
LEFT CELLS IN AFFINE WEYL GROUPS

Jian-yi Shi

Abstract. We prove a property of left cells in certain crystallographic groups W , by
which we formulate an algorithm to find a representative set of left cells of W in any
given two-sided cell. As an illustration, we make some applications of this algorithm

to the case where W is the affine Weyl group of type eF4.

The cells of affine Weyl groups W , as defined by Kazhdan and Lusztig in [6], have

been described explicitly in certain special cases: for W of rank 2, see [11]; for W of

type Ãn, see [16], [10]; for W of rank 3, see [1], [4]; for the cells with a-values 1, 2 and

|Φ|/2 in a general W , see [2], [8], [9], [18], [19], where Φ is the root system determined

by W . It is known that there exists a bijection between the set of two-sided cells in an

affine Weyl group W and the set of unipotent classes in a certain complex reductive

group G associated with W . It is also known that the value of the a-function on a

two-sided cell of W is equal to the dimension of the variety of Borel subgroups of

G containing an element of the corresponding unipotent class (see [14]). Thus for

an affine Weyl group W , the two-sided cells of W are relatively well understood to

certain extent. But the classification of left cells in a given two-sided cell of W is

not known in general, even the number of these left cells. In the present paper, we

shall introduce an algorithm to find a representative set of left cells of W ′ in a given

two-sided cell, where W ′ is a group belonging to certain family of crystallographic
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groups including all the Weyl groups and all the affine Weyl groups. This algorithm

has been used by several person to describe the left cells in the following cases: for

W of types B̃4, C̃4, D̃4 ( see [20], [21], [24] ), for the ones of a-value 3 in a general

irreducible affine Weyl group W ( see [15] ), for the ones of a-values 4, 5, in W of

type F̃4.

The content of this paper is organized as follows. §1 serves as the preliminaries.

Some basic concepts and known results concerning the cells of certain crystallographic

group W are introduced. We prove a property of left cells of W in §2. This property

is crucial for us to formulate an algorithm in §3, which is the main purpose of this

paper. The algorithm given in §3 is to find a representative set of left cells of W in a

given two-sided cell. It needs some technique in applying this algorithm. Thus a part

of §3 together with the whole of §4 provide more concepts and results to this end.

Finally, in §5, we illustrate this algorithm by applying it to finding representative

sets of left cells in certain two-sided cells of the affine Weyl group of type F̃4.

§1. Preliminaries.

1.1. Let W = (W,S) be a Coxeter group with S its Coxeter generator set. Let

≤ be the Bruhat order on W : y ≤ w in W means that there exist some reduced

forms w = s1s2 . . . sl and y = si1si2 . . . sit with si ∈ S such that i1, i2, . . . , it is a

subsequence of 1, 2, . . . , l. For w ∈ W , we denote by `(w) the length of w.

1.2. Let A = Z[u, u−1] be the ring of all Laurent polynomials in an indeterminate u

with integer coefficients. The Hecke algebra H of W over A has two sets of A-bases

{T̃x}x∈W and {Cw}w∈W which satisfy the relations

(1.2.1.)

{
T̃wT̃w′ = T̃ww′ , if `(ww′) = `(w) + `(w′);

(T̃s − u−1)(T̃s + u) = 0, if s ∈ S,

and

(1.2.2) Cw =
∑

y≤w

u`(w)−`(y)Py,w(u−2)T̃y,
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where Py,w ∈ Z[u] satisfies that Pw.w = 1, Py,w = 0 if y 
 w and deg Py,w ≤
(1/2)(`(w)− `(y)− 1) if y < w. The Py,w’s are called Kazhdan-Lusztig polynomials

[6].

1.3. For y, w ∈ W with `(y) ≤ `(w), we denote by µ(y, w) or µ(w, y) the coefficient

of u(1/2)(`(w)−`(y)−1) in Py,w. We say that y and w are jointed, and written y—w, if

µ(y, w) 6= 0. To any x ∈ W , we associate two subsets of S:

L(x) = {s ∈ S | sx < x} and R(x) = {s ∈ S | xs < x}.

We have the following relations: for any x ∈ W and s ∈ S,

(1.3.1) CsCx =





(u−1 + u)Cx, if s ∈ L(x);∑
y—x
sy<y

µ(x, y)Cy, if s /∈ L(x);

and

(1.3.2) CxCs =





(u−1 + u)Cx, if s ∈ R(x);∑
y—x
ys<y

µ(x, y)Cy, if s /∈ R(x);

where the numbers of elements y occurring on the right hand sides of (1.3.1) and

(1.3.2) are finite. Moreover, {Cs|s ∈ S} forms a generator set of the algebra H over

A.

1.4. In the present paper, we assume once and forever that W is irreducible ( i.e. its

Coxeter diagram is connected ) and satisfies the following conditions:

(1) For any x, y, z ∈ W , we define hx,y,z ∈ A by

(1.4.1) CxCy =
∑

z

hx,y,zCz.

Then there exists a positive integer N such that

(1.4.2) uNhx,y,z ∈ Z[u], for all x, y, z ∈ W ;

(2) Py,w has non-negative coefficients for any pair y, w ∈ W .
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These include all the Weyl groups and all the affine Weyl groups (cf. [6], [7]).

1.5. Let x, y ∈ W . We denote x ≤
L

y ( resp. x ≤
R

y ), if there exists some w ∈ W

with hw,y,x 6= 0 ( resp. hy,w,x 6= 0 ). We denote x ≤
LR

y, if there exists some w ∈ W

with x ≤
L

w ≤
R

y, or equivalently, if there exists some w′ ∈ W with x ≤
R

w′ ≤
L

y. We

write x ∼
L

y (resp. x ∼
R

y, resp. x ∼
LR

y), if the relation x ≤
L

y ≤
L

x ( resp. x ≤
R

y ≤
R

x,

resp. x ≤
LR

y ≤
LR

x ) holds. These are equivalence relations on W , and the equivalence

classes of W with respect to ∼
L

(resp. ∼
R

, resp. ∼
LR

) are called the left (resp. right,

resp. two-sided) cells of W . The preorders ≤
L
, ≤

R
and ≤

LR
on elements of W induce

partial orders on the corresponding cells of W .

1.6. By ( 1.3.1 ) and ( 1.3.2 ), we see that for x, y, z ∈ W , hx,y,z has non-negative

coefficients as a Laurent polynomial in u and hx,y,z(u) = hx,y,z(u−1). By the as-

sumption 1.4, (1), we can define a function a : W −→ N by

(1.6.1.) a(z) = max
x,y∈W

deg hx,y,z, for z ∈ W.

The following are known properties of the a-function:

(1) x ≤
LR

y =⇒ a(x) ≥ a(y). In particular, x ∼
LR

y =⇒ a(x) = a(y). So we may

define the a-value a(Γ) on a left (resp. right, resp. two-sided) cell Γ of W by a(x)

for any x ∈ Γ (cf. [11]).

(2) a(x) = a(y) and x ≤
L

y (resp. x ≤
R

y) =⇒ x ∼
L

y (resp. x ∼
R

y) (cf. [12]).

(3) Let δ(z) = deg Pe,z for z ∈ W , where e is the identity of the group W . Then the

inequality

(1.6.2) `(z)− 2δ(z)− a(z) ≥ 0

holds for any z ∈ W . The set

(1.6.3) D = {w ∈ W |`(w)− 2δ(w)− a(w) = 0}

is a finite set of involutions. Each left ( resp. right ) cell of W contains a unique

element of D (cf. [12]).
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1.7. Let W be an irreducible affine Weyl group of type X̃. Let G be the connected

reductive algebraic group over C of type X∨, where X∨ is the dual of X. Then the

following result is due to Lusztig (cf. [14]).

Theorem. There exists a bijection u 7−→ c(u) from the set U(G) of unipotent con-

jugacy classes in G to the set Cell(W ) of two-sided cells in W satisfying

(1) a(c(u)) = dim Bu;

(2) c(u) is finite if and only if Z◦G(u) is unipotent;

(3) For any c ∈ Cell(W ), there exists some I $ S with c ∩WI 6= ∅,
where u is any element in u, dim Bu is the dimension of the variety of Borel subgroups

of G containing u, Z◦G(u) is the identity component of the centralizer of u in G, and

WI is the subgroup of W generated by I.

§2. A property of left cells of W .

It is known that the elements in the same left cell of W have the same generalized

τ -invariant ( see [23] and also 4.2 for the definition ). But the generalized τ -invariant

does not determine a left cell uniquely in general. In this section, we shall show a

property of a left cell of W which conjecturally characterizes a left cell of W . In

particular, this property enables us to design an algorithm to find a representative

set of left cells in a given two-sided cell of W and, furthermore, in the whole group

W .

To each element x ∈ W , we associate a set Σ(x) of all the left cells Γ of W

satisfying the condition that there exists an element y ∈ Γ with y—x, R(y) * R(x)

and a(y) = a(x). It is obvious that any Γ ∈ Σ(x) is in the two-sided cell of W

containing x. Thus for any x, y ∈ W , we have Σ(x) ∩ Σ(y) 6= ∅ only if x ∼
LR

y.

The following result is crucial in this paper.

Theorem 2.1. If x ∼
L

y in W , then R(x) = R(y) and Σ(x) = Σ(y).

The assertion R(x) = R(y) in the theorem is known already ( see [6] ). So we

need only to show Σ(x) = Σ(y). To do so, we need the following:
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Lemma 2.2. If two elements x, y ∈ W satisfy the conditions x—y, L(x) * L(y)

and a(x) = a(y), then Σ(x) ⊆ Σ(y).

Proof. Take any Γ ∈ Σ(x). We must show Γ ∈ Σ(y). Now there exists an element

w ∈ Γ with w—x, R(w) * R(x) and a(w) = a(x). Choose any t ∈ R(w) \ R(x) and

any s ∈ L(x) \ L(y). ( such elements t, s do exist by our assumption. ). Then we see

from (1.3.1) and (1.3.2) that

(2.2.1) hx,t,w 6= 0 6= hs,y,x.

By the associativity of the algebra H, we have an expression

(2.2.2) CsCyCt =
∑
v,z

hs,y,vhv,t,zCz =
∑

v′,z

hy,t,v′hs,v′,zCz.

Thus the A-coefficient of Cw in (2.2.2) is

(2.2.3)
∑

v

hs,y,vhv,t,w =
∑

v′
hy,t,v′hs,v′,w.

The left hand side of (2.2.3) can be rewritten as

(2.2.4) hs,y,xhx,t,w +
∑

v
v 6=x

hs,y,vhv,t,w,

which is non-zero by (2.2.1) and by the positivity of the Z-coefficients of the hα,β,γ ’s

in u. This implies that on the right hand side of (2.2.3), there must exist some z′ ∈ W

with

(2.2.5) hy,t,z′ 6= 0 6= hs,z′,w.

By 1.6, (1), we have inequalities

(2.2.6) a(y) ≤ a(z′) ≤ a(w) = a(x) = a(y),

and hence a(z′) = a(w). This implies z′ ∼
L

w by 1.6, (2) and by the fact w ≤
L

z′, that

is, z′ ∈ Γ. Note that z′—y and R(z′) * R(y) ( since t ∈ R(z′) \R(y) ). This implies

Γ ∈ Σ(y). ¤
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The proof of Theorem 2.1. Since ∼
L

is an equivalence relation on W , it is enough

to show Σ(x) ⊆ Σ(y). By our hypothesis, there exists a sequence of elements x0 =

x, x1, . . . , xr = y in W with r ≥ 0 such that for every i, 1 ≤ i ≤ r, all the conditions

xi−1—xi, L(xi−1) * L(xi) and a(xi−1) = a(xi) are satisfied. Thus by Lemma 2.2, we

have Σ(xi−1) ⊆ Σ(xi) for 1 ≤ i ≤ r. But this implies Σ(x) ⊆ Σ(y) immediately. ¤

By Theorem 2.1, we can use the notation Σ(Γ) for any left cell Γ of W , which is

by definition Σ(x) for any x ∈ Γ.

We have the following conjecture which asserts that the converse of Theorem 2.1

should also be true.

Conjecture 2.3. For x, y ∈ W , we have an equivalence

x ∼
L

y ⇐⇒ R(x) = R(y) and Σ(x) = Σ(y).

Remark 2.4. (1) In the above conjecture, the condition R(x) = R(y) on the right

hand side is necessary. For example, let (W,S) be the affine Weyl group of type

B̃2 with S = {s0, s1, s2} such that the order o(s0s2) of the product s0s2 is 2. Then

s0 �
L

s2 but Σ(s0) = Σ(s2) = {Γs1}. Also let x = s0s2s1s2 and y = s0s2s1s0. We

have x �
L

y but Σ(x) = Σ(y) = {Γs0s2s1 ,Γs0s2}. Note that the notation Γw (w ∈ W )

stands for the left cell of W containing w.

(2) The above conjecture has been verified in the following cases:

(a) W is any Weyl group;

(b) W is any irreducible affine Weyl group of type 6= F̃4;

(c) W is an affine Weyl group of type F̃4, and the element x satisfies either

R(x) /∈ {{s0, s1, s2}, {s3, s4}},

or R(x) = {s0, s1, s2} with a(x) /∈ {7, 9, 10, 13, 16},

or R(x) = {s3, s4} with a(x) /∈ {6, 7, 9, 10, 13, 16},

where o(s0s1) = o(s1s2) = o(s3s4) = 3 and o(s2s3) = 4 ( see [22] ).
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(3) If for any x ∈ W , we define a set Σ′(x) of left cells in the same way as that

for the set Σ(x) but by changing the condition R(y) * R(x) to R(y) + R(x), then

we have a result similar to Theorem 2.1: If x ∼
L

y in W , then R(x) = R(y) and

Σ′(x) = Σ′(y). But this result is less important than Theorem 2.1, because for a

given element x, it is easier to find all the elements y satisfying y—x, R(y) * R(x)

and a(y) = a(x) than to find y satisfying the same conditions but with R(y) + R(x)

instead of R(y) * R(x).

§3 Algorithm for finding a representative set of left cells.

A subset K ⊂ W is called a representative set of left cells of W ( resp. of W in a

two-sided cell Ω ), if |K ∩ Γ| = 1 for any left cell Γ of W ( resp. of W in Ω ), where

the notation |X| stands for the cardinality of a set X.

It is known that the set D (see 1.6, (3) ) is a representative set of left cells of

W . But it is not easy to find the whole set D in general. In this section, we shall

apply Theorem 2.1 to design an algorithm for finding a representative set of left cells

of W in a given two-sided cell Ω. When W is an affine Weyl group, the number of

two-sided cells of W and the a-values of these cells are known, and our algorithm

could actually be used to find a representative set of left cells of the whole group W .

The algorithm will be based on the following:

Theorem 3.1. Let Ω be a two-sided cell of W . Then a non-empty subset M ⊂ Ω is

a representative set of left cells of W in Ω, if M satisfies the following conditions:

(1) x �
L

y for any x 6= y in M ;

(2) Let y ∈ W . Suppose that there exists an element x ∈ M such that y—x, R(y) *

R(x) and a(y) = a(x). Then there exists an element z ∈ M with y ∼
L

z.

Proof. By condition (1), it suffices to show that for any given left cell Γ of W in Ω,

the intersection Γ ∩ M is non-empty. It is known that in Ω, the intersection of a

left cell with a right cell is non-empty. Thus for any element w ∈ M , there exists

a sequence of elements w0 = w′, w1, . . . , wr = w in Ω with r ≥ 0 such that w′ ∈ Γ
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and that for every i, 1 ≤ i ≤ r, we have wi−1—wi and R(wi−1) * R(wi). We choose

w ∈ M and a sequence w0 = w′, w1, . . . , wr = w as above with r as small as possible.

We must show r = 0. Suppose r > 0. Then by the condition (2), there exists some

z ∈ M with wr−1 ∼
L

z. Then by repeated application of Theorem 2.1, there exists

a sequence of elements zr−1 = z, zr−2, . . . , z1, z0 in W such that for every i, j with

0 ≤ i ≤ r − 1 and 1 ≤ j ≤ r − 1, we have zj—zj−1 and zi ∼
L

wi. Now the sequence

z0, z1, . . . , zr−1 = z satisfies all the above conditions but with shorter length, which

contradicts the minimality of the integer r. ¤

3.2. In principle, Theorem 3.1, (2) provides us with a method of finding a represen-

tative set of left cells of W in any given two-sided cell Ω from a non-empty subset of

Ω.

A subset P ⊂ W is said to be distinguished if P 6= ∅ and x �
L

y for any x 6= y in

P .

Now assume that P is a subset of Ω. We introduce the following two processes.

(A). For each x ∈ P , find elements y ∈ W such that there exists a sequence of elements

x0 = x, x1, . . . , xr = y in W with r > 0, where for every i, 1 ≤ i ≤ r, the conditions

x−1
i xi−1 ∈ S and R(xi−1)

+
*R(xi) are satisfied, add these elements y on the set P to

form a set P ′ and then take a largest possible subset Q from P ′ with Q distinguished.

(B). For each x ∈ P , find elements y ∈ W such that y—x, R(y) % R(x) and a(y) =

a(x), add these elements y on the set P to form a set P ′ and then take a largest

possible subset Q from P ′ with Q distinguished.

Note that the resulting sets in both Processes (A) and (B) are automatically in

the two-sided cell Ω.

A subset P of Ω is said to be A-saturated (resp. B-saturated) if Process (A) (

resp. Process (B) ) cannot produce an element z satisfying z �
L

x for all x ∈ P .

Thus a representative set of left cells of W in a two-sided cell Ω is exactly a

distinguished subset of Ω which is both A- and B-saturated. So to get such a set,
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we may use the following:

Algorithm 3.3. (1) Find a non-empty subset P of Ω ( usually we take P to be

distinguished for avoiding unnecessary complication if possible );

(2) Perform Processes (A) and (B) alternately on P until the resulting distinguished

set cannot be further enlarged by both processes.

Remark 3.4. The above algorithm has been applied by several person to classify

the left cells of affine Weyl groups W in the following cases.

(1) For W of type D̃4, by myself [20] (I understand that Chen Chengdong [3] also

dealt with this case but his method is different from mine).

(2) For W of type C̃4, by myself [21].

(3) For W of type B̃4, by Zhang [24].

(4) For all the left cells with their a-values equal to 3 in any irreducible affine Weyl

group W , by Rui [15].

(5) For all the left cells with their a-values equal to 4 and 5 in W of type F̃4, by

myself.

We shall deal with the case (5) and one of the cases (4) in §5 to illustrate our

method.

3.5. We need some techniques in applying our algorithm. The following known

results may be useful in this respect.

(1) Let I be a subset of S such that the subgroup WI of W generated by I is finite,

and let wI be the longest element in WI . Then a(wI) = `(wI).

(2) Suppose that a two-sided cell Ω of W contains an element of the form wI for

some I ⊂ S. Then the set {w ∈ Ω | R(w) = I} forms a single left cell of W .

(3) Assume that x = yz with `(x) = `(y)+ `(z) for x, y, z ∈ W . Then we have x ≤
L

z,

x ≤
R

y and hence a(x) ≥ a(y), a(z). In particular, if I = R(x) ( resp. I = L(x) ),

then a(x) ≥ `(wI).

(4) If x, y ∈ W satisfy x—y and R(x)+*R(y), then x−1y ∈ S. More precisely, we have

x−1y ∈ R(x) ∨ R(y), where the notation X ∨ Y stands for the symmetric difference



LEFT CELLS IN AFFINE WEYL GROUPS 11

of two sets X and Y .

(5) If x, y ∈ W satisfy y—x, R(y) * R(x) and a(x) = a(y), then we have either

y−1x ∈ S or y < x with `(x)− `(y) odd, and we also have L(y) = L(x).

Result (5) tells us the extent of elements y with y—x, R(y) * R(x) and a(y) =

a(x) for a fixed element x. This result is of particular importance in performing

Process (B). Correspondently, the result (4) is special for performing Process (A).

Besides, the result (1) is good for choosing a starting distinguished subset in Algo-

rithm 3.3; the results (2) and (3) are often used in checking whether a given set is

distinguished or not.

§4. Graphs, generalized τ-invariants and strings.

In order to perform Algorithm 3.3 effectively, we shall develop more concepts as

well as some relative results in this section.

4.1. Given an element x ∈ W , we consider the set M(x) of all elements y such that

there exists a sequence of elements x0 = x, x1, . . . , xr = y in W with some r ≥ 0,

where for every i, 1 ≤ i ≤ r, the conditions x−1
i−1xi ∈ S and R(xi−1)

+
*R(xi) are

satisfied. The set M(x) could be either finite or infinite. Clearly, we always have

x ∈ M(x). For x, x′ ∈ W , we have either M(x) = M(x′) or M(x) ∩M(x′) = ∅. The

following well-known result will be useful in §5.

Proposition. x, x′ ∈ W satisfy x ∼
R

x′ if there exist y, z ∈ M(x) and y′, z′ ∈ M(x′)

such that y—y′, z—z′, R(y) * R(y′) and R(z′) * R(z). In particular, we have

a(x) = a(x′).

Now we define a graph M(x) associated to x as follows. Its vertex set is M(x).

Its edge set consists of all two-element subsets {y, z} ⊂ M(x) with y−1z ∈ S and

R(y)+*R(z). To each vertex y ∈ M(x), we are given a subset R(y) of S. To each

edge {y, z} of M(x), we are given an element s ∈ S with s = y−1z.

Two graphs M(x) and M(x′) are said to be quasi-isomorphic if there exists a

bijection φ from the set M(x) to the set M(x′) satisfying the following conditions.
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(1) R(w) = R(φ(w)) for all w ∈ M(x).

(2) For y, z ∈ M(x), {y, z} is an edge of M(x) if and only if {φ(y), φ(z)} is an

edge of M(x′).

Note that in the above definition we make no requirement on the labelings of the

corresponding edges. This is why we put the prefix “ quasi ”.

4.2. By a path in the graph M(x), we mean a sequence of vertices z0, z1, . . . , zt in

M(x) such that {zi−1, zi} is an edge of M(x) for any i, 1 ≤ i ≤ t. Two elements

x, x′ ∈ W are said to have the same generalized τ -invariant if for any path z0 =

x, z1, . . . , zt in the graph M(x), there exists a path z′0 = x′, z′1, . . . , z
′
t in M(x′) with

R(z′i) = R(zi) for every i, 0 ≤ i ≤ t, and if the same condition holds when the roles

of x and x′ are interchanged.

Note that our definition of the generalized τ -invariant is slightly different from the

one given by Vogan [23]. The following result could be shown simply by Theorem

2.1.

Proposition. All the elements in the same left cell of W have the same generalized

τ -invariant.

The converse of the above proposition is not true in general. It may happen that

two elements in different left cells of W have the same generalized τ -invariant.

4.3. A set Σ of left cells of W is said to be represented by a set M of elements of W

if Σ is the set of all the left cells Γ of W with Γ ∩M 6= ∅.
Given a non-empty subset X of a two-sided cell Ω of W , we want to find from X

an A-saturated and distinguished subset X of W in Ω by performing Process (A),

where the set of left cells represented by X contains the one represented by X. This

can be done in virtue of the graphs M(x), x ∈ X, by picking out a largest possible

distinguished vertex set from those graphs M(x).

4.4. A sequence of elements in W of the form

(4.4.1) ys, yst, ysts, . . .︸ ︷︷ ︸
m−1 terms
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is called an {s, t}-string ( or just a string ) if s, t ∈ S and y ∈ W satisfy the conditions

that the order o(st) of the product st is m and R(y)∩{s, t} = ∅. The number m−1 is

called the length of this string. Clearly, when (4.4.1) is an {s, t}-string, the sequence

(4.4.2) yt, yts, ytst, . . .︸ ︷︷ ︸
m−1 terms

is also an {s, t}-string.

Suppose that we are given two {s, t}-strings x1, x2, . . . , xm−1 and y1, y2, . . . ,

ym−1 with o(st) = m. We denote the integers µ(xi, yj) by aij for 1 ≤ i, j ≤ m − 1.

Then the following is known:

Proposition 4.5. (cf. [11]). Let the situation be as above.

(1) When m = 3, we have a12 = a21, a11 = a22;

(2) When m = 4, we have a12 = a21 = a23 = a32, a11 = a33, a13 = a31 and

a22 = a11 + a13.

We have the following result corresponding to this.

Proposition 4.6. Let the situation be as above.

(1) If m = 3, then

x1 ∼
L

y1 ⇐⇒ x2 ∼
L

y2;

x1 ∼
L

y2 ⇐⇒ x2 ∼
L

y1.

(2) If m = 4, then

(a) x1 ∼
L

y2 ⇐⇒ x2 ∼
L

y1 ⇐⇒ x2 ∼
L

y3 ⇐⇒ x3 ∼
L

y2;

(b) x1 ∼
L

y1 ⇐⇒ x3 ∼
L

y3;

(c) x1 ∼
L

y3 ⇐⇒ x3 ∼
L

y1;

(d) x2 ∼
L

y2 ⇐⇒ either x1 ∼
L

y1 or x1 ∼
L

y3 ⇐⇒ either x1 ∼
L

y1 or x3 ∼
L

y1

⇐⇒ either x3 ∼
L

y1 or x3 ∼
L

y3 ⇐⇒ either x1 ∼
L

y3 or x3 ∼
L

y3.
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Proof. Assertion (1) was shown by Kazhdan and Lusztig [6]. Now we shall show (2).

We may assume t /∈ R(y2) without loss of generality. For f ∈ H and w ∈ W , we

write f Â Cw if the term Cw occurs in the expression

f =
∑

z

azCz, az ∈ A,

with aw 6= 0.

Let us first show the implication x1 ∼
L

y2 =⇒ x2 ∼
L

y1.

We have y2 ≤
L

x1 and hence there exists some z ∈ W with CzCx1 Â Cy2 . By

the assumption t /∈ R(y2), we have Cy2Ct Â Cy1 and then CzCx1Ct Â Cy1 by the

positivity of the Z-coefficients of hx,y,w’s in ui ( i ∈ Z ). Thus by the associativity of

the Hecke algebraH, there must exist some x ∈ W with Cx1Ct Â Cx and CzCx Â Cy1 .

So y1 ≤
L

x and a(y1) ≥ a(x) ≥ a(x1) = a(y2) = a(y1). This implies y1 ∼
L

x. Now

by Theorem 2.1, we have R(x) = R(y1) and R(x1) = R(y2). Since x—x1 and since

y1, y2 are neighboring terms in an {s, t}-string, this implies from 3.5, (4) that x, x1

also must be neighboring terms in an {s, t}-string and hence x = x2. So x2 ∼
L

y1.

The remaining part of the assertion (2), (a) as well as (2), (d) can be proved

similarly.

Next we show the implication x1 ∼
L

y1 =⇒ x3 ∼
L

y3.

By (2), (d), we have x2 ∼
L

y2 and hence either x3 ∼
L

y3 or x3 ∼
L

y1 holds. If x3 ∼
L

y3,

then we are done. Now assume x3 ∼
L

y1. Then x1 ∼
L

x3. Again by (2), (d), we have

either y3 ∼
L

x3 or y3 ∼
L

x1. In either case, we get y3 ∼
L

x3 .

The remaining part of (2), (b) and part (2), (c) can be shown similarly. ¤

Remark 4.7. Results analogous to 4.5 and 4.6 hold for arbitrary m.

§5 Applications to W of type F̃4.

In this section, we assume (W,S) to be the affine Weyl group of type F̃4 with S =

{ s0, s1, s2, s3, s4 } the Coxeter generator set, where o(s0s1) = o(s1s2) = o(s3s4) = 3

and o(s2s3) = 4. We shall apply the algorithm provided in § 3 to find a representative

set of left cells in certain two-sided cells of W .
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5.1. Let W(i) = {w ∈ W | a(w) = i } for any non-negative integer i. Then from the

knowledge of unipotent classes of the complex connected reductive algebraic group

of type F4 and from Theorem 1.7, we see that for each i = 4, 5, the set W(i) forms a

single two-sided cell of W , and that the set W(3) is a union of two two-sided cells of

W . We want to find representative sets of left cells of all the two-sided cells Ω of W

with a(Ω) = 3, 4, 5.

5.2. We first consider the two-sided cell W(4). Let

X = {wI | I ∈ {{2, 3}, {0, 3, 4}, {1, 3, 4}, {0, 1, 3}, {0, 1, 4}, {1, 2, 4}}},

where we denote si by i for brevity. Then X is a distinguished subset of W(4) ( see

3.2 ). We perform Process (A) on X. The graphs M(wI) (see 4.1) with

I ∈ { {0, 3, 4}, {1, 3, 4}, {0, 1, 3}, {0, 1, 4}, {1, 2, 4} }

are all finite. By Proposition 4.2, we see that the set of vertices in each of these

graphs are distinguished. Any two of these vertex sets represent either the same set

of left cells or disjoint sets of left cells. The graph M(w{2,3}) is infinite. By 3.5, (2)

and Proposition 4.6, we may pick out a finite subgraph M′(w{2,3}) from it such that

the vertex set of this subgraph forms a maximal distinguished subset in the vertex

set M(w{2,3}). Thus we get A-saturated and distinguished sets X, which are the set

of all vertices of the graphs in Figures 1, 2 and 3, where the vertices x are represented

by boxes, inside which we describe the corresponding subset R(x) of S. The vertices

x with R(x) = I ∈ { {2, 3}, {0, 3, 4}, {0, 1, 4} } are the elements wI . The labeling i of

an edge indicates that its two terminals x, y have the relation x = ysi. We can check

that the set X is also B-saturated. Hence by Theorem 3.1, we assert that X forms

a representative set of left cells of W in W(4).

Remark 5.3. As a starting distinguished set in the algorithm, X is usually chosen

with larger cardinality and shorter elements if possible. This may make our process

easier and faster. Thus the elements of the form wI , I ⊂ S, are ideal candidates to be
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selected into the set X. This is because of their shorter lengths, computable a-values

and being distinguished ( see 3.5, (1), (2) ). But we should be cautious when a given

two-sided cell Ω of W is not of the form W(i). One should make sure that the set X

is indeed wholly in a two-sided cell. The next example will tell us something about

this.

5.4. Now let us consider the two-sided cells of W with a-values equal to 3. As

mentioned in 5.1, W(3) is a union of two two-sided cells of W . W(3) contains four

elements of the form wI , where I ∈ { {0, 1}, {1, 2}, {3, 4}, {0, 2, 4} }. At this stage,

we do not know how to distribute these four elements into two two-sided cells. Let

X = {w{0,1} = 010 } and let Ω1 be the two-sided cell of W containing 010. First

we want to find a representative set of left cells of W in Ω1 by performing Processes

(A) and (B) on X. The graph M(010) is displayed in Figure 4, where the vertex x

with R(x) = {0, 1} is the element 010. Since M(010) contains the vertex y = 01021

with R(y) = {1, 2}, this implies w{1,2} = 121 ∈ Ω1 by 3.5, (2). By Proposition

4.2, we see that the vertex set M(010) of M(010) is distinguished. M(010) is A-

saturated but not B-saturated. Indeed, let z = 010232 ∈ M(010) and z′ = z4. Then

z′—z and R(z′) = {0, 2, 4} % {0, 2} = R(z). Observe the graph in Figure 5, where

the fourth and the fifth vertices from the left are the elements z, z′, respectively.

By Propositions 4.1 and 4.5, we see that z ∼
R

z′ and hence z′ ∈ Ω1. This implies

w{0,2,4} = 024 ∈ Ω1 by 3.5, (2). The graph M(024) is as in Figure 6, where the vertex

x with R(x) = {0, 2, 4} is the element 024. Let M(024) be the vertex set of M(024).

Then by Proposition 4.2, we see that the union M(010)∪M(024) is distinguished. By

a case-by-case checking, we also see that M(010)∪M(024) is both A- and B-saturated

and hence forms a representative set of left cells of W in Ω1 by Theorem 3.1.

Since the union M(010) ∪M(024) contains no element x with R(x) = {3, 4}, this

implies that w{3,4} = 343 /∈ Ω1. So the element 343 is contained in another two-sided

cell Ω2 of W in W(3). Now we want to find a representative set of left cells of W in Ω2

by performing Processes (A) and (B) on the set X = {343}. The graph M(343) is as
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in Figure 7, where the vertex x with R(x) = {3, 4} is the element 343. By Proposition

4.2, the vertex set M(343) of the graph M(343) is distinguished. We can check that

the set M(343) is both A- and B-saturated. So M(343) forms a representative set of

left cells of W in Ω2 by Theorem 3.1.

5.5. Now we consider the two-sided cell W(5) of W . There is only one element, i.e.

02323, in W(5) which has the form wI . The graph M = M(02323) is as in Figure 8,

where there are two vertices x with R(x) = {0, 2, 3} in the graph, the one on the left

hand side is the element 02323. By 3.5, (2), the vertices 023234323 and 02323 are in

the same left cell of W . This implies that the vertex set M(02323) of the graph M is

not distinguished. Let M′ be the subgraph of M consisting of the part of M located

on the dotted line. Then by Propositions 4.2 and 4.6, the vertex set M ′(02323) of M′

is a distinguished subset of M(02323) with the maximal cardinality.

5.6. The set M ′(02323) is A-saturated but not B-saturated. Indeed, to the vertex y =

023231234, we have an element y′ = y3 which satisfies y′—y and R(y′) = {1, 4, 3} %
{1, 4} = R(y); to the vertex z = 0232343123, we have an element z′ = z2 which

satisfies z′—z and R(z′) = {2, 3} % {3} = R(z). We also have a(y′) = a(z′) = 5 by

applying Propositions 4.1 and 4.5 on the graphs M(02323), M(y′) and M(z′). The

set M ′(02323) ∪ {y′, z′} is distinguished. The graphs M(y′) and M(z′) are displayed

in Figures 9 and 10, respectively, where the x with R(x) = {1, 3, 4} in M(y′) is the

element y′, the vertex x′ with R(x′) = {2, 3} in M(z′) is the element z′. Note that

M(y′) is quasi-isomorphic to M(w{0,3,4}) ( see Figure 2. ). By Proposition 4.2, we

see that the vertex set M(y′) of M(y′) is distinguished and that the sets of left cells

represented by the vertex sets M ′(02323), M(y′), M(z′) of M′, M(y′), M(z′) are

pairwise disjoint. But it is not clear whether the vertex set M(z′) is distinguished or

not.

5.7. Let α = z′42 and α′ = z′43, β = z′12, β′ = z′13, γ = z′120, γ′ = z′130, δ = z′1201

and δ′ = z′1301. They are vertices in M(z′). We shall check whether x, x′ are in the

same left cell of W or not for x ∈ { α, β, γ, δ }.
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Proposition. In the above setup, we have

(1) α �
L

α′; (2) β ∼
L

β′; (3) γ ∼
L

γ′; (4) δ ∼
L

δ′.

By Proposition 4.6, (1), we have the equivalence

(5.7.1) (2) ⇐⇒ (3) ⇐⇒ (4).

So it suffices to show (1) and (2). Now we show (2) and postpone the proof of (1) to

later stage.

5.8. The proof of (2). We have `(β) = 13 and `(β′) = 11. Consider the element

β′′ = 40232341232312. We have β′′ = 4β = 234β′, R(β′′) = {1, 2} and `(β′′) = 14.

Thus by 3.5, (3), we have

(5.8.1) β′′ ≤
L

β, β′.

Observe the graph in Figure 11, where the leftmost vertex is the element β′′. The

lengths of the elements x in this graph ( which are represented by vertices with

labeling R(x) ) monotone decrease along the path when getting farther from β′′.

The other terminal vertex is the element v = 402323. It is easily seen that v ∼
L

02323 = w{0,2,3} and hence a(v) = 5. By Propositions 4.1 and 4.5, we see β′′ ∼
R

v

and so a(β′′) = 5. Thus by 1.6, (2) and the fact a(β) = a(β′) = 5, this implies from

(5.8.1) that

(5.8.2) β ∼
L

β′′ ∼
L

β′.

¤

Remark 5.9. The element β′′ plays a key role in the above proof. It seems quite

accidental in finding such an element β′′. But if we express elements of W in their

alcove forms ( see [17] for the definition ), then we see that the element β′′ could be

obtained from β and β′ in a quite natural way. Actually, all the results of the present

section are worked out by using the alcove forms of elements.
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5.10. The set M ′(02323) ∪M(y′) ∪M(z′) is A-saturated but not B-saturated. For

the element w = y′2 ∈ M(y′), we have w′ = w1 satisfying w′—w, R(w′) = {1, 2, 4} %
{2, 4} = R(w) and a(w′) = 5. The last condition on w′ is obtained by applying

Propositions 4.1 and 4.5 on M(y′) and M(w′). The graph M(w′) is displayed in

Figure 12, where the vertex x with R(x) = {1, 2, 4} is the element w′. Note that

M(w′) is quasi-isomorphic to M(w{0,1,4}). The vertex set M(w′) of M(w′) is dis-

tinguished and the set of left cells represented by M(w′) is disjoint from those by

M ′(02323) ∪M(y′) ∪M(z′) by Proposition 4.2.

5.11. On the other hand, for the element α′ = z′43 ∈ M(z′), we have η = α′1

satisfying η—α′, R(η) = {1, 3, 4} % {3, 4} = R(α′) and a(η) = 5. The last condition

on η is obtained by applying Propositions 4.1 and 4.5 on M(z′) and M(η). M(η) is

displayed in Figure 13, where the vertex x with R(x) = {1, 3, 4} is the element η.

We see that M(η) is quasi-isomorphic to M(y′). One may ask whether the set of left

cells represented by the vertex set M(η) of M(η) is the same as the one represented

by the set M(y′). The answer is as follows.

Proposition. The sets M(η) and M(y′) represent different sets of left cells of W

which are disjoint.

Proof. Take b = y′23 ∈ M(y′) and c = η23 ∈ M(η) which are in the corresponding

positions of two graphs with R(b) = R(c) = {3}. Thus to show our result,we need

only to show b �
L

c. By Theorem 2.1, it suffices to show Σ(b) 6= Σ(c). Consider all

the left cells Γ with R(Γ) = {2, 3} in the sets Σ(b) and Σ(c). We see that the element

c′ = c2 satisfies c′—c, R(c′) = {2, 3} % {3} = R(c) and a(c′) = 5. More precisely, we

have c′ ∈ M(02323) and

c′ ∼
L

02323123423231231 = 023231234323123 = d ∈ M ′(02323),

i.e. Γd ∈ Σ(c) ( see 2.4, (1) ). Now we need only to show Γd /∈ Σ(b). Consider all the

elements b′ satisfying b′—b, a(b′) = 5 and R(b′) = {2, 3}. They are b′1 = 023231232,
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b′2 = 0232312343232 and z′, where b′1, b′2 ∈ M ′(02323) with d 6= b′1, b′2. So z′, b′i /∈ Γd

for i = 1, 2, i.e. Γd /∈ Σ(b). ¤

5.12. Now we are ready to show the assertion (1) of Proposition 5.7.

The proof of Proposition 5.7, (1). Recall that for η = α′1, we have Γη ∈ Σ(α′)

with R(Γη) = {1, 3, 4}. By Propositions 5.11 and 4.2, we see that the set of left

cells represented by the set M(η) is disjoint from those represented by the union

M ′(02323) ∪M(y′) ∪M(z′) ∪M(w′).

By Theorem 2.1, we need only to show that none of the left cells Γ with R(Γ) =

{1, 3, 4} in Σ(α) is equal to Γη. It is equivalent to showing that none of the elements

b with b—α, R(b) = {1, 3, 4} and a(b) = 5 is in Γη. By direct computation, we see

that such an element b must be one of the following elements: b1 = α1, b2 = 02323431,

b3 = 0232341234. It is easily seen that b2 ∈ M ′(02323) and b3 = y′. Now our proof is

completed by the following:

Lemma 5.13. b1 ∼
L

y′.

Proof. We have b1 = 023234312341 and y′ = 0232341234 with L(b1) = L(y′) = {0, 2, 3}.
Let b′ = 4b1. Then L(b′) = {0, 2, 4} and so b′ ∼

L
b1. On the other hand, we have

b′ = 4023234312341 = 234y′ with `(b′) = `(y′) + 3, and so b′ ≤
L

y′. This implies

(5.13.1) b1 ≤
L

y′.

Now consider the graph in Figure 14, where the vertices x, y with R(x) = {3, 4} and

R(y) = {1, 3, 4} are the elements α, b1, respectively. By Propositions 4.1 and 4.5, we

see that α ∼
R

b1 and hence a(b1) = 5 = a(y′). So by 1.6 (2), we get b1 ∼
L

y′ from

(5.13.1). ¤

5.14. Let M′(z′) be the subgraph of M(z′) as in Figure 15 and let M ′(z′) be its

vertex set. Then by the discussion in 5.5—5.13, we know that the union

M ′(02323) ∪M(y′) ∪M ′(z′) ∪M(w′) ∪M(η)
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is both distinguished and A-saturated. We can check that it is also B-saturated and

hence forms a representative set of left cells of W in W(5) by Theorem 3.1.

Remark 5.15. In the above examples, we always take a starting distinguished set

X in the algorithm to be a set of elements of the form wI , I ∈ S. This is because all

the two-sided cells which we have dealt with contain such elements. But in general,

it could happen that there is no element of such form in a given two-sided cell Ω,

e.g. when Ω is the two-sided cell with a(Ω) = 7 in W of type D̃4 or with a(Ω) = 13

in W of type F̃4. When this happens, we may choose the elements of the set X in a

standard parabolic subgroup of W by Theorem 1.7, (3), which is easier to find.
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