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Abstract. By applying an algorithm designed before, we complete the description for all

the left cells of the affine Weyl group Wa of type eF4 by finding a representative set of its
left cells together with all its left cell graphs (or with all the associated essential graphs)
in each of its two-sided cells. The generalized τ -invariants of left cells of Wa are exhibited
graphically. A group-theoretical interpretation is given on the numbers of left cells of Wa

in some two-sided cells. Thus so far the left cells of all the affine Weyl groups of ranks less
than or equal to 4 have been known explicitly. Some techniques are developed in applying
the algorithm. As a consequence, we complete the verification of a conjecture concerning
the characterization of left cells of Weyl groups and affine Weyl groups.

It is designed in [22] and then improved in [25] for an algorithm of finding a rep-

resentative set of left cells (an l.c.r. set for short) of W in a two-sided cell, where W

is a Coxeter group belonging to a certain family of crystallographic groups, the latter

includes all the Weyl groups and all the affine Weyl groups. By applying this algorithm,

I described all the left cells of the affine Weyl groups of types C̃4 and D̃4, and also all the

left cells Γ with a(Γ) = 3, 4, 5 in the affine Weyl group of type F̃4 (see [25], [23], [22]).

Subsequently, three of my students, Zhang Xin-fa, Rui He-bin and Tong Chang-qing,

Key words and phrases. affine Weyl group, left cells, left cell graphs.
Supported partly by Max-Planck-Institut für Mathematik, Bonn, Germany and partly by the Na-

tional Science Foundation of China and the Science Foundation of the University Doctorial Program
of CNEC.

Typeset by AMS-TEX

1



2 Jian-yi Shi

achieved some progress on this respect also by applying this algorithm, where Zhang

gave an explicit description for all the left cells in the affine Weyl group of type B̃4 [28],

Rui for all the left cells Γ with a(Γ) = 3 in any irreducible affine Weyl group [15], and

Tong for all the left cells of the Weyl group of type E6 [27]. In the present paper, we

shall apply this algorithm to complete the description of the left cells of the affine Weyl

group of type F̃4. This, together with the earlier results of the others [16], [11], [2], [7],

completes the description of the left cells for all the affine Weyl groups of ranks ≤ 4.

Some techniques are developed in applying the algorithm (see sections 3 and 4). We

find a representative set of left cells together with its left cell graphs (or with all the

associated essential graphs) in each two-sided cell of Wa. The generalized τ -invariants

of left cells of Wa are exhibited graphically. A group-theoretical interpretation is given

on the numbers of left cells of Wa in some two-sided cells, which involves both the

Lusztig map and Bala-Carter correspondence among two-sided cells of Wa, unipotent

conjugacy classes of the complex algebraic group G of type F4, and the G-classes of pairs

(L,PL′), where L is a Levi subgroup of G, PL′ is a distinguished parabolic subgroup

of semisimple part L′ of L. As a consequence, we shall complete the verification of a

conjecture concerning the characterization of left cells of Weyl groups and affine Weyl

groups which was proposed in [22] and partly verified in [24].

The content of the paper is organized as follows. Some known results on cells of a

Coxeter group, in particular of an affine Weyl group Wa are stated in section 1. Then

in section 2, we recall the algorithm of finding an l.c.r. set of Wa in a two-sided cell and

also state some results and terminologies which are needed in applying the algorithm.

In section 3, some techniques of applying the algorithm are developed, which will be

frequently used for finding an l.c.r. set of the affine Weyl group Wa(F̃4) in a given

two-sided cell. We illustrate them by several examples. We find an l.c.r. set together

with all the left cell graphs (or with the corresponding essential graphs) for Wa(F̃4) in

section 4. Finally, in section 5, we complete the verification of the above-mentioned

conjecture.
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§1. Some results on cells.

1.1 Let W = (W,S) be a Coxeter group with S its Coxeter generator set. Let ≤ be

the Bruhat order on W . For w ∈ W, we denote by `(w) the length of w. Let A = Z[u]

be the ring of polynomials in an indeterminate u with integer coefficients. For each

ordered pair y, w ∈ W, there exists a unique polynomial Py,w ∈ A, called a Kazhdan-

Lusztig polynomial, which satisfies the conditions: Py,w = 0 if y 
 w, Pw,w = 1, and

deg Py,w ≤ (1/2)(`(w) − `(y) − 1) if y < w. Let µ(w, y) = µ(y, w) be the coefficient of

u(1/2)(`(w)−`(y)−1) in Py,w for y < w. We denote y––w if µ(y, w) 6= 0.

Checking the relation y—w for y, w ∈ W usually involves very complicated com-

putation of Kazhdan-Lusztig polynomials. But it becomes easy in some special cases:

if x, y ∈ W satisfy y < x and `(y) = `(x) − 1, then we have y––x. Another result

concerning this relation will be stated in Proposition 2.7.

1.2 The preorders ≤
L
, ≤

R
, ≤

LR
on W and the associated equivalence relations ∼

L
,∼
R

, ∼
LR

on

W are defined as in [8]. The equivalence classes for ∼
L

( resp. ∼
R

, ∼
LR

) on W are called

left cells ( resp. right cells, two-sided cells ).

1.3 An affine Weyl group Wa is a Coxeter group which can be realized geometrically

as follows. Let G be a connected, adjoint reductive algebraic group over C. We fix a

maximal torus T ⊂ G. Let X be the character group of T and let Φ ⊂ X be the root set

with ∆ = {α1, · · · , α`} a choice of simple root system. Then E = X⊗ZR is a euclidean

space with an inner product 〈 , 〉 such that the Weyl group (W0, S0) of G with respect

to T acts naturally on E and preserves its inner product, where S0 is the set of simple

reflections si corresponding to the simple roots αi, 1 ≤ i ≤ `. We denote by N the

group of all translations Tλ (λ ∈ X) on E: Tλ sends x to x + λ,. Then the semidirect

product Wa = W0 n N is called an affine Weyl group. Let K be the dual of the type

of G. Then we define the type of Wa by K̃. Sometimes we denote Wa by Wa(K̃) to

indicate its type K̃. There is a canonical homomorphism from Wa to W0: w 7→ w̄.

Let −α0 be the highest short root in Φ. We define s0 = sα0T−α0 , where sα0 is

the reflection corresponding to α0. Then the generator set of Wa can be taken as

S = S0 ∪ {s0}.
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1.4 The alcove form of an element w ∈ Wa is, by definition, a Φ-tuple (k(w, α))α∈Φ

over Z subject to the following conditions.

(a) k(w,−α) = −k(w,α) for any α ∈ Φ;

(b) k(e, α) = 0 for any α ∈ Φ, where e is the identity element of Wa;

(c) If w′ = wsi ( 0 ≤ i ≤ ` ), then

k(w′, α) = k(w, (α)s̄i) + ε(α, i)

with

ε(α, i) =





0 if α 6= ±αi;
−1 if α = αi;
1 if α = −αi,

where s̄i = si if 1 ≤ i ≤ `, and s̄0 = sα0 ( see [17, Proposition 4.2] ).

By condition (a), we can also denote the alcove form of w ∈ Wa by a Φ+-tuple

(k(w, α))α∈Φ+ .

1.5 Condition 1.4, (c) actually defines a set of operators {si | 0 ≤ i ≤ `} on the alcove

forms of elements of Wa:

si : (kα)α∈Φ 7−→ (k(α)s̄i
+ ε(α, i))α∈Φ.

These operators could be described graphically. Assume that Wa has type F̃4 and that

the indices of simple roots are compatible with the following Dynkin diagram:

1
◦————

2
◦========⇒

3
◦————

4
◦

We denote a root α =
∑4

i=1 aiαi by its coordinate form (a1, a2, a3, a4) and arrange the

entries of a Φ+-tuple (kα)α∈Φ+ in the following way.

(1.5.1)

k(2,4,3,2) k(2,3,2,1)
k(2,4,3,1) k(1,3,2,1)
k(2,4,2,1) k(1,2,2,1)
k(2,2,2,1) k(1,2,1,1)

k(2,2,1,1) k(0,2,2,1) k(1,2,1,0) k(1,1,1,1)
k(0,2,1,1) k(2,2,1,0) k(0,1,1,1) k(1,1,1,0)
k(0,0,1,1) k(0,2,1,0) k(0,1,1,0) k(1,1,0,0)
k(0,0,0,1) k(0,0,1,0) k(0,1,0,0) k(1,0,0,0)
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Then the actions of si, 0 ≤ i ≤ 4, on a Φ+-tuple

w =

a m
b n
c p
d q

e f r s
g h t u
i j v w
k l x y

are listed as in the following table.

s s0 s1 s2 s3 s4

ws

−h −m+1
−e −y
−d −w
−c −u

−b ∗ −s − r
∗ −a ∗ −q
∗ ∗ ∗ −p
∗ ∗ ∗ −n

∗ n
∗ m
∗ ∗
f ∗

g d ∗ t
e j s v
∗ h u x
∗ ∗ w −y−1

∗ ∗
∗ p
d n
c s

∗ ∗ u q
i ∗ ∗ r
g l ∗ y
∗ j −x−1 w

∗ ∗
c ∗
b q
e p

d g ∗ ∗
f ∗ ∗ w
k ∗ x u
i −l−1 v ∗

b ∗
a ∗
∗ ∗
∗ r

h ∗ q u
j e v s
l g t ∗

−k−1 i ∗ ∗

where the entries in the ∗ positions remain unchanged.

1.6 To each element x ∈ Wa, we associate two subsets of S as below.

L(x) = {s ∈ S | sx < x} and R(x) = {s ∈ S | xs < x}.

For w, w′ ∈ Wa, we say that w′ is a left extension of w if `(w′) = `(w) + `(w′w−1).

Then we have the following results on the alcove form (k(w, α))α∈Φ of w ∈ Wa.

Proposition [17, Propositions 4.1, 4.3]. (1) `(w) =
∑

α∈Φ+ |k(w, α)|, where the nota-

tion |x| stands for the absolute value of x;

(2) R(w) = {si | k(w,αi) < 0}.
(3) w′ is a left extension of w if and only if the inequalities k(w′, α)k(w, α) ≥ 0 and

|k(w′, α)| ≥ |k(w, α)| hold for any α ∈ Φ.
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1.7 Now let W be either an affine Weyl group or a finite Weyl group. Lusztig defined

a function a : W −→ N which satisfies the following properties:

(1) a(z) ≤ ν = |Φ|/2, for any z ∈ W, where Φ is the root system associated to W as in

1.3;

(2) x ≤
LR

y =⇒ a(x) ≥ a(y). In particular, x ∼
LR

y =⇒ a(x) = a(y). So we may define

the a-value a(Γ) on a ( left, right or two-sided ) cell Γ of W by a(x) for any x ∈ Γ.

(3) a(x) = a(y) and x ≤
L

y ( resp. x ≤
R

y ) =⇒ x ∼
L

y ( resp. x ∼
R

y ).

(4) Let wI be the longest element in the subgroup WI of W generated by I for any

I ⊆ S with WI finite. Then a(wI) = `(wI).

The above properties of function a were shown by Lusztig in his papers [11], [12].

Now we state some more properties of this function, the first two of which are simple

consequences of properties (2), (3) and (4).

Let W(i) = {w ∈ W | a(w) = i} for any non-negative integer i. Then by (2), W(i) is

a union of some two-sided cells of W .

(5) If W(i) contains an element of the form wI for some I ⊂ S, then {w ∈ W(i) | R(w) =

I} forms a single left cell of W .

(6) By the notation x = y · z (x, y, z ∈ W ), we mean x = yz and `(x) = `(y) + `(z). In

this case, we have x ≤
L

z, x ≤
R

y and hence a(x) ≥ a(y), a(z). In particular, if I = R(x)

( resp. I = L(x) ), then a(x) ≥ `(wI).

(7) W(i) is a single two-sided cell of W if i ∈ {0, 1, ν} (see (1)). As sets, W(i) (i = 0, 1, ν)

can be described as below. W(0) = {e}, e, the identity element of W . W(1) consists of

all the non-identity elements of W each of which has a unique reduced expression (see

[9]). W(ν) consists of all the elements of W which have no zero entry in their alcove

forms (see 1.4). W(ν) can also be described to be the lowest two-sided cell of W with

respect to the partial order ≤
LR

(see [19], [20]).

(8) Now let W = Wa be an affine Weyl group. Call an element s ∈ S special, if the

subgroup of Wa generated by S \ {s} is isomorphic to W0 (see 1.3). Thus the element

s0 is always special. When Wa is of type F̃4, there is no other special element in S.

It is known that for any two-sided cell Ω 6= {e} of Wa and any special s ∈ S, the set
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Ys = {w ∈ Ω | R(w) = {s}} is non-empty and is a single left cell of Wa (see [14]).

1.8 Let G and Wa be as in 1.3. Then the following result of Lusztig is important to our

purpose.

Theorem [13, Theorem 4.8]. There exists a bijection u 7→ c(u) from the set of unipo-

tent conjugacy classes in G to the set of two-sided cells in Wa. This bijection satisfies the

equation a(c(u)) = dimBu, where u is any element in u, and dim Bu is the dimension

of the variety of Borel subgroups of G containing u.

1.9 Let G, W0 and Wa be as in 1.3. Then W0 is a standard parabolic subgroup of

Wa. It is known that for any w ∈ W0, the value a(w) computed with respect to W0

is equal to that computed with respect to Wa [12, Corollary 1.9]. From the results of

[3], [4], [10] and [13], we know that the bijection in Theorem 1.8 induces a bijection

between the set of special unipotent classes of G and the set of two-sided cells of W0.

Let w0 be the longest element of W0. Then the permutation x 7→ w0x of W0 induces an

order-reversing bijective map on the set of two-sided cells of W0 (see [8, 3.3]). Under

this map, the two-sided cells W(0) = {e} and W(ν) = {w0} are transposed, and the

two-sided cell W(1) of W0 is sent to the second lowest one. Here ν = `(w0).

1.10 Let Wa = Wa(F̃4) be the affine Weyl group of type F̃4. Then according to

the knowledge of the unipotent classes of the complex simple algebraic group of type

F4, we see from Theorem 1.8 that in Wa, the set W(i) is non-empty if and only if

i ∈ Λ = {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 16, 24}. More precisely, W(i) is a single two-sided

cell if i ∈ {0, 1, 2, 4, 5, 7, 10, 13, 16, 24}, and is a union of two two-sided cells if i ∈ {3, 6, 9}.
1.11 We see that there exist some elements of the form wI , I ⊂ S, in all the sets W(i)

of Wa(F̃4), i ∈ Λ \ {13}. By the results of [22] and by 1.7,(4),(7), at this stage we can

find a representative set of the two-sided cells Ω of Wa(F̃4) with a(Ω) 6= 6, 9 as follows.

e, s4, w02, w01, w34, w23, w023, w0124, w0234, x = w234s1s2s3s2s1s4s3s2s3s4, w0123 and

w1234, where we have x ∈ W(13) by 1.9, 1.10, and by the fact w0x = s1s2s3s2s1 ∈ W(1).

§2. An algorithm with some related results.

Here and later, the notation Wa always stands for an affine Weyl group with S its
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Coxeter generator set. The main purpose of the present paper is to describe the left

cells of the affine Weyl group Wa of type F̃4 by finding its l.c.r. set together with all

its left cell graphs (or with the corresponding essential graphs). We need an algorithm

to do this, which was designed in [22] and then improved in [25]. This algorithm is

applicable to a certain family of crystallographic groups including all the Weyl groups

and all the affine Weyl groups. In this section, we shall recall the algorithm and some

related results in [22] and [25].

2.1 To each element x ∈ Wa, we associate a set Σ(x) of all left cells Γ of Wa satisfying

the condition that there is some element y ∈ Γ with y—x, R(y) * R(x) and a(y) = a(x).

We have the following result.

Theorem [22, Theorem 2.1]. If x ∼
L

y in Wa, then R(x) = R(y) and Σ(x) = Σ(y).

2.2 To each x ∈ Wa, we denote by M(x) the set of all elements y such that there are

a sequence of elements x0 = x, x1, · · · , xr = y in Wa with r ≥ 0, where for every i,

1 ≤ i ≤ r, the conditions x−1
i−1xi ∈ S and R(xi−1)

+
*R(xi) are satisfied.

2.3 A subset K ⊂ Wa is said to be distinguished if K 6= ∅ and x �
L

y for any x 6= y in

K. The following are three processes on a non-empty set P ⊂ Wa (see [25]).

(A) Find a largest possible subset Q from the set
⋃

x∈P

M(x) with Q distinguished.

(B) To each x ∈ P , find elements y ∈ Wa such that y−1x ∈ S, R(y) % R(x) and

a(y) = a(x), add these elements y on the set P to form a set P ′ and then take a largest

possible subset Q from P ′ with Q distinguished.

(C) To each x ∈ P , find elements y ∈ Wa such that y < x, y––x, R(y) % R(x) and

a(y) = a(x), add these elements y on the set P to form a set P ′ and then take a largest

possible subset Q from P ′ with Q distinguished.

A subset P of Wa is called A-saturated ( resp. B-saturated, resp. C-saturated ), if

Process (A) (resp. (B), resp. (C) ) on P can’t produce any element z satisfying z �
L

x

for all x ∈ P .

2.4 Say a set Σ of left cells of Wa to be represented by a set K ⊂ Wa if Σ is the set

of all left cells Γ of Wa with Γ ∩ K 6= ∅. K is called a representative set for Σ, if K
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represents Σ with K distinguished.

By [22, Theorem 3.1] and [8, 2.3f], we see that a representative set of left cells (an

l.c.r. set for short) of Wa in a two-sided cell Ω is exactly a distinguished subset of Ω

which is A-, B- and C-saturated. So to get such a set, we may use the following

ALGORITHM [25, 2.7].

(1) Find a non-empty subset P of Ω ( Usually we take P to be distinguished for avoiding

unnecessary complication whenever it is possible );

(2) Perform Processes (A), (B) and (C) alternately on P until the resulting distin-

guished set can’t be further enlarged by these processes.

In general, Process (A) (resp. (B)) is easier to be performed than Process (B) (resp.

(C)) in applying the algorithm. So we shall make the priority first to Process (A)

and second to Process (B). In other words, in applying the algorithm, we always first

perform Process (A); Process (B) is performed only when Process (A) alone can not

make any further progress; finally Process (C) is performed when no progress can be

made only by Processes (A) and (B).

In applying Algorithm 2.4, we need some results and terminologies. Note that the

terminologies concerning graphs are adopted from [25] which differ from those in [22].

From 1.7, (3) and Theorem 2.1, we have the following result on a set M(x).

Proposition 2.5 [25, Proposition 3.1]. (1) For any x ∈ Wa, the set M(x) is wholly

contained in some right cell of Wa.

(2) If x ∼
L

y in Wa, then M(x) and M(y) represent the same set of left cells of Wa.

2.6 In a Coxeter system (W,S), a sequence of elements of the form

(2.6.1) ys, yst, ysts, . . .︸ ︷︷ ︸
m−1 terms

is called an {s, t}-string ( or just call it a string ) if s, t ∈ S and y ∈ W satisfy the

conditions that the order o(st) of the product st is m and R(y) ∩ {s, t} = ∅.
It is easily seen that a string is wholly contained in some right cell of W . For any

x ∈ Wa, we can re-define M(x) to be the minimal set containing x, subject to the
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requirement: any string (regarded as a set) meeting M(x) must be wholly contained in

M(x). Suppose that we are given two {s, t}-strings x1, x2, . . . , xm−1 and y1, y2, . . . ,

ym−1 with o(st) = m. We denote the integers µ(xi, yj) (see 1.1) by aij for 1 ≤ i, j ≤
m− 1. Then it is known that

Proposition 2.7 [9, 10.4]. In the above setup, the following assertions hold.

(a) When m = 3, we have a12 = a21, a11 = a22;

(b) When m = 4, we have a12 = a21 = a23 = a32, a11 = a33, a13 = a31 and a22 =

a11 + a13.

We have the following result corresponding to this.

Proposition 2.8 [8, Corollary 4.3; 10, Proposition 10.3; 21, Proposition 4.6]. Keep the

setup of 2.6.

(1) If m = 3, then

(a) x1 ∼
L

y1 ⇐⇒ x2 ∼
L

y2;

(b) x1 ∼
L

y2 ⇐⇒ x2 ∼
L

y1.

(2) If m = 4, then

(a) x1 ∼
L

y2 ⇐⇒ x2 ∼
L

y1 ⇐⇒ x2 ∼
L

y3 ⇐⇒ x3 ∼
L

y2;

(b) x1 ∼
L

y1 ⇐⇒ x3 ∼
L

y3;

(c) x1 ∼
L

y3 ⇐⇒ x3 ∼
L

y1;

(d) x2 ∼
L

y2 ⇐⇒ either x1 ∼
L

y1 or x1 ∼
L

y3

2.9 Two elements x, y ∈ Wa form a primitive pair, if there exist two sequences of ele-

ments x0 = x, x1, · · · , xr and y0 = y, y1, · · · , yr in Wa such that the following conditions

are satisfied.

(a) xi––yi for all i, 0 ≤ i ≤ r.

(b) For every i, 1 ≤ i ≤ r, there exist some si, ti ∈ S such that xi−1, xi (and also

yi−1, yi)) are two neighboring terms in some {si, ti}-string.

(c) Either R(x) * R(y) and R(yr) * R(xr), or R(y) * R(x) and R(xr) * R(yr)

hold.
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In this case, we have x ∼
R

y by Proposition 2.5.

Assume that x, x′ (and also y, y′) are two neighboring terms in some {s, t}- string

with x––y and that at least one of x, y is a terminal term of the {s, t}-string containing

it. Then by Proposition 2.7, we have x′––y′. In particular, it is always the case when

o(st) = 3. Thus, if in (b), we have in addition that at least one of xi, yi is a terminal

term of the {si, ti}-string containing it for all i, 0 ≤ i < r, then we can replace condition

(a) by the following weaker one in the definition of a primitive pair:

(a’) x0––y0.

2.10 By a graph, we mean that a set of vertices M together with a set of edges, where

each edge is a two-elements subset of M , and each vertex is labelled by a subset of S.

Let M and M′ be two graphs with their vertex sets M and M ′. They are said to be

isomorphic, written M ∼= M′, if there exists a bijective map η from the set M to the

set M ′ satisfying the following two conditions.

(1) The labelling of w is the same as that of η(w) for any w ∈ M.

(2) For w, z ∈ M , {w, z} is an edge of M if and only if {η(w), η(z)} is an edge of

M′.

This is an equivalence relation on graphs.

2.11 We define a graph M(x) associated to an element x ∈ Wa as follows. Its vertex

set is M(x). Its edge set consists of all two-elements subsets {y, z} ⊂ M(x) with y, z

two neighboring terms of a string. Each vertex y ∈ M(x) is labelled by the set R(y).

A left cell graph associated to an element x ∈ Wa, written ML(x), is by definition a

graph, whose vertex set ML(x) consists of all left cells Γ of Wa with Γ∩M(x) 6= ∅. Two

vertices Γ, Γ′ ∈ ML(x) are joined by an edge, if there are two elements y ∈ M(x)∩Γ and

y′ ∈ M(x)∩Γ′ such that {y, y′} is an edge of M(x). Each vertex Γ of ML(x) is labelled

by the common labelling of elements of M(x) ∩ Γ (This makes sense by [8, Proposition

2.4]). Clearly, the graph ML(x) is always connected.

2.12 A subgraph M of M(x) (x ∈ Wa) is said to be essential, if there is an isomorphism

η from M to ML(x) with y ∈ η(y) for each vertex y of M.
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It is easily seen that when a subgraph M of M(x) is essential, its vertex set must be

distinguished. In particular, the graph M(x) itself is essential if and only if its vertex

set M(x) is distinguished. But it should be careful that in general there does not always

exist an essential subgraph in M(x) (A counter-example could be found in the two-sided

cell W(3) of the affine Weyl group Wa(D̃4) or in W(1) of Wa(Ãn), n > 1). However, we

shall see that for any x ∈ Wa(F̃4), there always exists some essential subgraph of M(x)

containing x as its vertex.

2.13 Let N and N′ be two graphs with N and N ′ the corresponding vertex sets. We

say that N′ is opposed to N (up to isomorphism), written N′ = Nop, if there exists a

bijective map φ from the set N to N ′ satisfying that for any x, y ∈ N ,

(a) R(φ(x)) = S \ R(x);

(b) {x, y} is an edge of N if and only if {φ(x), φ(y)} is an edge of N′.

Clearly, the relation of two graphs being opposed is mutual. So N = (Nop)op.

2.14 By a path in graph M(x), we mean a sequence of vertices z0, z1, . . . , zt in M(x)

such that {zi−1, zi} is an edge of M(x) for any i, 1 ≤ i ≤ t. Two elements x, x′ ∈ Wa

have the same generalized τ -invariant, if for any path z0 = x, z1, . . . , zt in graph M(x),

there is a path z′0 = x′, z′1, . . . , z
′
t in M(x′) with R(z′i) = R(zi) for every i, 0 ≤ i ≤ t,

and if the same condition holds when interchanging the roles of x with x′.

2.15 It may happen that for two elements x, y ∈ Wa with x ∼
L

y, the graphs M(x) and

M(y) are not isomorphic (take x = s0 and y = s1s0 in Wa(C̃4) for example). But we

have the following result.

Proposition [25, 3.10]. (a) The elements in the same left cell of Wa have the same

generalized τ -invariant.

(b) If x ∼
L

y in Wa, then the left cell graphs ML(x) and ML(y) are isomorphic.

§3. Some techniques in applying the algorithm.

3.1 We shall apply the algorithm to find an l.c.r. set, together with all left cell graphs

or with the corresponding essential graphs, in each two-sided cell Ω of Wa = Wa(F̃4).

This has been done for all the two-sided cells Ω with a(Ω) ∈ {3, 4, 5} in my previous
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paper [22]. On the other hand, an l.c.r. set in the two-sided cells W(i), i ∈ {0, 1, 2, 24}
have been found before (see [6], [9], [19] and [20]). Thus actually we need only deal with

the two-sided cells Ω of a(Ω) ∈ {6, 7, 9, 10, 13, 16}.
We shall use the notation i for the simple reflection si (0 ≤ i ≤ 4) in the subsequent

discussion.

3.2 First we choose the starting set P of the algorithm. Write y = wIy ·y′ with Iy = L(y)

for any y ∈ Wa. We prefer to (but not have to) choose the elements x for the set P to

satisfy the following conditions.

(1) a(x)− `(wIx) = min{a(y)− `(wIy ) | y ∈ Ω}.
(2) Let A be the set of all the elements y in Ω which satisfy condition (1) for y instead

of x. Then `(x′) = min{`(y′) | y ∈ A}.
Thus the elements of the form wI , I ⊂ S, are the best candidates to be chosen into

P whenever they are contained in Ω.

Each W(i) (i ∈ {7, 10, 16}) consists of a single two-sided cell, which contains a unique

element of the form wI , I ⊂ S, i.e. w0124, w0234 and w0123, respectively. Thus in

dealing with the two-sided cells W(i), i ∈ {7, 10, 16}, we can take the starting set P

of the algorithm to be {w0124}, {w0234} and {w0123}, respectively. The set W(6) (resp.

W(9)) consists of two two-sided cells. There are two elements of the form wI in the

set W(6) (resp. W(9)), i.e. w012 and w0134 (resp. w234 and w123). We don’t know

in advance whether or not these two elements are in the same two-sided cell. Thus in

dealing with a two-sided cell in W(6) (resp. W(9)), the starting set P of the algorithm will

be taken as {w012} or {w0134} (resp. {w234} or {w123}) rather than {w012, w0134} (resp.

{w234, w123}). Let x = w02341232143234 and y = w2341232143234. We have y ∈ W(13) by

1.11. We can show that {x−1, y−1} is a primitive pair (see 2.9). This implies x ∼
L

y and

hence x ∈ W(13). So for the two-sided cell W(13), we shall take {x} as the starting set

P of the algorithm.

For any z ∈ Wa, we denote by Ω(z) (resp. Γ(z)) the two-sided cell (resp. the left

cell) of Wa containing z.

3.3 In applying the algorithm, we shall first deal with the two-sided cell W(16), then
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W(10), W(13), Ω(w123), W(9) \ Ω(w123), W(7), Ω(w012), W(6) \ Ω(w012) in turn. The

reason for taking such an order is to make it easier in performing processes (B) and

(C), in particular in the determination of the a-values of the elements occurring in the

intermediate steps of these two processes.

3.4 Now we introduce some techniques which we shall use in section 4: (1) to find an

essential subgraph from a graph of the form M(x); (2) to determine the a-value of an

element; (3) to tell whether or not two sets of the form M(x) represent the same set of

left cells. We illustrate our methods by some examples.

3.4.1 To examine whether or not a graph M = M(α) (α ∈ Wa) is essential, we should

first consider the generalized τ -invariants of vertices of M. If they are all different,

then M is essential. If there are some pair of vertices of M, say x, y, having the same

generalized τ -invariant, then we should further compare the set Σ(x) with Σ(y). If for

all such pairs x, y, we have Σ(x) 6= Σ(y), then M is still essential. For example, let

y0 = w0123 · 43234. Then y0 ∈ W(16) by 1.7,(6),(7), 1.10 and by the alcove form of y0.

The graph M(y0) is isomorphic to M18 with y0 the vertex labelled by 0234 ( here and

later, the graphs denoted by Mi, i ≥ 1, are displayed at the end of section 4). We want

to show that the graph M(y0) itself is essential. By Proposition 2.15, (a), it is enough to

show that 012
1
�
L

012
2

in M(y0), where by abuse of notations, we identify a vertex with

its labelling in the graph M(y0), the numbers inside a box represent the corresponding

elements in S, and the subscripts of boxes are used to distinguish the positions of the

vertices with the same labelling (such an identification will be used quite often later,

which will not cause any confusion in the context). Assume `( 012
1
) < `( 012

2
) for

the sake of definity. We may check that Γ( 0124
1
) ∈ Σ( 012

2
) \ Σ( 012

1
) and hence

Σ( 012
1
) 6= Σ( 012

2
). This implies 012

1
�
L

012
2

by Theorem 2.1.

3.4.2 In examining whether or not a graph M = M(α) is essential, it may happen

that there are more than one pairs of vertices {x, y} in M having the same generalized

τ -invariants. In such a case, it is not always necessary to check the equation Σ(x) =

Σ(y) for each pair {x, y}. We need only to check the equations on some pairs and

then apply Proposition 2.8 to get the conclusion on the remains. For example, let
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x = w0234 · 1232143234. Then x ∈ W(13) by 3.2. The graph M(x) is isomorphic to

the one in Fig. 1 with the vertex x labelled by 234
1
. We want to find an essential

subgraph Me(x) in M(x). Let y = 0x and z = 21 · y. Then x ∼
L

y ∼
L

z by 3.2

and by the fact z−1 ∈ M(y−1). We have M(z) ∼= M6. By Proposition 2.15, (b), we

see that essential graphs Me(x) and Me(z) should be isomorphic whenever they exist.

By comparing M(x) with M(z) and by Proposition 2.15, (a), we can take Me(x) to

be a subgraph of M(x) isomorphic to Mop
25 (The graph Mop

i is obtained from Mi by

replacing the number set I in each box by {0, 1, 2, 3, 4} \ I and with the subscripts of

boxes unchanged whenever they are attached.

04 —— 03 —— 02 —— 013 —— 014 —— 024 —— 03 —— 02 —— 01∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 12 —— 13 —— 14 124 —— 13 —— 12∣∣ ∣∣ ∣∣ ∣∣ ∣∣

34 —— 24 —— 23 023 —— 024 24 —— 23∣∣ ∣∣ ∣∣
34 034 —— 134∣∣ ∣∣

014 —— 024 —— 124∣∣ ∣∣ ∣∣
014 —— 013 —— 012 —— 013 —— 023 —— 123∣∣ ∣∣

034 —— 024 —— 023∣∣ ∣∣ ∣∣
134 —— 124 —— 123∣∣ ∣∣
234

1
134 —— 034∣∣
234

Fig. 1. M(x)

3.4.3 Now we shall deal with a more complicated example, where in addition of the

above task, we shall do two more things. One is to determine the a-values of some

elements in virtue of primitive pairs. The other is to conclude a pair of elements α, β
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having the relation α ∼
L

β by observing that one is a left extension of the other with

a(α) = a(β). Let z = w012 · 3421321. Then we claim a(z) = 6. For, let y = z1, then y

is the vertex labelled by 2
1

in M(w012) ∼= M17, and z is the vertex labelled by 12
1

in

M(z) (see Fig. 2). So {y, z} is a primitive pair and hence a(z) = a(y) = a(w012) = 6.

In the graph M(z), the vertex labelled by 01
2

is a left extension of that by 01
1
. On

the other hand, let z′ be the vertex labelled by 12
2

in M(z). Then we can show that

Γ(z′ · 4) ∈ Σ(z′) \ Σ(z) and hence z �
L

z′ by Theorem 2.1. Thus we have an essential

subgraph Me(z) of M(z) isomorphic to M12.

23 —— 24 —— 34 —— 24 —— 23∣∣ ∣∣ ∣∣ ∣∣
12 —— 13 —— 14 14 —— 13 —— 12

1∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
01

2
—— 02 —— 03 —— 04 04 —— 03 —— 02 —— 01

1∣∣ ∣∣
01 —— 02 —— 12 12

2
—— 02 —— 01

Fig. 2. M(z)

3.4.4 Let x = w0234 · 1232143234. Then we have x ∈ W(13) by 3.2. The graph M(x)

is displayed in Fig. 1. Assume that an l.c.r. set of Wa in the two-sided cell W(16) has

been found. Then we see that there is no graph in W(16) of the form M(α) which is

isomorphic to M(x).

This fact will help us in finding an l.c.r. set of the two-sided cell W(13). Let y0 =

w0234 · 12321432310123432312340. Then the graph M(y0) is isomorphic to M23 with y0

the vertex labelled by 034
1
. We claim y0 ∈ W(13). For, we have y1 = y00 ∈ M(x)

and that {y0, y1} is a primitive pair. We want to find an essential subgraph Me(y0)

in M(y0). Let α, β be the vertices of M(y0) labelled by 3
1

and 3
2

respectively (see

M23). Then α = y0 · 123 and β = y0 · 23123. We have 3210321 · α = 20321 · β, denote it

by y. Then y is a common left extension of α and β. We have M(y) ∼= M(y0). Now

we want to determine the a-value of y. By 1.7,(6),(7), 1.10 and by the alcove form of

y, we have a(y) ∈ {13, 16}. Let y1 = y32132 and y2 = y10. Then we have y1 ∈ M(y),
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M(y2) ∼= M(x) and a primitive pair {y1, y2}. So by the above observation, we have

a(y) = a(y2) = 13. This implies α ∼
L

y ∼
L

β by 1.7, (3). Therefore M(y0) contains an

essential subgraph Me(y0) isomorphic to M22.

3.4.5 Suppose that we are given two isomorphic graphs, say N1 and N2. We want

to examine whether or not their vertex sets N1, N2 represent the same left cell set of

Wa. It is known that N1 and N2 represent the same left cell set if and only if there

exist some vertices αi of Ni (i = 1, 2) with α1 ∼
L

α2 (hence α1 and α2 must have

the same generalized τ -invariant). Thus the problem is reduced to checking whether

or not the relation α1 ∼
L

α2 holds for some αi ∈ Ni. To do this, we first choose

vertices αi ∈ Ni, i = 1, 2, such that α1 and α2 have the same generalized τ -invariant.

Thus N1 and N2 represent the same set of left cells if α1 ∼
L

α2. For example, let

a1 = w0234 · 12321432312012343, a2 = w0234 · 1232143234101234231230 and a3 = w0234 ·
123214323120123432341230. Then the graphs M(ai) (i = 1, 2, 3) are all essential and

isomorphic to M2. We shall show that ai ∈ W(13) for i = 1, 2, 3, that the left cell

set represented by M(a1) is disjoint with that by M(a2) and that M(a2) and M(a3)

represent the same set of left cells. Let x1 = a13, y0 = a24, y = y00 and y1 = a34. Then

we can check that {x1, a1}, {y0, a2}, {y, y0} and {y1, a3} are all primitive pairs. We also

see that y1 ∈ M(y0) and x1, y ∈ M(x), where x ∈ W(13) is defined as in 3.2. This implies

ai ∈ W(13) for i = 1, 2, 3. Let bj (j = 1, 2, 3) be the vertex labelled by 03 in M(aj)

(see M2). To show M(a1) and M(a2) representing disjoint left cell sets, it suffices to

show b1 �
L

b2. But this follows by Theorem 2.1 and by the fact Γ(b2 · 4) ∈ Σ(b2) \Σ(b1).

Finally, we want to show that M(a2) and M(a3) represent the same set of left cells. It

is enough to show b2 ∼
L

b3. We have 3210321b2 = 02321b3, denote it by w. Then w is

a common left extension of b2 and b3. By 1.7, (6), 1.10 and the alcove form of w, we

have a(w) ∈ {13, 16}. Let w0 = w4, v = w032 and v0 = v0. Then it can be checked

that both {w, w0} and {v, v0} are primitive pairs, that w0 ∈ M(v), and that M(v0) is

isomorphic to M(x) in Fig. 1. By the observation at the beginning of 3.4.4, this implies

a(w) = a(v0) = 13 and hence b2 ∼
L

w ∼
L

b3 by 1.7, (3). Our result follows.

Remark 3.5 (1) Note that the elements y in 3.4.4 and w in 3.4.5 are found in virtue
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of alcove forms and by Proposition 1.6, (3).

(2) Besides the above techniques, sometimes we use the property of distinguished

involutions of Wa to determine whether or not two elements x, y in the same {s, t}-
string (o(st) = 4) with R(x) = R(y) satisfy the relation x ∼

L
y. An element x ∈ Wa is

called distinguished, if `(x)− a(x)− 2δ(x) = 0, where δ(x) = deg Pe,x. It is known that

any distinguished element of Wa is an involution and that each left cell of Wa contains

a unique distinguished involution. Denote by d(x) the distinguished involution in the

left cell containing x. Suppose that y · s, y · st, y · sts is an {s, t}-string with o(st) = 4.

Written d(yst) = α · z ·β with α, β in the group generated by s, t and s, t 6∈ L(z)∪R(z).

Then by [21, Proposition 5.12], we know that ys ∼
L

ysts if and only if {sz, tz} = {zs, zt}.
This result can be used, for example, to conclude that a graph isomorphic to M15 is

essential in the two-sided cell Ω(w0134).

§4. l.c.r. sets of the two-sided cells.

In the present section, we shall give an l.c.r. set, together with all the left cell graphs

(or all the corresponding essential graphs) for each two-sided cell of Wa = Wa(F̃4).

Since the techniques applied are more or less similar to those in 3.4, we shall only give

very brief arguments in the most cases.

4.1 Let x = w0123, y = x·4323, y0 = y ·4, y1 = y0 ·12340, a1 = y1 ·1, z = y0 ·1232, z0 = z ·1,
w = y1 ·2, w0 = w ·3, y2 = w ·1234, a2 = y2 ·0, w1 = w0 ·12340, a3 = w1 ·1, w2 = w1 ·231,
a4 = w2 · 0, v = y2 · 213, v0 = v · 4, u = v · 0, u0 = u · 1, h = z0 · 43230123214323, h0 = h · 4,
j = u0 · 210, j0 = j · 4, u1 = j · 34, a5 = u1 · 3, j1 = j0321243, a6 = j1 · 0, j2 = j0 · 321343,
a7 = j2 · 0, k = u0 · 21343210, k0 = k · 1, k1 = k0 · 321304, a8 = k1 · 3, m = j2 · 234,
b1 = m ·1, n = j2 ·210, n0 = n ·1, n1 = n0 ·324312343, b2 = n1 ·1, p = n1 ·21 and p0 = p ·2.
Let I = {x, y0, z0, w0, v0, u0, h0, j0, k0, n0, p0, ai (1 ≤ i ≤ 8), bl (l = 1, 2)}. We see that

each α ∈ I has some zero entries in its alcove form and satisfies L(α) = {0, 1, 2, 3}. This

implies I ⊂ W(16) by 1.10. By the techniques of 3.4, we can show that all the graphs

M(α) (α ∈ I) are essential. Thus we get the following table.
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α position of isom. cls α position of isom. cls
α in M(α) of M(α) α in M(α) of M(α)

x 0123 Mop
9 a1 0134 M2

y0 0234 M18 a2 0134 M2

z0 123
1

M6 a3 0134 M2

w0 0234 Mop
23 a4 0134 M2

v0 134
1

M26 a5 0134 M2

u0 013
1

M24 a6 0134 M2

h0 234 M3 a7 0134 M2

j0 0124 Mop
18 a8 0134 M2

k0 0124 M23 b1 134 M9

n0 0124 M19 b2 134 M9

p0 124 M21

We can show that the set
⋃

α∈I

M(α) forms an l.c.r. set of W(16).

4.2 Now consider the two-sided cell W(10). Let x = w0234, y = x · 1232, x1 = x · 12340,
x2 = x1 · 21234213, y0 = y · 1, a1 = x1 · 1, b1 = x2 · 4, y1 = y0 · 043, z = y0 · 014,

y2 = y0 · 01234, w = y2 · 323123, a2 = y1 · 1, z0 = z · 2, a3 = y2 · 3, w0 = w · 0,

w1 = a3 · 2310. w2 = w0 · 431234, v = w2 · 21, a4 = w1 · 4, b2 = w2 · 1 and v0 = v · 2.
Then y, x1, x2 ∈ M(x), y1, y2, z, w ∈ M(y0) and w1, w2, v ∈ M(w0). We can check that

{y, y0}, {x1, a1}, {x2, b1}, {y1, a2}, {z, z0}, {y2, a3}, {w,w0}, {w1, a4}, {w2, b2} and

{v, v0} are all primitive pairs. Let I = {x, y0, z0, w0, v0, ai (1 ≤ i ≤ 4), bl (l = 1, 2)}.
Then I ⊂ W(10). By the techniques of 3.4, we see that M(α) (α ∈ I) are all essential.

So we get the following table.

α position of isom. cls α position of isom. cls
α in M(α) of M(α) α in M(α) of M(α)

x 0234 Mop
18 a2 0134 M2

y0 123
1

M3 a3 0134 M2

z0 0124 M23 a4 0134 M2

w0 023
1

M19 b1 134 M9

v0 124 M21 b2 134 M9

a1 0134 M2

It can be shown that the set
⋃

α∈I

M(α) forms an l.c.r. set of W(10).

4.3 Next consider the two-sided cell W(13). Let x = w0234 · 1232143234, x0 = x · 0,
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x1 = x12401234, a1 = x1 ·3, y = x132312342, y0 = y ·0, a2 = y04, z = x1 ·23123, z0 = z ·4,
z1 = z01234031, a3 = z1 · 3, w = z142, w0 = w · 4, w1 = w · 34, a4 = w1 · 3, v = z01243,

v0 = v1, v1 = v0420, a5 = v1 · 1, u = w113210, u0 = u · 2, u1 = u0 · 32432, a6 = u12,

h = x0 ·1232, h0 = h·1, v2 = v1 ·21234234, b1 = v2 ·1, u2 = u1 ·1243, b2 = u2 ·4, j = u24121

and j0 = j · 2. Let I = {x, x0, y0, z0, w0, v0, u0, h0, j0, ai (1 ≤ i ≤ 6), bl (l = 1, 2)}. We

shall show I ⊂ W(13). It is known already that x ∈ W(13) (see 3.2). We also have

the relations x1, y, z ∈ M(x), w, z1, w1, v, u ∈ M(z0), h ∈ M(x0), v1, v2 ∈ M(v0)

and u1, u2, j ∈ M(u0). On the other hand, {x, x0}, {x1, a1}, {y, y0}, {y0, a2}, {z, z0},
{z1, a3}, {w, w0}, {w1, a4}, {v, v0}, {v1, a5}, {u, u0}, {u1, a6}, {h, h0}, {v2, b1}, {u2, b2}
and {j, j0} are all primitive pairs. So I ⊂ W(13). By the techniques of 3.4, we see

that for α ∈ I, the graph M(α) is essential if and only if α ∈ {z0, w0, v0, u0, j0, ai (1 ≤
i ≤ 6), bl (l = 1, 2)}. so for these α, we have Me(α) = M(α). On the other hand, we

can find an essential subgraph Me(β) in each M(β), β ∈ {x, x0, y0, h0}. We get the

following table.

α position of isom. cls α position of isom. cls
α in Me(α) of Me(α) α in Me(α) of Me(α)

x 234 Mop
25 a1 0134 M2

x0 0234 Mop
22 a2 03 M2

y0 034 M22 a3 0134 M2

z0 234 M3 a4 0134 M2

w0 0124 M23 a5 0134 M2

v0 23
1

Mop
18 a6 03 M2

u0 0124 M19 b1 134 M9

h0 123 M25 b2 134 M9

j0 124 M21

Let Me(α) be the vertex set of the chosen essential subgraph Me(α) (such a notation

will be used throughout the remaining part of the paper). Then we can show that the

set
⋃

α∈I

Me(α) forms an l.c.r. set of W(13).

4.4 Let us consider the two-sided cell Ω(w123). Let x = w123, y = x · 014, z = x · 432101,
y0 = y · 2, a1 = y · 3, z0 = z · 2, z1 = z0 · 32343, a2 = z14, w = z1 · 1213, v = w · 21,
w0 = w · 4 and v0 = v · 4. Then y, z ∈ M(x) and z1, w, v ∈ M(z0). We can check
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that {y, y0}, {y, a1}, {z, z0}, {z1, a2}, {w,w0} and {v, v0} are all primitive pairs. Let

I = {x, y0, z0, w0, v0, a1, a2}. Then I ⊂ Ω(w123). It can be shown that the graph M(α)

is essential if α ∈ {z0, w0, v0, a1, a2} and is not essential if α ∈ {x, y0}. By choosing

some essential subgraphs from these graphs, we get the following table.

α position of isom. cls α position of isom. cls
α in Me(α) of Me(α) α in Me(α) of Me(α)

x 123 M7 v0 124 M21

y0 0124 M22 a1 0134 M2

z0 0124 M19 a2 03 M2

w0 134 M9

We can show that the union
⋃

α∈I

Me(α) forms an l.c.r. set of Ω(w123).

4.5 From the results in 4.4, we see that w234 /∈ Ω(w123). This implies Ω(w234) =

W(9) \ Ω(w123) by 1.10. Now we consider the two-sided cell Ω(w234).

Let x = w234, x1 = x·10213, y = x1 ·234, z = y ·3231234, a1 = x1 ·4, y0 = y ·3, z0 = z ·0,
z1 = z024, y1 = y0 ·2123, a2 = z12, b1 = y1 ·4, w = z0 ·123421, z2 = z0 ·2123, z3 = z2 ·2134,
w0 = w ·2, b2 = z2 ·4 and b3 = z3 ·3. Then x1, y, z ∈ M(x), y1 ∈ M(y0) and w, z1, z2, z3 ∈
M(z0). We can check that {x1, a1}, {y, y0}, {z, z0}, {z1, a2}, {y1, b1}, {w, w0}, {z2, b2}
and {z3, b3} are all primitive pairs. Let I = {x, y0, z0, w0, ai (i = 1, 2), bl (1 ≤ l ≤ 3)}.
Then I ⊂ Ω(w234). We can show that M(α) (α ∈ I) are all essential and hence get the

following table.

α position of isom. cls α position of isom. cls
α in M(α) of M(α) α in M(α) of M(α)

x 234 M16 a2 03 M2

y0 034
1

M13 b1 134 M9

z0 034
1

M15 b2 134 M9

w0 124 M21 b3 134 M9

a1 0134 M2

The set
⋃

α∈I

M(α) can be shown to form an l.c.r. set of Ω(w234).

4.6 Next consider the two-sided cell W(7). Let x = w0124, y = x · 3, z = x · 323431234,
w = x · 21, y0 = y · 4, z0 = z · 1 and w0 = w · 2. Then y, z, w ∈ M(x). We can check

that {y, y0}, {z, z0} and {w,w0} are all primitive pairs. Let I = {x, y0, z0, w0}. Then
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this implies I ⊂ W(7). It can be shown that all the graphs M(α) (α ∈ I) are essential.

Hence we have the following table.

α position of isom. cls α position of isom. cls
α in M(α) of M(α) α in M(α) of M(α)

x 0124 M19 z0 134 M9

y0 0134 M2 w0 124 M21

We can show that the set
⋃

α∈I

M(α) forms an l.c.r. set of W(7).

4.7 Now consider the two-sided cell Ω(w012). Let x = w012, y = x · 342132, z =

x · 323432123, y0 = y · 3, z0 = z · 4, w = y0 · 14 and w0 = w · 2. Then y, z ∈ M(x) and

w ∈ M(y0). One can check that {y, y0}, {z, z0} and {w, w0} are all primitive pairs. Let

I = {x, y0, z0, w0}. Then I ⊂ Ω(w012). We can show that a graph M(α) is essential

if α ∈ {z0, w0}, and is not essential if α ∈ {x, y0}. Hence by choosing an essential

subgraph Me(α) from M(α) for α ∈ I, we get the following table.

α position of isom. cls α position of isom. cls
α in Me(α) of Me(α) α in Me(α) of Me(α)

x 012 M17 z0 134 M9

y0 23 M12 w0 124 M21

It can be shown that the set
⋃

α∈I

Me(α) forms an l.c.r. set of Ω(w012).

4.8 Finally consider the two-sided cell W(6) \ Ω(w012). By 1.10, it is equal to Ω(w0134)

since w0134 /∈ Ω(w012) by 4.7. Let x = w0134, y = x · 23, y0 = y · 2, y1 = y0 · 1423,
b1 = y1 · 4, y2 = y0 · 12432134, b2 = y2 · 3, z = y11421 and z0 = z · 2. Then y ∈ M(x)

and y1, y2, z ∈ M(y0). We can check that {y, y0}, {y1, b1}, {y2, b2} and {z, z0} are all

primitive pairs. Let I = {x, y0, z0, b1, b2}. Then I ⊂ Ω(w0134). We can show that all

M(α) (α ∈ I) are essential. So we have the following table.

α position of isom. cls α position of isom. cls
α in M(α) of M(α) α in M(α) of M(α)

x 0134 M2 b1 134 M9

y0 023 M15 b2 134 M9

z0 124 M21

We can show that the set
⋃

α∈I

M(α) forms an l.c.r. set of Ω(w0134).
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4.9 To be complete, we shall also give an l.c.r. set for each two-sided cell Ω with

a(Ω) ≤ 5 or a(Ω) = 24. These results are either obtained from my paper [22] (for the

two-sided cells of a-values 3, 4, 5) or by a direct calculation (for the two-sided cells of

a-values 0, 1, 2, 24). W(0) is the l.c.r. set of itself.

(1) Let x = 4 ∈ W(1). Take an essential subgraph Me(x) in M(x) such that Me(x) is

isomorphic to M1 with x the vertex labelled by 4 . The set Me(x) forms an l.c.r. set

of W(1).

(2) Let x = 24 ∈ W(2). Take an essential subgraph Me(x) in M(x) such that Me(x) is

isomorphic to M4 with x the vertex labelled by 24 . The set Me(x) forms an l.c.r. set

of W(2).

There are two two-sided cells with a-value 3: Ω(w01) and Ω(w34).

(3) Let x = w01 and y = w024. Then the graph M(x) (resp. M(y)) is essential,

isomorphic to M5 (resp. M8), and has x (resp. y) as its vertex labelled by 01 (resp.

024 ). The union M(x)
⋃

M(y) forms an l.c.r. set of Ω(w01).

(4) Let x = w34. Then the graph M(x) is essential, isomorphic to M20, and has x as

its vertex labelled by 34 . The set M(x) forms an l.c.r. set of Ω(w34).

(5) Let x = w034, y = w014 and z = w23 be in W(4). Then the graphs M(x), M(y) and

M(z) are all essential, isomorphic to M9, M21, M10, respectively. The elements x, y, z

are the vertices labelled by 034 , 014 and 23 in M9, M21, M10, respectively. The set

M(x)
⋃

M(y)
⋃

M(z) forms an l.c.r. set of W(4).

(6) Let x = w023, b1 = x · 12343, y0 = x · 431232, z0 = b1 · 21 and b2 = y0 · 431. Then

the graphs M(b1), M(b2) and M(z0) are essential but M(x) and M(y0) are not. Let

I = {x, y0, z0, b1, b2}. By choosing an essential subgraph Me(α) from M(α) for α ∈ I,

we get the following table.

α position of isom. cls α position of isom. cls
α in Me(α) of Me(α) α in Me(α) of Me(α)

x 023 M14 b1 134 M9

y0 23 M11 b2 134 M9

z0 124 M21
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The set
⋃

α∈I

Me(α) forms an l.c.r. set of W(5).

4.10 According to the results of [19], [20], we know that there are |W0| left cells of Wa

in the two-sided cell W(24) each of which is represented by a sign type over the symbol

set {+,−} (see [18] for the definition). It is known that there is a unique shortest

element in each of such left cells and that the l.c.r. set consisting of such elements can

be described explicitly as below.

M = {w ∈ W(24) | sw /∈ W(24) for any s ∈ L(w)} (loc. cit.).

It can be shown that for any x ∈ M , the graph M(x) is essential with M(x) ⊆ M . Thus

it remains to find all the left cell graphs of W(24).

It is known that if X is a sign type over {+,−} and if Y is obtained from X by

transposing the symbols + and −, then Y is also a sign type over {+,−}. Call Y the

opposed sign type of X and denote it by Xop. For a given left cell graph M in W(24),

we can replace each vertex (represented by a sign type) of M by its opposed sign type

to get another left cell graph of W(24) opposed to M. Keeping this fact in mind, we can

describe the left cell graphs of W(24) as below. Define the following sign types:

X01 =

+ +
+ +
+ −
− +

− + + −
+ + − −
− + + +
− − + −

X02 =

+ +
+ +
+ −
− +

+ − + −
+ + − −
− + + +
− − + −

X03 =

+ +
+ +
+ −
− +

+ − + −
+ + − +
− + + +
− − + −

X04 =

+ +
+ +
+ −
− +

+ + + −
+ + − −
− + + +
− − + −

X05 =

+ +
+ +
+ −
− +

− + + −
+ + − +
− + + +
− − + −

X06 =

+ +
+ +
+ −
− +

+ + + −
+ + + −
− + + +
− − + −

X07 =

+ +
+ +
+ −
− +

+ + + −
+ + − +
− + + +
− − + −

X08 =

+ +
+ +
+ −
− +

− + + −
+ + + −
− + + +
− − + −

X11 =

+ +
+ +
+ −
− +

+ − + −
+ + − +
− + + +
− − + +

X12 =

− +
+ +
+ −
− +

+ − + −
+ + − +
− + + +
− − + +

X13 =

+ +
+ +
+ −
+ +

+ − + −
+ + − +
− + + +
− − + +
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X21 =

+ +
+ +
+ +
+ −

− + + −
− + + +
+ + + −
− + − −

X22 =

+ +
+ +
− +
+ −

− + + −
− + + +
+ + + −
− + − −

X31 =

+ −
+ +
+ +
− +

− + − −
+ − + −
+ + + −
+ + + −

X32 =

+ −
+ +
− +
− +

− + − −
+ − + −
+ + + −
+ + + −

X4 =

+ +
+ +
+ +
+ +

+ + + +
+ + + +
+ + + +
+ + + +

X5 =

+ +
+ +
+ +
+ −

− + + +
+ + + +
+ + + −
− + − −

X6 =

+ +
+ +
+ +
+ −

− + + −
+ + + +
+ + + −
− + − −

X7 =

− −
− −
− −
+ −

+ − + −
− + − +
− − − +
− − − +

X8 =

− −
− −
− −
− −

− − − −
− + − −
− − − +
− − − +

X9 =

− −
− −
− −
− −

+ − − −
− + − +
− − − +
− − − +

Then ML(XP ), ML(Xop
P ) with P ∈ {0h, 1i, 1j, 2k, m | 1 ≤ h ≤ 8, 1 ≤ i ≤ 3, 1 ≤ j, k ≤

2, 4 ≤ m ≤ 9}, form a complete set of left cell graphs of W(24). The corresponding

isomorphism classes of the graphs ML(XP ) are listed as below.

X position of isom. cls X position of isom. cls
X in ML(X) of ML(X) X in ML(X) of ML(X)

X0h (1 ≤ h ≤ 8) 0134 M2 X5 0124 M19

X1i (1 ≤ i ≤ 3) 034 M9 X6 0124
1

M24

X2j (1 ≤ j ≤ 2) 0124 M23 X7 234 M3

X3k (1 ≤ k ≤ 2) 1 M18 X8 234 M6

X4 0 M21 X9 234 M26

4.11 It is worth to mention that owing to the priority we made on the processes of the

algorithm (see 2.4), all the elements so far we have got for our l.c.r. set of Wa(F̃4) are

only by Processes (A) and (B), none of them by Process (C).

4.12 Let Ω be a two-sided cell of Wa = Wa(F̃4). We denote by n(Ω) the number of left

cells of Wa in Ω, by u(Ω) the corresponding unipotent class of the complex algebraic

group G of type F4 under the Lusztig’s map in Theorem 1.8 (presented by its type

with the notation as in [5, Chapter 13], also see 4.13), and by A(Ω) = C(u)/C(u)◦

the component group of the centralizer of an element u ∈ u(Ω), the latter makes sense

since it is independent of the choice of u up to isomorphism. Then by the above results,

the results in [5, Chapter 13], and by a close analysis on the Lusztig bijective map in

Theorem 1.8 (see [13]), we have the following table.
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Ω n(Ω) u(Ω) A(Ω) Ω n(Ω) u(Ω) A(Ω)
W(0) 1 F4 1 Ω(w0134) 96 Ã2 + A1

1
W(1) 5 F4(a1) S2 W(7) 96 A2 + Ã1

1
W(2) 14 F4(a2) S2 Ω(w123) 168 A2 S2

Ω(w01) 24 C3 1 Ω(w234) 192 Ã2
1

Ω(w34) 24 B3 1 W(10) 288 A1 + Ã1
1

W(4) 42 F4(a3) S4 W(13) 432 Ã1
S2

W(5) 96 C3(a1) S2 W(16) 576 A1 1
Ω(w012) 96 B2 S2 W(24) 1152 1 1

Thus the total number of left cells in Wa(F̃4) is 3302.

4.13 According to Bala-Carter Theorem, there is a bijection between unipotent classes

of G and G-classes of pairs (L, PL′), where L is a Levi subgroup of G and PL′ is a

distinguished parabolic subgroup of the semisimple part L′ of L. The unipotent class

corresponding to the pair (L,PL′) contains the dense orbit of PL′ on its unipotent

radical (see [5, Theorem 5.9.6]). Now for a two-sided cell Ω of Wa, let (L,PL′) be the

pair associated to the unipotent class u(Ω) of G. Then the type of u(Ω) listed in the

above table just records such a correspondence. Let WL be the Weyl group of L′. Then

from the above table, we see that the number n(Ω) of left cells in Ω is |W0|/|WL| if and

only if the corresponding component group A(Ω) is trivial. Note that this phenomenon

does not always occur in an irreducible affine Weyl group. By the existing datum, we

see that it occurs in the affine Weyl groups of type Ãn, n ≥ 1, of rank ≤ 4 with its

type 6= D̃4, and in the two-sided cells Ω of Wa(B̃`) (` ≥ 3) or Wa(C̃m) (m ≥ 2) with

a(Ω) ≤ 4, but not in the affine Weyl groups of types D̃n, n ≥ 4, Ẽ7 and Ẽ8. Note

that the above phenomena were predicted implicitly by Lusztig in his conjecture on the

number of left cells in a two-sided cell of an affine Weyl group (see [1]).

4.14 It has been shown in [26] that the Lusztig bijective map u −→ c(u) from the set

of unipotent conjugacy classes of the complex algebraic group G of type F4 to the set

of two-sided cells of Wa(F̃4) is order-preserving: u is contained in the closure of u′ (in

the variety of unipotent elements of G) if and only if c(u) ≤
LR

c(u′) (see 1.8). For a

two-sided cell Ω of Wa, let T (Ω) be the set of all subsets I of S such that I = L(w) for
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some w ∈ Ω. Then we can find the following fact in the group Wa(F̃4): two two-sided

cells Ω, Ω′ 6= {e} satisfy the relation Ω ≤
LR

Ω′ if and only if T (Ω) ⊇ T (Ω′). This result

may be expected to hold in any affine Weyl group.

4.15 The following are the graphs Mi, 1 ≤ i ≤ 26, mentioned in sections 3 and 4.

4∣∣
0 —— 1 —— 2 —— 3

0134 —— 024 —— 03∣∣ ∣∣
124 —— 13 —— 2

M1 M2

01∣∣
02 —— 03 —— 024 —— 014 —— 013∣∣ ∣∣ ∣∣ ∣∣
12 —— 13 —— 124 02 —— 03 —— 04∣∣ ∣∣ ∣∣ ∣∣

23 —— 24 12 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣
123 —— 124 —— 134 14 —— 13 23 —— 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
023 —— 024 —— 034 —— 024 —— 023 34 —— 24 —— 14 —— 04∣∣ ∣∣ ∣∣ ∣∣ ∣∣
013 —— 014 23 —— 13 —— 03∣∣ ∣∣ ∣∣
012 12 —— 02 —— 01∣∣ ∣∣ ∣∣
013 —— 014 23 —— 13 —— 03∣∣ ∣∣ ∣∣ ∣∣ ∣∣
023 —— 024 —— 034 —— 024 —— 023 34 —— 24 —— 14 —— 04∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
123

1
—— 124 —— 134 14 —— 13 23 —— 24∣∣ ∣∣ ∣∣ ∣∣

23 —— 24 12 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣
13 —— 03 02 —— 03 —— 04∣∣ ∣∣ ∣∣
124 —— 024 —— 014 —— 013∣∣ ∣∣

234 —— 134 —— 034

M3
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4 —— 3∣∣
02 —— 03 —— 13 —— 2∣∣ ∣∣ ∣∣
1 04 —— 14 —— 24∣∣
0 —— 1 —— 2 —— 3

01 —— 02 —— 12∣∣ ∣∣
02 —— 03 —— 13 —— 2∣∣ ∣∣ ∣∣
1 04 —— 14 —— 24∣∣
0 —— 1 —— 2 —— 3

M4 M5

01 —— 02 —— 12∣∣ ∣∣
03 —— 13 —— 23 —— 24∣∣ ∣∣ ∣∣
024 —— 124 134 —— 124 —— 123∣∣ ∣∣ ∣∣ ∣∣
014 —— 013 034 —— 024 —— 023∣∣ ∣∣ ∣∣ ∣∣

04 —— 03 —— 02 023 —— 024 014 —— 013∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 12 —— 13 —— 14 012 —— 013 —— 023 —— 123

1∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 —— 23 014 —— 024 —— 124∣∣ ∣∣ ∣∣
34 034 —— 134 —— 234∣∣ ∣∣ ∣∣
24 —— 23 014 —— 024 —— 124∣∣ ∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 12 —— 13 —— 14 012 —— 013 —— 023 —— 123∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 —— 03 —— 02 023 —— 024 014 —— 013∣∣ ∣∣ ∣∣ ∣∣

014 —— 013 034 —— 024 —— 023∣∣ ∣∣ ∣∣ ∣∣
024 —— 124 134 —— 124 —— 123∣∣ ∣∣ ∣∣
03 —— 13 —— 23 —— 24∣∣ ∣∣

01 —— 02 —— 12

M6
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01∣∣
02 —— 03 —— 024 —— 014 —— 013∣∣ ∣∣ ∣∣ ∣∣
12 —— 13 —— 124 02 —— 03 —— 04∣∣ ∣∣ ∣∣ ∣∣

23 —— 24 12 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣
123 —— 124 —— 134 14 —— 13 23 —— 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
023 —— 024 —— 034 —— 024 —— 023 34 —— 24 —— 14 —— 04∣∣ ∣∣ ∣∣ ∣∣ ∣∣
013 —— 014 23 —— 13 —— 03∣∣ ∣∣ ∣∣
012 12 —— 02 —— 01

M7

024 —— 03 —— 02∣∣ ∣∣ ∣∣
14 —— 13 1∣∣

4 —— 3 —— 2

134 —— 034 —— 024 —— 03∣∣ ∣∣ ∣∣
24 14 —— 13∣∣ ∣∣
3 4 —— 3 —— 2

M8 M9

34∣∣
24 —— 23∣∣ ∣∣
14 —— 13 —— 12∣∣ ∣∣ ∣∣
04 —— 03 —— 02 —— 01

34∣∣
34 —— 24 —— 23∣∣ ∣∣

14 —— 13 —— 12∣∣ ∣∣ ∣∣
04 —— 03 —— 02 —— 01

M10 M11
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34∣∣
24 —— 23∣∣ ∣∣
14 —— 13 —— 12∣∣ ∣∣ ∣∣
04 —— 03 —— 02 —— 01∣∣
12 —— 02 —— 01

034
1
—— 134 —— 24 —— 3∣∣

034 —— 024 —— 023∣∣ ∣∣ ∣∣
134 14 —— 13 013 —— 014∣∣ ∣∣ ∣∣ ∣∣
24 12 —— 02 024 —— 124∣∣ ∣∣ ∣∣ ∣∣ ∣∣
3 23 —— 13 —— 03 03 —— 13∣∣ ∣∣ ∣∣ ∣∣ ∣∣
34 —— 24 —— 14 —— 04 02 2∣∣ ∣∣

34 1

M12 M13

124 —— 024 —— 014 —— 013 14 —— 024 —— 034∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
13 —— 03 02 —— 12 —— 13 —— 023 134∣∣ ∣∣ ∣∣ ∣∣ ∣∣
2 02 03 —— 13 —— 23 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣
34 1 04 —— 14 —— 24 3∣∣ ∣∣
24 —— 23 23 —— 24 —— 34∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 12 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 —— 03 —— 02 —— 03 —— 04∣∣

01

M14
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3 —— 24 —— 134 —— 034∣∣
124 —— 024 —— 014 —— 013 14 —— 024 —— 034

1∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
13 —— 03 02 —— 12 —— 13 —— 023 134∣∣ ∣∣ ∣∣ ∣∣ ∣∣
2 02 03 —— 13 —— 23 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣
34 1 04 —— 14 —— 24 3∣∣ ∣∣

34 —— 24 —— 23 23 —— 24 —— 34∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 12 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 —— 03 —— 02 —— 03 —— 04∣∣

01

M15

234 —— 134 —— 124 —— 13 —— 23 —— 24 —— 134 —— 034∣∣ ∣∣ ∣∣ ∣∣ ∣∣
034 —— 024 —— 03 34 14 —— 024 —— 034∣∣ ∣∣ ∣∣ ∣∣

014 —— 013 —— 02 —— 12 —— 13 —— 023 134∣∣ ∣∣ ∣∣
03 —— 13 —— 23 24∣∣ ∣∣ ∣∣ ∣∣

34 04 —— 14 —— 24 3∣∣ ∣∣
34 —— 24 —— 23 23 —— 24 —— 34∣∣ ∣∣ ∣∣ ∣∣

14 —— 13 —— 12 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 —— 03 —— 02 —— 03 —— 04∣∣

01

M16



32 Jian-yi Shi

023 —— 13 —— 12 —— 02 —— 013 —— 014 —— 024 —— 124∣∣ ∣∣ ∣∣ ∣∣ ∣∣
024 —— 14 012 03 —— 13∣∣ ∣∣ ∣∣
034 —— 134 —— 24 —— 3 02 2

1∣∣ ∣∣
024 —— 14 1∣∣ ∣∣
023 —— 13 —— 12 —— 02 —— 013 —— 014 —— 024 —— 124∣∣ ∣∣ ∣∣ ∣∣

23 —— 13 —— 03 03 —— 13∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 —— 14 —— 04 02 2∣∣ ∣∣
34 —— 24 —— 14 —— 04 1∣∣ ∣∣ ∣∣

23 —— 13 —— 03∣∣ ∣∣
12 —— 02 —— 01

M17

12 —— 02 —— 013 —— 0124
1∣∣

023 —— 13 —— 12 —— 02 —— 013 —— 014
1
—— 024 —— 124∣∣ ∣∣ ∣∣ ∣∣ ∣∣

024 —— 14 012 03 —— 13∣∣ ∣∣ ∣∣
034 —— 134 —— 24 —— 3 02 2∣∣ ∣∣
024 —— 14 1∣∣ ∣∣
023 —— 13 —— 12 —— 02 —— 013 —— 0124 012

1∣∣ ∣∣
0234 —— 134 13 —— 023 014 —— 013 —— 012

2∣∣ ∣∣ ∣∣ ∣∣ ∣∣
0134 —— 024 —— 124 14 —— 024 —— 034 —— 024 —— 023∣∣ ∣∣ ∣∣ ∣∣ ∣∣

03 —— 13 —— 23 —— 24 —— 134 —— 124 —— 123

M18
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12 —— 02 —— 013 —— 0124∣∣
023

1
—— 13 —— 12 —— 02 —— 013 —— 014 —— 024 —— 124∣∣ ∣∣ ∣∣ ∣∣ ∣∣

024 —— 14 012 03 —— 13∣∣ ∣∣ ∣∣
034 —— 134 —— 24 —— 3 02 2∣∣ ∣∣
024 —— 14 1∣∣ ∣∣
023 —— 13 —— 12 —— 02 —— 013 —— 014 —— 024 —— 124∣∣ ∣∣ ∣∣ ∣∣

23 —— 13 —— 03 03 —— 13∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 —— 14 —— 04 02 2∣∣ ∣∣
34 —— 24 —— 14 —— 04 12 1∣∣ ∣∣ ∣∣ ∣∣

23 —— 13 —— 03 —— 02 —— 01∣∣ ∣∣
12 —— 02 —— 01

M19

1 —— 02 —— 03 —— 04∣∣ ∣∣ ∣∣
2 —— 13 —— 03 13 —— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣
3 14 —— 04 2 24∣∣ ∣∣ ∣∣ ∣∣
4 24 —— 3 3 3∣∣ ∣∣ ∣∣

34 4 2∣∣
0 —— 1

013 —— 02 —— 03 —— 04∣∣ ∣∣ ∣∣ ∣∣
014 12 —— 13 —— 14∣∣ ∣∣ ∣∣
024 —— 124 2 24∣∣ ∣∣ ∣∣
03 —— 13 3∣∣ ∣∣ ∣∣
02 2 2∣∣ ∣∣
1 0 —— 1

M20 M21
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013 —— 02 —— 12∣∣ ∣∣
0124 12 —— 13 —— 14∣∣ ∣∣ ∣∣

02 023 —— 024∣∣ ∣∣
012 —— 013 —— 014 034∣∣ ∣∣
02 —— 03 —— 024 134∣∣ ∣∣ ∣∣ ∣∣
1 13 —— 124 24∣∣ ∣∣

2 3

013 —— 02 —— 12∣∣ ∣∣
0124 12 —— 13 —— 14∣∣ ∣∣ ∣∣

02 023 —— 024 —— 034∣∣ ∣∣ ∣∣
012 —— 013 —— 014 034

1
134∣∣ ∣∣ ∣∣

02 —— 03 —— 024 134 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣
1 13 —— 124 24 3

2∣∣ ∣∣
2 3

1

M22 M23

013
1

—— 02 —— 12 12 —— 02 —— 013∣∣ ∣∣ ∣∣ ∣∣
0124

1
12 —— 13 —— 14 14 —— 13 —— 12 0124∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
02 023 —— 024 —— 034 —— 024 —— 023 02∣∣ ∣∣ ∣∣

012 —— 013 —— 014 134 014 —— 013 —— 012∣∣ ∣∣ ∣∣
02 —— 03 —— 024 24 024 —— 03 —— 02∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
1 13 —— 124 3 124 —— 13 1∣∣ ∣∣

2 2

M24



Left Cells in Affine Weyl Group 35

123 —— 124 —— 134 —— 24 —— 23 —— 13 —— 124 —— 134 —— 234∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
023 —— 024 —— 034 —— 024 —— 023 03 —— 024 —— 034∣∣ ∣∣ ∣∣ ∣∣ ∣∣

012 —— 013 —— 014 14 —— 13 013 —— 014∣∣ ∣∣
12 —— 02∣∣ ∣∣

23 —— 13 —— 03∣∣ ∣∣ ∣∣
23 —— 24 —— 34 —— 24 —— 14 —— 04∣∣ ∣∣

12 —— 13 —— 14∣∣ ∣∣ ∣∣
02 —— 03 —— 04∣∣
01

M25

123 —— 124 —— 134 —— 24 —— 23 —— 13 —— 124 —— 134 —— 234∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
023 —— 024 —— 034 —— 024 —— 023 03 —— 024 —— 034∣∣ ∣∣ ∣∣ ∣∣ ∣∣

012 —— 013 —— 014 14 —— 13 013 —— 014∣∣ ∣∣ ∣∣
012 12 —— 02∣∣ ∣∣

23 —— 13 —— 03∣∣ ∣∣ ∣∣
23 —— 24 —— 34 —— 24 —— 14 —— 04∣∣ ∣∣

12 —— 13 —— 14∣∣ ∣∣ ∣∣
02 —— 03 —— 04∣∣ ∣∣
01 02 —— 12∣∣

01

M26
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§5. On a conjecture.

5.1 I proposed the following conjecture in the paper [22, Conjecture 2.3].

Conjecture. Let W be either a Weyl group or an affine Weyl group. For x, y ∈ W ,

x ∼
L

y if and only if R(x) = R(y) and Σ(x) = Σ(y).

5.2 In my paper [24], I verified this conjecture but with the following cases in Wa(F̃4)

excluded: a(x) ∈ Θ = {6, 7, 9, 10, 13, 16} and R(x) = R(y) ∈ {{0, 1, 2}, {3, 4}}. Now

we can deal with these exceptional cases. By Theorem 2.1, we need only to show the

direction “ ⇐= ”: if R(x) = R(y) and Σ(x) = Σ(y) then x ∼
L

y. For the sake of definity,

we may assume `(x) ≤ `(y) without loss of generality.

5.3 Let us assume a(x) ∈ Θ, Σ(x) = Σ(y) and R(x) = R(y). By the condition

Σ(x) = Σ(y) (which is non-empty by our assumption), we have that x ∼
LR

y and that

the elements x and y have the same generalized τ -invariant. We may assume that both

x and y belong to the l.c.r. set of Ω(x) chosen in §4 by replacing x and y by some

elements in Γ(x) and Γ(y) respectively if necessary. Hence we have y ∈ M(x). We

argue by contrary. Assume x �
L

y. If R(x) = R(y) = {012}, then by the results of §4,

we have a(x) = a(y) = 16, that the graph M(x) is isomorphic to M18 or M26, and that

x and y are the vertices labelled by 012
1

and 012
2

respectively in M(x). It can be

shown that Γ(y · 4) ∈ Σ(y) \ Σ(x). If R(x) = R(y) = {34}, then one of the following

cases must occur.

(1) The graph M(x) is isomorphic to M15, and x ∈ Ω(w0134) ∪ Ω(w234);

(2) The graph M(x) is isomorphic to M16, and x ∈ Ω(w234);

(3) The graph M(x) is isomorphic to M13, and x ∈ Ω(w234);

(4) The graph M(x) is isomorphic to Mop
18 , and a(x) is equal to 10, 13 or 16.

It can be shown that Γ(y · 1) ∈ Σ(y) \ Σ(x) in the cases (1), (3) and (4), and that

Γ(y · 0) ∈ Σ(y) \Σ(x) in the case (2). Thus in all the above cases, we have Σ(x) 6= Σ(y),

a contradiction. Therefore Conjecture 5.1 is verified without any exception.



Left Cells in Affine Weyl Group 37

References

1. T. Asai et al., Open problems in algebraic groups, Proc. Twelfth International Sym-

posium, Tohoku Univ., Japan (1983), 14.

2. R. Bédard:, Cells for two Coxeter groups, Comm. in Alg. 14(7) (1986), 1253–1286.

3. D. Barbasch and D. Vogan, Primitive ideals and Orbital integrals in complex classical

groups, Math. Ann. 259 (1982), 153-199.

4. D. Barbasch and D. Vogan, Primitive ideals and Orbital integrals in complex excep-

tional groups, J. Algebra 80 (1983), 350-382.

5. R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Charac-

ters, Wiley Series in Pure and Applied Mathematics, John Wiley, London, 1985.

6. Chen Chengdong, Two-sided cells in affine Weyl groups, Northeastern Math. J. 6

(1990), 425–441.

7. Du Jie:, The decomposition into cells of the affine Weyl group of type B̃3, Comm.

in Algebra 16(7) (1988), 1383–1409.

8. D. Kazhdan & G. Lusztig:, Representations of Coxeter groups and Hecke algebras,

Invent. Math. 53 (1979), 165–184.

9. G. Lusztig:, Some examples in squar integrable representations of semisimple p-adic

groups, Trans. of the AMS 277 (1983), 623–653.

10. G. Lusztig, Characters of Reductive Groups over a Finite Field, Ann. Math. Studies

107, Princeton University Press, 1984.

11. G. Lusztig:, Cells in affine Weyl groups, in “ Algebraic Groups and Related Topics ”,

pp255-287,, Advanced Studies in Pure Math., Kinokunia and North Holland, 1985.

12. G. Lusztig:, Cells in affine Weyl groups, II, J. Alg. 109 (1987), 536–548.

13. G. Lusztig:, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Sect. IA.

Math. (2)36 (1989), 297–328.

14. G. Lusztig & Xi Nan-hua, Canonical left cells in affine Weyl groups, Adv. in Math.

72 (1988), 284-288.

15. Rui Hebing, Left cells in affine Weyl groups of types other than Ãn and G̃2, J.
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