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Abstract. A survey is given on the achievements of KL-cell theory of certain Coxeter
groups. Some techniques applied in that theory are introduced. Also, we propose several
open problems for further study.

In order to construct the representations of a Coxeter group W and the associative

Hecke algebra, D. Kazhdan and G. Lusztig defined certain equivalence classes of W called

left, right and two-sided cells. Thus the description of cells of W and the structural

study of these cells become interesting and also important in the representation theory of

groups and algebras. In the present paper, we shall make a survey on the achievements

of studying left cells of W . According to the definition, the description of left cells might

involve complicated computation of Kazhdan-Lusztig polynomials and is hard even by a

computer when the order of W is getting larger. Thus we shall introduce some methods

to simplify our work. They reduce the computation in significant rate so that sometimes

we can reach our goal only by hand even when W is in some infinite case. We shall see

that the study of cells of W involves some combinatorial techniques and has to invoke

some other mathematical theory. We also propose some related open problems for further

study.

The content of this paper is organized as below. In section 1, we make a historical

review on the cells of a Coxeter group, introduce the definition of cells by Kazhdan and

Lusztig and some related concepts. Then we state some results of Lusztig concerning cells

of Coxeter groups with properties 2.3, (a), (b), mainly of affine Weyl groups. A survey

is given in section 3 on the achievements for the description of left cells of Weyl groups,
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affine Weyl groups and some other finite Coxeter groups. We construct an algorithm in

section 4 for finding a representative set of left cells in any given two-sided cell of Coxeter

groups with properties 2.3, (a), (b). Several conjectures concerning left cells of W are

scattered in sections 2 to 4. Finally in section 5, we state some more conjectures on left

cells of affine Weyl groups.

§1. Kazhdan-Lusztig cells.

1.1 The concept of cells originally came from combinatorial theory. Robinson [26] defined

a map from the symmetric group Sn to the set of pairs of standard Young tableaux of

the same shape and of rank n: σ −→ (φ(σ), φ(σ−1)). Then Schensted [27] proved that

this map is bijective. This map is called the Robinson-Schensted map. Hence a left cell

of Sn is, by definition, the set of elements of Sn corresponding to the set of such pairs

(P,Q) with P fixed. A two-sided cell of Sn is defined to be the set of elements of Sn

corresponding to the set of such pairs (P, Q) with P , Q of fixed shape. Thus there is 1-1

correspondence between the set of two-sided cells of Sn and the set of partitions of n. This

is the prototype of cells which applied to any Coxeter group.

Then Vogan and Joseph defined the concept of left cells in the Weyl group W in terms

of primitive ideals in the enveloping algebra of a complex semisimple Lie algebra. For

w ∈ W , let Jw be the annihilator of the irreducible module of the enveloping algebra

with highest weight −wρ − ρ, where ρ is half the sum of positive roots. Then w, w′ are

said to be in the same left cell precisely when Jw = Jw′ . This definition of left cells

and the corresponding Weyl group representations involves some deep results about the

multiplicities of the composition factors of the Verma modules with highest weight−wρ−ρ,

[44], [14].

In 1979, Kazhdan and Lusztig [15] gave the definition of cells for an arbitrary Coxeter

group. Their definition is elementary but it gives rise not only to the representations of the

Coxeter group, but also to that of the corresponding Hecke algebra. This makes possible

applications of the results on cells to more general representation theory. On the other

hand, the definition of Kazhdan-Lusztig cells coincides with that of Vogan and Joseph in

the case of Weyl groups.

We adopt Kazhdan-Lusztig’s definition of cells.

1.2 Let (W,S) be a Coxeter group with S its simple reflection set. Let ≤ be the Bruhat

order of W and let `(x) be the length of an element x ∈ W . Let A = Z[u, u−1] be the



LEFT CELLS IN CERTAIN COXETER GROUPS 3

ring of Laurent polynomials in an indeterminate u with integer coefficients. There exists

an associative algebra H = H(W ) over A with {Tw | w ∈ W} and {Cw | w ∈ W} its two

free A-bases. Its multiplication rule in terms of Tw’s is given by
{

TwTw′ = Tww′ , if `(ww′) = `(w) + `(w′);
(Ts − u−1)(Ts + u) = 0, for s ∈ S.

The relation between these two bases is as below.

Cw =
∑

y≤w

u`(w)−`(y)Py,w(u−2)Ty, for w ∈ W.

where the Py,w’s are Kazhdan-Lusztig polynomials in Z[u], which satisfy the conditions:

Py,w = 0 if y 6≤ w; Pw,w = 1 and deg Py,w ≤ (1/2)(`(w)− `(y)− 1) if y < w.

1.3 For y, w ∈ W with `(y) ≤ `(w), we denote by µ(y, w) or µ(w, y) the coefficient of

u(1/2)(`(w)−`(y)−1) in Py,w. We say that y and w are joint, written y—w, if µ(y, w) 6= 0.

To any x ∈ W , we associate two subsets of S:

L(x) = {s ∈ S | sx < x} and R(x) = {s ∈ S | xs < x}.

We have the following relations: for any x ∈ W and s ∈ S,

(1.3.1) CsCx =





(u−1 + u)Cx, if s ∈ L(x);∑
y—x
sy<y

µ(x, y)Cy, if s /∈ L(x);

1.4 For any x, y ∈ W , we denote x ≤
L

y ( resp. x ≤
R

y ), if there exist a sequence of

elements x0 = x, x1, · · · , xr = y in W with some r ≥ 0 such that for every i, 1 ≤ i ≤ r,

xi−1––xi and L(xi−1) * L(xi) ( resp. R(xi−1) * R(xi) ). We denote x ≤
LR

y, if there

exist elements x0 = x, x1, · · · , xr = y in W such that either xi−1 ≤
L

xi or xi−1 ≤
R

xi

holds for 1 ≤ i ≤ r. We write x ∼
L

y (resp. x ∼
R

y, resp. x ∼
LR

y), if the relation x ≤
L

y ≤
L

x

( resp. x ≤
R

y ≤
R

x, resp. x ≤
LR

y ≤
LR

x ) holds. These are equivalence relations on W , and

the equivalence classes of W with respect to ∼
L

( resp. ∼
R

, resp. ∼
LR

) are called the left (

resp. right, resp. two-sided ) cells of W . The preorders ≤
L
, ≤

R
and ≤

LR
on elements of W

induce partial orders on the corresponding cells of W .

1.5 Each cell of W provides a representation of W and of the associated Hecke algebra.

Suppose that Γ is a left cell of W . Let I≤Γ ( resp. I<Γ ) be the A-submodule of H spanned

by {Cw | w ≤
L

x, for some x ∈ Γ} ( resp. {Cw | w ≤
L

x, for some x ∈ Γ but w 6∈ Γ} ).

Then I≤Γ ( resp. I<Γ ) is a left ideal of H by 1.2.1. Thus the quotient IΓ = I≤Γ/I<Γ is
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a left H-module. It becomes a W -module if we specialize u = 1 for A. So studying cells

of W is of significance in the representation theory of groups and algebras. In principle,

when W is a finite Coxeter group, all the cells of W could be described explicitly by a

finite step of computation. For example, let W = Dm = 〈s, t | o(s) = o(t) = 2, o(st) = m〉
be the dihedral group of order 2m, m > 1. Then we have Px,y = 1 iff x ≤ y. This implies

that there are three two-sided cells {e}, {w0} and Γs

⋃
Γt, where e, w0 are the identity

element and the longest element of Dm, respectively, and

Γs = {s, ts, sts, · · · ,

m−1 factors︷ ︸︸ ︷
· · · sts }

Γt = {t, ts, tst, · · · ,

m−1 factors︷ ︸︸ ︷
· · · tst }.

The first two two-sided cells themselves are left cells. The third one is a union of two left

cells Γs and Γt.

Kazhdan and Lusztig gave explicit description of cells for some Coxeter groups of lower

ranks [15], D. Alvis described all the left cells of the Coxeter group of type H4 [1], and

K. Takahashi did the same thing for the Weyl group of type F4 [42]. The most of their

results were obtained by making direct computation of the related KL-polynomials. In

Alvis’s case, more than one million KL-polynomials were calculated by a computer. So

their methods are not effective for the Coxeter groups of higher orders or of infinite orders.

We must search some new methods, directly or indirectly.

1.6 Given an element x ∈ W , We define the set M(x) of all the elements y such that

there exists a sequence of elements x0 = x, x1, . . . , xr = y in W with some r ≥ 0, where

for every i, 1 ≤ i ≤ r, the conditions x−1
i−1xi ∈ S and R(xi−1)

+
*R(xi) are satisfied. To any

x ∈ W , we associate a graph M(x) as follows. Its vertex set is M(x). Its edge set consists

of all two-element subsets {y, z} ⊂ M(x) with y−1z ∈ S and R(y)+*R(z). By a path in

the graph M(x), we mean a sequence of vertices z0, z1, . . . , zt in M(x) such that {zi−1, zi}
is an edge of M(x) for any i, 1 ≤ i ≤ t. Two elements x, x′ ∈ W are said to have the same

generalized τ -invariant if for any path z0 = x, z1, . . . , zt in the graph M(x), there exists

a path z′0 = x′, z′1, . . . , z
′
t in M(x′) with R(z′i) = R(zi) for every i, 0 ≤ i ≤ t, and if the

same condition holds when interchanging the roles of x and x′.

Note that our definition of a generalized τ -invariant is slightly different from the one

given by D. Vogan ( see [44] ). It is known that if two elements of W are in the same

left cell of W then they have the same generalized τ -invariant and that the converse is
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not true in general, i.e. it might happen that two elements having the same generalized

τ -invariant belong to different left cells of W . However, when W = Sn, we have

Proposition (see [29]). x ∼
L

y in Sn iff x, y have the same generalized τ -invariant.

Remark 1.7 Given a Coxeter group W , define a V -left cell of W to be the set of all

the elements of W having the same generalized τ -invariant. We use the terminology “

a V -left cell ” because when W is a Weyl group, it is precisely a left cell defined by D.

Vogan (see [44]). As pointed out in the above, a V -left cell of W is a union of some left

cells of W defined by Kazhdan and Lusztig. R. Bédard described the V -left cells of all the

crystallographic, compact, hyperbolic groups of rank 3 [5].

§2. Some results of Lusztig on cells in certain Coxeter groups.

All the results in the present section are due to Lusztig unless otherwise specified.

These results are important not only on the cell theory itself but also on its application

to the other mathematical fields. Their proofs are based on the very deep theory of the

intersection cohomology, the algebraic K-equivariance and the character sheaves.

2.1 For any x, y, z ∈ W , we define hx,y,z ∈ A by

(2.1.1) CxCy =
∑

z

hx,y,zCz.

Define a function a : W −→ N by setting a(z) to be the smallest integer k satisfying the

condition

ukhx,y,z ∈ Z[u], for all x, y ∈ W.

for z ∈ W , where we stipulate a(z) = ∞ if no such an integer k exists.

2.2 Two families of Coxeter groups are more interesting to us: Weyl groups and affine

Weyl groups. This is because the cell theory of these groups is closely related with the

representations of connected reductive algebraic groups over the complex field and over

a p-adic field. These Coxeter groups have nice properties: their a-functions are upper-

bounded, and the coefficients of their KL-polynomials and their Laurent polynomials hx,y,z

are non-negative. These two properties strongly effect the cell structure of these groups.

2.3 Let W be a Coxeter group satisfying the following two properties:

(a) Its a-function is upper bounded;

(b) The coefficients of the KL-polynomials and the Laurent polynomials hx,y,z associating

with its elements are non-negative.
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Then the following results on W hold.

(1) The function a is constant on each two-sided cell of W . So we may define the a-value

a(Γ) on a ( left, right or two-sided ) cell Γ of W by a(x) for any x ∈ Γ [20].

(2) Let δ(z) = deg Pe,z for z ∈ W , where e is the identity of the group W . Then the

inequality i(z) := `(z) − 2δ(z) − a(z) ≥ 0 holds for any z ∈ W . The set D0 = {w ∈ W |
i(w) = 0} consists of involutions ( called distinguished involutions by Lusztig ). Each left

( resp. right ) cell of W contains a unique element of D0 [21]. Let W ′ be a standard

parabolic subgroup of W . Then a consequence of the above result is that the intersection

of any left cell of W with W ′ is either empty or a single left cell of W ′.

2.4 Let Wa be an irreducible affine Weyl group and let G be the connected reductive

algebraic group over C associated to Wa. Then the following result of Lusztig establishes

some connection between the set of two-sided cells of Wa and the set of unipotent conjugacy

classes of G.

Theorem ( see [23] ). There exists a bijection u 7→ c(u) from the set of unipotent

conjugacy classes in G to the set of two-sided cells in Wa. This bijection satisfies the

equation a(c(u)) = dim Bu, where u is any element in u, and Bu is the variety of Borel

subgroups of G containing u.

This is a result concerning two-sided cells of an affine Weyl group Wa. We also have

a result concerning left cells of Wa: D0 is a finite set of involutions in Wa [21]. This

particularly implies that the number of left cells of an affine Weyl group is finite.

2.5 We know the number of two-sided cells of an affine Weyl group but not the number

of left cells of such a group in general. This is because we know the number of unipotent

conjugacy classes of G (see [6]) but we don’t know the number of distinguished involutions

of Wa in general. However, Lusztig proposed the following

Conjecture ( see [2] ). The number of left cells of Wa contained in the two-sided cell

corresponding to a unipotent element u ∈ G is equal to
∑

i(−1)i dim Hi(Bu)A(u), where

A(u) is the group of connected components of the centralizer of u in G, and Hi(X) is the

ith étale cohomology space of the variety X with values in the constant sheaf.

Now we assume the above conjecture. Suppose that u is a unipotent class of G con-

taining a regular unipotent element of a Levi subgroup L. Then the number of left cells

in the corresponding two-sided cell c(u) is equal to the number of left cosets of W with

respect to WL, provided that the centralizer CG(u) of u in G is connected, where u is any
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element in u, and WL is the standard parabolic subgroup of W determined by L.

The above conjecture is supported in all the cases where the numbers of left cells of Wa

have been calculated. For example, the author showed it for Wa of type Ãn−1. In that case,

the group A(u) is trivial for any unipotent element u ∈ G, and any unipotent class of G

contains a regular unipotent element of some Levi subgroup L (see [6]). On the other hand,

the two-sided cells of Wa(Ãn−1) are in one-to-one correspondence with the partitions of n,

where a partition of n is by definition a sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λr > 0 with
∑r

i=1 λi = n. The number of left cells of Wa(Ãn−1) in the two-sided cell corresponding

to the partition λ1 ≥ λ2 ≥ · · · ≥ λr is equal to
n!∏m

j=1 µj !
, where µj = #{i | λi ≥ j} (see

[29]).

§3. A survey on the achievements for describing left cells.

3.1 Although it has taken about fifteen years to study, the left cells for the most Coxeter

groups are still far from being known. However, some significent progresses have been

made on the explicit description of all left cells of certain Coxeter groups satisfying the

properties 2.3,(a), (b) , which are listed as follows.

(i) Weyl groups of types A ( Kazhdan & Lusztig, see [15]), B, C, D ( Barbasch-Vogan,

see [3], Garfinkle, Devra, see [13]), E6 ( Tong, see [43] ), F4 ( K. Takahashi, see [42]) and

G2 ( ∼= D6 );

(ii) Affine Weyl groups of types Ã (Shi, see [29]), B̃i ( i = 3, 4 ) (Du and Zhang, [10] [46]),

C̃j (j = 2, 3, 4) ( Lusztig, Bédard and Shi, see [20] [4] [40]), D̃4 (Chen and Shi, see [8] [39])

and G̃2 ( Lusztig, see [20]).

(iii) The Coxeter groups of types H3 and H4 ( D. Alvis, see [1]), and all the dihedral

groups Dm, m ≥ 1, (see 1.4).

3.2 The description of the left cells of the affine Weyl groups Wa(Ãn−1) is the most

successful work among all in the above list.

A Young tableau is called quasi-standard if the numbers in each of its columns increase

downwards, and is standard if it is quasi-standard and the numbers in each of its rows

increase from left to right. Let Cn ( resp. Gn ) be the set of all quasi-standard ( resp.

standard ) Young tableaux of rank n.

Recall the Robinson-Schensted map φ from the symmetric group Sn to the set Gn (see

1.1). The author constructed a surjective map from the affine Weyl group Wa(Ãn−1)

to the set Cn. This map, when restricted on Sn ( note that Sn could be regarded as a
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maximal standard parabolic subgroup of Wa(Ãn−1) ), is exactly the Robinson-Schensted

map φ. So we call this map a generalized Robinson-Schensted map. The significance of

this map is that it induces a bijection from the set of all left cells of Wa(Ãn−1) to the set

Cn. Two left cells are in the same two-sided cell iff the shapes of the corresponding Young

tableaux are the same ( see [29] [36] ).

3.3 Left cells of the group Wa(Ãn−1) could also be characterized by the generalized τ -

invariant (see 1.6): two elements of Wa(Ãn−1) are in the same left cell iff they have the

same generalized τ -invariant ( see [29] ). This result generalizes Proposition 1.6. Left cells

of Wa(Ãn−1) have even more nice properties ( see 3.6 ).

3.4 Garfinkle defined another kind of generalized Robinson-Schensted map. She associated

each signed permutation to a domino Young tableau, by which she got a surjective map

from the set of all the elements in the Weyl group of type Bn or Dn to a set of certain

standard domino Young tableaux. Then she concluded that the fibres of such a map

should be exactly all the left cells of the corresponding Weyl group ( see [13] ).

3.5 Let Wa be an affine Weyl group. Let Φ be the associated root system with {αj | 1 ≤
j ≤ `} a choice of simple root system and −α0 its highest short root. Denote si = sαi ,

1 ≤ i ≤ `, the reflection with respect to αi, and denote s0 = T−α0sα0 , where T−α0 is the

translation λ 7→ λ − α0 in the euclidean space spanned by Φ. Let w 7→ w̄ be the natural

map Wa = N oW −→ Wa/N ∼= W , where N is the maximal normal abelian subgroup of

Wa consisting of all translations and W is the Weyl group of Φ. To each element w ∈ Wa,

we can associate a unique Φ-tuple (k(w, α))α∈Φ over Z subject to the following conditions:
{

k(e, α) = 0, for all α ∈ Φ,

k(wsi, α) = k(w, (α)w̄) + k(si, α), for all si ∈ S,

where e is the identity of Wa and k(si, α) is defined by

k(si, α) =





0, if α 6= ±αi,

−1, if α = αi,

1, if α = −αi.

(k(w, α))α∈Φ is called the alcove form of an element w ∈ Wa (see [30]).

3.6 A Φ-sign type is a Φ-tuple (Xα)α∈Φ with Xα ∈ {+,−,©}. We can associate an

element w ∈ Wa to a Φ-sign type (Xα)α∈Φ by

Xα =





+, if k(w, α) > 0,
−, if k(w, α) < 0,
©, if k(w, α) = 0.
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By abuse of terminology, we call the set of all elements of Wa corresponding to any given

Φ-sign type also by “ a sign type of Wa ” provided that this set is non-empty [31]. Our

result asserts

Theorem ( see [29] ). Each left cell of the group Wa(Ãn−1) is a unoin of some sign

types.

Since any Weyl group could be regarded as a standard parabolic subgroup of some

affine Weyl group, one can also define the alcove form and the sign type of an element of

a Weyl group. Note that the above theorem is trivially valid in the case when Wa(Ãn−1)

is replaced by a Weyl group since each sign type of a Weyl group consists of exactly one

element. But this result does not hold for an arbitrary affine Weyl group. A counter-

example could be found in the case of Wa(B̃2) ( see [20] ). However, one may expect the

truth of the following

Conjecture ( see [34] ) If W is an irreducible affine Weyl group with simply-laced Dynkin

diagram ( i.e. W has type Ã, D̃ or Ẽ ), then each left cell of W is a union of some sign

types of W .

The results on the left cells of the affine Weyl group Wa(D̃4) support this conjecture.

3.7 Sometimes we are unable to describe all the left cells of certain Coxeter groups, but

we can describe all the left cells of those groups in certain two-sided cells. This is the case

in the following two-sided cells Ω of affine Weyl groups Wa:

(1) Ω is the lowest two-sided cell Wν of Wa with respect to the partial order ≤
LR

( see [32]

[33] );

(2) a(Ω) ≤ 3 (see [17] [18] [7] [28]);

(3) Wa has type B̃n, C̃n, or D̃n (n ≥ 5), and, a(Ω) = 4 (see [9]).

3.8 Let us explain the results of 3.7,(1). The lowest two-sided cell Wν of Wa could be

described as below.

Wν = {w ∈ Wa | k(w, α) 6= 0, for all α ∈ Φ}
= {w ∈ Wa | w = xwJy, for some x, y ∈ Wa and J ⊆ S with

`(w) = `(x) + `(y) +
1
2
|Φ|}.

where wJ is the longest element in the subgroup of Wa generated by J . Let

M = {w ∈ Wν | sw 6∈ Wν for all s ∈ L(w)}.
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Then each element w ∈ M could be written uniquely in the form w = wJx for some

x ∈ Wa and J ⊆ S with `(w) = `(x) + 1
2 |Φ| (call it the standard expression of w). There

exists a bijective map from the set M to the set of all the left cells of Wa in Wν by sending

w ∈ M to the set

Γw = {yw | y ∈ Wa, `(yw) = `(y) + `(w)}.

The last set forms a left cell of Wa, which is also a sign type of Wa (see [32] [33]).

The distinguished involutions of Wa in Wν could be described as below ( see [33] ).

(3.8.1) D0(Wν) = {x−1wJx | wJx ∈ M standard expression }.

Now we want to give another expression of this set. Given x, y ∈ Wa. In the product

TxTy =
∑

z fx,y,zTz ( fx,y,z ∈ A ), there exists a unique element w ∈ Wa with fx,y,w 6= 0

such that if z satisfies fx,y,z 6= 0 then z ≤ w ( see [33] ). Denote this element w by λ(x, y).

Then the set (3.8.1) could be reformulated as below.

D0(Wν) = {λ(x−1, x) | x ∈ M}.

From this, one may expect the following more general result.

Conjecture 3.9. (see [34]) Let x ∈ Wa be a shortest element in the left cell of Wa

containing it. Then λ(x−1, x) ∈ D0. Conversely, any element d ∈ D0 has the form

d = λ(x−1, x) for any shortest element x in the left cell of Wa containing d.

Note that there may exist more than one shortest elements in a left cell of Wa. But this

fact does not conflict with the above conjecture. For example, in the affine Weyl group

Wa(Ã3) = 〈si | 0 ≤ i ≤ 3〉 with o(sisj) = 3 for j ≡ i± 1(mod 4),

let x = s1s2s1s3 and y = s2s3s2s1. Then x ∼
L

y and, both x and y are shortest elements

in the left cell containing them. We have

λ(x−1, x) = λ(y−1, y) = s1s2s3s2s1 ∈ D0.

The above conjecture has been verified in all the left cells Γ of Wa with a(Γ) ≤ 3 (see

[7] [28]) and in all the left cells Γ of Wa of classical types with a(Γ) = 4 (see [8] [9]).

3.10 The canonical left cells of an affine Weyl group, which will be defined shortly, are

closely related to the spherical representations of the corresponding Hecke algebra [23,

§9.]. The description of these left cells were given by Lusztig and Xi [24].



LEFT CELLS IN CERTAIN COXETER GROUPS 11

It is well known that for any x, y in a Coxeter group W ,

(3.10.1) x ∼
L

y =⇒R(x) = R(y) (see [15]).

Thus we can use the notation R(Γ) for a left cell Γ of W , which is R(x) for any x ∈ Γ.

But the converse is not true in general:

R(x) = R(y) ; x ∼
L

y.

The weaker one is still not true in general:

x ∼
LR

y and R(x) = R(y) ; x ∼
L

y.

Call a subset I ⊆ S to be special if |I| = 1 and |WS−I | = max{|WS−{t}| | t ∈ S}, where

the notation |X| stands for the cardinality of a set X. For J ⊆ S, let YJ be the set of

all the elements x ∈ Wa satisfying R(x) = J . Then the fact (3.10.1) tells us that for any

subset J ⊆ S, the intersection of a two-sided cell of Wa with the set YJ is either empty or

a union of some left cells of Wa. Lusztig and Xi showed the following stronger result in

certain circumstance.

Proposition ( see [24] ). For any special I ⊆ S, the intersection of a two-sided cell

Ω 6= {e} of Wa with the set YI is exactly a single left cell of Wa ( i.e. it is neither empty

nor a union of more than one left cells ).

This tells us that for x, y in an affine Weyl group,

x ∼
LR

y with R(x) = R(y) special =⇒ x ∼
L

y.

A left cell Γ of Wa is canonical if either Γ = {e} or that R(Γ) is special. An easy

consequence is that the number κ(Wa) of the canonical left cells of Wa is equal to gh+1−g,

where g is the number of special subsets in S, and h is the number of two-sided cells of

Wa, both of which are relatively well known. For example, when Wa is of type Ãn−1, we

have g = n and h = pn, the number of partitions of n. So κ(Wa) = n · pn + 1− n.

§4. Algorithm for finding a representative set of left cells.

Although we have succeeded in describing so many left cells, the whole figure about left

cells of Coxeter groups is still far from being exposed. Thus we must describe more left

cells of Coxeter groups whenever it is possible. To do so, it is desirable to design some
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algorithms. Here we introduce an algorithm which is effective for any Coxeter group with

properties 2.3, (a), (b). [38]

In the present section, we always assume W to be a Coxeter group with properties 2.3,

(a), (b).

4.1 For x ∈ W , let Σ(x) be the set of all left cells Γ satisfying: there exists some y ∈ Γ

with y––x, R(y) * R(x) and a(x) = a(y). Then the author showed.

Theorem ( see [38] ). If x ∼
L

y in W , then R(x) = R(y) and Σ(x) = Σ(y).

Remark 4.2 (1) The author conjectured that the converse of the above result should also

be true (see [38]), i.e.

(4.2.1) x ∼
L

y ⇐⇒R(x) = R(y) and Σ(x) = Σ(y).

The truth of the conjecture would characterize the left cells of W . This conjecture has

been verified in the cases when W is a Weyl group and when W is an irreducible affine

Weyl group with few cases excepted in Wa(F̃4) (see [41]).

(2) It is easily seen that if x, y ∈ W satisfy R(x) = R(y) and Σ(x) = Σ(y) then x, y have

the same generalized τ -invariant (see 1.6 for the definition).

4.3 A subset K ⊂ W is called a representative set of left cells (or an l.c.r. set for brevity)

of W (resp. of W in a two-sided cell Ω), if |K ⋂
Γ| = 1 for any left cell Γ of W (resp. of

W in Ω). The following is a criterion for an l.c.r. set of W in a given two-sided cell.

Theorem (see [38]). Let Ω be a two-sided cell of W . Assume that a non-empty subset

M ⊂ Ω satisfies the following conditions.

(1) x �
L

y for any x 6= y in M ;

(2) Given an element y ∈ W . Suppose that there exists some element x ∈ M such that

y—x, R(y) * R(x) and a(y) = a(x). Then there exists some z ∈ M with y ∼
L

z.

Then M is an l.c.r. set of W in Ω.

In principle, this theorem provides us a method to find an l.c.r. set of W in any given

two-sided cell Ω from a non-empty subset of Ω, and hence of W itself provided that one

could find at least one element from each two-sided cell of W .

4.4 A subset P ⊂ W is said to be distinguished if P 6= ∅ and x �
L

y for any x 6= y in P .

Now assume that P is a non-empty subset of a two-sided cell Ω of W . We introduce

the following two processes.
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(A). Take a subset Q of the largest possible cardinality from the set
⋃

x∈P M(x) with Q

distinguished.

(B). For each x ∈ P , find elements y ∈ W such that y—x, R(y) % R(x) and a(y) = a(x),

add these elements y on the set P to form a set P ′ and then take a largest possible subset

Q from P ′ with Q distinguished.

Note that the resulting sets in both Processes (A) and (B) are automatically in the

two-sided cell Ω.

Now we are ready to introduce an algorithm to find an l.c.r. set of W in a given

two-sided cell Ω.

Algorithm 4.5. ( see [38] )

(1) Find a non-empty subset P of Ω ( usually we take P to be distinguished for avoiding

unnecessary complication if possible );

(2) Perform Processes (A) and (B) alternately on P until the resulting distinguished set

can not be further enlarged by both processes.

Remark 4.6 The above algorithm has been applied by several person to classify the left

cells of affine Weyl groups W in the following cases.

(1) For W of type D̃4, by the author [39] ( The author understand that Chen Chengdong

also did this but his method is different from the author [8]).

(2) For W of type C̃4, by the author [40].

(3) For W of type B̃4, by Zhang [46].

(4) For all the left cells with their a-values equal to 3 in any irreducible affine Weyl group

W , by Rui [28].

(5) For all the left cells with their a-values ≤ 5 in W of type F̃4, by the author [38].

4.7 As mentioned in 2.3,(2), the set D0 forms an l.c.r. set of W . Thus one can also

classify the left cells of W by first finding the set D0. Chen made this approach in his

papers [7], [8] and [9]. In general, it is more difficult to find the set D0 directly than to

find an arbitrary l.c.r. set of W by algorithm 4.5. On the other hand, suppose that one

has got an l.c.r. set of W by algorithm 4.5. Then by applying the result [35, Proposition

5.12], one can find the set D0 considerably easier.

§5. Some more open problems.

In this section, we assume that W is either a Weyl group or an affine Weyl group.

We want to state two more conjectures proposed by Lusztig. One is concerning the
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connectedness of left cells of W . The validity of this conjecture would ensure certain

good behavior for the left cell representations of the corresponding Hecke algebra, such as

cyclicity. The other is concerning the cells of the affine Weyl groups of classical types. That

conjecture is based on the belief that there should exist certain very strong combinatorial

background for the cells of these groups.

5.1 Connectedness of left cells of W .

A subset K ⊆ W is connected, if, for all x, y ∈ K, there exist a sequence of elements

x0 = x, x1, · · · , xr = y in K with some r ≥ 0 such that for all i, 1 ≤ i ≤ r, we have

xi−1x
−1
i ∈ S. Lusztig proposed:

Conjecture ( see [2] ). When W is either a Weyl group or an affine Weyl group, each

left cell of W is connected.

This conjecture is supported in all the cases where the left cells of W have been described

explicitly (see 3.1). On the other hand, Xi and Du made some progress in the proof of

this conjecture by showing the following result individually: It is finite for the number of

connected components in each left cell of an affine Weyl group ( see [45] [12] ). Comparing

with the result of Xi-Du, the above conjecture asserts that this number is one.

By 2.3, it is sufficient to verify the above conjecture in the cases of affine Weyl groups.

Note that the truth of Conjecture 3.8 might be helpful in the verification of the present

conjecture.

5.2 Left cells in the affine Weyl group of type B̃n, C̃n or D̃n.

Define a permutation group on the integer set Z as follows.

An =

{
σ : Z 7→ Z

∣∣∣∣∣(i + n)σ = (i)σ + n, for all i ∈ Z;
n∑

i=1

(i)σ =
n∑

i=1

i

}
.

Then it is known that An is isomorphic to the affine Weyl group of type Ãn−1 with its

simple reflection set S = {st | 0 ≤ t ≤ n− 1}, where

st(i) =





i, if i 6≡ t, t + 1 (mod n),
i + 1, if i ≡ t (mod n),
i− 1, if i ≡ t + 1 ( mod n).

The symmetric group Sn could be described as a subgroup of An:

Sn = {σ ∈ An | 1 ≤ (i)σ ≤ n, for all 1 ≤ i ≤ n}.
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The affine Weyl groups of types B̃`, C̃` and D̃` could also be described as permutation

groups on Z.

(a) Let σ : si 7→ s2`+1−i, for all 0 ≤ i ≤ 2`, be the involutive automorphism in A2`+1 with

the convention that s2`+1+i = si for i ∈ Z. Then we have Wa(B̃`) ∼= Aσ
2`+1, the latter

is the subgroup of A2`+1 consisting of all the σ-fixed elements (similar notations will be

used in (b) and (c)).

(b) Let τ : si 7→ s2`+1−i, for all 0 ≤ i ≤ 2` + 1, be the involutive automorphism in A2`+2

with the convention that s2`+2+i = si for i ∈ Z. Then we have Wa(C̃`) ∼= Aτ
2`+2.

(c) Let η : si 7→ s2`−i, for all 0 ≤ i ≤ 2`− 1, be the involutive automorphism in A2` with

the convention that s2`+i = si for i ∈ Z. Then Wa(D̃`) ∼= Aη
2`.

We have even simplier description for Wa(C̃`) as follows.

Wa(C̃`) = {w ∈ A2`+2 | (−i)w = −(i)w, for all i ∈ Z}.

Note that this description is slightly defferent from the one by R. Bédard (see [4]). Our

description of Wa(C̃`) has the advantage of exposing more group-theoretic symmetry in

element form.

We can also give some similar descriptions for Wa(B̃`) and Wa(D̃`), but they are slightly

complicated.

Lusztig suggested the following

Conjecture. Each left cell of Wa(X̃) ( X ∈ {B`, C`, D`} ) has the form

Γ = Wa(X̃)
⋂

(
⋃

i∈I

Γi),

where the Γi ( i ∈ I ) are some left cells of Am ( m is determined by X as above ).

Remark 5.3 The author would like to take this opportunity to thank Lusztig for telling

me the above conjecture by private communication. This conjecture has been verified by

the author in the case of ` ≤ 3 (unpublished).

5.4 Description of cells in terms of partitions.

To each element w ∈ An, we associate a sequence of integers d1 ≤ d2 ≤ · · · ≤ dt = n as

follows.

dk = max{|X| | X =
k⋃

i=1

Xi ⊂ Z; u 6≡ v(modn), for all u 6= v in X;

and u < v in some Xi implies (u)w > (v)w}



16 JIAN-YI SHI

Then we have d1 ≥ d2 − d1 ≥ d3 − d2 ≥ · · · ≥ dt − dt−1, which is a partition of n. We

denote it by ψ(w). This defines a map ψ : An −→ Λn, where Λn is the set of all partitions

of n. This map is compatible with the map mentioned in 3.2, and so it induces a bijection

from the set of two-sided cells of An to the set Λn. It would be interesting to define an

analogous map for the group Wa(X̃) ( X ∈ {B`, C`, D`} ) such that one can describe all

the two-sided cells ( and hence all the left cells ) in the element level. That is, to associate

any element of Wa(X̃) to a pair of partitions of some fixed integer with certain properties

such that the fibres of the corresponding map coincide with two-sided cells of Wa(X̃).

Note that some progress in this direction has been made on the group Wa(C̃n) by the

author (see [37]). We omit the detail.
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