description of such sets. Comparing with

Lemma 2.5, we have an even stronger result which explicitly describes the

set T (Ω) for any two-sided cell Ω of the group Wa(Ãn−1).

Theorem 4.1. For any λ ∈ Λn with λ 6= (1n), we have

T (σ−1(λ)) = {I ⊂ S | I 6= ∅, π(I) ≤ λ}.

The proof of this result is somewhat lengthy. So we prefer not to include

it here and will present it elsewhere. Empiricism encourages us to extend

this result to more general cases. Thus we suggest the following
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Conjecture 4.2. Let (Wa, S) be an arbitrary irreducible affine Weyl group.

Then for any two-sided cell Ω 6= {1Wa
} of Wa, the set T (Ω) consists of all

the non-empty subset I of S such that the two-sided cell Ω′ of Wa containing

wI satisfies the relation Ω 6
LR

Ω′.

This conjecture has been supported by all the irreducible affine Weyl

groups of ranks not greater than 4. Notice that this conjecture is not valid

if the concerned Coxeter system is replaced by a Weyl group W of rank

greater than two. The lowest two-sided cell of such a Weyl group provides a

counter-example.
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