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Abstract. We find a representative set of left cells of the affine Weyl group Wa of

type eC4 as well as its left cell graphs by applying an algorithm. This algorithm was
designed in my previous paper [22]. It is reformulated and improved in more efficient
form here. These representatives of left cells are presented as the vertices of so called
essential graphs so that the generalized τ -invariants of left cells of Wa are actually
described explicitly, the latter almost characterize the left cells of Wa. Some comments
and conjectures are proposed on cells of affine Weyl groups, mostly for the case of type
eC`, ` ≥ 2.

Since it was designed in [22], an algorithm of finding a representative set of left

cells ( an l.c.r. set for brevity) of a certain Coxeter group (W,S) has been applied

extensively to Weyl groups and affine Weyl groups (see [8; 16; 22; 23; 26; 27]). In

the present paper, we shall reformulate and improve this algorithm so that it can be

performed more efficiently. We introduce three processes A, B and C instead of only

two processes A and B in the algorithm, by which one can avoid the complicated

calculation of Kazhdan-Lusztig polynomials to a great extent. On the other hand, we

introduce two important concepts: an essential graph and a left cell graph associated
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to an element of W . The left cell graphs exhibit the generalized τ -invariants for all

the left cells of W . The essential graphs can do more, which provide an l.c.r. set of

W in addition. Note that to an element of W , the associated essential graph does

not always exist in general. Fortunately, such an obscurity does not occur in the case

of the affine Weyl group Wa(C̃4) of type C̃4. By the results of Lusztig and Bédard

(see [12; 2]), this is still the case for the affine Weyl groups Wa(C̃2) and Wa(C̃3).

Moreover, by combining with the results of Lusztig and Bédard (see §6.), we shall

see that for k = 2, 3, 4, all the left cells of Wa(C̃k) not in the lowest two-sided cell

(this can be checked easily from the alcove form of any of their elements) can be

characterized only by their generalized τ -invariants. Since the left cells of any affine

Weyl group in the lowest two-sided cell are characterized by their sign types (see [19;

20] for the definition of a sign type and for this result), all the left cells of Wa(C̃k),

k = 2, 3, 4, are described completely. I expect that these phenomena should be in

common for all the affine Weyl groups Wa(C̃`), ` ≥ 2.

Some more comments and conjectures are proposed on cells of affine Weyl groups,

mostly for the case of type C̃`, ` ≥ 2. This includes the combinatorial description of

the Lusztig map relating the two-sided cells of Wa(C̃`) to the unipotent conjugacy

classes of the corresponding algebraic group, and the group-theoretical interpretation

for the number of left cells in some two-sided cells of some affine Weyl groups Wa,

which involves both Lusztig map and Bala-Carter correspondence among two-sided

cells of an affine Weyl group, unipotent conjugacy classes of the corresponding alge-

braic group G and the G-classes of pairs (L, PL′), where L is a Levi subgroup of G,

PL′ is a distinguished parabolic subgroup of semisimple part L′ of L.

The arrangement of the paper is as follows. In section 1, we collect some results

on the cells of a Coxeter group, in particular of an affine Weyl group and even of the

group Wa(C̃4). We reformulate and improve the algorithm of finding an l.c.r. set in

section 2. Then in section 3, we introduce some results and terminologies needed in

performing the algorithm. Sections 4 and 5 are specially concerning the affine Weyl

group Wa(C̃4). We obtain an l.c.r. set as well as all the left cell graphs for the group

Wa(C̃4) in section 4 and make some comments on the possible generalization of some
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properties of left cells of Wa(C̃4) to the more general groups Wa(C̃`), ` ≥ 2, in section

5. Finally, we put an appendix in §6, where we list all the left cell graphs and state

some known results for the affine Weyl groups Wa(C̃2) and Wa(C̃3).

§1. Some results on cells.

1.1 Let W = (W,S) be a Coxeter group with S its Coxeter generator set. Let ≤
be the Bruhat order on W . For w ∈ W, we denote by `(w) the length of w. Let

A = Z[u] be the ring of polynomials in an indeterminate u with integer coefficients.

For each ordered pair y, w ∈ W, there exists a unique polynomial Py,w ∈ A, called

a Kazhdan-Lusztig polynomial, which satisfies the conditions: Py,w = 0 if y 
 w,

Pw,w = 1, and deg Py,w ≤ (1/2)(`(w) − `(y) − 1) if y < w. For y < w in W , let

µ(w, y) = µ(y, w) be the coefficient of u(1/2)(`(w)−`(y)−1) in Py,w. We denote y—–w

if µ(y, w) 6= 0.

Checking the relation y—–w for y, w ∈ W usually involves very complicated com-

putation of Kazhdan-Lusztig polynomials. But it becomes easy in some special case:

if x, y ∈ W satisfy y < x and `(y) = `(x) − 1, then we have y—–x. Another result

concerning this relation will be stated in Proposition 3.3.

1.2 The preorders ≤
L
, ≤

R
, ≤

LR
and the associated equivalence relations ∼

L
,∼
R

, ∼
LR

on W

are defined as in [10]. The equivalence classes of W with respect to ∼
L

( resp. ∼
R

, ∼
LR

) are called left cells ( resp. right cells, two-sided cells ).

1.3 An affine Weyl group Wa is a Coxeter group which can be realized geometrically

as follows. Let G be a connected, adjoint reductive algebraic group over C. We fix

a maximal torus T of G. Let X be the group of characters T −→ C and let Φ ⊂ X

be the set of roots with ∆ = {α1, · · · , α`} a choice of simple root system. Then

E = X ⊗Z R is a euclidean space with an inner product 〈 , 〉 such that the Weyl

group (W0, S0) of G with respect to T acts naturally on E and preserves its inner

product, where S0 is the set of simple reflections si corresponding to the simple roots

αi, 1 ≤ i ≤ `. We denote by N the group of all translations Tλ (λ ∈ X) on E: Tλ

sends x to x + λ,. Then the semidirect product Wa = W0 n N is called an affine

Weyl group. Let K be the dual of the type of G. Then we define the type of Wa by

K̃. Sometimes we denote Wa by Wa(K̃) to indicate its type K̃. There is a canonical
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homomorphism from Wa to W0: w 7→ w̄.

Let −α0 be the highest short root in Φ. We define s0 = sα0T−α0 , where sα0 is

the reflection corresponding to α0. Then the generator set of Wa can be taken as

S = S0 ∪ {s0}.
1.4 The alcove form of an element w ∈ Wa is, by definition, a Φ-tuple (k(w,α))α∈Φ

over Z subject to the following conditions.

(a) k(w,−α) = −k(w,α) for any α ∈ Φ;

(b) k(e, α) = 0 for any α ∈ Φ, where e is the identity element of Wa;

(c) If w′ = wsi ( 0 ≤ i ≤ ` ), then

k(w′, α) = k(w, (α)s̄i) + ε(α, i)

with

ε(α, i) =





0 if α 6= ±αi;
−1 if α = αi;
1 if α = −αi,

where s̄i = si if 1 ≤ i ≤ `, and s̄0 = sα0 ( see [18, Proposition 4.2] ).

By condition (a), we can also denote the alcove form of w ∈ Wa by a Φ+-tuple

(k(w, α))α∈Φ+ .

1.5 Condition 1.4, (c) actually defines a set of operators {si | 0 ≤ i ≤ `} on the

alcove forms of elements of Wa:

si : (kα)α∈Φ 7−→ (k(α)s̄i
+ ε(α, i))α∈Φ.

These operators could be described graphically. For example, assume that Wa has

type C̃`, ` ≥ 2, and that the indices of simple roots αi are compatible with the

following Dynkin diagram:

◦—————◦—— · · ·——◦—————◦======⇒◦
1 2 `−2 `−1 `

A root α =
∑`

i=1 aiαi will be denoted in the form (a1, a2, · · · , a`). Let ` = 4. We

arrange the entries of a Φ+-tuple (kα)α∈Φ+ in the following way.
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(1.5.1)

k(1,1,1,0)

k(1,1,0,0) k(0,1,1,0)

k(1,0,0,0) k(0,1,0,0) k(0,0,1,0)

k(1,1,1,1) k(0,1,1,1) k(0,0,1,1) k(0,0,0,1)

k(1,2,2,2) k(0,1,2,2) k(0,0,1,2)

k(1,1,2,2) k(0,1,1,2)

k(1,1,1,2)

Then the actions of si, 0 ≤ i ≤ 4, on a Φ+-tuple

w =

a
b c

d e f
g h i j

k l m
n p

q

are listed as in the following table.

s s0 s1 s2 s3 s4

ws

−q
−n ∗

−k ∗ ∗
−g+1 ∗ ∗ ∗
−d ∗ ∗
−b ∗
−a

c
e a

−d−1 b ∗
h g ∗ ∗
∗ n ∗

l q
p

∗
d f

b −e−1 c
∗ i h ∗

n ∗ p
k m
∗

b
a e

∗ c −f−1
∗ ∗ j i
∗ p ∗

q l
n

q
∗ p

∗ ∗ m
∗ ∗ ∗ −j−1
∗ ∗ f
∗ c

a

where the entries in the ∗ positions remain unchanged.

1.6 To each element x ∈ Wa, we associate two subsets of S as below.

L(x) = {s ∈ S | sx < x} and R(x) = {s ∈ S | xs < x}.

For w, w′ ∈ Wa, we say that w′ is a left extension of w if `(w′) = `(w)+ `(w′w−1).

Then the following results on the alcove form (k(w,α))α∈Φ of an element w ∈ Wa

are known.

Proposition [18, Propositions 4.1, 4.3]. (1) `(w) =
∑

α∈Φ+ |k(w, α)|, where the

notation |x| stands for the absolute value of x;

(2) R(w) = {si | k(w,αi) < 0}.
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(3) w′ is a left extension of w if and only if the inequalities k(w′, α)k(w, α) ≥ 0 and

|k(w′, α)| ≥ |k(w, α)| hold for any α ∈ Φ.

1.7 Lusztig defined a function a : Wa −→ N which satisfies the following properties:

(1) a(z) ≤ ν = |Φ|/2, for any z ∈ Wa, where Φ is the root system associated to Wa

as in 1.3;

(2) x ≤
LR

y =⇒ a(x) ≥ a(y). In particular, x ∼
LR

y =⇒ a(x) = a(y). So we may define

the a-value a(Γ) on a ( left, right or two-sided ) cell Γ of Wa by a(x) for any x ∈ Γ.

(3) a(x) = a(y) and x ≤
L

y ( resp. x ≤
R

y ) =⇒ x ∼
L

y ( resp. x ∼
R

y ).

(4) For any proper subset I of S, let wI be the longest element in the subgroup WI

of Wa generated by I. Then a(wI) = `(wI).

The above properties of function a were shown by Lusztig in his papers [12; 13].

Now we state some more properties of this function, the first two of which are simple

consequences of properties (2), (3) and (4).

Let W(i) = {w ∈ Wa | a(w) = i} for any non-negative integer i. Then by (2), W(i)

is a union of some two-sided cells of Wa.

(5) If W(i) contains an element of the form wI for some I ⊂ S, then {w ∈ W(i) |
R(w) = I} forms a single left cell of Wa.

(6) By the notation x = y · z (x, y, z ∈ Wa), we mean x = yz and `(x) = `(y) + `(z).

In this case, we have x ≤
L

z, x ≤
R

y and hence a(x) ≥ a(y), a(z). In particular, if

I = R(x) ( resp. I = L(x) ), then a(x) ≥ `(wI).

(7) W(i) is a single two-sided cell of Wa if i ∈ {0, 1, ν}. As sets, W(i) (i = 0, 1, ν)

can be described as below. W(0) = {e}, where e is the identity element of W . W(1)

consists of all the non-identity elements of Wa each of which has a unique reduced

expression (see [11]). W(ν) consists of all the elements of Wa which have no zero entry

in their alcove forms (see 1.4). W(ν) can also be described as the lowest two-sided

cell of Wa with respect to the partial order ≤
LR

(see [19; 20]).

(8) Call an element s ∈ S special, if the subgroup of Wa generated by S \ {s} is

isomorphic to W0. Thus the element s0 is always special. When Wa is of type

C̃`, the element s` is the unique special element in S other than s0. It is known

that for any two-sided cell Ω 6= {e} of Wa and any special element s ∈ S, the set
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Ys = {w ∈ Ω | R(w) = {s}} is non-empty and is a single left cell of Wa (see [15]).

1.8 Let G and Wa be as in 1.3. Then the following result of Lusztig is important to

our purpose.

Theorem [14, Theorem 4.8]. There exists a bijection u 7→ c(u) from the set of

unipotent conjugacy classes in G to the set of two-sided cells in Wa. This bijection

satisfies the equation a(c(u)) = dimBu, where u is any element in u, and dim Bu is

the dimension of the variety of Borel subgroups of G containing u.

1.9 Let Wa = Wa(C̃4). Then according to the knowledge of the unipotent classes of

the complex simple algebraic group of type B4, we see from Theorem 1.8 that in Wa,

the set W(i) is non-empty if and only if i ∈ Λ = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 16}. More

precisely, W(i) is a single two-sided cell of Wa if i ∈ {0, 1, 2, 5, 6, 8, 9, 10, 16}, and is a

union of two two-sided cells of Wa if i ∈ {3, 4}.

§2. The algorithm in finding an l.c.r. set.

Here and later, the notation Wa always stands for an affine Weyl group with S its

Coxeter generator set. One of the main purposes of the present paper is to describe

the left cells of the affine Weyl group Wa of type C̃4 by finding its l.c.r. set. We need

an algorithm to do so, which was constructed in my paper [22] and is applicable to

certain family of crystallographic groups including all the Weyl groups and all the

affine Weyl groups. In this section, we shall recall some results of [22]. In particu-

lar, we shall reformulate the algorithm in more suitable form, where the concerned

Coxeter group is always assumed to be Wa. Some comments on the algorithm are

new.

2.1 To each element x ∈ Wa, we associate a set Σ(x) of all left cells Γ of Wa

satisfying the condition that there is some element y ∈ Γ with y—x, R(y) * R(x)

and a(y) = a(x).

Then the following result is known

Theorem [22, Theorem 2.1]. If x ∼
L

y in Wa, then R(x) = R(y) and Σ(x) = Σ(y).

2.2 Say a set Σ of left cells of Wa to be represented by a set K ⊂ Wa if Σ is the set

of all left cells Γ of Wa with Γ ∩K 6= ∅. K is called a representative set for Σ, if K



8 Jian-yi Shi

represents Σ with |K ∩ Γ| = 1 for any Γ ∈ Σ, where the notation |X| stands for the

cardinality of the set X.

The algorithm is based on the following result which is a consequence of Theorem

2.1.

Theorem [22, Theorem 3.1]. Let Ω be a two-sided cell of Wa. Then a non-empty

subset K ⊂ Ω is a representative set of left cells ( an l.c.r. set for short) of Wa in Ω

if K satisfies the following conditions.

(1) x �
L

y for any x 6= y in K;

(2) If an element y ∈ Wa is such that there is some element x ∈ K with y—x,

R(y) * R(x) and a(y) = a(x), then y ∼
L

z for some z ∈ K .

2.3 To each element x ∈ Wa, we denote by M(x) the set of all elements y such that

there are a sequence of elements x0 = x, x1, · · · , xr = y in Wa with some r ≥ 0,

where for every i, 1 ≤ i ≤ r, the conditions x−1
i−1xi ∈ S and R(xi−1)

+
*R(xi) are

satisfied.

2.4 A subset K ⊂ Wa is said to be distinguished if K 6= ∅ and x �
L

y for any x 6= y

in K.

2.5 By [10, 2.3f], we know that the relations y—–x and R(y) * R(x) hold if and only

if one of the following cases occurs.

(a) y−1x ∈ S and R(y)+*R(x);

(b) y = x · s for some s ∈ S with R(y) % R(x);

(c) y < x, y—–x and R(y) % R(x).

According to this fact, we design the following three processes on a non-empty set

P ⊂ Wa.

(A) Find a largest possible subset Q from the set
⋃

x∈P

M(x) with Q distinguished.

(B) To each x ∈ P , find elements y ∈ Wa such that y−1x ∈ S, R(y) % R(x) and

a(y) = a(x), add these elements y on the set P to form a set P ′ and then take a

largest possible subset Q from P ′ with Q distinguished.

(C) To each x ∈ P , find elements y ∈ Wa such that y < x, y—–x, R(y) % R(x) and

a(y) = a(x), add these elements y on the set P to form a set P ′ and then take a



Left Cells in Affine Weyl Group 9

largest possible subset Q from P ′ with Q distinguished.

Note that Processes (B) and (C) put together are amount to Process (B) defined

in [22].

2.6 A subset P of Wa is called A-saturated ( resp. B-saturated, resp. C-saturated ),

if Process (A) (resp. (B), resp. (C) ) on P can’t produce any element z satisfying

z �
L

x for all x ∈ P .

Clearly, a set of the form
⋃

x∈K

M(x) for any K ⊂ Wa is always A-saturated.

It follows from Theorem 2.2 that an l.c.r. set of Wa in a two-sided cell Ω is exactly

a distinguished subset of Ω which is A-, B- and C-saturated. So to get such a set,

we may use the following

2.7 ALGORITHM [22, 3.3].

(1) Find a non-empty subset P of Ω ( Usually we take P to be distinguished for

avoiding unnecessary complication whenever it is possible );

(2) Perform Processes (A), (B) and (C) alternately on P until the resulting distin-

guished set can’t be further enlarged by these processes.

Remark 2.8 (1) An l.c.r. set of Wa in a two-sided cell obtained by the above

algorithm is contained in some right cell.

(2) In general, Process (A) is easier to be performed than Processes (B) and (C).

The only part of Process (A) which may cause some difficulty is to find a largest

distinguished subset in the set
⋃

x∈P

M(x). On the other hand, Process (B) is easier

to be performed than Process (C). In addition of the difficulty of finding a largest

distinguished subset in a given set, the only other difficulty which may occur in

Process (B) is to check whether or not the condition a(y) = a(x) holds. Process

(C) is usually quite difficult to be performed, in particular when the lengths of the

elements x ∈ P are getting larger. This is because checking the relation y—–x may

involve very complicated computation of Kazhdan-Lusztig polynomials. To avoid

such kind of troubles to a great extent, we shall give the first priority to Process

(A) and the second priority to Process (B) in applying Algorithm 2.7. In other

words, in applying Algorithm 2.7, we always first perform Process (A); Process (B)
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is performed only when Process (A) alone can not make any further progress; finally

Process (C) is performed when no progress can be made only by Processes (A) and

(B).

(3) To be simplified, Process (C) can be performed in the following way. To an

element x ∈ P , find the set Ξ(x) of all elements y with y < x, `(x) 6≡ `(y)( mod 2),

R(y) % R(x) and L(y) ⊇ L(x). Then find the set Ξ0(x) of all elements y in Ξ(x)

such that a(y) = a(x) and y �
L

z for any z ∈ P . If Ξ0(x) 6= ∅, then find a maximal

distinguished set Ξ1(x) consisting of all elements y ∈ Ξ0(x) with y—–x and add it to

the set P .

The advantage of the above procedure is that we can reduce the calculation of

Kazhdan-Lusztig polynomials to a great extent. Combining this with the convention

of the priority in applying Algorithm 2.7, sometimes we can even avoid the calculation

of any non-trivial Kazhdan-Lusztig polynomials entirely in practice. The set Ξ0(x)

is empirically always empty in the present case as well as in all the other cases so far

we have dealt with [8; 16; 22; 23; 25; 26; 27]. One might think that Process (C) is

absolutely redundant and should be removed from the algorithm. But I can’t rule it

out in general.

§3. Some results and terminologies needed in performing Algorithm 2.7.

In applying Algorithm 2.7, we need some results which will be provided in the

subsequent discussion. From 1.7, (3) and Theorem 2.1, we have the following result

on a set M(x).

Proposition 3.1. (1) For any x ∈ Wa, the set M(x) is wholly contained in some

right cell of Wa.

(2) If x ∼
L

y in Wa, then M(x) and M(y) represent the same set of left cells of Wa.

3.2 In a Coxeter system (W,S), a sequence of elements of the form

(3.2.1) ys, yst, ysts, . . .︸ ︷︷ ︸
m−1 terms

is called an {s, t}-string ( or just call it a string ) if s, t ∈ S and y ∈ W satisfy the

conditions that the order o(st) of the product st is m and R(y) ∩ {s, t} = ∅.
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It is easily seen that a string is wholly contained in some right cell of W . For

any x ∈ W , we can re-define M(x) to be the minimal set containing x, subject

to the requirement: any string (regarded as a set) meeting M(x) must be wholly

contained in M(x). Suppose that we are given two {s, t}-strings x1, x2, . . . , xm−1

and y1, y2, . . . , ym−1 with o(st) = m. We denote the integers µ(xi, yj) (see 1.1) by

aij for 1 ≤ i, j ≤ m− 1. Then it is known that

Proposition 3.3 [12, 10.4]. In the above setup, the following assertions hold.

(a) When m = 3, we have a12 = a21, a11 = a22;

(b) When m = 4, we have a12 = a21 = a23 = a32, a11 = a33, a13 = a31 and

a22 = a11 + a13.

We have the following result corresponding to this.

Proposition 3.4 [10, Corollary 4.3; 22, Proposition 4.6]. Keep the setup of 3.2.

(1) If m = 3, then

(a) x1 ∼
L

y1 ⇐⇒ x2 ∼
L

y2;

(b) x1 ∼
L

y2 ⇐⇒ x2 ∼
L

y1.

(2) If m = 4, then

(a) x1 ∼
L

y2 ⇐⇒ x2 ∼
L

y1 ⇐⇒ x2 ∼
L

y3 ⇐⇒ x3 ∼
L

y2;

(b) x1 ∼
L

y1 ⇐⇒ x3 ∼
L

y3;

(c) x1 ∼
L

y3 ⇐⇒ x3 ∼
L

y1;

(d) x2 ∼
L

y2 ⇐⇒ either x1 ∼
L

y1 or x1 ∼
L

y3

3.5 Two elements x, y ∈ Wa form a primitive pair, if there exist two sequences of

elements x0 = x, x1, · · · , xr and y0 = y, y1, · · · , yr in Wa such that the following

conditions are satisfied.

(a) xi—–yi for all i, 0 ≤ i ≤ r.

(b) For every i, 1 ≤ i ≤ r, there exist some si, ti ∈ S such that xi−1, xi (and also

yi−1, yi) are two neighboring terms in some {si, ti}-string.

(c) Either R(x) * R(y) and R(yr) * R(xr), or R(y) * R(x) and R(xr) * R(yr)

hold.
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In this case, we have x ∼
R

y by Proposition 3.1.

Assume that x, x′ (and also y, y′) are two neighboring terms in some {s, t}- string

with x—–y and that at least one of x, y is a terminal term of the {s, t}-string con-

taining it. Then by Proposition 3.3, we have x′—–y′. In particular, it is always the

case when o(st) = 3. Thus, if in (b), we have in addition that at least one of xi, yi

is a terminal term of the {si, ti}-string containing it for all i, 0 ≤ i < r, then we can

replace condition (a) by the following weaker one in the definition of a primitive pair:

(a’) x0—–y0.

3.6 In the present paper, by a graph M, it always means that a set M of vertices

together with a set of edges, where each edge is a two-elements subset of M , and

each vertex is labelled by a subset of S.

Let M and M′ be two graphs with their vertex sets M and M ′. They are said

to be isomorphic (note that we call it quasi-isomorphic in [22] owing to the different

definition of a graph), written M ∼= M′, if there exists a bijective map η from the set

M to the set M ′ satisfying the following conditions.

(1) The labelling of w is the same as that of η(w) for any w ∈ M.

(2) For w, z ∈ M , {w, z} is an edge of M if and only if {η(w), η(z)} is an edge

of M′.

This is an equivalence relation on graphs.

3.7 We define a graph M(x) associated to an element x ∈ Wa as follows. Its vertex

set is M(x). Its edge set consists of all two-elements subsets {y, z} ⊂ M(x) with y, z

two neighboring terms of a string. Each vertex y ∈ M(x) is labelled by the set R(y).

Note that unlike the definition given in [22], we do not label the edges of a graph

here. Clearly, for any x ∈ Wa, the graph M(x) is always connected.

A left cell graph associated to an element x ∈ Wa, written ML(x), is by definition

a graph, whose vertex set ML(x) consists of all left cells Γ of Wa with Γ∩M(x) 6= ∅.
Two vertices Γ, Γ′ ∈ ML(x) are joined by an edge, if there are two elements y ∈
M(x) ∩ Γ and y′ ∈ M(x) ∩ Γ′ such that {y, y′} is an edge of M(x). Each vertex Γ

of ML(x) is labelled by the common labelling of elements of M(x) ∩ Γ. This makes

sense by [10, Proposition 2.4]. Clearly, the graph ML(x) is always connected.
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3.8 A subgraph M of M(x) (x ∈ Wa) is said to be essential, if there exists an

isomorphism η from M to ML(x) such that each vertex y of M is contained in the

left cell η(y).

It is easily seen that when a subgraph M of M(x) is essential, its vertex set must

be distinguished. In particular, the graph M(x) itself is essential if and only if its

vertex set M(x) is distinguished. But it should be careful that in general there does

not always exist a subgraph of M(x) which is essential (Some counter-examples could

be found in the two-sided cell W(3) of the affine Weyl group Wa(D̃4) and in W(1) of

Wa(Ã`), ` > 1). However, we shall see that for any x ∈ Wa(C̃4), there always exists

some essential subgraph of M(x) containing x as its vertex.

3.9 By a path in the graph M(x), we mean a sequence of vertices z0, z1, . . . , zt in

M(x) such that {zi−1, zi} is an edge of M(x) for any i, 1 ≤ i ≤ t. Two elements

x, x′ ∈ Wa have the same generalized τ -invariant, if for any path z0 = x, z1, . . . , zt in

the graph M(x), there is a path z′0 = x′, z′1, . . . , z
′
t in M(x′) with R(z′i) = R(zi) for

every i, 0 ≤ i ≤ t, and if the same condition holds when interchanging the roles of x

with x′.

3.10 It may happen that for two elements x, y ∈ Wa with x ∼
L

y, the graphs M(x)

and M(y) are not isomorphic (take x = s0 and y = s1s0 in Wa(C̃4) for example).

But we have the following result.

Proposition. (a) The elements in the same left cell of Wa have the same generalized

τ -invariant.

(b) If x ∼
L

y in Wa, then the left cell graphs ML(x) and ML(y) are isomorphic.

The assertion (a) is well-known (see [22, Proposition 4.2]). Then (b) follows from

Theorem 2.1 and Proposition 3.1 readily.

The above result allows us to talk about the generalized τ -invariant of a left cell

of Wa, which is by definition the generalized τ -invariant of any element in this left

cell.

3.11 We state some well-known results concerning the Bruhat order of a Coxeter

system (W,S) which will be useful in performing Process (C) on a set.
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(a) Let y ≤ w in W . Then for any reduced form w = s1s2 · · · sr with si ∈ S, there

is a subsequence i1, i2, · · · , it of 1, 2, · · · , r such that y = si1si2 · · · sit
is a reduced

expression of y.

(b) Suppose J = L(w) for w ∈ W . Then there is some x ∈ W with w = wJ ·x and

`(w) = `(wJ) + `(x).

Now let w ∈ W be with J = L(w). By (b), we can find a reduced expression w =

s1s2 · · · sr, si ∈ S, with wJ = s1s2 · · · st, where t = `(wJ). Denote wj = s1s2 · · · sj

for t ≤ j ≤ r. Let Pj be the set of all elements y with y ≤ wj and L(y) ⊇ J. Then

Pt = {wJ}. Suppose that the set Pk has been found for t ≤ k < r. Then by (a), we

have

Pk+1 = Pk

⋃
{xsk+1 | x ∈ Pk, sk+1 /∈ R(x)}.

This provides a recurrence procedure to find all the elements y with y ≤ w and

L(y) ⊇ L(w) for any given w ∈ W .

§4. l.c.r. sets and left cell graphs in two-sided cells of Wa(C̃4).

4.1 We shall apply Algorithm 2.7 to find an l.c.r. set, together with the corresponding

left cell graphs, in each two-sided cell Ω of Wa = Wa(C̃4). Let us first choose the

starting sets P of the algorithm. From the nature of the algorithm, it is preferred

(but not necessary) to choose the elements x of the form wI , I ⊂ S, for the set P

whenever it is possible. Let Pi be the set of all the elements of W(i) of the form wI .

Then we have the following table.

i Pi i Pi

0 {e} 6 {w123}
1 {s0, s1, s2, s3, s4} 8 {w0134}
2 {w02, w03, w04, w13, w14, w24} 9 {w012, w234}
3 {w024, w12, w23} 10 {w0124, w0234}
4 {w023, w124, w01, w34} 16 {w0123, w1234}
5 {w013, w014, w034, w134}

Each set W(i) (i ∈ {0, 1, 2, 5, 6, 8, 9, 10, 16}) consists of a single two-sided cell. For

such a set W(i), we shall take Pi as the starting set of the algorithm. The set W(3)
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(resp. W(4)) contains two two-sided cells. We shall take a one-element subset of Pi

as the starting set of the algorithm.

For any z ∈ Wa, we denote by Ω(z) (resp. Γ(z)) the two-sided cell (resp. the left

cell) of Wa containing z.

4.2 The case W(0) is trivial and so we shall always assume i > 0 for W(i). In applying

the algorithm, we shall first deal with the two-sided cell W(16), then W(10), W(9), W(8),

W(6), W(5), Ω(w023), W(4) \ Ω(w023), Ω(w12), W(3) \ Ω(w12), W(2) and W(1) in turn,

where X \ Y = {x ∈ X | x /∈ Y } for any sets X, Y .. The reason for taking such an

order is to make it easier in performing Processes (B) and (C), in particular in the

determination of the a-values of the elements occurring in the intermediate steps of

these two processes.

Let ψ be the automorphism of Wa(C̃4) which sends si to s4−i for 0 ≤ i ≤ 4. Then

it is clear that ψ stabilizes the sets W(i), i ≥ 0, and induces a permutation on the set

of left (resp. right, resp. two-sided) cells of Wa in each W(i).

We shall use the notation i for the simple reflection si (0 ≤ i ≤ 4) in the subsequent

discussion.

4.3 W(16) is the lowest two-sided cell of Wa. It is known that an element of Wa

is in W(16) if and only if its alcove form has no zero entry (see 1.7,(7)). It is also

known that there are totally |W0| left cells of Wa in W(16) each of which is associated

to a sign type (see [20, Theorem 1.1 and Corollary 1.2]). Let x = 3210123 · w0124

and y = 1234321 · w0234. Then we see from their alcove forms that the elements

x, y, w0123 and w1234 are all in the set W(16). The graphs M(x), M(y), M(w0123)

and M(w1234) are isomorphic to those in Fig.s 16, 17, 18 and 19, respectively (

Fig.s mentioned here and later will be displayed at the end of this section ). The

vertices x, y, w0123, w1234 are labelled by 0124 , 0234 , 0123 , 1234 respectively in the

corresponding graphs. We see that the sign types associating to the elements of the

union M = M(x)∪M(y)∪M(w0123)∪M(w1234) are all different. This implies that

the above four graphs are all essential and that M is an l.c.r. set of W(16) by the fact

|M | = |W0| = 384.

4.4 W(10) is a single two-sided cell of Wa. The graph M(w0124) is isomorphic to that
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in Fig. 16, which is essential by Proposition 3.10. The element w0234 does not belong

to any left cell of Wa in ML(w0124) since there is no vertex of M(w0124) labelled by

0234 . By the fact ψ(w0124) = w0234, we see that the graph M(w0234) is essential (see

Fig. 17.). The left cell set ML(w0124) is disjoint to ML(w0234) again by Proposition

3.10. By applying Algorithm 2.7, we see that the union M(w0124)∪M(w0234) is A-,

B- and C-saturated and hence forms an l.c.r. set of the two-sided cell W(10).

4.5 W(9) is a single two-sided cell of Wa. There are two vertices of M(w012) labelled

by 012 (resp. 0 ). This fact, together with 1.7, (5),(8) and Propositions 3.4, 3.10,

implies that the graph M(w012) is not essential and that the left cell graph ML(w012)

should be that in Fig. 14 with the vertex Γ(w012) labelled by 012 . Since there is

no vertex of ML(w012) labelled by 234 , the element w234 does not belong to any

left cell of Wa in ML(w012). Since ψ(w012) = w234, we see that the left cell graph

ML(w234) should be displayed as in Fig. 15 with Γ(w234) the vertex labelled by 234 .

By applying Algorithm 2.7, we can show that the union ML(w012)∪ML(w234) is the

left cell set of Wa in the two-sided cell W(9).

4.6 W(8) is a single two-sided cell of Wa. The graph M(w0134) is isomorphic to that

in Fig. 13, which is essential by Proposition 3.10. It can be shown by applying

Algorithm 2.7 that the set M(w0134) forms an l.c.r. set of W(8).

4.7 W(6) is a single two-sided cell of Wa. The graph M(w123) is infinite. By 1.7,

(5),(8), we see that the set {w ∈ M(w123) | R(w) = J} (J = {0}, {4} or {123}) is

contained in some left cell of Wa. On the other hand, let x = w123 · 012024. Then the

graph M(w123) contains the following subgraph.

014∣∣
124 —— 024 —— 124∣∣ ∣∣ ∣∣

23 —— 13 —— 03 —— 13 —— 23∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 —— 14 —— 04 —— 14 —— 24∣∣ ∣∣
3 3

,

where the vertex labelled by 014 is the element x. Let y = x20 and w = x · 21. Then
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y and w are two vertices of this subgraph, both labelled by 124 . We claim y ∼
L

w.

For, we have 210 · w = 12010 · y, denote this element by z. Then z is a common left

extension of w and y (see 1.6). Let x1 = 210 ·w123. Then we see that z ∈ M(x1) and

x−1
1 ∈ M(w123). This implies z ∈ W(6). Hence by 1.7,(3), we have y ∼

L
z ∼

L
w. From

these facts and by Proposition 3.4, we see that the left cell graph ML(w123) should

be that in Fig. 12. Applying Algorithm 2.7, we see that ML(w123) is the left cell set

of Wa in the two-sided cell W(6).

4.8 W(5) is a single two-sided cell of Wa. The graph M(w013) is infinite. By 1.7,(5),

we know that the set {w ∈ M(w013) | R(w) = J} is contained in some left cell

of Wa for J = {0, 1, 3}, {0, 1, 4}, {0, 3, 4} or {1, 3, 4}. By Propositions 3.4 and 3.10,

this fact tells us that the left cell graph ML(w013) should be that in Fig. 10. Since

ψ(w013) = w134, we see that the left cell graph ML(w134) should be that in Fig.

11. The sets ML(w013) and ML(w134) are disjoint by Proposition 3.10. By applying

Algorithm 2.7, we see that ML(w013) ∪ ML(w134) is the left cell set of Wa in the

two-sided cell W(5).

4.9 There are two two-sided cells in W(4).

(a) First consider the two-sided cell Ω(w023). The graph M(w023) is isomorphic

to that in Fig. 6, which is essential by Proposition 3.10. Let y = w023 · 12, y0 = y · 4.
Then y ∈ M(w023), and {y, y0} is a primitive pair (see 3.5). So y0 ∼

R
w023. But we

have R(y0) = {1, 2, 4}. This implies y0 ∼
L

w124 by 1.7,(5). Hence w124 ∈ Ω(w023).

Since ψ(w023) = w124, it implies from the above results that the graph M(w124)

is essential (see Fig. 7). It is seen easily by Proposition 3.10 that the left cell set

ML(w023) is disjoint to ML(w124). By applying Algorithm 2.7, we see that the union

M = M(w124)∪M(w023) is A-, B- and C-saturated. So M forms an l.c.r. set of the

two-sided cell Ω(w023).

(b) We have w01, w34 /∈ Ω(w023) since there is no vertex of M(w023) and M(w124)

labelled by 01 or 34 . This implies Ω(w01) = W(4) \Ω(w023) and w34 ∈ Ω(w01). The

graphs M(w01) and M(w34) are isomorphic to those in Fig.s 8, 9, respectively. By

Proposition 3.10, we see that these two graphs are both essential and that the left

cell set ML(w01) is disjoint to ML(w34). By applying Algorithm 2.7, we see that the
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set M(w01) ∪M(w34) forms an l.c.r. set of the two-sided cell Ω(w01).

4.10 There are two two-sided cells in W(3).

(a) First consider the two-sided cell Ω(w12). The graph M(w12) is essential by

Proposition 3.10 (see Fig. 4). By applying Algorithm 2.7, we see that the set M(w12)

forms an l.c.r. set of Ω(w12).

(b) We have w024 /∈ Ω(w12) since no vertex of the graph M(w12) is labelled by

024 . So Ω(w024) = W(3) \ Ω(w12). The graph M(w024) is essential by Proposition

3.10 (see Fig. 5). The set M(w024) forms an l.c.r. set of the two-sided cell Ω(w024)

by applying Algorithm 2.7.

4.11 By 1.7,(5) and Propositions 3.4, 3.10, we see that the graph M(w02) is not

essential and that the left cell graph ML(w02) is displayed as in Fig. 3. We have by

applying Algorithm 2.7 that the set ML(w02) is the left cell set of Wa in the two-sided

cell W(2).

4.12 The graph M(s0) is infinite. The left cell graph ML(s0) can be obtained easily

from M(s0) by 1.7, (5) (see Fig.2.).

4.13 We have got all the left cell graphs of the two-sided cells W(i), i ∈ {1, 2, 5, 6, 9}.
By a close observation of the related graphs, we see that for any left cell graph

ML(x) of W(i) (i ∈ {1, 2, 5, 6, 9}), there exists some subgraph of the corresponding

graph M(x) which is isomorphic to ML(x) and contains x as its vertex. Therefore we

have obtained an l.c.r. set for any of these two-sided cells of Wa. On the other hand,

we have got an l.c.r. set for each remaining two-sided cell of Wa which is presented

as the vertex set of certain essential graphs of the form M(x). Thus we have actually

got an l.c.r. set and the left cell graphs for any two-sided cell of Wa.

4.14 The following are all the left cell graphs of Wa(C̃4) obtained in the present

section.
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∅
0 4∣∣ ∣∣
1 —— 2 —— 3

3 —— 24 —— 14 —— 04∣∣ ∣∣ ∣∣
4 13 —— 03∣∣

2 02∣∣
0 —— 1

Fig. 1. ML(e) Fig. 2. ML(s0) Fig. 3. ML(w04)
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1 —— 02 —— 12∣∣ ∣∣
2 —— 13 —— 03 —— 13 —— 23∣∣ ∣∣ ∣∣ ∣∣

3 —— 24 —— 14 —— 04 —— 14 —— 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣
4 13 —— 03 —— 13 3∣∣ ∣∣

2 02 2∣∣
0 —— 1

04 —— 03 —— 024∣∣ ∣∣ ∣∣
3 —— 24 —— 14 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣
4 04 —— 03 —— 04∣∣

2 02∣∣
0 —— 1

Fig. 4. ML(w12) Fig. 5. ML(w024)

023 —— 024 —— 03∣∣ ∣∣ ∣∣
12 —— 13 —— 14 —— 13 —— 2∣∣ ∣∣ ∣∣ ∣∣
02 —— 03 —— 04 —— 03 —— 02∣∣ ∣∣
1 0 —— 1

124 —— 024 —— 14∣∣ ∣∣ ∣∣
23 —— 13 —— 03 —— 13 —— 2∣∣ ∣∣ ∣∣ ∣∣
24 —— 14 —— 04 —— 14 —— 24∣∣ ∣∣
3 4 —— 3

Fig. 6. ML(w023) Fig. 7. ML(w124)

23 —— 24 —— 3∣∣ ∣∣
12 —— 13 —— 14 —— 13 —— 2∣∣ ∣∣ ∣∣ ∣∣
02 —— 03 —— 04 —— 03 —— 02∣∣ ∣∣
01 0 —— 1

12 —— 02 —— 1∣∣ ∣∣
23 —— 13 —— 03 —— 13 —— 2∣∣ ∣∣ ∣∣ ∣∣
24 —— 14 —— 04 —— 14 —— 24∣∣ ∣∣
34 4 —— 3

Fig. 8. ML(w01) Fig. 9. ML(w34)
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3∣∣
23 —— 24∣∣ ∣∣

124 —— 13 —— 14∣∣ ∣∣ ∣∣
013 —— 014 —— 024 —— 03 —— 04∣∣
02 023 —— 024 —— 03∣∣ ∣∣ ∣∣ ∣∣
12 —— 13 —— 14 —— 13 —— 2∣∣ ∣∣ ∣∣ ∣∣
02 —— 03 —— 04 —— 03 —— 02∣∣ ∣∣
01 0 —— 1

1∣∣
12 —— 02∣∣ ∣∣

023 —— 13 —— 03∣∣ ∣∣ ∣∣
134 —— 034 —— 024 —— 14 —— 04∣∣
24 124 —— 024 —— 14∣∣ ∣∣ ∣∣ ∣∣
23 —— 13 —— 03 —— 13 —— 2∣∣ ∣∣ ∣∣ ∣∣
24 —— 14 —— 04 —— 14 —— 24∣∣ ∣∣
34 4 —— 3

Fig. 10. ML(w013) Fig. 11. ML(w134)

01 –— 02 —— 03 —— 04 —— 03 —— 02 —— 1 —— 0∣∣ ∣∣ ∣∣ ∣∣
12 —— 13 —— 14 —— 13 —— 2∣∣ ∣∣ ∣∣ ∣∣
02 023 –— 024 –— 03 1∣∣ ∣∣
013 12 –— 02∣∣ ∣∣ ∣∣
014 –— 013 123 –— 124 –— 13 —— 23 023 –— 13 –— 03∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

04 –— 03 –— 024 02 023 –— 024 –— 03 24 024 –— 14 –— 04∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
14 –— 13 –— 124 12 —— 13 —— 14 —— 13 134 –— 034∣∣ ∣∣ ∣∣ ∣∣
24 –— 23 2 134∣∣ ∣∣
3 14 –— 024 –— 124 24∣∣ ∣∣ ∣∣ ∣∣

13 —— 03 —— 13 —— 23∣∣ ∣∣ ∣∣ ∣∣
4 —— 3 —— 24 —— 14 —— 04 —— 14 —— 24 –— 34

Fig. 12. ML(w123)
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01 —— 02 —— 03 —— 04 —— 03 —— 02 —— 1∣∣ ∣∣ ∣∣ ∣∣ ∣∣
23 —— 24 —— 3 12 —— 13 —— 14 —— 13 —— 2 0∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 —— 14 —— 04 02 023——024—— 03∣∣ ∣∣ ∣∣ ∣∣
03 —— 13 —— 03 013∣∣ ∣∣ ∣∣ ∣∣
024——124——024——014∣∣ ∣∣
014 013—— 02∣∣ ∣∣

014 ——013—————————— 02 —— 12∣∣ ∣∣
024 —— 03 —— 04 123——023—— 13∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
124 —— 13 —— 14 124——024—— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
024 ——023——024 13 —— 03 —— 13∣∣ ∣∣ ∣∣ ∣∣
0134 034 23 —— 24 2∣∣ ∣∣ ∣∣

034——134—— 24 134∣∣ ∣∣
024——023——024——034∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 14 134∣∣ ∣∣ ∣∣ ∣∣
04 —— 03 —— 04 24 124——024—— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣
12 —— 02 —— 1 23 —— 13 —— 03 —— 13 —— 2 4∣∣ ∣∣ ∣∣ ∣∣ ∣∣

34 —— 24 —— 14 —— 04 —— 14 —— 24 —— 3

Fig. 13. ML(w0134)
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1∣∣
3 12 –— 02∣∣ ∣∣ ∣∣

01 04——14 –— 24 023–— 13 –— 03∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
02 –— 12 –— 02 –—013 03——13 –—23 134–—034–—024 –— 14 –— 04∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
03 –— 13 –— 023 014–—024–—124 23 –— 24 023–— 13 –— 03∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 –— 14 –—024 013 123–—124 –—13 23 02—— 12 –— 02∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
03 –— 13 –— 03 02 023–—024–— 03 13 –— 03 013 01∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
02 2 12 –— 13 –— 14 –— 13 124–—024–—014∣∣ ∣∣ ∣∣ ∣∣ ∣∣
1——0 2 123–—023 –– 013–—012

Fig. 14. ML(w012)

3∣∣
1 23 –— 24∣∣ ∣∣ ∣∣

34 04——03——02 124–— 13 –— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 –— 23 –— 24 –—134 14——13——12 013–—014–—024 –— 03 –— 04∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
14 –— 13 –—124 034–—024–—023 12——02 124–— 13 –— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 –— 03 –—024 134 123–—023 –—13 12 24——23 –— 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
14 –— 13 –— 14 24 124–—024–— 14 13——14 134 34∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 2 23——13 –— 03——13 023–—024–—034∣∣ ∣∣ ∣∣ ∣∣ ∣∣
3——4 2 123–—124 –– 134–—234

Fig. 15. ML(w234)
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0124 012 01 1∣∣ ∣∣ ∣∣ ∣∣
013 ——023—— 123 –— 023 –— 013 02 —— 03 —— 04 —— 03 –— 02∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
014 ——024—— 124 –— 024 –— 014 12 —— 13 —— 14 —— 13 –— 12∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

03 —— 13 —— 03 013 –— 02 023 –— 024 –— 023∣∣ ∣∣
23 034∣∣ ∣∣
24 ——————————————————134∣∣ ∣∣
23 2 0134 034∣∣ ∣∣ ∣∣ ∣∣

0 13 —— 03 —— 13 024 –— 023 –— 024∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
1 124 –— 024 –— 14 124 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
02 2 123 –— 023 –— 13 024 —— 03 —— 04∣∣ ∣∣ ∣∣ ∣∣
03 —— 13 —— 03 02 —— 12 014∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 —— 14 —— 024 013 02 —— 013 –— 014∣∣ ∣∣ ∣∣ ∣∣ ∣∣
03 —— 13 —— 023 014 –— 024 –— 124 –— 024∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
02 —— 12 —— 02 –— 013 03 —— 13 —— 03∣∣ ∣∣ ∣∣ ∣∣
01 04 —— 14 —— 04∣∣

3 —— 24 —— 23

Fig. 16. ML(w0124) or ML(3210123 · w0124)
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0234 234 34 3∣∣ ∣∣ ∣∣ ∣∣
134 ——124—— 123 –— 124 –— 134 24 —— 14 —— 04 —— 14 –— 24∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
034 ——024—— 023 –— 024 –— 034 23 —— 13 —— 03 —— 13 –— 23∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

14 —— 13 —— 14 134—— 24 124 –— 024 –— 124∣∣ ∣∣
12 014∣∣ ∣∣
02 ——————————————————013∣∣ ∣∣
12 2 0134 014∣∣ ∣∣ ∣∣ ∣∣

4 13 —— 14 —— 13 024 –— 124 –— 024∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
3 023 –— 024 –— 03 023 —— 13 —— 03∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 2 123 –— 124 –— 13 024 —— 14 —— 04∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 14 24 —— 23 034∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
04 —— 03 —— 024 134 24 —— 134 ——034∣∣ ∣∣ ∣∣ ∣∣ ∣∣
14 —— 13 —— 124 034 –— 024 –— 023 –— 024∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
24 —— 23 —— 24 –— 134 14 —— 13 —— 14∣∣ ∣∣ ∣∣ ∣∣
34 04 —— 03 —— 04∣∣

!1 —— 02 —— 12

Fig. 17. ML(w0234) or ML(1234321 · w0234)



26 Jian-yi Shi

1 01 012 0124∣∣ ∣∣ ∣∣ ∣∣
02 —— 03 —— 04 ——03—— 02 013 –— 023 –—123–—023–— 013∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
12 —— 13 —— 14 ——13—— 12 014 –— 024 –—124–—024–— 014∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

023 —— 024 –—023 02 ——013 03 ——13——03∣∣ ∣∣
034 23∣∣ ∣∣
134 ——————————————————24∣∣ ∣∣
034 0134 2 23∣∣ ∣∣ ∣∣ ∣∣

0123 024 –—023–— 024 13 —— 03 ——13∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
0124 14 ——13—— 124 14 –— 024 –—124∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
013 0134 04 ——03—— 024 13 –— 023 –—123∣∣ ∣∣ ∣∣ ∣∣
023 —— 024 —— 023 013–— 014 12∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
123 —— 124 —— 13 02 013 —— 02 —— 12∣∣ ∣∣ ∣∣ ∣∣ ∣∣
023 —— 024 —— 03 12—— 13 —— 14 —— 13∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
013 —— 014 —— 013 ——02 023 –— 024 –— 023∣∣ ∣∣ ∣∣ ∣∣
012 123 –— 124 –— 123∣∣

0234 –— 134 –— 034

Fig. 18. ML(w0123)
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3 34 234 0234∣∣ ∣∣ ∣∣ ∣∣
24 —— 14 —— 04 ——14 –— 24 134–—124–—123–—124–— 134∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
23 —— 13 —— 03 ——13 –— 23 034–—024–—023–—024–— 034∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

124 —— 024 –—124 24 –—134 14——13——14∣∣ ∣∣
014 12∣∣ ∣∣
013 ——————————————————02∣∣ ∣∣
014 0134 2 12∣∣ ∣∣ ∣∣ ∣∣

1234 024 –—124–— 024 13——14——13∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
0234 03 ——13——023 03 –—024–—023∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
134 0134 04 ——14—— 024 13 –—124–—123∣∣ ∣∣ ∣∣ ∣∣
124 —— 024 —— 124 134–— 034 23∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
123 —— 023 —— 13 24 134——24——23∣∣ ∣∣ ∣∣ ∣∣ ∣∣
124 —— 024 —— 14 23—— 13 ——03——13∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣
134 —— 034 —— 134 ——24 124 –—024–—124∣∣ ∣∣ ∣∣ ∣∣
234 123 –—023–—123∣∣

0124–—013–—014

Fig. 19. ML(w1234)

§5. Some comments.

In this section, we shall make some observations and comments on the left cells

of Wa(C̃k), k = 2, 3, 4 by the results we have got so far. Based on these, we shall

further consider the possible generalization to the more general affine Weyl groups.

5.1 Let us start with recalling some concepts and known results. A partition of ` ∈ N
is by definition a sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λr > 0 with

∑r
i=1 λi = `. We
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shall not distinguish between two such sequences which differ only by a string of zeros

at the end. Let Λ2`+1 be the set of all partitions of 2` + 1. Let λ = (λ1, λ2, · · · , λr),

µ = (µ1, µ2, · · · , µt) be in Λ2`+1. We say that µ is dual to λ if for any i ≥ 1, µi is

the number of parts λj , 1 ≤ j ≤ r, with λj ≥ i. We say that λ dominates µ, written

λ ≥ µ, if
∑k

i=1 λi ≥
∑k

i=1 µi for any k ≥ 1. This defines a partial order, called the

natural order, on the set Λ2`+1. Let Λ2`+1 be the set of all partitions in Λ2`+1 each

of whose even parts occurs with even multiplicity. Let G(B`) be the complex adjoint

algebraic group of type B`, ` ≥ 2. Then it is well known that the unipotent conjugacy

classes of G(B`) are parametrized by elements of Λ2`+1 such that if uλ, uµ are two

unipotent classes of G(B`) parametrized by λ, µ, respectively, then uλ ⊆ uµ if and

only if λ ≤ µ, where uµ is the closure of uµ in the variety of unipotent elements of

G(B`) (see [3, Chapter 13]).

5.2 For λ ∈ Λ9, let uλ be the corresponding unipotent conjugacy class of G(B4).

Let Ωλ = c(uλ) be the two-sided cell of Wa = Wa(C̃4) associated to uλ under the

Lusztig map in Theorem 1.8 (see [14]). We denote by nλ the number of left cells

of Wa contained in Ωλ, and by A(λ) = C(u)/C(u)◦ the component group of the

centralizer of an element u ∈ uλ, the latter makes sense since it is independent of

the choice of u up to isomorphism. Then by the result of §4 and by Theorem 1.8, we

have the following table.

λ nλ Ωλ A(λ) λ nλ Ωλ A(λ)
(9) 1 W(0) 1 (3213) 56 W(5) S2

(712) 5 W(1) S2 (32212) 72 W(6) S2

(531) 11 W(2) S2
2 (241) 96 W(8) 1

(522) 24 Ω(w12) 1 (316) 144 W(9) S2

(421) 16 Ω(w024) 1 (2215) 192 W(10) 1
(514) 32 Ω(w01) S2 (19) 384 W(16) 1
(33) 32 Ω(w023) 1

Here the notation (32212) (for example) in the table stands for a partition with five

parts 3,2,2,1,1. Thus the total number of left cells in Wa(C̃4) is 1065.

5.3 Let G be a simple algebraic group of adjoint type over C. According to Bala-

Carter Theorem, there is a bijective map between unipotent conjugacy classes of
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G and G-classes of pairs (L, PL′), where L is a Levi subgroup of G and PL′ is a

distinguished parabolic subgroup of the semisimple part L′ of L. The unipotent class

corresponding to the pair (L,PL′) contains the dense orbit of PL′ on its unipotent

radical (see [3, Theorem 5.9.6]).

For λ ∈ Λ2`+1, let (L,PL′) be the pair associated to the unipotent conjugacy class

uλ of G(B`) and let WL be the Weyl group of L′. Then from the existing datum, we

assert that for any λ ∈ Λ2`+1 with ` = 2, 3, 4 or a(Ωλ) ≤ 4, the number nλ of left cells

of Wa(C̃`) in the two-sided cell Ωλ is equal to |W0|/|WL| if and only if A(λ) is trivial

(see 5.2, §6 and [11; 4; 5; 16]). In fact, the parts of any λ ∈ Λ2`+1 can be listed in

the following way: α1, α1, α2, α2, · · · , αr, αr, 2β1 +1, 2β2 +1, · · · , 2βt +1 with

α1 ≥ α2 ≥ · · · ≥ αr > 0 and β1 > β2 > · · · > βt ≥ 0. In the associated pair (L,PL′)

to uλ, we know that L′ (and hence WL) has type Aα1−1 + · · ·+Aαr−1 +B∑
βi+[t/2],

where [t/2] is the largest integer not exceeding t/2. We know that the group A(λ) is

trivial if and only if λ has exactly one distinct odd part (see [3, Chapter 13]). Thus

the above assertion can be checked easily from the existing datum. I conjecture that

this result holds also for any two-sided cell of Wa(C̃`), ` ≥ 2.

Again by the existing datum, we observe that the analogous result also holds for

the affine Weyl groups of types Ã` (` ≥ 1), B̃3, B̃4, F̃4 and for all the two-sided cells

Ω of the affine Weyl groups of type B̃` (` ≥ 2) with a(Ω) ≤ 4. But it is false for the

affine Weyl groups of types D̃` (` ≥ 4), Ẽ7, Ẽ8 (see [17; 9; 27; 25; 4; 16; 6; 7; 23]).

Note that the above phenomena were predicted implicitly by Lusztig in his con-

jecture on the number of left cells in a two-sided cell of an affine Weyl group (see

[1]).

5.4 It has been shown in [24] that the Lusztig map u −→ c(u) from the set of

unipotent conjugacy classes of G(Bk) (k = 2, 3, 4) to the set of two-sided cells of

Wa(C̃k) is order-preserving: u ⊆ u′ if and only if c(u) ≤
LR

c(u′) (see 1.8, the tables in

5.2 and in §6). For a two-sided cell Ω of Wa, let T (Ω) be the set of all subsets I of S

such that I = L(w) for some w ∈ Ω. Then we have the following fact in the groups

Wa(C̃k) (k = 2, 3, 4): two two-sided cells Ω, Ω′ 6= {e} satisfy the relation Ω ≤
LR

Ω′

if and only if T (Ω) ⊇ T (Ω′). I conjecture that this result holds in any affine Weyl



30 Jian-yi Shi

group. We can say even more for the groups Wa(C̃k), k = 2, 3, 4. Let us introduce

some more notations.

Let S = {s0, s1, · · · , s`} be the Coxeter generator set of the group Wa(C̃`) whose

indices are compatible with the corresponding extended Dynkin diagram ( which is

obtained from the Dynkin diagram in 1.5 by adding one more node labelled by 0 to

the diagram which joins the node labelled by 1 by a double arrowed edge). For any

J ⊂ S, a decomposition J = J1 ∪ J2 ∪ · · · ∪ Jt is called standard, if the following

conditions are satisfied.

(a) Each Ji, 1 ≤ i ≤ t, is not empty and the corresponding Dynkin subdiagram is

connected.

(b) For any pair i, j, 1 ≤ i < j ≤ t, we have Ji∩Jj = ∅ and the Dynkin subdiagram

corresponding to Ji ∪ Jj is not connected.

(c) |J1| ≥ |J2| ≥ · · · ≥ |Jt|.
where we stipulate that a standard decomposition of an empty set is the trivial one.

Now assume that J = J1 ∪ J2 ∪ · · · ∪ Jt is a standard decomposition of a proper

subset J ⊂ S. For any i with Ji ∩ {s0, s`} = ∅, we are given two equal integers

ai1 = ai2 = |Ji| + 1. On the other hand, suppose Jj ∩ {s0, s`} 6= ∅ for some j.

Then we are given an integer aj equal to 2|Jj | + 1 if Jk ∩ {s0, s`} = ∅ for any

k < j, and equal to 2|Jj | if otherwise. We denote by ζ(J) the dual partition of

(λ1, λ2, · · · , λr) ∈ Λ2`+1, where the sequence λ1, λ2, · · · , λr is obtained by arranging

all the numbers ai1, ai2, aj , ∀i, j, in decreasing order, and adding some parts 1’s at

the end whenever it is necessary. It is clear that ζ(J) does not depend on the chosen

standard decomposition of J and so it is well defined. Thus we have defined a map

ζ from the set of all proper subsets of S to the set Λ2`+1. It can be shown that for

any subset K of Λ2`+1, there exists a unique element of Λ2`+1 dominated by all the

elements in K and being maximum with this property. Then the following result can

be checked directly from the existing datum.

Proposition. Let Ω be a two-sided cell of the group Wa(C̃k), k = 2, 3, 4. Let λ(Ω)

be the unique maximal element of Λ2k+1 dominated by all the elements in the set

ζ(T (Ω)) ⊂ Λ2k+1. Then the partition λ(Ω) parametrizes the unipotent class of the
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algebraic group G of type Bk corresponding to Ω under the Lusztig map.

This proposition gives an explicit combinatorial description of the Lusztig map for

the groups Wa(C̃k), k = 2, 3, 4. I conjecture that it remains valid for all the groups

Wa(C̃`), ` ≥ 2.

5.5 Proposition 5.4 encourages us to propose one more conjecture which is concerned

with the relation ∼
LR

on elements of Wa(C̃`). For any w ∈ Wa = Wa(C̃`), ` ≥ 2,

we define a set T (w) = {J ⊂ S | w = x · wJ · y, for some x, y ∈ Wa}. Let λ(w)

be the unique maximal element of Λ2`+1 dominated by all the elements in the set

ζ(T (w)) ⊂ Λ2`+1.

Conjecture. Let x, y ∈ Wa(C̃`). Then x ∼
LR

y if and only if λ(x) = λ(y).

5.6 From the left cell graphs displayed in 4.14, we see that any left cell Γ of Wa(C̃4)

is determined uniquely by its generalized τ -invariant (see 3.9) except for the cases

that there is some (and hence any) element x ∈ Γ such that the graph ML(x) is that

in Fig. 16 or 17. But in these exceptional cases, we have a(Γ) ∈ {10, 16}. Then the

alcove form of any element of Γ could tell us the actual value a(Γ): it is equal to 16

if no entry of the alcove form is zero, or 10 if otherwise (see 17, (7)), and hence the

left cell Γ is determined uniquely. Therefore we have the following

Theorem. Let Γ be a left cell of the affine Weyl group Wa(C̃4). If Γ is not in the

lowest two-sided cell, then it is determined entirely by its generalized τ -invariant.

On the other hand, if Γ is in the lowest two-sided cell, then it is determined by the

corresponding sign type.

An analogous result also holds for the groups Wa(C̃2) and Wa(C̃3) (see §6.). One

might expect that this also hold for all the affine Weyl groups Wa(C̃`), ` ≥ 2.

5.7 By closely observing all its left cell graphs, we have the following result for the

group Wa(C̃4).

Proposition. For any w ∈ Wa(C̃4) not in the lowest two-sided cell, there is a vertex

v with I = R(v) in the graph M(w) such that `(wI) = a(w).

This result, together with the result in 1.7, (7) concerning the lowest two-sided
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cell, make it easier to determine the a-value of any element of the group Wa(C̃4).

Also, by [21, Proposition 5.12], this result enables us to find all the distinguished

involutions of Wa(C̃4) only by successively applying star operations on the elements

wJ , J ⊂ S (see [13; 17] for the definitions of a distinguished involution and a star

operation). It is known that the distinguished involutions play an important role

in the representation theory of Coxeter groups and Hecke algebras and that finding

these elements usually involves very complicated computation of Kazhdan-Lusztig

polynomials. By the results of Lusztig and Bédard (see §6. or [12; 2]), we see

that the above proposition remains valid if we replace the group Wa(C̃4) by Wa(C̃k),

k = 2 or 3. Thus one might further expect the validity of this result for all the groups

Wa(C̃`), ` ≥ 2. Unfortunately, this is not the case. By Theorem 1.8, we see that for

any ` ≥ 5, there always exists some element w ∈ Wa(C̃`) such that a(w) 6= `(wI) for

any I ⊂ S and hence for such an element w, the conclusion of the above proposition

should be false.

5.8 Let ψ be the unique non-trivial automorphism of the affine Weyl group Wa(C̃`)

(` ≥ 2) which preserves the Coxeter generator set S (see 4.2). Let M, N be two

graphs with M,N the corresponding vertex sets ( in the sense of 3.6). We say that

the graph N is opposed (resp. dual) to M, if there is a bijective map φ from the set

M to N satisfying that for any x, y ∈ M ,

(a) R(φ(x)) = S \ R(x) (resp. R(φ(x)) = ψ(R(x))).

(b) {x, y} is an edge of M if and only if {φ(x), φ(y)} is an edge of N.

It is easily seen that if W(i) ⊂ Wa(C̃`) consists of a single two-sided cell and

has only one left cell graph, say ML, then ML must be self-dual. This is the case

for the sets W(i) ⊂ Wa(C̃4) with i ∈ {0, 1, 2, 6, 8} (see Fig.s 1, 2, 3, 12, 13). The

other self-dual left cell graphs of Wa(C̃4) are in Fig.s 4 and 5. All the remaining dis-

played left cell graphs in 4.14 fall into six mutual dual pairs: {ML(w023),ML(w124)},
{ML(w01), ML(w34)}, {ML(w013),ML(w134)}, {ML(w012), ML(w234)}, { Fig. 16,

Fig. 17 } and { Fig. 18, Fig. 19 }.
There is no self-opposed left cell graph in Wa(C̃4). But there are just two pairs of

mutual opposed left cell graphs: { Fig. 16, Fig. 19} and { Fig. 17, Fig. 18 }, where
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all the left cell graphs in the lowest two-sided cell of Wa(C̃4) are involved (The last

statement should hold for any affine Weyl group).

5.9 We see that the automorphism ψ stabilizes each two-sided cell of Wa(C̃4). This

also holds for Wa(C̃2) and Wa(C̃3) (see §6.). As a consequence of the conjectures in

5.4 and 5.5, I expect that this is still the case for the groups Wa(C̃`), ` ≥ 5.

§6. Appendix.

Here we list all the left cell graphs, and some related results due to Lusztig and

Bedard [2; 12] for the affine Weyl groups Wa(C̃2) and Wa(C̃3) (we omit the graph

ML(e) in each case since it is too trivial). Keep the notations as before. The indices of

the related simple reflections are compatible with the corresponding extended Dynkin

diagrams (see 1.5 and 5.4).

6.1 There are four two-sided cells in the group Wa(C̃2), which are W(i), i = 0, 1, 2, 4.

The non-travial left cell graphs of Wa(C̃2) are as below.

0 —— 1 —— 2

02∣∣
0 —— 1 —— 2

0 01∣∣ ∣∣
1 —— 02

2 12∣∣ ∣∣
1 —— 02

ML(s0) ML(w02) ML(w01) ML(w12)

We have the following table.

λ nλ Ωλ A(λ) λ nλ Ωλ A(λ)
(5) 1 W(0) 1 (221) 4 W(2) 1

(312) 3 W(1) S2 (15) 8 W(4) 1

So there are sixteen left cells in Wa(C̃2).

6.2 There are seven two-sided cells in the group Wa(C̃3), which are W(i), i =

0, 1, 2, 3, 4, 5, 9. The non-trivial left cell graphs of Wa(C̃3) are listed as follows.

0 3∣∣ ∣∣
1 —— 2

3 —— 2 —— 13∣∣
0 —— 1 —— 02 —— 03

ML(s0) ML(w02)
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1 3∣∣ ∣∣
12 —— 02 2∣∣ ∣∣ ∣∣

2 —— 13 —— 03 —— 13∣∣
0 —— 1 —— 02

01∣∣
12 —— 02∣∣ ∣∣

2 —— 13 —— 03∣∣
0 —— 1 —— 02

23∣∣
12 —— 13∣∣ ∣∣

1 —— 02 —— 03∣∣
3 —— 2 —— 13

ML(w12) ML(w01) ML(w23)

013 —— 02 —— 12 —— 02 —— 01∣∣ ∣∣ ∣∣
03 —— 13 —— 03∣∣ ∣∣

2 02∣∣
0 —— 1

023 —— 13 —— 12 —— 13 —— 23∣∣ ∣∣ ∣∣
03 —— 02 —— 03∣∣ ∣∣

1 13∣∣
3 —— 2

ML(w013) or ML(21012 · w013) ML(w023) or ML(12321 · w023)

2 —— 13 —— 03 —— 13 —— 23∣∣ ∣∣ ∣∣
12 —— 02 —— 12∣∣ ∣∣

013 13∣∣
123 —— 023

1 —— 02 —— 03 —— 02 —— 01∣∣ ∣∣ ∣∣
12 —— 13 —— 12∣∣ ∣∣

023 02∣∣
012 —— 013

ML(w123) ML(w012)

We have the following table.

λ nλ Ωλ A(λ) λ nλ Ωλ A(λ)
(7) 1 W(0) 1 (314) 18 W(4) S2

(512) 4 W(1) S2 (2213) 24 W(5) 1
(321) 7 W(2) S2 (17) 48 W(9) 1
(322) 12 W(3) 1
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Thus the number of left cells of Wa(C̃3) is 114.
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