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Abstract. We start with a combinatorial definition of I-sign types which are a
generalization of the sign types indexed by the root system of type Al (I ⊂ N
finite). Then we study the set DI

p of I-sign types associated to the partial orders

on I. We establish a 1-1 correspondence between D
[n]
p and a certain set of convex

simplexes in a euclidean space by which we get a geometric distinction of the sign

types in D
[n]
p from the other [n]-sign types. We give a graph-theoretical criterion

for an Sn-orbit O of D
[n]
p to contain a dast and show that O contains at most one

dast. Finally, we show the admirability of a poset associated to a dast.

§0. Introduction.

0.1. Sign types indexed by the root system Φ of type Al were first introduced in

the middle of the eighties for the description of the Kazhdan-Lusztig cells in the

affine Weyl group Wa(Ãl) of type Ãl (see [8, 10]). Subsequently they were extended

to the case where the root system Φ is of an arbitrary type (see [9]). These sign

types were defined originally as the connected components of the complement in a

euclidean space spanned by Φ after removing a certain set of hyperplanes, which

are now known as admissible sign types. The cardinalities of the admissible sign
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types and some of its subfamilies were obtained in all the cases (see [8, 9, 11]).

Recently sign types indexed by the root system of type Al have been studying

extensively as hyperplane arrangements by quite a number of people (see [2, 3, 5,

6, 12, 13]).

0.2. In the present paper, we make some further developments for the sign types

indexed by the root system of type Al. All the sign types mentioned in this paper

are assumed in this case, but with slightly generalized forms. We start with a

combinatorial definition of sign types. By this definition, the admissible sign types

form only a special family, which belong to a larger and also important family of

sign types associated to finite posets. We define the admissibility of a sign type

also in a combinatorial way, although it is equivalent to the original definition by

geometry. The new definition has the advantage that it is easier to be applied in

the theoretic study.

0.3. The set DI
p of sign types associated to finite posets of the underlying set I ⊂ N

is the main object studied in this paper, where N is the set of natural numbers.

Let [n] = {1, 2, · · · , n} for n ∈ N. We establish the connections of D
[n]
p with some

other mathematical objects, such as digraphs, convex simplexes, partitions of a

positive integer, and use them to get a number of properties of these sign types.

We use the admissible sign types to describe a sign type in D
[n]
p and establish a

1-1 correspondence between the set D
[n]
p and a certain set of convex simplexes in

a euclidean space, by which we distinguish the elements of D
[n]
p from D[n] −D

[n]
p

(set difference), where D[n] is the set of all the [n]-sign types (see 4.5 and Theorem

4.7).

0.4. We define an action of the symmetric group Sn on D
[n]
p , which induces a

bijection between the set of Sn-orbits in D
[n]
p and the set of isomorphism classes

of posets of cardinality n. We consider the intersections of an Sn-orbit O of D
[n]
p

with some special sign type sets, such as D
[n]
a , D

[n]
da , D

[n]

d̂a
, the sets of admissible,

dominant admissible, anti-dominant admissible [n]-sign types respectively. An Sn-
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orbit O of D
[n]
p can be represented by the isomorphic class of a digraph G = (V, E)

(called a poset graph) with vertex set V and arrow set E. Then a sign type

contained in O can be represented by a labeling τ : V −→ [n] of G, or equivalently

by a labeled poset graph G(τ). Then that O contains an element of D
[n]
a (resp.

D
[n]
da , resp. D

[n]

d̂a
) is amount to the existence of an admissible (resp. dominant

admissible, resp. anti-dominant admissible) labeling of G. We show that a poset

graph G has at most one (up to congruence) dominant admissible labeling, exactly

one if and only if G is nice (see 5.1.). This implies that an Sn-orbit of D
[n]
p contains

at most one dominant admissible sign type (or dast for short), exactly one if and

only if the corresponding poset graph is nice (see Theorem 5.2). Finally we show

that the poset ([n], 6X) associated to a dast X is admirable (see 6.2 and Theorem

6.7). This result has been applied to give a new characterization of Lusztig’s a-

function on the cells of the affine Weyl group Wa(Ãl) in terms of positive roots of

certain parabolic subgroups and in terms of tilting modules (see [7]).

0.5. We can also characterize a poset graph to have an admissible or anti-dominant

admissible labeling. But this will be more complicated than the case of having a

dominant admissible labeling. We shall deal with this in a forthcoming paper.

0.6. The content of the paper is organized as below. We define sign types and

introduce some general concepts related to sign types in section 1. Then in the

subsequent sections, we pay a special attention to the set DI
p of I-sign types

associated to partial orders on I. We discuss the relations of DI
p with some other

sets of sign types in section 2. We introduce poset graphs and their labelings in

section 3. The main results of the paper are included in sections 4-6. In section

4, we establish a 1-1 correspondence between D
[n]
p and a certain set of convex

simplexes in a euclidean space by which we get a geometric distinction between

the set D
[n]
p and its complement in D[n]. In section 5, we give a graph-theoretical

criterion for an Sn-orbit O of D
[n]
p to contain a dast and show that O contains at

most one dast. Finally, we show the admirability of a poset associated to a dast
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in section 6.

§1. Sign types.

1.1. Let I be a finite subset. By an I-sign type (or just a sign type), we mean a

matrix X = (Xij)i,j∈I over the symbol set Ξ = {+,©,−} subject to the require-

ment: for any i, j ∈ I

(1.1.1) {Xij , Xji} ∈ {{+,−}, {©,©}}.

X is determined entirely by the “upper-unitriangular ”part X∆ = (Xij)i<j of the

matrix. So we can identify X with X∆.

Let DI be the set of all the I-sign types.

An I-sign type X is regular, if all the entries Xij , i 6= j are in the set {+,−}.
When (I, 6) is a totally ordered set, we can define some more kinds of I-sign

types X = (Xij)i,j∈I as below. X is dominant (resp. anti-dominant) if for any

i < j in I, we have Xij ∈ {+,©} (resp. Xij ∈ {−,©}).
Let DI

r (resp. DI
d, resp. DI

d̂
) be the set of all the regular (resp. dominant, resp.

anti-dominant) I-sign types.

The above definitions of sign types can be extended to the case where I is a

poset. In particular, when I is a trivial poset (i.e. a set without any relation

among elements), any I-sign type is dominant and anti-dominant. Of course, this

case is not interesting to us. In the present paper, we always assume that I is

a finite subset of N. Thus I is totally ordered. We are particularly interested in

the case where I = [n] for some n ∈ N. The root system of type An−1 can be

expressed as Φ = {(i, j) | i 6= j in [n]}. Thus an [n]-sign type X = (Xij)i,j∈[n] is

essentially a Φ-sign type (Xij)i 6=j , the latter can be obtained from X by removing

all the entries Xii, i ∈ [n], which are all ©.

Symbolically, one may think of a sign type as a skew-symmetric matrix over

the prime field of characteristic 3 or over the set {−1, 0, 1}.
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1.2. Example In the case where I = [3], we arrange the entries of the upper-

unitriangular part of an I-sign type X in the following way.

X13

X12 X23
.

Then there are 23 different I-sign types in total, displayed as below.

(1) ©
© © (2) ©− © (3) ©

© − (4) −− © (5) −
© − (6) −− − (7) −

+ −

(8) −− + (9) +− + (10) +
+ − (11) +

+ + (12) +
© + (13) +

+ © (14) +
© ©

(15) ©
+ − (16) ©− + (17) ©

© + (18) −
© © (19) ©

+ © (20) ©− − (21) +− ©

(22) +
© − (23) ©

+ + (24) −
+ © (25) −

© + (26) −
+ + (27) +− −

1.3. An I-sign type X = (Xij) is admissible, if for any i < j < k in I, we have

− ∈ {Xij , Xjk} =⇒ Xik 6 max{Xij , Xjk},(1.3.1)

− /∈ {Xij , Xjk} =⇒ Xik > max{Xij , Xjk},(1.3.2)

where we set a total ordering on the symbols: − < © < +.

Let Ic be the set of all the triples (i, j, k) in I3 such that the sequence i, j, k

is a cycle permutation of their natural (weak) increasing ordering. Then in the

above definition, the condition “any i < j < k in I ”can be equivalently replaced

by “any (i, j, k) ∈ Ic ”.

Let DI
a be the set of all the admissible I-sign types. Let DI

da = DI
a ∩ DI

d,

DI
ra = DI

a ∩DI
r and DI

d̂a
= DI

a ∩DI
d̂

(see 1.1).

In Example 1.2, sign types (1), (11)-(14) are dominant admissible, (1)-(6) anti-

dominant admissible, (6)-(11) regular admissible, and (1)-(16) admissible.

The cardinalities of the sets D
[n]
ra , D

[n]
da , D

[n]

d̂a
and D

[n]
a are known for any n ∈ N

(see [8, 9, 11]).

The following result can be deduced directly from the definition.
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Lemma 1.4. Let X = (Xij)i<j ∈ DI
a, and let X+ (resp. X◦) in DI be obtained

from X by replacing all the entries © (resp. +) by + (resp. ©) at the positions

(i, j), i < j. Then we also have X+, X◦ ∈ DI
a. In particular, X −→ X+ is a

bijective map from DI
d̂a

to DI
ra.

1.5. The admissibility of an [n]-sign type can be interpreted geometrically for any

n > 1.

Let E = {(a1, · · · , an) ∈ Rn | ∑n
i=1 ai = 0}. This is a euclidean space of

dimension n − 1 with inner product (a1, · · · , an) · (b1, · · · , bn) =
∑n

i=1 aibi. For

any i, j, ε ∈ Z with 1 6 i < j 6 n, define a hyperplane

Hij;ε = {(a1, · · · , an) ∈ E | ai − aj = ε}.

Encode a connected component C of E−⋃
16i<j6n
ε∈{0,1}

Hij;ε by an [n]-sign type X =

(Xij)i<j as follows. Take any v = (a1, · · · , an) ∈ C. For any i, j, 1 6 i < j 6 n,

we set

Xij =





+, if ai − aj > 1;
−, if ai − aj < 0;
©, if 0 < ai − aj < 1.

Then X is only dependent on C, but not on the choice of v in C. Identify C with

X and call it a sign type.

Note that not all the [n]-sign types can be obtained in this way.

Proposition 1.6. An [n]-sign type X = (Xij) can be obtained in the above way

if and only if Xhm

Xhk Xkm
is one of the sign types (1)-(16) in Example 1.2 for any

h < k < m in [n], and hence if and only if it is admissible.

Proof. The first equivalence is a result of [8, 9]. The second equivalence follows

directly from the definition of an admissible sign type by setting I = [n]. ¤

From this proposition, we see that the regular admissible sign types are in 1-1

correspondence with the Weyl chambers in E.
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1.7. Define a relation ¿ on the set DI as below. Write X ¿ Y in DI , if Y can be

obtained from X by replacing some entries © by the symbols +, −. In this case,

we call Y an extension of X or call X a retraction of Y . This is a partial order

relation on DI . Clearly, a retraction of a dominant (resp. anti-dominant) sign

type is again dominant (resp. anti-dominant). The maximal elements of DI with

respect to ¿ are regular sign types. There is a unique minimal element, called the

trivial sign type, in DI whose entries are all ©. This is the unique element in DI

which is simultaneously dominant, anti-dominant and admissible.

1.8. By a digraph G, we mean a set V of vertices together with a set E of arrows,

where an arrow of G is an ordered pair (x, y) with x, y ∈ V . Written G = (V,E).

Say G is finite if |V | < ∞.

Two digraphs G = (V, E) and G′ = (V ′, E′) are isomorphic, if there is a bijection

ρ from V to V ′ such that for any x, y ∈ V , (x, y) ∈ E if and only if (ρ(x), ρ(y)) ∈ E′.

To an I-sign type X = (Xij)i,j∈I , we associate a digraph GX = (V, E) by

setting V = I and E = {(i, j) | Xij = +}. Clearly, up to isomorphism, a digraph

is associated to a sign type if and only if it is finite, contains no loops, no multi-

arrows and no length 2 direct circle, that is, it contains no arrow of the form (x, x)

and contains at most one of the arrows (x, y), (y, x) for any x 6= y in V . In this

paper we shall always assume a digraph satisfying these conditions and identify it

with the associated sign type.

Here and later, we use the concepts and the terminologies of the graph theory

quite often. It is hard for us to provide all the initial definitions in the paper. We

refer the readers to the book [14] as a dictionary.

1.9. Let Sn be the symmetric group on the set [n]. For any X = (Xij) ∈ D[n] and

any w ∈ Sn, we set w(X) = (Xw(i),w(j)). This defines an action of Sn on D[n].

Two sign types in D[n] are in the same Sn-orbit if and only if their associated

digraphs are isomorphic (see 1.8). The action of Sn respects the relation ¿ on

D[n] (see 1.7). So it fixes the trivial sign type and stabilizes the set D
[n]
r (see
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1.1). But it does not stabilize the set D
[n]
a (see 1.3 and Example 1.2). Then it is

interesting to study the intersections of an Sn-orbit of D[n] with the set D
[n]
a and

with some subsets of D
[n]
a . We shall consider this in the subsequent sections.

§2. The set DI
p.

2.1. To any X = (Xij) ∈ DI , define a relation 6X on I as below. For i, j ∈ I,

write i 6X j if either i = j or Xij = +.

Lemma 2.2. For X = (Xij) ∈ DI
a, the relation 6X is a partial order on I.

Proof. We must show the following statements. For any i, j, k ∈ I,

(a) i 6X j and j 6X k imply i 6X k;

(b) i 6X j and j 6X i imply i = j.

First assume i 6X j and j 6X k. If either i = j or j = k holds, then the result

i 6X k is obvious. Now assume i 6= j 6= k. Then Xij = Xjk = +. If (i, j, k) ∈ Ic

(see 1.3), then we get Xik = + by (1.3.2). If (i, j, k) /∈ Ic, then (k, j, i) ∈ Ic, and

we have Xkj = Xji = − by (1.1.1). Hence Xki = − by (1.3.1) and Xik = + by

(1.1.1). So in either case, we have i 6X k. (a) follows.

Under the assumption of (b), suppose i 6= j. Then Xij = Xji = +, contradicting

(1.1.1). So we must have i = j as required for (b). ¤

2.3. Note that not all the partial orders on I are associated to the admissible sign

types as above. However, to a partial order ¹ on I, we can associate a sign type

Y = (Yij) with

(2.3.1) Yij =





+, if i ≺ j;
−, if j ≺ i;
©, if otherwise.

Y is not always admissible, but admissible when ¹ is a linear order (i.e. Y regular).

Lemma 2.4. Let Y be the sign type associated to a partial order ¹ on I as above.

If Y is regular, then Y is admissible.
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Proof. By (1.3.1) and (1.3.2), we can reduce ourselves to the case of I = [3]. From

Example 1.2, we see that being regular, Y is associated to a partial order on [3] if

and only if Y is admissible. ¤

2.5. We shall not distinguish between a partial order on I and the associated sign

type.

Note that not all X ∈ DI are associated to the partial orders on I. In Example

1.2, only the sign types (1)-(19) are associated to the partial orders on [3].

Let DI
p be the set of all the sign types associated to the partial orders on I.

Lemma 2.6. X = (Xij) ∈ DI is in DI
p if and only if for any triple i, j, k ∈ I, the

relations Xij = Xjk = χ ∈ {+,−} imply Xik = χ.

Proof. Let 6X be the relation on I associated to X. The implication “=⇒”is

amount to asserting that a partial order relation on I is transitive and so it is

obvious. For the reversing implication, the given condition guarantees the transi-

tivity of the relation 6X . The remaining thing is to show that if i, j ∈ I satisfy

both relations i 6X j and j 6X i then i = j. The relation i 6X j (resp. j 6X i)

implies either i = j or Xij = + (resp. either i = j or Xji = +) holds. If i 6= j

then it would imply {Xij , Xji} = {+, +} , contradicting (1.1.1). Hence we must

have i = j and so our result follows. ¤

Lemma 2.7. X = (Xij) ∈ DI
p is admissible if and only if

(2.7.1) Xik

Xij Xjk
/∈ { −

© © , ©
+ © , ©

© + }

for any (i, j, k) ∈ Ic (see 1.3).

Proof. This follows from (1.3.1), (1.3.2), Example 1.2, and the notices in 1.3 and

2.5. ¤

Corollary 2.8. (1) X ∈ DI
d̂

is in DI
p if and only if for any i < j < k in I, the

equations Xij = Xjk = − imply Xik = −.
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(2) X ∈ DI
p ∩DI

d̂
is in DI

a if and only if for any i < j < k in I, the equation

Xik = − implies either Xij = − or Xjk = −.

(3) X ∈ DI
d is in DI

p if and only if for any i < j < k in I, the equations

Xij = Xjk = + imply Xik = +.

(4) X ∈ DI
d is in DI

a if and only if for any i < j < k in I, any of the equations

Xij = + and Xjk = + implies Xik = +.

Proof. (1) and (3) follow from Lemma 2.6. (2) and (4) are the consequence of

Lemma 2.7. ¤

Note that in Corollary 2.8, we presuppose X ∈ DI
p in (2), but not in (4).

2.9. Recall in 1.9 that we defined an action of Sn on the set D[n]. When X ∈ D
(n)
p ,

we have also w(X) ∈ D
[n]
p by Lemma 2.6. So by restriction, we get an action of

Sn on D
[n]
p .

Proposition 2.10. (1) The set D
[n]
ra form a single simply-transitive Sn-orbit.

(2) The set D
[n]
a is stable under the cycle permutation (12 · · ·n).

(3) Each Sn-orbit in D
[n]
p has non-empty intersections with both sets D

[n]
d and

D
[n]

d̂
.

(4) The Sn-orbits of D
[n]
p are in 1-1 correspondence with the isomorphic classes

of the posets of size n.

Proof. The regular admissible sign types are in 1-1 correspondence with the Weyl

chambers in the euclidean space E. The action of Sn on D
[n]
ra coincides with that

on the Weyl chambers, the latter is Sn-simply-transitive (see [1]). So we get (1).

The assertion (2) was actually mentioned in 1.3, whose proof can be reduced to the

case of n = 3, the latter is straightforward. The action of Sn respects the relation

¿ on D
[n]
p (see 1.7). We know that any sign type in D

[n]
p can be extended to a

regular admissible sign type by Lemma 2.4, and that there is a (unique) regular

admissible sign type which is dominant (resp. anti-dominant). We also know that

a retraction of a dominant (resp. anti-dominant) sign type is again dominant
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(resp. anti-dominant). These facts, together with (1), implies (3). Finally, (4) is

obvious. ¤

2.11. Example. In Example 1.2, there are seven S3-orbits: {(1)}, {(4), (12), (15)},
{(5), (13), (16)}, {(6), (7), (8), (9), (10), (11)}, {(2), (3), (14), (17), (18), (19)}, {(20),

(21), (22), (23), (24), (25)}, {(26), (27)}. The first three are also (123)-orbits. Each

of the last four is divided into two (123)-orbits. In the fifth S3-orbit, only one

(123)-orbit is admissible. The first five S3-orbits are in D
[3]
p , each of which con-

tains some dominant and also some anti-dominant sign types. In particular, there

is a unique dominant admissible sign type in each S3-orbits of D
[3]
p . The last phe-

nomenon only conditionally holds for an arbitrary n ∈ N (see Theorem 5.2 for a

precise statement).

§3. Poset graphs.

3.1. In 1.8, we associated a sign type to a digraph. A digraph associated to an

element in DI
p is called a poset graph. Thus by Lemma 2.6, a digraph G = (V, E)

is a poset graph if and only if the following condition holds.

(3.1.1) For any a, b, c ∈ V , the relations (a, b), (b, c) ∈ E imply (a, c) ∈ E.

In particular, this implies that a poset graph contains no direct circle by the

fact that G contains no arrow of the form (x, x), x ∈ V (By a direct circle in

G = (V,E), we mean a sequence of vertices v0, v1, · · · , vt = v0 in V with t > 3

such that vh 6= vk for 1 6 h < k 6 t, and that (vi−1, vi) ∈ E for 1 6 i 6 t).

A digraph G = (V,E) satisfying the following property is called a Hasse graph.

(3.1.2) For any a, b, c ∈ V , the relations (a, b), (b, c) ∈ E imply (a, c) /∈ E.

There is a natural 1-1 correspondence between poset graphs and Hasse graphs

without direct circles (up to isomorphism). We shall identify a poset graph with

the associated Hasse graph. In the remaining part of this section, we fix a poset

graph G = (V,E).

3.2. A labeling of G = (V, E) is an injective map τ : V −→ N. Denote G(τ) =
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(V, E, τ), and call it a labeled poset graph of G. Two labelings τ, η : V −→ N

are congruent, if there exists a digraph automorphism σ of G such that for any

v, w ∈ V , we have τ(v) 6 τ(w) if and only if (ησ)(v) 6 (ησ)(w). A labeling τ is

standard if the image im τ of τ is [n], where n = |V |.
Clearly, if two congruent labelings τ, η : V −→ N satisfy im τ = im η, then there

exists a digraph automorphism σ of G such that τ = ησ on V . In particular, this

holds when τ and η are congruent standard labelings.

3.3. Let G(τ) be a labeled poset graph of G with I = im τ . We associate G(τ) to

a sign type Z(G(τ)) = (Zij)i,j∈I such that for any i < j in I,

(3.3.1) Zij =





+, if (τ−1(i), τ−1(j)) ∈ E;
−, if (τ−1(j), τ−1(i)) ∈ E;
©, if otherwise.

Recall in 1.8 that we associated any X ∈ D
[n]
p to a digraph GX = ([n], E). Let

τ : [n] −→ [n] be a labeling of GX and let Z(GX(τ)) be defined as above with

I = [n]. Then by the definition, we see that X and Z(GX(τ)) are in the same Sn-

orbit of D
[n]
p . More precisely, regarding τ as an element of Sn, we have Z(GX(τ)) =

τ−1(X).

The sign type Z(G(τ)) remains unchanged under any digraph automorphism of

G in the following sense. Let σ : V −→ V be a bijection such that (a, b) ∈ E if and

only if (σ(a), σ(b)) ∈ E for all a 6= b in V . Let η = τσ. Then Z(G(τ)) = Z(G(η)).

Lemma 3.4. Let τ, η : V −→ [n] be two standard labelings of G. Then Z(G(τ)) =

Z(G(η)) if and only if τ and η are congruent.

Proof. The discussion in 3.2 and 3.3 shows the implication “⇐=”. For the reversing

implication, let bi = τ−1(i) and ci = η−1(i) for all i, 1 6 i 6 n. Then the

map σ : bi −→ ci determines a digraph automorphism of G by (3.3.1) and the

assumption Z(G(τ)) = Z(G(η)). Clearly, we have τ = ησ on V and hence τ and η

are congruent. ¤
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3.5. Let (a, b) ∈ E. We say that τ is increasing (resp. decreasing) at (a, b),

if τ(a) < τ(b) (resp. τ(b) < τ(a)). Clearly, Z(G(τ)) is dominant (resp. anti-

dominant) if and only if τ is increasing (resp. decreasing) at all the arrows of

G. We call τ an admissible (resp. dominant admissible, resp. anti-dominant

admissible) labeling if Z(G(τ)) is an admissible (resp. dominant admissible, resp.

anti-dominant admissible) sign type.

We shall use the abbreviations a.l., d.a.l. and d̂.a.l. for the terminologies

admissible labeling, dominant admissible labeling and anti-dominant admissible

labeling, respectively.

In a poset graph G = (V, E), two vertices v, w ∈ V are comparable if either

(x, y) or (y, x) is in E, and incomparable if otherwise.

The following result gives some criteria for these labelings.

Lemma 3.6. Let G(τ) = (V,E, τ) be a labeled poset graph of G with I = im τ .

(1) Z(G(τ)) ∈ DI
p.

(2) τ is admissible if and only if for any triple a, b, c ∈ V with (a, b) ∈ E

and c incomparable to both a, b in G, one of the following conditions holds. (i)

τ(a) < τ(c) < τ(b), (ii) τ(c) > τ(a) > τ(b), (iii) τ(a) > τ(b) > τ(c).

(3) τ is dominant admissible if and only if τ is increasing at all the arrows of

G, and the condition (2)(i) holds for any triple a, b, c ∈ V described in (2).

(4) τ is anti-dominant admissible if and only if τ is decreasing at all the arrows

of G, and either of the conditions (ii), (iii) holds for any triple a, b, c ∈ V described

in (2).

Proof. (1) holds since G is a poset graph. (2)-(4) are just the graph-theoretic

versions of Lemma 2.7 and Corollary 2.8. ¤

3.7. We say that a poset graph G is admissible (resp. dominant admissible, resp.

anti-dominant admissible) labelable, if there is a labeled poset graph of G whose

associated sign type is admissible (resp. dominant admissible, resp. anti-dominant
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admissible).

We shall use the abbreviations a.`., d.a.`. and d̂.a.`. for the terminologies

admissible labelable, dominant admissible labelable and anti-dominant admissible

labelable, respectively.

Note the difference between the abbreviations a.`., a.d.`., d̂.a.`. here and a.l.,

a.d.l., d̂.a.l. in 3.5.

Let X ∈ D
[n]
p be with the associated poset graph GX . Then that GX is a.`. (resp.

d.a.`., resp. d̂.a.`.) is amount to that the Sn-orbit of D
[n]
p containing X contains

an admissible (resp. dominant admissible, resp. anti-dominant admissible) sign

type.

The following result is concerned with the relation of the labelability between

a poset graph and its full subdigraphs.

Lemma 3.8. Let G = (V, E) be an a.`. (resp. d.a.`., resp. d̂.a.`.) poset graph.

Then any full subdigraph of G is also a.`. (resp. d.a.`., resp. d̂.a.`.).

Proof. Obvious. ¤

§4. Geometry of D
[n]
p .

We gave a geometric interpretation in 1.5 for the admissible [n]-sign types. In

the present section, we shall extend it to the elements of D
[n]
p .

4.1. Recall the notations E, Hij;ε defined in 1.5. Let H = {Hij;ε | 1 6 i < j 6
n, ε = 0, 1}. Fix X = (Xij) ∈ D

[n]
p . Let X = {Y ∈ D

[n]
a | X ¿ Y }. Define

FX ⊆ H as follows. For 1 6 i < j 6 n, we designate Hij;1 (resp. Hij;0) to FX if

and only if Xij = + (resp. Xij = −). Let EFX = E −⋃
H∈FX

H.

Proposition 4.2. (1) X 6= ∅;
(2) All Y ∈ X fall into a single connected component CX of EFX

;

(3) CX =
⋃

Y ∈X Y , which is convex in E, where C is the closure of C under

the ordinary topology in E.
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Proof. Any partial order on [n] can be extended to a linear order, and the latter is

associated to a regular sign type which is admissible by Lemma 2.4. This implies

(1). For (2), it suffices to show that for any H ∈ FX , all Y ∈ X lie in the

same side of H. But this follows from the definition of the set FX . It remains to

show (3). We have CX ⊇ ⋃
Y ∈X Y by (2). For the reversing inclusion, we have

CX = CX

⋂
(E − (

⋃
H H)), where H ranges over H. So we need only to show the

inclusion.

(4.2.1) CX ∩ (E − (
⋃

H

H)) ⊆
⋃

Y ∈X
Y.

Take any v = (a1, · · · , an) ∈ CX

⋂
(E − (

⋃
H H)). Then for any i < j, we have

ai − aj 6= 0, 1; moreover, we have ai − aj > 1 if Xij = +, and ai − aj < 0 if

Xij = −. Define a sign type Y = (Yij)i<j by

(4.2.2) Yij =





+, if ai − aj > 1;
−, if ai − aj < 0;
©, if 0 < ai − aj < 1.

Then v ∈ Y and Y ∈ X . This shows (4.2.1) and hence the equation in (3) follows.

The convexity of CX is obvious. ¤

4.3. Let C be the set of all the connected components of EF with F ranging over

the subsets of H.

From the above proposition, we see that π : X −→ CX is a map from D
[n]
p to

C.
One may ask if it is possible that two different elements of D

[n]
p give rise to the

same element in C. The answer will be negative.

Note that if X ∈ D
[n]
p is not admissible, then by Lemma 2.7, there exist at least

two pairs {i, j}, {h, k} ⊆ [n] with |{i, j} ∩ {h, k}| = 1 and Xij = Xhk = ©.
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Proposition 4.4. Let X = (Xij) ∈ D
[n]
p . Suppose Xij =© for some i 6= j in [n].

Then for any χ ∈ Ξ (see 1.1), there is some Y ∈ X with Yij = χ. In particular,

when χ ∈ {+,−}, we can choose Y to be regular.

Proof. Let P = {k ∈ [n] | k <X i}, Q = {k ∈ [n] | i <X k} and R = P ∪Q ∪ {i}.
Take a linear order extension of the partial order 6X on R, say

a1, · · · , aα, i, b1, · · · , bβ ,

where P = {a1, · · · , aα} and Q = {b1, · · · , bβ}. Let T = [n] − R. Then j ∈ T .

Moreover, with respect to 6X , we have the following facts for any m ∈ T , p ∈ P

and q ∈ Q.

(a) m and i are incomparable;

(b) If m and p are comparable, then p <X m;

(c) If m and q are comparable, then m <X q;

Take a linear order extension of the partial order 6X on T , say

c1, · · · , cγ , j, d1, · · · , dδ.

Then by (a)-(c), both of the following orderings are linear order extensions of the

partial order 6X on [n].

a1, · · · , aα, c1, · · · , cγ , i, j, d1, · · · , dδ, b1, · · · , bβ ,(4.4.1)

a1, · · · , aα, c1, · · · , cγ , j, i, d1, · · · , dδ, b1, · · · , bβ .(4.4.2)

Let Y (resp. Z) be the sign type associated to the linear ordering (4.4.1) (resp.

(4.4.2)) on [n]. Then we have Y,Z ∈ X with Yij = + and Zij = −. In particular,

Y , Z are both regular. Let ¹ be the relation on [n] obtained from the linear

ordering (4.4.1) by forgetting the comparable relation between i and j. Then we

see that ¹ is a partial order on [n] which extends the relation 6X and that the
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sign type W associated to ¹ satisfies Wij =©. We also have W ∈ X by the notice

in 4.3. This completes our proof. ¤

4.5. By a detailed observation of Example 1.2, we can see that for any X ∈
D[3] −D

[3]
p (i.e. X is one of the sign types (20)-(27)), either X = ∅ (for X=(26),

(27)), or there exists some i 6= j in [3] with Xij = © such that {Yij | Y ∈ X} $ Ξ

(for the remaining X). This implies that the property of a sign type X stated

in Proposition 4.4 distinguishes the elements of D
[n]
p from D[n] −D

[n]
p . This still

holds when [n] is replaced by any finite subset I ⊂ N.

By Proposition 4.4, we get the following result.

Lemma 4.6. Let X 6= X ′ in D
[n]
p . Let X0 = {Y ∈ D

[n]
ra | X ¿ Y } and X ′ =

{Y ∈ D
[n]
ra | X ′ ¿ Y }. Then X0 6= X ′0.

Proof. By Lemma 2.4, we have X0 6= ∅ 6= X ′0. First assume that there exist some

i 6= j in [n] with Xij = +, X ′
ij = −. Then for any Y ∈ X0 and Y ′ ∈ X ′0, we

have Yij = + and Y ′
ij = −. Next assume that there exist some i 6= j in [n] with

{Xij , X
′
ij} = {+,©}. Without loss of generality, we may assume Xij = + and

X ′
ij =©. Then all Y ∈ X0 satisfy Yij = +. But by Proposition 4.4, there exists

some Y ′ ∈ X ′0 with Y ′
ij = −. Hence in either case, we have X0 6= X ′0. ¤

Theorem 4.7. (1) The map π : X 7→ CX from D
[n]
p to C is injective.

(2) The image of π consists of all C ∈ C satisfying: for any i, j, 1 6 i < j 6 n,

exactly one of the following conditions holds.

(i) ai − aj > 1 for all (a1, · · · , an) ∈ C;

(ii) ai − aj < 0 for all (a1, · · · , an) ∈ C;

(iii) There exist some (a1, · · · , an), (b1, · · · , bn), (c1, · · · , cn) in C such that ai−
aj > 1, bi − bj < 0 and 0 < ci − cj < 1.

Proof. (1) follows by Proposition 4.2, Lemma 4.6 and from the relation between

FX and CX . Next we show (2). By Propositions 4.2 and 4.4, any C ∈ im π satisfies
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one of the conditions (i)-(iii) for any i, j, 1 6 i < j 6 n. Conversely, suppose that

C ∈ C satisfies these conditions. Define an [n]-sign type X = (Xij) such that for

any i, j, 1 6 i < j 6 n,

(4.7.1) Xij =





+, if ai − aj > 1 for all (a1, · · · , an) ∈ C,

−, if ai − aj < 0 for all (a1, · · · , an) ∈ C,

©, if otherwise.

By Lemma 2.6, we can show X ∈ D
[n]
p by showing that Xij = Xjk = ± imply

Xik = ± for any i, j, k ∈ [n], which is easy. Clearly, π(X) = C. ¤

§5. A graph-theoretic criterion for an Sn-orbit of D
[n]
p containing a dast.

In this section, we shall characterize a poset graphs to be d.a.`. (see 3.7). This

provides us a graph-theoretic criterion for an Sn-orbit of D
[n]
p containing a dast

(see 0.4). We shall also show that each Sn-orbit of D
[n]
p contains at most one dast.

5.1. A poset graph is of type (A) (resp. (B)) if its associated Hasse graph is as

below.

◦—→◦
◦—→◦

(
resp. ◦—→◦—→◦

◦
)

.

A poset graph is A-avoiding (resp. B-avoiding), if it contains no full subdigraph

of type A (resp. B). A poset graph is nice, if it is both A- and B-avoidings.

Theorem 5.2. (1) A poset graph is d.a.`. if and only if it is nice.

(2) A poset graph has at most one d.a.l. (up to congruence, see 3.5 and 3.2).

(3) Each Sn-orbit of D
[n]
p contains at most one dast, exactly one if and only if

the corresponding poset graph is nice.

5.3. In a poset graph G = (V, E), we associate to any x ∈ V two vertex sets

Xx = {z ∈ V | (z, x) ∈ E} and Yx = {z ∈ V | (x, z) ∈ E}. It is clear that for any

(x, y) ∈ E, we have Xx $ Xy and Yy $ Yx.
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a, b ∈ V are associated in G, if both equations Xa = Xb and Ya = Yb hold.

Clearly, a, b ∈ V are associated if and only if the map φ : V 7→ V defined by

(5.3.1) φ(x) =





x, if x 6= a, b;
a, if x = b;
b, if x = a.

determines a digraph automorphism of G.

Lemma 5.4. Let G = (V,E) be a nice poset graph with |V | = n and let a, b, c ∈ V

be pairwisely different.

(1) Either Xa ⊆ Xb or Xb ⊆ Xa holds. Also, either Ya ⊆ Yb or Yb ⊆ Ya holds.

(2) If Xb $ Xa, then Ya ⊆ Yb.

(3) If Xa $ Xb, let c ∈ Xb −Xa, then Xc ⊆ Xa.

(4) Suppose that Xa ⊆ Xb ⊆ Xc and Ya ⊇ Yb ⊇ Yc. If either (a, b) ∈ E or

(b, c) ∈ E holds, then (a, c) ∈ E.

Proof. Assertion (1) is obvious in the case where a, b are comparable (see 3.5).

When a, b are incomparable, this follows by the condition that G is A-avoiding.

(2) and (3) hold since G is B-avoiding. It remains to show (4). If (a, b) ∈ E, then

a ∈ Xb ⊆ Xc and hence (a, c) ∈ E. If (b, c) ∈ E, then c ∈ Yb ⊆ Ya, which implies

(a, c) ∈ E also. ¤

5.5. Now assume that G = (V, E) is a nice poset graph with V = {a1, a2, · · · , an}.
Then by Lemma 5.4 (1),(2), there is a permutation i1, i2, · · · , in of 1, 2, · · · , n such

that

(5.5.1)
Xai1

⊆ Xai2
⊆ · · · ⊆ Xain

;

Yai1
⊇ Yai2

⊇ · · · ⊇ Yain
.

If there is another permutation j1, j2, · · · , jn of 1, 2, · · · , n satisfies (5.5.1) with the

subscripts ik replaced by jk for all k, 1 6 k 6 n, then the sequence aj1 , · · · , ajn

can be obtained from ai1 , · · · , ain by permuting some associated terms (see 5.3).
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Lemma 5.6. Suppose that a poset graph G = (V, E) is nice with V = {a1, · · · , an}
such that

(5.6.1)
Xa1 ⊆ Xa2 ⊆ · · · ⊆ Xan

;

Ya1 ⊇ Ya2 ⊇ · · · ⊇ Yan
.

Then τ : ai 7→ i is a d.a.l. of G (see 3.5).

Proof. For any (ai, aj) ∈ E, we have Xai
$ Xaj

and so i < j by (5.6.1). This

means that τ is increasing at all the arrows of G (see 3.5). So by 3.5, τ is a

dominant labeling. By Corollary 2.8 (4), to show τ admissible, it suffices to show

that for any i < j < k in [n], any of the conditions (ai, aj) ∈ E and (aj , ak) ∈ E

implies (ai, ak) ∈ E. But this follows from Lemma 5.4 (4). ¤

Lemma 5.7. Let G = (V, E) be a nice poset graph with τ : V −→ [n] a d.a.l.

(1) If a, b ∈ V satisfy either Xa $ Xb, Ya ⊇ Yb, or Xa ⊆ Xb, Ya % Yb, then

τ(a) < τ(b).

(2) Let ai = τ−1(i) for all i ∈ [n]. Then V = {a1, · · · , an} satisfies the condi-

tions (5.6.1).

Proof. (1) First assume Xa $ Xb and Ya ⊇ Yb. Let c ∈ Xb −Xa. Then we have

(c, b) ∈ E and (c, a) /∈ E. We also have (b, a) /∈ E by the fact Xb * Xa. Suppose

τ(a) > τ(b). Since τ is a dominant labeling and G is a poset graph, we have

(a, b), (a, c) /∈ E. That is, a is incomparable with both b, c. Since τ is a d.a.l. and

(c, b) ∈ E, we have τ(c) < τ(a) < τ(b) by Lemma 3.6 (3). This gives rise to a

contradiction. So we must have τ(a) < τ(b). The case Xa ⊆ Xb and Ya % Yb can

be argued similarly.

(2) We must show Xai ⊆ Xaj and Yai ⊇ Yaj for any i < j in [n]. Suppose not.

Then by Lemma 5.4 (1), (2), it would imply Xaj ⊆ Xai , Yaj ⊇ Yai and not both

equal for some i < j in [n], contradicting (1). This implies (2). ¤

Proof of Theorem 5.2. (1) The implication “⇐= ”follows from Lemmas 5.4 and

5.6. For the reversing implication, it suffices to show by Lemma 3.8 that a poset



SIGN TYPES ASSOCIATED TO POSETS 21

graph G = (V, E) of type (A) or (B) has no d.a.l. Suppose not. Let τ be a d.a.l.

of G. If G is of type (A) with V = {a, b, c, d} and E = {(a, b), (c, d)}, then by

Lemma 3.6 (3), we have both τ(a) < τ(c) < τ(b) and τ(c) < τ(b) < τ(d). If G is

of type (B) with V = {a, b, c, d} and E = {(a, b), (a, c), (b, c)}, then by Lemma 3.6

(3), we have both τ(a) < τ(d) < τ(b) and τ(b) < τ(d) < τ(c). This gives rise to a

contradiction in either case. (1) is proved.

(2) Suppose that there are two d.a.l.’s τ, η : V −→ N. Let bi = τ−1(i) and

ci = η−1(i) for all i ∈ [n]. Then by Lemma 5.7 (2), we have the relations (5.6.1)

with ai, i ∈ [n], replaced all by bi or all by ci. By 5.5, we see that the sequence

c1, · · · , cn can be obtained from b1, · · · , bn by permuting some associated terms.

That is, there is a digraph automorphism σ of G such that σ(bi) = ci for all i ∈ [n].

So τ = ησ and hence τ and η are congruent (see 3.2).

(3) This follows from (1), (2) and Lemma 3.4. ¤

§6. Admirability of posets associated to dasts.

In the present section, we shall show that a poset (I,6X) associated to an

I-dast X is admirable (see 6.2 for the definition).

6.1. Let (P,¹) be a poset. By a chain of P , we mean a subset J of P such that

either i ≺ j or j ≺ i holds for any i 6= j in J . A chain of P can be expressed as a

sequence J : a1, · · · , ar with a1 ≺ · · · ≺ ar. Note that we allow a chain to be an

empty set. By a k-chain-family in P (k > 1), we mean a subset J of P which is a

disjoint union of k chains Ji (1 6 i 6 k). We usually write J = J1 ∪ · · · ∪ Jk, and

call it a decomposition form (or d.f. for short) of a k-chain-family J .

Let (I,6X) be a poset associated to a sign type X ∈ DI
p. Then the chains

(regarded as subsets) of I are precisely all the subsets I ′ ⊆ I with (Xij)i,j∈I′

regular by Lemma 2.4.

6.2. Let dk (k > 1) be the maximal possible cardinality of a k-chain-family in P .

Then d1 < d2 < · · · < dr = n = |P | for some r > 1. Let λ1 = d1, λi = di − di−1



22 JIAN-YI SHI

for 1 < i 6 r. Then λ1 > λ2 > · · · > λr by a theorem of C. Greene (see [4]). We

get a partition λ = (λ1, · · · , λr) of n, called the partition associated to the poset

P .

Note that there does not always exist an r-chain-family P = J1 ∪ · · · ∪ Jr with

|Ji| = λi, 1 6 i 6 r for the poset P . A poset P is admirable if there does

exist such an r-chain-family. The admirable posets play an important role in the

combinatorics and in the group theory (see [7, 8, 10] for example).

6.3. Now take a poset to be a finite subset I of N with the partial order 6X

determined by an I-dast X = (Xij) (see 2.1). In the subsequent discussion, an

I-dast X is fixed. So by the poset I, we always refer to the partial order 6X . Let

λ = (λ1, · · · , λr) be the partition of n = |I| associated to this poset.

We have the following result concerning the relations between two orders 6X

and 6 on I which will be useful in the subsequent discussion.

Lemma 6.4. X ∈ DI is an I-dast if and only if it satisfies the following two

conditions.

(1) For any i, j ∈ I, the relation i <X j implies i < j, i.e. the relation 6 on I

is a linear order extension of the partial order 6X .

(2) If i, j, k ∈ I satisfy i < j 6 k (resp. k 6 i < j), then the relation i <X j

implies i <X k (resp. k <X j).

Proof. It is easily seen that X ∈ DI is dominant if and only if X satisfies condition

(1). By Corollary 2.8 (4), we also see that X ∈ DI
d is admissible if and only if X

satisfies condition (2). Then our result follows from these two facts. ¤

6.5. We can define a lexicographic order ¹1 on the set ∆1(I, X) of all the chains

in I as follows. Let ξ : a1, · · · , ar and ξ′ : a′1, · · · , a′t be in ∆1(I, X). We write

ξ ≺1 ξ′, if there exists some i > 1 such that aj = a′j for all j < i, and ai < a′i,

with the convention that ah = a′m = max{i | i ∈ I} for all h > r and m > t. By

this definition, we see that if ξ′ is a proper subchain of a chain ξ, then ξ ≺1 ξ′.
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Furthermore, we can also define a lexicographic order ¹k on the set ∆k(I, X) of

all the d.f.’s (see 6.1) of the k-chain-families of I (k > 1) as below. We write

ξ1 ∪ · · · ∪ ξk ≺k ξ′1 ∪ · · · ∪ ξ′k in ∆k(I,X). if there exists some i > 1 such that

ξj = ξ′j for all j < i, and ξi ≺1 ξ′i. A d.f.

(6.5.1) ξ = ξ1 ∪ · · · ∪ ξk

of a k-chain-family ξ in I is standard, if it is minimal among all the d.f.’s of ξ

with respect to ¹k. Clearly, a standard d.f. (or s.d.f. for brevity) (6.5.1) of a

k-chain-family ξ uniquely exists and satisfies

(6.5.2) ξ1 ≺1 · · · ≺1 ξk.

6.6. For any k > 1, we define a k-chain-family

(6.6.1) Ik = Ik
1 ∪ Ik

2 ∪ · · · ∪ Ik
k

in the poset (I, 6X) as follows. Let i, 1 6 i 6 k. Suppose that we have got all the

chains Ik
j , j < i. Let Ei = I −

(⋃
j<iI

k
j

)
. We want to find a chain

(6.6.2) Ik
i : ai1, ai2, · · · , aimi

from the subposet (Ei, 6X). We set Ik
i = ∅ if Ei = ∅. Otherwise, we take ai1

to be the smallest number in Ei. Inductively, having got aij for some j > 1, we

either take ai,j+1 to be the smallest number h in Ei with h > aij and Xaij ,h = +

whenever it exists, or set mi = j if otherwise.

We see that the expression (6.6.1) just obtained is the s.d.f. of a k-chain-family

in I. We can even show that (6.6.1) is minimal in the set ∆k(I,X) with respect to

¹k. There is some r > 1 such that Ir
r 6= ∅ and

∑r
i=1 |Ir

i | = n. By our construction,

we see that for any h, k with 1 6 h 6 k, the chain Ik
h in the k-chain-family (6.6.1)

is only dependent on the poset (I, 6X), but not on the choice of k. So we may

denote Ik
h simply by Ih and call (6.6.1) the s.d.f. of the canonical k-chain-family

of I for any k > 1.
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Theorem 6.7. Let λ = (λ1, · · · , λr) be the partition associated to the poset (I,6X

). Then for any k, 1 6 k 6 r, the s.d.f. Ik = I1∪· · ·∪Ik of the canonical k-chain-

family in I satisfies λi = |Ii| for 1 6 i 6 k.

To show the theorem, we need a lemma. Let mI be the smallest number in I.

Lemma 6.8. For any k > 1, there is a k-chain-family of the s.d.f.

(6.8.1) J = J1 ∪ · · · ∪ Jk

in I with |J | = λ1 + · · ·+ λk and J1 = I1. In particular, we have |I1| = λ1.

Proof. Suppose that

(6.8.2) K = K1 ∪ · · · ∪Kk

is the s.d.f. of a k-chain-family in I of the cardinality λ1 + · · ·+ λk, where

(6.8.3) Ki : bi1, · · · , bipi (1 6 i 6 k).

(i) First we claim m1 > p1. Suppose not. Then m1 < p1. Note a11 = mI .

So there exists some j, 1 6 j < p1, such that the half-closed interval (b1j , b1,j+1]

contains no a1i, 1 6 i 6 m1. Also, there exists some s satisfying a1s 6 b1j . Take s

largest possible with this property. Then a1s <X b1,j+1 by the fact b1j <X b1,j+1

and by Lemma 6.4. Hence s < m1 by the choice of the chain I1. So we have

a1s <X b1,j+1 < a1,s+1, contradicting the choice of a1,s+1.

(ii) Next we claim a1i 6 b1i for all i 6 p1. For otherwise, there is some j with

a1j > b1j . Then j > 1 as a11 = mI . Take j smallest possible with this property.

Then a1h 6 b1h for all h < j. Now a1,j−1 6 b1,j−1 <X b1j < a1j and hence

a1,j−1 <X b1j by Lemma 6.4, contradicting the choice of a1j .

(iii) Now we are ready to show the first part of the lemma. If K1 = I1, then

there is nothing to do. If K1 6= I1, then one of the following two cases must occur.
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(a) K1 : a11, · · · , a1p1 with p1 � m1;

(b) There is some m 6 p1 with a1m 6= b1m.

In the case (a), let K ′
1 = I1 and K ′

i = Ki − {a1j | p1 < j 6 m1} for all

i > 1. Then K ′ = K ′
1 ∪ · · · ∪ K ′

k is a k-chain-family of the cardinality not less

than |K|, Hence |K ′| = |K| by the maximality assumption on K. So K ′ =

K ′
1 ∪ · · · ∪K ′

k is the s.d.f. of a required k-chain-family after possibly renumbering

the chains K ′
2, · · · ,K ′

k if necessary. Next assume the case (b). Take m as small

as possible with this property. Then a1h = b1h for all h < m. We have a1m <

b1m by (ii) . If a1m /∈ K, then let K ′
1 = (K1 − {b1m})

⋃{a1m} and K ′
h = Kh

for 1 < h 6 k. If a1m ∈ K, say a1m = bij for some i, j, then i > 1. Let

K ′
1 : a11, · · · , a1m, bi,j+1, · · · , bi,pi , let K ′

i : bi1, · · · , bi,j−1, b1m, · · · , b1,p1 , and let

K ′
h = Kh for h 6= i, 1 < h 6 k. Then in either case, K ′ = K ′

1 ∪ · · · ∪ K ′
k is

the s.d.f. of a k-chain-family in I with |K ′| = |K| after possibly renumbering the

chains K ′
2, · · · ,K ′

k if necessary. Applying reversing induction on g(K) 6 m1 and

noting g(K ′) > g(K), we can eventually get the s.d.f. of a k-chain-family of I to

be either a required one or the one in the case (a). This completes the proof for

the first assertion of the lemma. The second assertion follows by taking k = 1. ¤

6.9. Proof of Theorem 6.7. By Lemma 6.8, we have |I1| = λ1 and that for any

k > 1, there is the s.d.f.

(6.9.1) J = J1 ∪ · · · ∪ Jk

of a k-chain-family in the poset (I, 6X) with |J | = λ1 + · · ·+ λk and J1 = I1. Let

L = I−I1. Take the submatrix XL = (Xij)i,j∈L of X. Then XL is an L-dast. The

partial order relation 6XL on L associated to XL coincides with the one obtained

by restriction to L of 6X . This implies that the partition associated to the poset

(L, 6XL) is λ′ = (λ2, λ3, · · · , λr) by noting that J2 ∪ · · · ∪ Jk is a k-chain-family

in L with the maximal possible cardinality λ2 + · · ·+ λk for any k > 1. Therefore

our result follows by applying induction on n = |I| > 1. ¤
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