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Abstract. Let (W, S) be a Coxeter system. We study the relation among the reduced

expressions of the elements in the interval [y, w] := {z ∈ W | y 6 z 6 w} for any y < w in

W . Fix a reduced expression ξ of w. We find some conditions for various expressions ζ to

be reduced, where ζ is obtained from ξ by deleting certain factors in S. We investigate the

relations among all such ζ which are reduced expressions for either a certain element in [y, w]

or some elements with a certain common property.

§0. Introduction.

Let Z (resp., N, P) be the set of all integers (resp., non-negative integers, positive

integers). For i 6 j in Z, denote by [i, j] the set {i, i+1, ..., j}. Denote [1, j] simply by [j].

Let (W,S) be a Coxeter system with the Bruhat-Chevalley ordering 6 and the length

function ` on W . An expression w := s1s2 · · · sr with si ∈ S for i ∈ [r] is called reduced

if r = `(w). Denote by Red(w) the set of all reduced expressions of w ∈ W . Let y < w

in W with `(w) = `(y) + k for some k ∈ P and fix some ξ : s1s2 · · · sr in Red(w). Denote

by Redξ(y) the set of all ζ ∈ Red(y) obtained from ξ by deleting k factors in S. Reduced

expressions are basic and frequently occur in the theory of Coxeter systems. Hence it is

desirable to give some more detailed investigation for the properties of those expressions.

In this paper, we study the expressions in Redξ(y). We describe explicitly all the

expressions in Redξ(y) via a sequence f(w, y; ξ) : i1 < i2 < · · · < it in [`(w)] when

k = 2 (Theorem 2.4), and observe how the sequence f(w, y; ξ) changes as ξ varies over
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Red(w) (Propositions 3.3 and 3.4). Those results are generalized from the case k = 2

to arbitrary k > 2. We deduce some necessary and sufficient condition for the relation

sy 6 w (resp., y 6 sw), ∀ s ∈ I when y < w and I ⊂ S − L(y) (resp., I ⊆ L(w))

(Propositions 4.1, 4.3 and Corollary 4.2). We give some criteria for the h-left (resp., h-

right) normality of an expression in Redξ(y) for h ∈ [k] (Proposition 5.6). We show that

any two expressions in Redξ(y) can be transformed from one to the other by successively

applying some factor-moves (Proposition 6.2). Finally, we consider the number n(w, y)

of coatoms in the interval [y, w] for any y < w in W and deduce some criterion for the

validity of the equation n(w, y) = `(w) (Proposition 7.3).

The contents of the paper are organized as follows. Some known results on a Coxeter

system (W,S) are stated in Section 1 for later use. We describe all expressions in Redξ(y)

for the case of k = 2 in Sections 2–3. Then we extend the results to the case of arbitrary

k > 2 in Sections 4–7.

§1. Some known results on a Coxeter system (W,S).

The known results 1.1-1.3 on a Coxeter system (W,S) are basic in subsequent discussion:

Lemma 1.1. (see [5]) If y < w in W satisfy `(w) = `(y) + 2, then the cardinality of the

interval (y, w) := {z ∈ W | y < z < w} is 2.

Let WI be the parabolic subgroup of W generated by I ⊆ S. Denote by |X| the

cardinality of a set X. For any w ∈ W , define L(w) = {s ∈ S | sw < w} and R(w) =

{s ∈ S | ws < w}. For any w, x, y ∈ W , the notation w = x · y means that w = xy and

`(w) = `(x) + `(y).

Lemma 1.2. (see [4, Theorems 1 and 7]) Let I ⊆ S be with |WI | < ∞.

(a) If x, y ∈ W and s ∈ S satisfy xs > x and sy > y, then xy < xsy.

(b) If x, y ∈ W satisfy xy = x · y and R(x) ∩ I = L(y) ∩ I = ∅, then xwy = x ·w · y for

any w ∈ WI .

Proof. (a) is the assertion of [4, Theorem 1]. (b) follows by [4, Theorem 7]. ¤

1.3. For an expression s1s2 · · · sr in W and a sequence i1 < i2 < · · · < ik in [r], the

notation s1s2 · · · sr \ (si1 , si2 , ..., sik
) stands for the expression obtained from s1s2 · · · sr by

deleting the factors si1 , si2 , ..., sik
. For any y < w in W and any ξ : s1s2 · · · sr ∈ Red(w)
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with si ∈ S, we have Redξ(y) 6= ∅ by [3, Theorem 5.10]. In particular, when `(w)−`(y) = 1,

there exists a unique h ∈ [r] such that Redξ(y) = {s1s2 · · · sr \ (sh)}.

§2. Reduced expressions of y for y < w in W with `(y) = `(w) − 2.

In this section, we always assume y < w in W satisfy `(y) = `(w) − 2.

2.1. Fix

(2.1.1) ξ : s1s2 · · · sr ∈ Red(w).

By 1.3, there are some i < j in [r] such that

(2.1.2) s1s2 · · · sr \ (si, sj) ∈ Redξ(y).

In general, the pair i, j are not uniquely determined by w, y and ξ ∈ Red(w). There are

exactly two elements (say x, z) in (y, w) by Lemma 1.1. So we have

(2.1.3) Redξ(x) = {s1s2 · · · sr \ (sh)} and Redξ(z) = {s1s2 · · · sr \ (sk)}

for some h 6= k in [r] by 1.3. We may assume h < k for the sake of definiteness. It is not

necessary to have {h, k}∩ {i, j} 6= ∅ in general. However, there do exist some l ∈ [r]−{h}
and m ∈ [r] − {k} such that some expressions in Redξ(y) can be obtained from (2.1.3) by

deleting the factors sl, sm, respectively.

Lemma 2.2. Let (2.1.1)-(2.1.3) be reduced expressions of w, y, x, z ∈ W , respectively with

(y, w) = {x, z}, h < k and i < j in [r].

(a) h 6 i < j 6 k.

(b) If s1s2 · · · sr \ (sl, sm) ∈ Redξ(y) satisfies (i, j) 6= (l,m) then either i < j 6 l < m

or l < m 6 i < j holds.

Proof. (a) We claim that neither i < j < h < k nor i < h < j is possible. For, if i < j <

h < k then there would be reduced expressions w′ = sisi+1 · · · sk, x′ = si+1si+2 · · · sk, z′ =

sisi+1 · · · sk−1, v′ = sisi+1 · · · sk\(sh) and y′ = si+1si+2 · · · sk\(sj); if i < h < j then there

would be reduced expressions w′ = sisi+1 · · · sj , x′ = si+1si+2 · · · sj , z′ = sisi+1 · · · sj−1,

v′ = sisi+1 · · · sj \ (sh) and y′ = si+1si+2 · · · sj−1. In either case, we have `(w′) = `(y′)+ 2

and pairwise distinct x′, z′, v′ in (y′, w′), contradicting Lemma 1.1. Similarly, we can show

that neither h < k < i < j nor i < k < j is possible. This proves (a).
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(b) We have i 6= l and j 6= m by 1.3 and the assumptions (i, j) 6= (l,m) and s1s2 · · · sr \
(si, sj) = s1s2 · · · sr \ (sl, sm). We may assume i < l for the sake of definiteness. To

show our result, we must show that neither i < l < m < j nor i < l < j < m is

possible. If i < l < m < j then it would be si+1si+2 · · · sj−1 = sisi+1 · · · sj \ (sl, sm) and

hence sisi+1 · · · sj = si+1si+2 · · · sj−1 \ (sl, sm), the latter is impossible since sisi+1 · · · sj is

reduced. If i < l < j < m then it would be si+1si+2 · · · sm\(sj) = sisi+1 · · · sm−1\(sl) and

hence sisi+1 · · · sm \ (sj) = si+1si+2 · · · sm−1 \ (sl), so sisi+1 · · · sm \ (sj) is not reduced.

By the exchanging condition on W , there is some n ∈ [i + 1,m] − {j} such that

sisi+1 · · · sm \ (sj) =
{

si+1si+2 · · · sm \ (sn, sj), if n < j,
si+1si+2 · · · sm \ (sj , sn), if n > j.

The case n < j is impossible since sisi+1 · · · sj−1 is reduced. If n > j, then it would

be si+1si+2 · · · sm \ (sj , sn) = si+1si+2 · · · sm−1 \ (sl), hence slsl+1 · · · sm \ (sj , sn) =

sl+1sl+2 · · · sm−1. If n < m then slsl+1 · · · sm = sl+1sl+2 · · · sm−1 \ (sj , sn); if n = m

then slsl+1 · · · sm−1 = sl+1sl+2 · · · sm−1 \ (sj). In either case, it contradicts the fact of

slsl+1 · · · sm being reduced. This proves (b). ¤

Lemma 2.3. Let (2.1.1)-(2.1.2) be reduced expressions of w, y ∈ W for some i < j in [r].

(a) s1s2 · · · sr \ (sj) is not reduced if and only if y = s1s2 · · · sr \ (sj , sn) for some

n ∈ [j + 1, r].

(b) s1s2 · · · sr \ (si) is not reduced if and only if y = s1s2 · · · sr \ (sn, si) for some

n ∈ [i − 1].

Proof. By symmetry, we need only to show (a). The implication “ ⇐= ” follows by Lemma

2.2 (a). Now we consider the implication “ =⇒ ” . By the assumption, there is some m ∈ [i]

such that sm+1sm+2 · · · sr \ (sj) is reduced but smsm+1 · · · sr \ (sj) is not. We claim m = i.

For otherwise, m < i. Since s1s2 · · · si, sisi+1 · · · sr \ (sj) and s1s2 · · · sr \ (si, sj) are all

reduced expressions, the expression s1s2 · · · sr \ (sj) should also be reduced by Lemma 1.2,

a contradiction. The claim is proved. By the exchanging condition on W , we see by Lemma

2.2 (b) that there is some n ∈ [j + 1, r] such that sisi+1 · · · sr \ (sj) = si+1 · · · sr \ (sj , sn).

So y = s1s2 · · · sr \ (sj , sn). ¤

For y < w in W with `(w) = `(y) + 2, we are now ready to describe the set Redξ(y)

and its relation with the elements in the open interval (y, w).
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Theorem 2.4. Let y < w be in W with `(w) = `(y) + 2 and ξ ∈ Red(w) in (2.1.1).

(a) There exists a unique sequence i1 < i2 < · · · < it in [r] with some t > 2 such that

for any h < k in [r], the equality y = s1s2 · · · sr \ (sh, sk) holds if and only if (h, k) ∈
{(il, il+1) | l ∈ [t − 1]}.

(b) For any h ∈ [t], the expression xh := s1s2 · · · sr \ (sih
) is reduced if and only if

h ∈ {1, t}.
(c) (y, w) = {x1, xt}.

Proof. For (a), the desired sequence i1 < i2 < · · · < it in [r] can be constructed by

repeatedly applying Lemma 2.3. Then (b)-(c) follows by (a) and Lemmas 2.3, 1.1. ¤

According to Theorem 2.4, we may call f(w, y; ξ) := (i1, i2, · · · , it) the associated se-

quence of y with respect to ξ ∈ Red(w) in (2.1.1). Denote d(w, y; ξ) = t.

§3. The sequence f(w, y; ξ) and the number d(w, y; ξ).

3.1. In the setup of Theorem 2.4, the number d(w, y; ξ) = t and the sequence f(w, y; ξ) =

(i1, i2, ..., it) depend on the the choice of ξ ∈ Red(w) in (2.1.1). For example, let y = s′ss′

and w = ss′ss′s = s′ss′ss′ for some s, s′ ∈ S with o(ss′) = 5. Then d(w, y; ss′ss′s) = 2,

f(w, y; ss′ss′s) = (1, 5), d(w, y; s′ss′ss′) = 5 and f(w, y; s′ss′ss′) = (1, 2, 3, 4, 5).

3.2. Let y < w be in W with `(w) = `(y) + 2. Fix ξ ∈ Red(w) in (2.1.1) with f(w, y; ξ) =

(i1, i2, ..., it) such that t := d(w, y; ξ) is maximal as ξ ranges over Red(w).

Proposition 3.3. Keep the setup of 3.2 with f(w, y; ξ) = (i1, i2, ..., it). Suppose that there

exist some p < q in [r] satisfying the condition below:

(3.3.1) spsp+1 · · · sq = aba · · ·︸ ︷︷ ︸
c factors

(alternating in a and b) and ik, ik+1 ∈ [p, q] for some

k ∈ [t − 1] and a 6= b in S − (R(s1s2 · · · sp−1) ∪ L(sq+1sq+2 · · · sr)) with c := q + 1 − p 6
o(ab) < ∞.

Then one of the following cases must occur.

(1) (i1, i2, ..., it) = (p, p + 1, ..., q) (hence t = q + 1 − p);

(2) t = 2 and (i1, i2) = (p, q).

Proof. Since the expression spsp+1 · · · sq \ (sik
, sik+1) is reduced, we have either p < ik+1 =

ik + 1 6 q or (ik, ik+1) = (p, q). If ik+1 = ik + 1, then y = s1s2 · · · sr \ (sm, sm+1) for

any m ∈ [p, q − 1]. Hence in either case, we see by Lemmas 1.1-1.2 and the condition
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(3.3.1) that the expressions x := s1s2 · · · sr \ (sp) and z := s1s2 · · · sr \ (sq) are reduced

with (y, w) = {x, z}. This implies our result by Theorem 2.4. ¤

Proposition 3.4. Keep the setup of 3.2 with f(w, y; ξ) = (i1, i2, ..., it). Then one of the

cases (1)-(2) below must occur:

(1) d(w, y; ζ) = 2 for some ζ ∈ Red(w);

(2) d(w, y; ζ) = t for any ζ ∈ Red(w).

When t > 2 and the case (1) occurs, we have ζ : s1s2 · · · sp−1( bab · · ·︸ ︷︷ ︸
t factors

)sq+1 · · · sr , where

spsp+1 · · · sq = aba · · ·︸ ︷︷ ︸
t factors

(alternating in a and b) for some a 6= b in S, p < q in [r] and

t = q + 1 − p = o(ab).

Proof. We may assume t > 2, for otherwise the result is trivial. If |Red(w)| = 1, then

there is nothing to do. Now assume that |Red(w)| > 1. It is well known that any two

expressions in Red(w) can be transformed from one to the other by successively applying

the braid relations of the form

(3.4.1) cdc · · ·︸ ︷︷ ︸
f factors

= dcd · · ·︸ ︷︷ ︸
f factors

(alternating in c and d)

for some c 6= d in S with f := o(cd) < ∞. So it is enough to show that d(w, y; ζ) ∈ {2, t},
for all ζ which can be obtained from ξ : s1s2 · · · sr by applying a single braid relation

of the form in (3.4.1), i.e., there exist some p < q in [r] with spsp+1 · · · sq = cdc · · ·︸ ︷︷ ︸
f factors

such that ζ : s1s2 · · · sp−1 · ( dcd · · ·︸ ︷︷ ︸
f factors

) · sq+1 · · · sr (hence f := q + 1 − p = o(cd)). If

ij /∈ [p, q] for any j ∈ [t] then f(w, y; ζ) = (i1, i2, ..., it). If there is exactly one of the

ij ’s in [p, q], say ik ∈ [p, q], then ik ∈ {p, q} by the fact that either s1s2 · · · sr \ (sik−1 , sik
)

with some k ∈ [2, t], or s1s2 · · · sr \ (sik
, sik+1) with some k ∈ [t − 1], is in Redξ(y). Then

f(w, y; ζ) = (i1, i2, ..., ik−1, i
′
k, ik+1, ..., it) with {i′k} = {p, q} − {ik}. Now assume that

there are more than one of the ij ’s in [p, q]. Then ik, ik+1 ∈ [p, q] for some k ∈ [t − 1].

Since s1s2 · · · sr \ (sik
, sik+1) ∈ Redξ(y), we have either ik+1 = ik + 1 or (ik, ik+1) = (p, q).

By the assumption t > 2, we must be in the former case with (i1, ..., it) = (p, p + 1, ..., q)

by Proposition 3.3. This implies that f(w, y; ζ) = (p, q). Our result is proved. ¤
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§4. The criterion for the relation sy 6 w (resp., y 6 sw), ∀ s ∈ I.

In this section, we give some criterion for the relation sy 6 w (resp., y 6 sw), ∀ s ∈ I,

where y < w in W and I ⊆ S − L(y) (resp., I ⊆ L(w)).

By a Coxeter element of a Coxeter system (W,S), we mean an element of the form

si1si2 · · · sit , where S = {s1, s2, ..., st}, |S| = t, and i1, i2, ..., it is a permutation of 1, 2, ..., t.

If x ∈ W and I ⊆ S − L(x) then zx = z · x for any z ∈ WI by Lemma 1.2 (b).

Proposition 4.1. Let y < w in W and ∅ 6= I ⊆ S − L(y). Then sy 6 w for any s ∈ I if

and only if there exists a Coxeter element, say cI , of WI such that cIy 6 w.

Proof. The implication “ ⇐= ” is obvious. It remains to show the implication “ =⇒ ” .

Clearly, `(w), |I| > 1. The result is obviously true when either `(w) = 1 or |I| = 1. Now

assume that k := `(w) > 1, h := |I| > 1 and that the result has been proved when

either|I| < h, or |I| = h and `(w) < k.

(a) First assume that there exists some t ∈ R(w) ∩ R(y). Write w = w′t and y = y′t

for some w′, y′ ∈ W . Then y′ < w′ by the assumption y < w. We claim sy′ 6 w′ for any

s ∈ I. For otherwise, there would be some s ∈ I with sy′ 
 w′. Then sy′ = y′t by the fact

sy′ < sy 6 w = w′t. Hence sy = y′ < y, contradicting our assumption. So by inductive

hypothesis, there exists some Coxeter element, say cI , of WI with cIy
′ 6 w′. This implies

cIy 6 w.

(b) Next assume that there exists some u ∈ R(w) − R(y). Write w = w′u. Then

y 6 w′. If u /∈ R(sy) for any s ∈ I, then sy 6 w′ for any s ∈ I. By inductive hypothesis,

there exists some Coxeter element, say cI , of WI such that cIy 6 w′. Hence cIy 6 w. If

u ∈ R(sy) for some s ∈ I, then sy = yu. We also have u /∈ R(ty) and hence ty 6 w′

for any t ∈ I ′ := I − {s}. By inductive hypothesis, there exists some Coxeter element,

say cI′ , of WI′ with cI′y 6 w′. Then the Coxeter element cI := cI′s of WI satisfies that

cIy = cI′yu 6 w′u = w.

So the implication “ =⇒ ” follows by (a)-(b). ¤

Corollary 4.2. Suppose that y < w in W and s 6= t in S − L(y) satisfy sy, ty 6 w and

`(w) = `(y) + 2. Then w ∈ {sty, tsy} and d(w, y; ξ) = 2 for any ξ ∈ Red(w).

Proof. By Proposition 4.1, we have either sty 6 w or tsy 6 w. This implies w ∈ {sty, tsy}
by the fact `(w) = `(y) + 2 = `(sty) = `(tsy). Let ξ ∈ Red(w) in (2.1.1) with f(w, y; ξ) =
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(i1, i2, ..., iu). By Lemma 1.1 and Theorem 2.4, we have s1s2 · · · sr \ (siu) ∈ (y, w) =

{sy, ty}. We may assume ty = s1s2 · · · sr \ (siu) for the sake of definiteness. Then we see

by Theorem 2.4 that

y = ts1s2 · · · sr \ (siu) = s1s2 · · · sr \ (siu−1 , siu).

Hence ts1s2 · · · siu−1 = s1s2 · · · siu−1−1. So tw = ts1s2 · · · sr = s1s2 · · · sr \ (siu−1). Since

s1s2 · · · sr \ (siu−1) ∈ Red(tw), we have tw ∈ (y, w). So u = 2 by Theorem 2.4 (b). ¤

Note that the assertion w ∈ {sty, tsy} in Corollary 4.2 can also follow from [2, Theorem

3.2] by the fact that any Coxeter system (W,S) avoids K3,2 under Bruhat-Chevalley order

6, that is, there are no elements a1, a2, a3, b1, b2 ∈ W , all distinct, such that either bj

covers ai for any i ∈ [3], j ∈ [2], or ai covers bj for any i ∈ [3], j ∈ [2].

Proposition 4.3. Suppose w, y ∈ W and ∅ 6= I ⊆ L(w). Then y 6 sw for any s ∈ I if

and only if there exists some Coxeter element, say cI , of WI such that y 6 cIw.

Proof. We have w = wI · w′ = c−1
I · cIwI · w′ = c−1

I · cIw for some w′ ∈ W , where wI is

the longest element in WI . It is easily seen that if x, x′, y, y′ ∈ W satisfy x · y = x′ · y′,

then x 6 x′ if and only if y > y′. In particular, cIw 6 sw for any s ∈ I by the facts that

c−1
I · cIw = s · sw and s 6 c−1

I . Hence the implication “ ⇐= ” follows since y 6 cIw 6 sw

for any s ∈ I. The remaining is to show the implication “ =⇒ ” .

(a) First assume |W | < ∞. Let w0 be the longest element of W , then ww0 < sww0 6
yw0 for any s ∈ I. With ww0, yw0 in the places of y, w, respectively, we see by Proposition

4.1 that there exists some Coxeter element, say cI , of WI such that cIww0 6 yw0. This

implies y 6 cIw when |W | < ∞.

(b) Next consider the general case. The result is obvious if `(w) = 1. Now assume

`(w) > 1. First assume that there exists some u ∈ R(w) − R(y). Write w = w′ · u for

some w′ ∈ W . Then y 6 w′. If sw′ < w′ for any s ∈ I, then y 6 sw′ by the assumption

y 6 sw = sw′ · u for any s ∈ I, hence by inductive hypothesis there exists some Coxeter

element, say cI , in WI such that y 6 cIw
′ < cIw. If tw′ > w′ for some t ∈ I, then tw′ = w′u

by the assumption tw < w. Thus sw′ < w′ and hence y 6 sw′ for any s ∈ I ′ := I−{t}. By

inductive hypothesis, there exist some Coxeter element, say cI′ , in WI′ such that y 6 cI′w′.

Let cI = cI′t. Then cI is a Coxeter element in WI and y 6 cI′w′ = cI′tw′u = cIw. So
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our result is true if R(w) * R(y). Now assume R(w) ⊆ R(y). Take any u ∈ R(w). Write

w = w′ · u and y = y′ · u for some w′, y′ ∈ W . If sw′ < w′ for any s ∈ I then y′ 6 sw′

for any s ∈ I by the assumption y 6 sw. By inductive hypothesis, there exists some

Coxeter element, say cI , in WI such that y′ 6 cIw
′. So y = y′ · u 6 cIw

′ · u = cIw. Now

assume that for any u ∈ J := R(w) (write w = wu · u for some wu ∈ W ), there exists

some tu ∈ I with tuwu > wu. Then tuwu = wuu by the assumption tuw < w (hence tu is

uniquely determined by u). We have an injective map φ : J −→ I with φ(u) = tu. Thus

w = w′′ · wJ = wφ(J) · w′′ for some w′′ ∈ W , where wJ , wφ(J) denote the longest elements

of WJ , Wφ(J), respectively. Since J = R(w) = J ∪R(w′′), this forces w′′ to be the identity

of W . So w = wJ and our result follows by (a).

This completes our proof. ¤

§5. The h-right (resp., h-left) normality.

In the present section, we continue to study the set Redξ(y) for y < w in W with

ξ ∈ Red(w) in (2.1.1) fixed.

5.1. Let y < w in W satisfy r := `(w) = `(y) + k for some k ∈ [2, r]. Take

(5.1.1) ζ : s1s2 · · · sr \ (si1 , si2 , ..., sik
) ∈ Redξ(y)

for some i1 < i2 < · · · < ik in [r].

Proposition 5.2. Keep the setup of 5.1 for y < w in W . Assume that (i1, i2, ..., ik)

(resp., (ik, ..., i2, i1)) is the smallest (resp., the largest) possible in the lexicographical order

as ζ ranges over Redξ(y). Then the expression (5.2.1) below is reduced for any h ∈ [k]:

(5.2.1) s1s2 · · · sr \ (si1 , si2 , ..., sih
) (resp., s1s2 · · · sr \ (sih

, sih+1 , ..., sik
)).

Proof. By symmetry, we need only to prove that s1s2 · · · sr \ (si1 , si2 , ..., sih
) is reduced

for any h ∈ [k] if (i1, i2, . . . , ik) is the smallest possible in the lexicographical order.

Hence the integer ih is the smallest possible as the element yh := sih−1+1sih−1+2 · · · sr \
(sih

, sih+1 , ..., sik
) is obtained from the expression sih−1+1sih−1+2 · · · sr by deleting k−h+1

factors in S, where we take h to be 1, 2, ..., k in turn with the convention that i0 = 0. The

result is obvious if either k = 2 or h = k. Now assume k > 2 and h = m ∈ [k− 1]. Assume



10 JIAN-YI SHI

that the result has been proved for any h ∈ [m + 1, k]. Suppose that the claim for h = m

fails. Then there would exist some l ∈ [im+1, r] such that s1s2 · · · sl−1 \ (si1 , si2 , ..., sim)

is reduced but s1s2 · · · sl \ (si1 , si2 , ..., sim) is not. In this case, if l ∈ [im+1 + 1, r],

then the expression (5.2.1) with h = m is reduced by Lemma 1.2 and the facts that

s1s2 · · · sim+1 \ (si1 , si2 , ..., sim), sim+1sim+1+1 · · · sr and (5.2.1) with h = m + 1 are all re-

duced, a contradiction. Hence we must have l = im+1. There would exist some p ∈ [0,m−1]

and q ∈ [ip + 1, ip+1 − 1] such that

s1s2 · · · sr \ (si1 , si2 , ..., sik
) = s1s2 · · · sr \ (si1 , si2 , ..., sip , sq, sip+1 , ..., sim , sim+2 , ..., sik

),

contradicting the minimality assumption on ip+1. So our result is proved. ¤

5.3. Fix ξ ∈ Red(w) in (2.1.1) and ζ ∈ Redξ(y) in (5.1.1) for y < w in W . Let

ζj : s1s2 · · · sr \ (si1 , si2 , ..., sij−1 , sij+1 , ..., sik
),(5.3.1)

ζ[j] : s1s2 · · · sr \ (sij+1 , sij+2 , ..., sik
),(5.3.2)

ζ[j,k] : s1s2 · · · sr \ (si1 , si2 , ..., sij−1)(5.3.3)

for any j ∈ [k] with the convention that any of ζ[k], ζ[1,k] is that in (2.1.1).

Lemma 5.4. Keep the setup of 5.3 for y < w in W . Let j ∈ [k].

(1) ζj is reduced if and only if both ζ ′j : s1s2 · · · sij\(si1 , si2 , ..., sij−1) and ζ ′′j : sij sij+1 · · · sr\
(sij+1 , sij+2 , ..., sik

) are reduced.

(2) ζ[j] is reduced if ζ ′′h : sih
sih+1 · · · sr \ (sih+1 , sih+2 , ..., sik

) is reduced for any h ∈ [j].

(3) ζ[j,k] is reduced if ζ ′h : s1s2 · · · sih
\ (si1 , si2 , ..., sih−1) is reduced for any h ∈ [j, k].

Proof. The implication “ =⇒ ” in (1) is obvious. Then the implication “ ⇐= ” in (1)

follows by Lemma 1.2 and the facts that the expressions ζ ′j , ζ
′′
j and ζ ∈ Redξ(y) in (5.1.1)

are all reduced. For (2)-(3), we need only to prove (2) by symmetry. ζ[1] is reduced by

Lemma 1.2 and the facts that the expressions ζ ′′1 , s1s2 · · · si1 and ζ ∈ Redξ(y) in (5.1.1) are

all reduced. Now assume j ∈ [2, k] and that ζ[h] is proved to be reduced for any h ∈ [j−1].

Then we conclude that ζ[j] is reduced by Lemma 1.2 and the facts that ζ ′′j , s1s2 · · · sij and

ζ[j−1] are all reduced. ¤

5.5. Fix ξ ∈ Red(w) in (2.1.1) and ζ ∈ Redξ(y) in (5.1.1) for y < w in W . For any

h ∈ [k], we say that ζ is h-right-normal (resp., h-left-normal) with respect to ξ if ζ[j] in
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(5.3.2) (resp., ζ[j,k] in (5.3.3)) is reduced for any j ∈ [h] (resp., j ∈ [h, k]). We simply

call ζ right-normal (resp., left-normal) with respect to ξ if it is k-right-normal (resp.,

1-left-normal).

In particular, when k = 2, we see by Theorem 2.4 that s1s2 · · · sr\(si1) (resp., s1s2 · · · sr\
(si2)) is reduced if and only if ζ is left-normal (resp., right-normal) if and only if s1s2 · · · si2\
(si1) (resp., si1si1+1 · · · sr \ (si2)) is reduced.

Proposition 5.6. For any h ∈ [k], the expression ζ ∈ Redξ(y) in (5.1.1) is h-right-

normal (resp., h-left-normal) if and only if ζ ′′l : sil
sil+1 · · · sr \ (sil+1 , sil+2 , ..., sik

) (resp.,

ζ ′l : s1s2 · · · sil
\ (si1 , si2 , ..., sil−1)) is reduced for any l ∈ [h] (resp., l ∈ [h, k]).

Proof. By symmetry, we need only to deal with the case of ζ ∈ Redξ(y) in (5.1.1) being

h-right-normal. The implication “ =⇒ ” is obvious. For the implication “ ⇐= ” , we see

that for any j ∈ [h], the expression ζ[j] is reduced by Lemma 5.4 (2) and the condition of

ζ ′′l being reduced for any l ∈ [j]. So ζ ∈ Redξ(y) in (5.1.1) is h-right-normal. ¤

§6. Factor-moves on the set Redξ(y).

Let y < w in W satisfy `(w) = `(y) + k and fix ξ ∈ Red(w) in (2.1.1). In this section,

we shall establish a relation among all the expressions in Redξ(y).

6.1. Let ζ ∈ Redξ(y) be in (5.1.1). We say that an expression s1s2 · · · sr \ (sj1 , . . . , sjk
) in

Redξ(y) can be obtained from ζ by a factor-move if |{i1, . . . , ik} ∩ {j1, . . . , jk}| = k − 1.

Write (a, b) ¹ (c, d) in N×N, if a 6 c and b 6 d. This defines a partial order on N×N.

Proposition 6.2. Let y < w be in W and ξ ∈ Red(w) in (2.1.1). Then for any η, ζ ∈
Redξ(y), there is a sequence ζ0 = η, ζ1, ..., ζt = ζ in Redξ(y) with some t > 0 such that ζi

is obtained from ζi−1 by some factor-move for any i ∈ [t].

Proof. Let k := `(w)− `(y). By the results in the previous sections, we see that our result

is true for k 6 2. Now assume k ∈ [3, `(w)]. Apply induction on (k, `(w)) º (3, 3) in N×N

with k 6 `(w). The result is trivially true when k = `(w). Assume

η : s1s2 · · · sr \ (si1 , si2 , ..., sik
),

ζ : s1s2 · · · sr \ (sj1 , sj2 , ..., sjk
)

for some i1 < i2 < · · · < ik and j1 < j2 < · · · < jk in [`(w)]. When i1, j1 > 1, let w′, y′, η′,
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ζ ′ be obtained from w, y, η, ζ, respectively by removing the factor s1 at the left terminal.

When i1 = j1 = 1, let w′ = s2s3 · · · sr. Then

η′ : s2s3 · · · sr \ (si2 , si3 , ..., sik
),

ζ ′ : s2s3 · · · sr \ (sj2 , sj3 , ..., sjk
)

are two reduced expressions of y′ = y. In either case, we see by inductive hypothesis that

ζ ′ can be obtained from η′ by successively applying some factor-moves, and then so does

ζ from η.

Now assume i1 6= j1 and min{i1, j1} = 1. By symmetry, we may assume 1 = i1 < j1 for

the sake of definiteness. Then s1 ∈ L(y). By the exchanging condition on W , the element

y′ := s1y has a reduced expression

η′ : s2s3 · · · sr \ (si2 , si3 , ..., sim , si′1
, sim+1 , ..., sik

)

for some m ∈ [k] and some im < i′1 < im+1, where we stipulate ik+1 = r + 1. The element

y′ also has the reduced expression

ζ ′ : s2s3 · · · sr \ (sj1 , sj2 , ..., sjk
).

By inductive hypothesis, ζ ′ can be obtained from η′ by successively applying some

factor-moves. Let η′′ be obtained from η′ by attaching the factor s1 at the left terminal.

Then ζ is obtained from η′′ by the corresponding sequence of factor-moves. Since η′′ is

obtained from η by a factor-move, ζ is obtained from η by a sequence of factor-moves. ¤

§7. The number n(w, y) for y < w in W with `(w) − `(y) > 2.

7.1. For any y < w in W with k := `(w) − `(y) > 2, let N(w, y) := {z ∈ W | y <

z < w; `(z) = `(w) − 1} which is the set of all coatoms of the interval [y, w], and let

n(w, y) := |N(w, y)|. Then n(w, y) ∈ [2, `(w)] by 1.3 and Lemma 1.1. The following

examples show that both the lower-bound 2 and the upper-bound `(w) on n(w, y) could

possibly reach in some case.

Example 7.2: (1) When (W,S) is a dihedral group, we always have n(w, y) = 2 for any

y < w in W with `(w) − `(y) > 2.

(2) Let S = {s1, s2, ..., st} be with |S| = t > 3 such that o(sisj) are sufficiently large

(say o(sisj) > N for some N À 0) for any i 6= j in [t]. Let wm,i = (s1s2 · · · st)ms1s2 · · · si
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for some m > 1 and i ∈ [t]. Then n(wm,i, w0,j) = tm + i = `(wm,i) for either m ∈ [2, N ],

or m = 1 and i > j in [t].

(3) Björner and Brenti shows in [1, Corollary 2.7.8 and Example 2.7.9] that for an

arbitrarily large m > 2, there are some y < w in an infinite Coxeter group W with

`(w) = `(y) + 3 and n(y, w) = m.

(4) If w = wI is the longest element in WI for some I ⊆ S with WI finite and if

y ∈ {e} ∪ {s ∈ I | st 6= ts for some t ∈ I − {s}}, then n(w, y) = |I|.

We provide a necessary and sufficient condition for y < w to satisfy n(w, y) = `(w).

Proposition 7.3. Keep the setup of 5.1 with y < w in W and ξ ∈ Red(w) in (2.1.1).

Then n(w, y) = r := `(w) if and only if the following two conditions hold:

(7.3.1) zj := s1s2 · · · sr \ (sj) is reduced for any j ∈ [r];

(7.3.2) For any m ∈ [r], there exist some im1 < im2 < · · · < imt in [r] − {m} such that

y = sim1sim2 · · · simt .

Proof. The condition (7.3.1) is necessary for the validity of n(w, y) = r by 1.3. Under the

assumption of the condition (7.3.1), we see that the condition (7.3.2) holds if and only if

y 6 zj for any j ∈ [r]. This implies our result by 1.3. ¤

By the subexpression property of Coxeter systems (see [3, Subsection 5.10]), we see

that the validity of the condition (7.3.1) depends only on the element w but not on the

choice of the expression ξ in Red(w). So we may say that w satisfies (7.3.1) in the case.

However, the condition (7.3.2) depends not only on the pair y, w but also on the expression

ξ ∈ Red(w) in general. So we should say that (y, w; ξ) satisfies (7.3.2) in the case.

7.4. (y, w; ξ) satisfies (7.3.2) if

(7.4.1) There are two sequences i1 < i2 < · · · < it and j1 < j2 < · · · < jt in [r] with

il 6= jm for any l,m ∈ [t] such that y = si1si2 · · · sit = sj1sj2 · · · sjt .

For either m > 1, or m = 1 and i > j in [t], we see in Example 7.2 (2) that wm,i satisfies

(7.3.1) and that the triple (w0,j , wm,i; ξ) satisfies (7.4.1) with ξ : (s1s2 · · · st)ms1s2 · · · si,

so n(wm,i, w0,j) = `(wm,i) by Proposition 7.3.

When y = xm and `(y) = m`(x) for some x ∈ W and m > 1, the triple (y, w; ξ) satisfies

(7.3.2) if
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(7.4.2) si1si2 · · · sit ∈ Red(xm+1) satisfies (7.3.1) for some i1 < i2 < · · · < it in [r] with

t = (m + 1)`(x).

Now we prove (7.3.2) by assuming (7.4.2). Let v = `(x). Then t = v(m + 1). Take any

q1q2 · · · qv ∈ Red(x) with qi ∈ S for i ∈ [v]. Let q′1q
′
2 · · · q′t satisfy q′j = qi for any j ∈ [t]

and i ∈ [v] with j ≡ i (mod v). Then q′1q
′
2 · · · q′t ∈ Red(xm+1) and

(7.4.3) N(xm+1, xm) = {q′1q′2 · · · q′t \ {q′j} | j ∈ [t]}

by the condition (7.3.1) on xm+1. We must prove the following assertion:

(7.4.4) For any p ∈ [r], there exist some ip1 < ip2 < · · · < ipu in [r] − {p} such that

xm = sip1sip2 · · · sipu with u = vm.

There is some subsequence l1, l2, ..., lt of 1, 2, ..., r with xm+1 = sl1sl2 · · · slt by (7.4.2).

Then N(xm+1, xm) = {sl1sl2 · · · slt \ {slj} | j ∈ [t]} by (7.4.3) and the condition (7.3.1) on

xm+1. If p ∈ [r]−{lj | j ∈ [t]}, then there is some subsequence ip1, ip2, ..., ipu of l1, l2, ..., lt

with xm = sip1sip2 · · · sipu by the fact xm < xm+1. If p ∈ {lj | j ∈ [t]}, then there is

some subsequence ip1, ip2, ..., ipu of l1, l2, ..., p̂, ..., lt with xm = sip1sip2 · · · sipu by the fact

sl1sl2 · · · slt \ {sp} ∈ N(xm+1, xm). This implies (7.4.4) in either case.

Example 7.5. (1) Let S = {s, r, t, u, v} satisfy o(sr) = o(rt) = o(st) = 4 and o(uv) =

o(ab) = 6 for any a ∈ {s, r, t} and b ∈ {u, v}. Let w = ruvsuvtuvruvsuvturstv and

y = (rst)2.

(2) Let S = {s, r, t} satisfy o(sr) = o(st) = o(rt) = 5. Let y = (srt)m and w = (srt)m+1

for any m > 1.

In any of the cases (1)-(2) above, the element w satisfies (7.3.1), and the triple (y, w; ξ)

satisfy (7.4.2) but not (7.4.1), where ξ is ruvsuvtuvruvsuvturstv or (srt)m+1 accordingly.

So n(w, y) = `(w) by Proposition 7.3.

For w′, y′ ∈ W and s ∈ S, define Ns(w′, y′) := {z′ ∈ N(w′, y′) | s /∈ L(z′)} and

ns(w′, y′) := |Ns(w′, y′)|.

Proposition 7.6. Let y′ < w′ in W and s ∈ S − L(w′) ∪ L(y′). Let w = sw′ and

y ∈ {y′, sy′}. Then n(w, y) 6 n(w′, y′) + 1.

Proof. We have y < w by our assumption. Let k := `(w) − `(y). Then n(w, y) = 1, 2 for

k = 1, 2, respectively by 1.3 and Lemma 1.1. So the result holds for k = 1, 2. Now assume
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k > 2. Fix ξ ∈ Red(w) in (2.1.1) with s = s1. There exist some j1 < j2 < · · · < jt in

[r] with N(w, y) = {s1s2 · · · sr \ (sjm) | m ∈ [t]}. Hence n(w, y) = t by 1.3. We must

prove t 6 n(w′, y′) + 1. Let ζ in (5.1.1) be such that i1 is the smallest possible as ζ

ranges over Redξ(y). Then i1 = j1 by Proposition 5.2. If i1 > 1, then y′ = s1y and

{s2s3 · · · st \ (sjm) | m ∈ [t]} ⊆ N(w′, y′). We have t 6 n(w′, y′) < n(w′, y′) + 1.

Now assume i1 = 1. If s1 /∈ L(y) then y′ = y and {s2s3 · · · st \ (sjm) | m ∈ [2, t]} ⊆
N(w′, y′). We have t − 1 6 n(w′, y′). If s1 ∈ L(y) then y′ = s1y and Ns1(w

′, y′) =

{s2s3 · · · sr \ (sjh
) | h ∈ [2, t]}. So t− 1 6 ns1(w

′, y′) 6 n(w′, y′). Thus t 6 n(w′, y′) + 1 in

either case. Our proof is completed. ¤

Note that the above result can also be proved by a matching argument, since the

multiplication by s on the left gives a map from [y′, w] to itself. In fact, the result can be

generalized to any interval having a special matching by [2, Lemma 2.1].

Remark 7.7. Keep the setup of Proposition 7.6 with ξ ∈ Red(w) and ζ ∈ Redξ(y) in

(2.1.1), (5.1.1), respectively. In particular, w = s1·w′. We see from the proof of Proposition

7.6 that the equality n(w, y) = n(w′, y′) + 1 holds only if

(i) i1 = 1;

(ii) y = y′ if s1 /∈ L(y);

(iii) y = s1 · y′ and N(w′, y′) = Ns1(w
′, y′) if s1 ∈ L(y).

Let e be the identity element of W . We see that if n(w, y) = r := `(w) then there should

exist two sequences w1, w2, ..., wr = w and y1, y2, ..., yr = y in W with i = `(wi) for any

i ∈ [r] such that n(wi, yi) = n(wi−1, yi−1) + 1 (hence n(wi, yi) = `(wi)) for any i ∈ [2, r].

This is so if the following conditions (1)-(3) hold:

(1) wi = sr+1−isr+2−i · · · sr is a reduced expression with sl ∈ S for any i ∈ [r] and

l ∈ [r + 1 − i, r].

(2) y1 = y2 = e, sr+1−iyi−1 > yi−1 and yi ∈ {sr+1−iyi−1, yi−1} for i ∈ [2, r].

(3) N(wi−1, yi−1) = Nsr+1−i(wi−1, yi−1) for any i ∈ [2, r].

By (1)-(2), we have yi < wi for i ∈ [r]. There are some i1 < i2 < · · · < ik in [r] with

k := `(w)− `(y) such that ym = ym−1 if and only if m ∈ {i1, i2, ..., ik}. By (1) and (3), we

get

(7.7.1) N(wi, yi) = (sr+1−i · N(wi−1, yi−1)) ∪ {wi−1} for any i ∈ [2, r].
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Hence N(wi, yi) = {ζj : sr+1−isr+2−i · · · sr \ (sj) | j ∈ [r + 1− i, r]} with all ζj reduced for

any i ∈ [r] by induction on i > 2 and (7.7.1).
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