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Abstract. Let (W,S) be a Coxeter group with S = ItJ such that J consists

of all universal elements of S and that I generates a finite parabolic subgroup
WI of W with w0 the longest element of WI . We describe all the left cells and

two-sided cells of the weighted Coxeter group (W,S,L) that have non-empty
intersection with J , where the weight function L of (W,S) is in one of the

following cases: (i) max{L(s)|s ∈ J} < min{L(t)|t ∈ I}; (ii) min{L(s)|s ∈
J} ≥ L(w0); (iii) There exists some t ∈ I satisfying L(t) < L(s) for any
s ∈ I−{t} and L takes a constant value LJ on J with LJ in some subintervals

of [1, L(w0) − 1]. The results in the case (iii) are obtained under a certain

assumption on (W,WI).

Lusztig introduced a weighted Coxeter group W = (W,S,L) and the (left, right
and two-sided) cells of W in his book [Lu2], where he expected to extend a number
of results in the equal parameter case (i.e., the weight function L is the length
function of (W,S)) to the unequal parameter case (i.e., L is not constant on S) by
proposing 15 conjectures involving the cells of W . The progresses have been fully
achieved in describing cells for some weighted Coxeter groups (W,S,L), such as

I2(m) (m is either even or infinity), F4, C̃2 and G̃2 (see [Lu2, Ge, Gu]) and have

been partially achieved, such as Bn, C̃n and B̃n (n > 2) with certain special weight
functions (see [Lu1, Bon, MS, Sh2, Sh3]).

In [SY], we describe all the left cells and two-sided cells of the weighted universal
Coxeter group (W,S,L) (i.e., the product st of any s 6= t in S has order o(st)
infinite) with L being arbitrary weight function of (W,S). In the present paper, we
shall extend our results in [SY] to some more general case: S is a disjoint union of
two non-empty subsets I and J , where J := {s ∈ S|o(st) =∞ for any t ∈ S−{s}}
(call J the universal part of S), and the subgroup WI of W generated by I is finite
with w0 the longest element. To avoid a degenerating case, we shall always assume
that the cardinality |I| of I is greater than 1 in the present paper.

We shall describe all the left cells and the two-sided cells of the weighted Coxeter
group (W,S,L) that have non-empty intersection with J . We do it for the weight
function L of (W,S) first in the cases (i): max{L(s)|s ∈ J} < min{L(t)|t ∈ I} and
(ii): min{L(s)|s ∈ J} ≥ L(w0). The main results in these two cases are included
in Theorems 2.2 and 2.11, respectively. Then we spend six sections of the paper
to consider the case (iii): there exists some t ∈ I satisfying L(t) < L(s) for any
s ∈ I − {t} and L takes a constant value LJ on J with LJ in some particular
subintervals of [1, L(w0) − 1]. The main results in this case are Theorems 7.4-7.5.

Key words and phrases. weighted Coxeter group; universal elements; left cells; two-sided cells;

the second largest weight element.
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This is the most technical part in the paper. We reach our goal under a certain
assumption on (W,WI) (i.e., (4.1.1)). The second largest weight element w′0 of WI

plays an important role in our discussion. We deduce some properties of w′0, some
of which are analogous to those of w0 and of independent interest.

The contents of the paper are organized as follows. We collect some necessary
concepts and known results in Section 1. In Section 2, we describe the left and
two-sided cells of (W,S,L) in the cases (i)-(ii). In Section 3, we study the second
largest weight element of WI . We make some degree estimates involving some α-
and h′-polynomials in Section 4. Then in Sections 5-6, we investigate the c-basis
expansions obtained by left multiplication by cx with x ∈ WI ∪ J and study the
relations ∼L, ∼LR in W . Finally, in Section 7, we describe the left cells and two-
sided cells of (W,S,L) intersecting J nontrivially in the case (iii).

1. Preliminaries

1.1. Let Z (resp., N, P) denote the set of integers (resp., non-negative integers,
positive integers). For any i ≤ j in Z, denote by [i, j] the set {i, i+ 1, ..., j} and
denote [1, j] simply by [j].

Let W be a Coxeter group with S its Coxeter generator set. Let ` be the length
function and ≤ the Bruhat-Chevalley order on (W,S). Call L : W → N a weight
function on W if L(xy) = L(x) + L(y) for any x, y ∈ W with `(xy) = `(x) + `(y).
Hence L(s) = L(t) for any s, t ∈ S conjugate in W . Call (W,S,L) a weighted
Coxeter group.

Let A = Z[v, v−1] be the ring of Laurent polynomials in an indeterminate v with
integer coefficients. Denote vw := vL(w) for w ∈ W . We can define the degree of
the elements of A through the following map

deg : A → Z ∪ {−∞}.

For ζ ∈ A, if ζ = 0, then deg(ζ) = −∞; otherwise, deg(ζ) is defined to be the the
integer dζ maximal with respect to the condition that v−dζζ 6∈ Z[v−1] − Z. For
example, deg(v−3 + v−1) = −1 under this definition.

The Iwahori-Hecke algebra H := H(W,S,L) of (W,S,L) is by definition the
associative A-algebra with an A-basis {Tw|w ∈W} as a free A-module, subject to
the multiplication rule:

T 2
s = (vs − v−1

s )Ts + Te for s ∈ S,
TxTy = Txy for x, y ∈W with `(xy) = `(x) + `(y),

(1.1.1)

where e is the identity element of W . For any n ∈ Z, let A≤n :=
⊕

m;m≤n Zvm,

A<n :=
⊕

m;m<n Zvm, H≤n :=
⊕

w∈W A≤nTw andH<n :=
⊕

w∈W A<nTw. Define

a ring involution ¯ : A → A by
∑
aivi =

∑
aiv
−i with i, ai ∈ Z and a ring

involution ¯ : H → H by
∑
awTw =

∑
awT

−1
w−1 with aw ∈ A.

1.2. For any w ∈W , there exists a unique cw ∈ H≤0 satisfying that cw = cw and
cw ≡ Tw( mod H<0). Then {cw | w ∈W} forms an A≤0-basis of H≤0 and an
A-basis of H (see [Lu2, Theorem 5.2]).

For any y, w ∈ W , define py,w ∈ A≤0 by the relation cw =
∑
y∈W py,wTy. Then

py,w = 0 if y 6≤ w, pw,w = 1 and py,w ∈ A<0 if y < w.
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For any w ∈W and s ∈ S, we have

cscw =

{
(vs + v−1

s )cw, if sw < w,

csw +
∑
y;sy<y µ

s
y,wcy if sw > w,

([Lu2, Theorem 6.6])(1.2.1)

with µsy,w ∈ A satisfying µ̄sy,w = µsy,w.

1.3. For any w, x, y ∈W , the notation w = x · y means that w = xy and
`(w) = `(x) + `(y). In this case, call w a left-extension of y and a right-extension
of x. Call w = s1s2 · · · sr with si ∈ S a reduced expression if r = `(w). Define
L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.

For f, g ∈ A and n ∈ Z, write f
mod A≤n
≡ g (resp. f

mod A<n≡ g) if f − g ∈ A≤n
(resp. f − g ∈ A<n). For n = 0, we denote f

mod A<n≡ g simply by f ≡ g.
For z ∈W and α ∈ H, we say z appears in α if cz appears with nonzero coefficient

when we write α in the c-basis.
The notation δ is the Kronecker delta. In particular, for any x, y ∈W ,

δx,y =

{
1 if x = y,

0 if x 6= y.

The following results are known: Let y, w ∈W and s, t ∈ S.
(0) If y ≤ w and s ∈ L(w)−L(y), then sy ≤ w. This is called the lifting property.
(1) If y ≤ w, then deg py,w ≥ L(y)− L(w).
(2) If a reduced expression of y can be obtained from that of w by deleting a

factor s, then py,w = v−1
s (see [Lu2, Section 6]).

(3) If y < w and s ∈ L(w) − L(y), then py,w = v−1
s psy,w. This is an easy

consequence of [Lu2, Proposition 6.3].
(4) Assume sy < y < w < sw. Then µsy,w = µsy,w and

∑
z;y≤z<w;sz<z µ

s
z,wpy,z ≡

vspy,w (see [Lu2, Proposition 6.3]). This implies that degµsy,w ≤ L(s)−min{L(t)|t ∈
S}.

(5) psy,sw = py,w + vspsy,w −
∑
z;sy<z<w;sz<z µ

s
z,wpsy,z if s /∈ L(y) ∪ L(w) (see

[Lu2, the proof of Theorem 6.6]).
(6) If sy < y < w < sw and t ∈ L(w)− L(y) and L(t) ≥ L(s), then µsy,w 6= 0 if

and only if L(t) = L(s) and w = ty (see [Sh1, Proposition 2.6]).
Let J ⊆ S. Denote by WJ the subgroup of W generated by J . Then WJ is also a

Coxeter group with J its Coxeter generator set. We can define the weighted Coxeter
group (WJ , J, L|WJ

), the associated Iwahori-Hecke algebra HJ := H(WJ , J, L|WJ
)

and the polynomials pJx,y ∈ A≤0 and µs,Jx,y ∈ A for x, y ∈WJ and s ∈ J accordingly,
where L|WJ

is the restriction of L to WJ .
Any w ∈W can be written uniquely in the form w = wJw

J with wJ ∈WJ and
wJ the shortest element in the coset WJw.

(7) If y, w ∈ W satisfy wJ = yJ then py,w = pJyJ ,wJ = pyJ ,wJ and µsy,w =

µs,JyJ ,wJ = µsyJ ,wJ (where s ∈ J) whenever they are defined (see [Lu2, Lemma 9.10]).

1.4. Following Lusztig in [Lu2, Subsections 10.1 and 13.1], we set, for y, w ∈W ,

q′y,w =
∑

(−1)npz0,z1pz1,z2 · · · pzn−1,zn ∈ A

summing over all sequences y = z0 < z1 < z2 · · · < zn = w in W . Then q′w,w = 1,
q′y,w ∈ A<0 if y 6= w, and Tw =

∑
y∈W q′y,wcy (see [Lu2, Subsection 10.7]).
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For x, y, z ∈W , define fx,y,z, f
′
x,y,z, hx,y,z, h

′
x,y,z, αx,y,z, βx,y,z ∈ A by

TxTy =
∑
z∈W

fx,y,zTz =
∑
z∈W

f ′x,y,zcz,

cxcy =
∑
z∈W

hx,y,zcz =
∑
z∈W

h′x,y,zTz.

cxTy =
∑
z∈W

αx,y,zTz =
∑
z∈W

βx,y,zcz.

Following [Lu2, Subsection 13.1 (a)-(c)], we have

fx,y,z =
∑
z′

pz,z′f
′
x,y,z′ =

∑
x′,y′

q′x′,xq
′
y′,yh

′
x′,y′,z,(1.4.1)

f ′x,y,z =
∑
z′

q′z,z′fx,y,z′ ,(1.4.2)

hx,y,z =
∑
x′,y′

px′,xpy′,yf
′
x′,y′,z =

∑
z′

q′z,z′h
′
x,y,z′ ,(1.4.3)

h′x,y,z =
∑
x′,y′

px′,xpy′,yfx′,y′,z =
∑
z′

pz,z′hx,y,z′ ,(1.4.4)

hx,y,z = h′x,y,z −
∑
z′>z

hx,y,z′pz,z′ ,(1.4.5)

αx,y,z =
∑
x′

px′,xfx′,y,z,(1.4.6)

βx,y,z =
∑
y′

q′y′,yhx,y′,z.(1.4.7)

The following result can be obtained from definitions and simple induction:

If fx,y,z 6= 0 (resp., f ′x,y,z 6= 0, hx,y,z 6= 0, h′x,y,z 6= 0, αx,y,z 6= 0, βx,y,z 6= 0)(1.4.8)

then deg fx,y,z (resp., deg f ′x,y,z,deg hx,y,z,deg h′x,y,z,degαx,y,z,deg βx,y,z)

≤ min{L(x), L(y)}, and the equality holds if and only if there exists some

I ⊆ S with |WI | <∞ such that either x ∈WI and I ⊆ L(y), or y ∈WI

and I ⊆ R(x). When the equivalent conditions hold, we have either

z = y or z = x.

hx,y,z 6= 0⇒ L(x) ⊆ L(z),R(y) ⊆ R(z), z ≤R x and z ≤L y (see [Lu2]).(1.4.9)

1.5. We say that (W,S,L) is bounded if there exists some N ∈ N such that
deg hx,y,z ≤ N for any x, y, z ∈W (see [Lu2, Subsection 13.2]). We shall assume
(W,S,L) is bounded throughout the rest of the article. In this case, we may
define a function a : W → N such that for any z ∈W , hx,y,z ∈ va(z)Z[v−1] for all

x, y ∈W and hx′,y′,z /∈ va(z)−1Z[v−1] for some x′, y′ ∈W . For any x, y, z ∈W ,
define γx,y,z ∈ Z by the condition
(1.5.1)

hx,y,z = γx,y,z−1va(z) + strictly lower powers of v (see [Lu2, Subsection 13.6]).

The following facts are well known: Let x, y, z ∈W .
(1.5.2) a(e) = 0 and a(z) ≥ min{L(s)|s ∈ S} if z 6= e (see [Lu2, Proposi-

tion 13.7]).
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(1.5.3) a(z) = a(z−1) and γx,y,z = γy−1,x−1,z−1 (see [Lu2, Proposition 13.9]).
(1.5.4) If hx,y,z 6= 0, then L(x) ⊆ L(z) and R(y) ⊆ R(z) (see [Lu2, Lemma 8.6]).

1.6. Let (W,S,L) be a Coxeter system.

Let W be finite with the longest element w0. It is known that conjugation by
w0 on W preserves the length. If there exists some s ∈ S such that L(s) < L(t) for
any t ∈ S−{s}, then w0s = sw0, and w0s has the second largest weight among the
elements of (W,S,L).

In (W,S), call s ∈ S universal if the order of st is infinite for any t ∈ S − {s}.
Let I ⊆ S. For any function ξ on W , the notation ξI stands for the restriction

of ξ to WI . For example, aI(x) for x ∈WI is a(x) computed in terms of WI . If WI

is finite, then for any Γ ⊆WI , define τI,Γ = max{aI(w)|w ∈WI − Γ}.
For any x ∈ W , set Cx = {z ∈ W |z = z′ · x for some z′ ∈ W}, and Ωx = {z ∈

W |z = y1 · x · y2 for y1, y2 ∈W}. For any X ⊆W , set ΩX = ∪x∈XΩx.
In [Lu2, Chapter 14], Lusztig proposed 15 conjectures (P1)-(P15) on (W,S,L),

one of which is
(P7) For any x, y, z ∈W , γx,y,z = γy,z,x.
Denote x ←L y in W , if there exists some s ∈ S such that either x = s · y or

µsx,y 6= 0. Denote x ←R y in W , if x−1 ←L y
−1. Denote x ←LR y in W , if either

x ←L y or x ←R y. Through ←L (resp. ←R, ←LR), the preorder ≤L (resp. ≤R,
≤LR) and the corresponding equivalence relation ∼L (resp. ∼R, ∼LR) in W can
be defined as in [Lu2, Subsection 8.1]. The equivalence classes of W with respect
to ∼L,∼R,∼LR are called left cells, right cells, two-sided cells, respectively.

The following result follows directly by the definition of the relation ∼LR.

Lemma 1.7. Let I ⊆ S and X ⊆ WI . Suppose one of the following conditions is
satisfied.

(1) For any x ∈ X and y ∈W −X, y 6←LR x.
(2) For any x ∈ X and y ∈W −X, x 6←LR y.

The for any x1, x2 ∈ X, x1 ∼L x2 (resp. x1 ∼LR x2) if and only if x1 ∼I,L x2

(resp. x1 ∼I,LR x2), where ∼I,L and ∼I,LR are the relations ∼L and ∼LR defined
in WI .

Lemma 1.8. Let w ∈W , s ∈ S − L(w) and S ′ := {y ∈W |sy < y < w}.
(1) If for any y′ ∈ S ′, deg vspy′,w ≤ 0, then µsy′,w ≡ vspy′,w.

(2) Suppose that S ′ has a unique maximal element y0, and deg(µsy0,wpy,y0 −
vspy,w) ≤ 0 for any y ∈ S ′ − {y0}. Then for y′ ∈ S ′,

µsy′,w ≡

{
vspy′,w if y′ = y0,

vspy′,w − µsy0,wpy′,y0 if y′ 6= y0.

Proof. This follows by 1.3(4) and the induction on `(w)− `(y′) ≥ 1. �

2. Cells of W when L is not necessarily constant on WI

In this section, we assume that S = I t J , and that J consists of universal
elements. We shall describe the left cells and two-sided cells of the weighted Cox-
eter system (W,S,L) intersecting J nontrivially, in the case max{L(s)|s ∈ J} <
min{L(t)|t ∈ I} (Theorem 2.2) and in the case WI is finite and min{L(s)|s ∈ J} >
L(w0), where w0 is the longest element of WI (Theorems 2.11).
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The following fact is obvious: If w ∈W−{e}, then either L(w) ⊆ I or L(w) = {s}
for some s ∈ J . Thus for w ∈W , I ⊆ L(w) implies L(w) = I.

Lemma 2.1. Suppose max{L(s)|s ∈ J} < min{L(t)|t ∈ I}.

(1) Let u ∈WJ and z ∈W satisfy `(uz) = `(u) + `(z) and

max{L(s)|s ∈ J ; s ≤ u} < max{L(t)|t ∈ L(z)}.

Then we have
(a) cucz = cuz.
(b) Let t ∈ L(z) and s ∈ J − L(u) satisfy L(s) = L(t). Define µ1, µ2 ∈ A

by

µ1 = µ̄1 ≡

{
vL(s)pe,u if t = s,

0 if t 6= s,

µ2 =

{
1 if s ∈ L(utz),

0 if s 6∈ L(utz).

(i) If u 6= e then

cscuz = csuz + µ1cz + µ2cutz.

(ii) If u = e and t 6= s, then

cscuz = csz + µ2ctz.

(2) If x ∈WJ and y ∈W −WJ , then x 6←LR y.
(3) For any x, y ∈WJ , we have x ∼L y (resp. x ∼LR y) if and only if x ∼J,L y

(resp. x ∼J,LR y).

Proof. (1) Apply induction on n := `(u) ≥ 0. When n = 0, we only have to
check (b)(ii). But this follows by 1.3 (3) and 1.3 (4). Now assume n > 0.
Write u = r · u′ for some r ∈ J and u′ ∈WJ .

Since u, u′ ∈ WJ and `(uz) = `(u) + `(z), for any u′′ ∈ WJ with
µru′′,u 6= 0, we have `(u′′z) = `(u′′) + `(z), thus cu′′cz = cu′′z by the induc-
tive hypothesis. Also, cu′cz = cu′z following by the inductive hypothesis.
Consequently, crcu′z = crcu′cz. So

∑
z′;rz′<z′<u′z

µrz′,u′zcz′ =

 ∑
u′′;ru′′<u′′<u′

µru′′,u′cu′′

 cz(2.1.1)

=
∑

u′′;ru′′<u′′<u′

µru′′,u′cu′′z.
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Then

cucz(2.1.2)

=

crcu′ − ∑
u′′;ru′′<u′′<u′

µru′′,u′cu′′

 cz (by (1.2.1))

= crcu′z −
∑

u′′;ru′′<u′′<u′

µru′′,u′cu′′z (by the inductive hypothesis for (a))

= cuz +
∑

z′;rz′<z′<u′z

µrz′,u′zcz′ −
∑

u′′;ru′′<u′′<u′

µru′′,u′cu′′z

= cuz. (by (2.1.1))

Thus (a) is true.
Let y ∈ W be with sy < y < uz. If y 6= z, then y < z. This is because

s ∈ L(y) ⊆ J , s 6≤ u ∈WJ , and every element in J is universal. So if t = s,
then by 1.3(4), µsz,uz ≡ vL(s)pz,uz ≡ vL(s)pe,u. If t 6= s, then sz > z.

Now suppose y 6= z. By comparing the coefficients of Ty on both sides
of the equation in (2.1.1), we have

vL(s)py,uz

= vL(s)
∑
x1,x2

px1,upx2,zfx1,x2,y

= vL(s)pe,upy,z + vL(s)
∑

x1,x2;x1 6=e

px1,upx2,zfx1,x2,y.

For any x1 ≤ u and x2 ≤ z with x2 6= e and fx1,x2,y 6= 0, we have tx2 > x2.
If tx2 < x2, then Tx1

Tx2
= Tx1·x2

. We have y = x1 · x2 as fx1,x2,y 6= 0. But
this is not possible as t ∈ L(y), t 6∈ L(x1 · x2) = L(x1). Consequently,

vL(s)py,uz(2.1.3)

= vL(s)pe,upy,z + vL(s)
∑

x1,x2;x1 6=e,tx2>x2

px1,upx2,zfx1,x2,y

= vL(s)pe,upy,z +
∑

x1,x2;x1 6=e,tx2>x2

px1,uptx2,zfx1,x2,y (by 1.3 (3))

≡ vL(s)pe,upy,z +

{
1 if z = tu−1y,

0 if z 6= tu−1y.

If t = s, then by (2.1.3),

vL(s)py,uz − µsy,uzpy,z(2.1.4)

= vL(s)py,uz − vL(s)pe,upy,z

≡

{
1 if z = su−1y,

0 if z 6= su−1y.
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If t 6= s, hs,uz,z = 0 by (1.4.9) and the assumption t ∈ L(z), s ∈ J , and

vL(s)py,uz(2.1.5)

≡ vL(s)pe,upy,z +

{
1 if z = tu−1y,

0 if z 6= tu−1y,

= pe,upty,z +

{
1 if z = tu−1y,

0 if z 6= tu−1y,

≡

{
1 if z = tu−1y,

0 if z 6= tu−1y,

by (2.1.3). So (b) follows by (2.1.4), (2.1.5) and Lemma 1.8.
(2) By (1), we have µrx,y = 0 for any r ∈ J − L(y). This implies x 6←L y.

Similarly, we can show that x 6←R y.
(3) This follows from (2) and Lemma 1.7.

�

Theorem 2.2. If max{L(s)|s ∈ J} < min{L(t)|t ∈ I}, then WJ is a union of left
cells, as well as a union of two-sided cells of W . The left (resp. two-sided) cells of
W in WJ are also left (resp. two-sided) cells of WJ when considered as a Coxeter
group.

Proof. This is a direct result of Lemma 2.1. �

Since J consists of universal elements, the Coxeter group WJ is a universal
Coxeter group. We refer the readers to [SY] for the detailed description for the left
and two-sided cells in any weighted universal Coxter groups.

Lemma 2.3. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0). Then for any u ∈WI and w ∈W with L(w) ⊆ J ,

cucw =

{
cuw + csw if u = w0 and L(w) = {s} and L(sw) = I and L(s) = L(w0),

cuw otherwise.

Proof. We have uw = u ·w by our assumption. When w = e, the result is obvious.
Now assume w > e. Then L(w) = {s} for some s ∈ J by the assumption L(w) ⊆ J .
Write

cucw = cuw +
∑
z<uw

hu,w,zcz.(2.3.1)

For any z ∈ W with z < uw, by comparing the coefficients of Tz on both sides
of (2.3.1), we get

hu,w,z =
∑

x1≤u,x2≤w

px1,upx2,wfx1,x2,z −
∑

z<z′′<uw

hu,w,z′′pz,z′′ − pz,uw.

So

hu,w,z ≡
∑

x1≤u,x2≤w

px1,upx2,wfx1,x2,z −
∑

z<z′′<uw

hu,w,z′′pz,z′′ .(2.3.2)

If for all z < uw in W ,

deg
∑

x1≤u,x2≤w

px1,upx2,wfx1,x2,z ≤ 0,(2.3.3)
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then we will have

hu,w,z ≡
∑

x1≤u,x2≤w

px1,upx2,wfx1,x2,z,(2.3.4)

for all z ∈W with z < uw, following by (2.3.3) and induction on `(uw)− `(z) > 0.
Now let z′ ∈ W satisfy z′ < uw. If

∑
x1≤u,x2≤w px1,upx2,wfx1,x2,z′ 6≡ 0, then

there exist some x1 ≤ u and x2 ≤ w with px1,upx2,wfx1,x2,z′ 6≡ 0. In this case, we
claim that s 6∈ L(x2). For otherwise, since s ∈ L(x2) is universal and x1 ∈ WI , we
have x1x2 = x1 · x2 and hence px1,upx2,wfx1,x2,z′ ≡ 0 by the assumption z′ < uw,
a contradiction. The claim is proved. Then

px1,upx2,wfx1,x2,z′ = v−L(s)px1,upsx2,wfx1,x2,z′ .(2.3.5)

by 1.3 (3). Since x1 ≤ u in WI , we see by (1.4.8) that deg fx1,x2,z′ ≤ L(w0), and the
equality holds if and only if x1 = u = w0 and I ⊆ L(x2) and x2 = z′. This implies
by the assumption L(s) ≥ L(w0), (1.4.8) and (2.3.5) that px1,upx2,wfx1,x2,z′ 6≡ 0 if
and only if L(s) = L(w0), x1 = u = w0, w = sx2 = sz′ and I ⊆ L(z′). When the
equivalent conditions hold, we have px1,upx2,wfx1,x2,z′ ≡ 1 by (2.3.5). So (2.3.3) is
proved and (2.3.4) holds. We have

hu,w,z′ =

{
1 if z = sw and u = w0 and L(w) = {s} and L(sw) = I and L(s) = L(w0),

0 otherwise.

The result follows.
�

Corollary 2.4. Suppose that WI is finite with w0 the longest element and that
min{L(s)|s ∈ J} ≥ L(w0). Let u ∈ WI − {w0}, w ∈ W , s ∈ J and t ∈ I − L(u)
satisfy `(uw) = `(u) + `(w) and L(w) ⊆ {s}. Set

ε =

{
1 L(w) = {s}, tu = w0, I ⊆ L(sw) and L(s) = L(w0),

0 otherwise.

Then

ctcuw = ctuw + εcsw +
∑

u′;tu′<u

µtu′,ucu′w.(2.4.1)

Proof. We have

ctcuw = ctcucw

=

ctu +
∑

u′;tu′<u′<u

µtu′,ucu′

 cw

= ctucw +
∑

u′;tu′<u′<u

µtu′,ucu′w

= ctuw + εcsw +
∑

u′;tu′<u′<u

µtu′,ucu′w.

where the last equality follows by Lemma 2.3. �

For any n > n′ in N, we state a condition X(n,n’) condition on (W,S) with
S = I t J and J consisting of universal elements.
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X(n,n’) WI is finite with w0 the longest element, and
min{L(s)|s ∈ J} ≥ L(w0). For any x ∈W with `(x) = n, if x = x1 · s · x2 with
s ∈ J , x1, x2 ∈W , `(x1) = n′ and one of the following conditions (1)-(2) holds:

(1) x1 ∈WI and L(x1) < L(s),
(2) x1 6∈WI and L(s) > max{L(s′)|s′ ∈ J, s′ ≤ x1},

then cx1
csx2

= cx.
We will prove that the condition X(n,n’) holds on (W,S) for any n > n′ in N.

But at the moment, it is only an assumption for the proof of some other facts.

Lemma 2.5. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0). Let w ∈ W and s ∈ J − L(w). Assume s ≤ w.
Write w = x · s · z for some x, z ∈W with s 6≤ x.

(1) If I ⊆ L(x) and L(w0) = L(s), then

cscw =

{
csw + csz if x = w0,

csw if x 6= w0.

(2) Suppose that X(n,n’) holds on W for any n′ < n in N whenever n ≤ `(w),
and that x = x1 · s′ · x2 for some s′ ∈ J with L(s′) ≥ L(s), where either
x1 ∈ WI with L(x1) < L(s′) or x1 6∈ WI with L(s′) > max{L(s′′)|s′′ ∈
J, s′′ ≤ x1}. Then

cscw =

{
csw + csz if L(s) = L(s′), x2 = x−1

1 ,

csw otherwise.

Proof. (1) Since I ⊆ L(x), we have L(x) = I. Write x = w0 · x′ for some
x′ ∈ W . Then s 6≤ x′ as s 6≤ x. Let y ∈ W satisfy sy < y < w. Then
L(y) = {s} as s is universal. By 1.3(3) and the fact L(s) = L(w0), we have

vL(s)py,w = vL(s)−L(w0)pw0y,w ≡

{
1 if w = w0y,

0 if w 6= w0y.

Since sy < y = w0w = x′ · s · z, we have x′ = e as s is universal. So by

Lemma 1.8, we have µsy,w =

{
1 if x = w0,

0 if x 6= w0.
The result follows.

(2) Since X(n,n’) holds for any n′ < n whenever n ≤ `(w), we have

cx1
cs′x2sz = cw.(2.5.1)

By comparing the coefficients of Ty on both sides of (2.5.1), we get

py,w =
∑

y1≤x1,y2≤s′x2sz

py1,x1
py2,s′x2szfy1,y2,y,(2.5.2)

for any sy < y < w in W . For such y, the relations y1 ≤ x1 and y2 ≤ s′x2sz
and fy1,y2,y 6= 0 imply that y2 = y−1

1 · y and fy1,y2,y = 1 since s 6≤ y1 and
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s ∈ L(y) is universal. By (2.5.2) and the assumption L(s′) ≥ L(s), we get

vL(s)py,w = vL(s)
∑
y1≤x1

py1,x1
py−1

1 y,s′x2sz

= vL(s)−L(s′)
∑
y1≤x1

py1,x1ps′y−1
1 y,s′x2sz

.

≡

{
1 if L(s) = L(s′), x2 = x−1

1 , y = sz,

0 otherwise.

So the result follows from Lemma 1.8.
�

Lemma 2.6. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0). Let s ∈ J and w ∈ W satisfy sw > w ≥ s. Let
n = `(w). Write w = x · s · z for x, z ∈W with s 6≤ x. Suppose that X(n,n’) holds
on W for any n′ < n in N whenever n ≤ `(w). If either x ∈ WI with L(s) > L(x)
or x 6∈WI with L(s) > max{L(s′)|s′ ∈ J, s′ < x}, then

cscw =

{
csw + µ1csz + cxz if `(xz) = `(z)− `(x) and s ∈ L(xz),

csw + µ1csz otherwise,

where µ1 ∈ A is given by µ1 = µ̄1 ≡ vL(s)pe,x.

Proof. By 1.3 (4) and (7),

µssz,xsz ≡ vL(s)psz,xsz = vL(s)pe,x.(2.6.1)

By X(`(w), `(x)), we have

cxcsz = cw.(2.6.2)

Let y ∈W satisfy sy < y < w and y 6= sz. Then y < sz as s 6≤ x and s is universal.
By comparing the coefficients of Ty on both sides of (2.6.2), we get

py,w =
∑

y1≤x,y2≤sz

py1,xpy2,szfy1,y2,y.(2.6.3)

So we see by (2.6.1) and (2.6.3) and the equation w = x · s · z that

vL(s)py,xsz − µssz,xszpy,sz ≡
∑

e<y1≤x,y2≤sz

vL(s)py1,xpy2,szfy1,y2,y(2.6.4)

=
∑

e<y1≤x

vL(s)py1,xpy−1
1 y,sz

=
∑

e<y1≤x

py1,xpsy−1
1 y,sz

≡

{
1 if y = xz,

0 if y 6= xz,

where we use the observation that if s ∈ L(y) and s 6≤ y1 and fy1,y2,y 6= 0 then
y1y2 = y and `(y) = `(y2) − `(y1) and fy1,y2,y = 1. So our result follows from
(2.6.1), (2.6.4) and Lemma 1.8. �

Lemma 2.7. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0). Then X(n,n’) holds on W for any n > n′ in N.
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Proof. We only have to consider the case when n′ > 0. Let x = x1 · s · x2 for
some x1, x2 ∈ W and s ∈ J with `(x) = n and `(x1) = n′. When x1 ∈ WI and
L(x1) < L(s), we have cx1csx2 = cx by Lemma 2.3 with x1, sx2 in the places of u,w
respectively. Now assume that x1 6∈WI and that L(s) > max{L(s′)|s′ ∈ J, s′ ≤ x1}.
We shall prove cx1

csx2
= cx by induction first on n ≥ 2 and then on n′, 1 ≤ n′ < n.

When n = 2, we have `(x1) = n′ = 1 and `(x2) = 0, the result is obvious. Now
assume n > 2. As x1 6∈ WI , we can write x1 uniquely as x1 = x11 · s′ · x12 for
x11 ∈WI , x12 ∈W and s′ ∈ J .

By the inductive hypothesis, we see that X(m,m’) and X(n,n”) hold on W for
any m′ < m < n and n′′ < min{n, n′} in P. We are going to prove X(n,n’) on W .

First assume that x11 = w0. Write x′ = s′x12. By Lemma 2.3, if there exists
some s′′ ∈ J∩L(x′) with I ⊆ L(s′′x′) and L(s′′) = L(w0), then cw0

cx′ = cw0x′+cs′′x′

and cw0cx′sx2 = cw0x′sx2 + cs′′xsx2 . This implies that

cx1
csx2

= (cw0
cx′ − cz)csx2

= cw0
cx′sx2

− czsx2

= cw0x′sx2
= cx,

by the inductive hypothesis. If there is no such s′′ in J ∩ L(x′), then we see by
Lemma 2.3 that cw0

cx′ = cw0x′ and cw0
cx′sx2

= cw0x′sx2
, so

cx1
csx2

= cw0
cx′csx2

= cw0
cx′sx2

= cw0x′sx2
= cx,

by the inductive hypothesis.
Now assume that x11 6= w0. Then L(x11) < L(s′). We have cx11cs′x12 = cx1

and cx11
cs′x12sx2

= cx by Lemma 2.3. If x11 > e, then cs′x12
csx2

= cs′x12sx2
by

the inductive hypothesis, and the result follows. If x11 = e, then x1 = s′x12 where
s′ ∈ J and L(s′) < L(s).

Let E1 = {z1 ∈ W |s′z1 < z1 < x12, µ
s′

z1,x12
6= 0}, and E2 = {z2 ∈ W |s′z2 < z2 <

x12sx2, µ
s′

z2,x12sx2
6= 0}. We claim that

z1 7→ z1sx2 is a bijective map from the set E1 to E2(2.7.1)

and satisfies µs
′

z1,x1
= µs

′

z1sx2,x12sx2
and cz1csx2

= cz1sx2
.

If s′ 6≤ x12, then cs′cx12
= cs′x12

. By Lemma 2.5(2), cs′cx12sx2
= cs′x12sx2

. So

(2.7.1) follows. If s′ ≤ x12, then we can write x12 = x
(1)
12 · s′ ·x

(2)
12 with x

(1)
12 , x

(2)
12 and

s′ 6≤ x(1)
12 . If

(1) L(x
(1)
12 ) = I, or

(2) L(x
(1)
12 ) 6= I and max{L(s′′)|s′′ ∈ J, s′′ ≤ x(1)

12 } ≥ L(s′), or

(3) L(x
(1)
12 ) 6= I and max{L(s′′)|s′′ ∈ J, s′′ ≤ x(1)

12 } < L(s′),

then we can apply

(1) Lemma 2.5(1), or
(2) Lemma 2.5(2), or
(3) Lemma 2.6

respectively, to obtain (2.7.1).
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Hence we have

cx1csx2 = (cs′cx12 −
∑
z1∈E1

µs
′

z1,x12
cz1)csx2

= cs′cx12csx2 −
∑
z1∈E1

µs
′

z1,x12
cz1csx2

= cs′cx12sx2 −
∑
z1∈E1

µs
′

z1,x12
cz1sx2

= cx +
∑
z2∈E2

µs
′

z2,x12sx2
cz2 −

∑
z1∈E1

µs
′

z1,x12
cz1sx2

= cx,

by (2.7.1).
�

Lemmas 2.5-2.6 can be restated as follows.

Lemma 2.5′ . Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0). Let w ∈W and s ∈ J−L(w). If s 6≤ w, then cscw = csw.
If s ≤ w, then w = x · s · z for some x, z ∈W with s 6≤ x.

(1) If I ⊆ L(x) and L(w0) = L(s), then

cscw =

{
csw + csz if x = w0,

csw if x 6= w0.

(2) Suppose that x = x1 · s′ · x2 for some s′ ∈ J and x1, x2 ∈ W with L(s′) ≥
L(s), where either x1 ∈ WI with L(x1) < L(s′) or x1 6∈ WI with L(s′) >
max{L(s′′)|s′′ ∈ J, s′′ ≤ x1}. Then

cscw =

{
csw + csz if L(s) = L(s′), x2 = x−1

1 ,

csw otherwise.

(3) If either x ∈ WI with L(s) > L(x) or x 6∈ WI with L(s) > max{L(s′)|s′ ∈
J, s′ < x}, then

cscw =

{
csw + µ1csz + cxz if `(xz) = `(z)− `(x), s ∈ L(xz),

csw + µ1csz otherwise,

where µ1 ∈ A is given by µ1 = µ̄1 ≡ vL(s)pe,x.

Proof. This is a direct concequence of Lemmas 2.5-2.7. �

Recall the notation Ωx, x ∈W , defined in 1.6. For any i ∈ P, denote

W (i) =


WI − {w0} if i < L(w0),

(∪s∈J,L(s)=iΩs) ∪ Ωw0
if i = L(w0),

∪s∈J,L(s)≤iΩs if i > L(w0).

Lemma 2.8. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0). Let y, z ∈W , s ∈ J and x ∈W (L(s)−1).

(1) Suppose y ←L z.
(a) If z ∈ Cw0 , then y ∈ Cw0 .
(b) If y ∈ Cw0

, then z ∈W (L(w0)).
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(c) If z ∈ Csx, then y ∈ Csx.
(d) If y ∈ Csx, then z ∈W (L(s)).

(2) Suppose y ←LR z.
(a) If z ∈W (L(w0)) −W (L(w0)−1), then y ∈W (L(w0)) −W (L(w0)−1).
(b) If y ∈W (L(w0)) −W (L(w0)−1), then z ∈W (L(w0)).
(c) If z ∈W (L(s)) −W (L(s)−1), then y ∈W (L(s)) −W (L(s)−1).
(d) If y ∈W (L(s)) −W (L(s)−1), then z ∈W (L(s)).

Proof. We only prove (1). (2) will follow by similar arguments. Let y, z ∈ W be
with y ←L z, then there exists s′ ∈ S with hs′,z,y 6= 0. If y = s′z, then (1) hold.

Now suppose y 6= s′z, then s′y < y < z and µs
′

y,z 6= 0. Then (1) follows by Lemma
Corollary 2.4 (resp. Lemma 2.5′ ) when s ∈ I (resp. s ∈ J). �

Lemma 2.9. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0).

(1) If u ∈WI and w ∈W satisfy L(w) = {s′} ⊆ J , then w ∼L uw.
(2) If w ∈ W and s′ ∈ J satisfy L(w) ⊆ J and L(s′) = L(w0), then s′w0w ∼L

w0w.
(3) Let s ∈ J , y ∈ W (L(s)−1) and w ∈ W satisfy `(syw) = `(y) + `(w) + 1. If

either L(w) = I and L(s) = L(w0) or L(w) = {s′} and L(s′) ≥ L(s), then
syw ∼L yw.

Proof. (1) is trivial if u = e. Now assume u 6= e. Under the assumption of (1) (resp.,

(2)), we have µs
′

w,uw 6= 0 by Lemma 2.5′ (resp., hw0,s′w0w,w0w 6= 0 by Lemma 2.3).
This implies (1) (resp., (2)).

It remains to prove (3). If L(w) = I and L(s) = L(w0), then the result follows
from (2) since y = e in this case. Now suppose L(w) = {s′} and L(s′) ≥ L(s). If

L(s′) = L(s), then µs
′

w,y−1syw 6= 0 by Lemma 2.5′ . Since y−1syw = y−1 · s · y · w,

we have yw ∼L syw by the relations w ≤L y−1syw ≤L syw ≤L yw ≤L w. If
L(s′) > L(s), then µs

′

w,(sy)−1s′(sy)w 6= 0 by Lemma 2.5′ . Since (sy)−1s′(sy)w =

(sy)−1 · s′ · s · y ·w, we again get yw ∼L syw by the relations w ≤L (sy)−1s′syw ≤L
syw ≤L yw ≤L w. �

Corollary 2.10. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0). Let y ∈W .

(1) If y ∈ Cw0
∩W (L(w0)), then y ∼L w0.

(2) Let s ∈ J and x ∈W (L(s)−1). If y ∈ Csx ∩W (L(s)), then y ∼L sx.
(3) If y ∈W (L(w0)) −W (L(w0)−1), then y ∼LR w0.
(4) Let s ∈ J . If y ∈W (L(s)) −W (L(s)−1), then y ∼LR s.

Proof. (1) Let y ∈ Cw0 ∩ W (L(w0)). We show y ∼L w0 using induction on
n := `(y) − `(w0) ≥ 0. When n = 0, y = w0 ∼L w0. Now suppose n > 0
and y′ ∼L w0 for any y′ ∈ Cw0 ∩W (L(w0)) with `(y′)− `(w0) < n.

If L(y) ⊆ I, then we can write y = u · y0 where u = yI 6= e and
y0 ∈ Cw0∩W (L(w0)). Then y0 ∼L w0 by the inductive hypothesis. Moreover,
y ∼L y0 by Lemma 2.9(1). So y ∼L w0.

If L(y) 6⊆ I, then L(y) = {s} ⊆ J , and L(s) = L(w0). Write y = s · y1

for y1 ∈ Cw0 ∩W (L(w0)). If L(y1) = I, then y ∼L y1 by Lemma 2.9(2).
If L(y1) 6= I, then we can write y1 = y1 · s′ · y2 with y1 ∈ W (L(w0)−1),
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y2 ∈ W and s′ ∈ J satisfy L(s′) = L(s). Then y ∼L y1 by Lemma 2.9(3).
Moreover, y1 ∼L w0 by the inductive hypothesis. So y ∼L w0.

(2) Let y ∈ Csx ∩W (L(s)). We show y ∼L sx using induction on n := `(y) −
`(sx) ≥ 0. When n = 0, y = sx ∼L sx. Now suppose n > 0 and y′ ∼L sx
for any y′ ∈ Csx ∩W (L(s)) with `(y′)− `(w0) < n.

If L(y) ⊆ I, then write y = u ·y0 with u = yI 6= e and y0 ∈ Csx∩W (L(s)).
Then y0 ∼L sx by the inductive hypothesis. Moreover, y ∼L y0 by Lemma
2.9(1). So y ∼L sx.

If L(y) 6⊆ I, then L(y) = {s′} ⊆ J , and L(s′) ≤ L(s). Write y = s′ · y1

for y1 ∈ Csx ∩ W (L(s)). If L(y1) = I, then y ∼L y1 by Lemma 2.9(2).
If L(y1) 6= I, then we can write y1 = y1 · s′ · y2 with y1 ∈ W (L(s)−1),
y2 ∈W and s′′ ∈ J satisfy L(s′′) ≥ L(s′). Then y ∼L y1 by Lemma 2.9(3).
Moreover, y1 ∼L sx by the inductive hypothesis. So y ∼L sx.

(3) Let y ∈ W (L(w0)) − W (L(w0)−1). If y ∈ Cw0
, then by (1), y ∼L w0. If

y 6∈ Cw0 , then there exists s ∈ J and x ∈W (L(s)−1) with L(s) = L(w0) and
y ∈ Csx ∩W (L(s)). So by (2), y ∼L sx. Moreover, sx ∼R s ∼L w0s ∼R w0

by Lemma 2.9. So y ∼LR w0.
(4) Let y ∈W (L(s)) −W (L(s)−1). If L(s) = L(w0), then by (3), y ∼LR w0 ∼LR

s. Now suppose L(s) > L(w0). Then there exists s′ ∈ J , L(s′) = L(s)
and x′ ∈ W (L(s)−1) with y ∈ Cs′x′ . By (2), y ∼L s′x′. Moreover, s′x′ ∼R
s′ ∼LR s by Lemma 2.9. So y ∼LR s.

�

Now we are ready to describe all the left cells and the two-sided cells of (W,S,L)
under certain assumptions on I, J, L. Recall that LI is the weight function of WI

obtained by restriction of L to WI .

Theorem 2.11. Suppose that WI is finite with w0 the longest element, and that
min{L(s)|s ∈ J} ≥ L(w0).

(1) The left cells of W are
(a) Cw0

∩W (L(w0)),
(b) Csx ∩W (L(s)) for any s ∈ J and x ∈W (L(s)−1),
(c) Any left cell of the weighted Coxeter group (WI , I, LI) in WI − {w0}.

(2) The two-sided cells of W are
(a) W (L(w0)),
(b) W (i) − W (i−1) for i ∈ P, if i > L(w0) and there exists s ∈ J with

L(s) = i.
(c) Any two-sided cell of the weighted Coxeter group (WI , I, LI) in WI −
{w0}.

(3) Let X = W − (WI −{w0}). Then (1a) and (1b) (resp. (2a) and (2b) give a
complete and irredundant list of the left cells (resp. two-sided cells) in X.

Proof. It follows by Lemma 2.8 and Corollary 2.10 for the sets in (1a) and (1b)
being left cells of W and for those in (2a) and (2b) being two-sided cells of W .

By Lemmas 2.3 and 2.5′ , we have y1 6←LR y2 for any y1 ∈ WI − {w0} and
y2 6∈ WI − {w0}. So it follows by Lemma 1.7 for the sets in (1c) being left cells of
W and for those in (2c) being two-sided cells of W .

From the definition of the sets W (i), it is noticed that the sets in (2a) and (2b)
give a complete, irredundant list of the two-sided cells in X.
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Let s, s′ ∈ J , x ∈ W (L(s)−1) and x′ ∈ W (L(s′)−1) with L(s) ≥ L(s′). We claim
that

(i) (Csx ∩W (L(s)) ∩ (Cw0
∩W (L(w0)) = ∅, and

(ii) (Csx ∩W (L(s)) ∩ (Cs′x′ ∩W (L(s′)) = ∅ if s 6= s′ or x 6= x′.

If L(s) > L(w0), then Csx ∩W (L(w0)) = ∅. So (i) holds. If L(s) = L(w0) and
Csx ∩Cw0

6= ∅, then R(x) = I, contradicting with x ∈W (L(s)−1) = W (L(w0)−1). We
also have (i).

If L(s) > L(s′), then Csx ∩ W (L(s′)) = ∅, so (ii) holds. If L(s) = L(s′) and
Csx ∩ Cs′x′ 6= ∅, then sx = s′x′, as x, x′ ∈W (L(s)−1). So (ii) holds.

Let w ∈ X. If there exists s′ ∈ J with s′ ≤ w and L(s′) > L(w0), then we can
write w = y · s · x with s ∈ J , x ∈ W (L(s)−1), y ∈ W and L(s) = max{L(s′)|s′ ∈
J, s′ ≤ w}. So w ∈ Csx ∩W (L(s)). If L(s′) = L(w0) for all (if any) s′ ∈ J with
s′ ≤ w, then w ∈ Cw0

∩W (L(w0)) when R(w) = I; w ∈ Csx ∩W (L(s)) for some s ∈ J
and x ∈W (L(s)−1) with s ≤ w, when R(w) 6= I.

We conclude that(1a) and (1b) give a complete, irredundant list of the left cells
in X.

�

3. On the second largest weight element w′0

In this section, we temporarily drop the previous assumptions on (W,S,L), and
consider Coxeter groups with a finite parabolic subgroup, in which there is a unique
simple reflection of minimal weight. We will find some properties of the element
of the second largest weight in this finite parabolic subgroup, see Propositions 3.3,
3.5 and 3.8.

In 3.1-3.2, we put no assumption on (W,S,L). From 3.3 until the end of this
section, we put the following assumption on (W,S,L).

I ⊆ S,WI is a finite parabolic subgroup of W,(3.0.1)

and t ∈ I satisfy L(t) < min{L(t′)|t′ ∈ I − {t}}.

Under this assumption, we always denote w0 the longest element of WI and w′0 =
tw0.

Lemma 3.1. Let w ∈ W and s ∈ S − L(w). If there exists r ∈ L(w) with
L(r) ≥ L(s), then

(1)

cscw = csw + εcrw +
∑

z;sz<z<w,z 6=rw

µsz,wcz,

where ε =

{
1 if L(r) = L(s) and s ∈ L(rw),

0 otherwise;

(2) rz < z for any z ∈W with sz < z < w, z 6= rw and µsz,w 6= 0.

Proof. If s ∈ L(rw), then we see by 1.3 (4), (2) that

µsrw,w ≡ vL(s)prw,w = vL(s)−L(r) ≡

{
1 if L(r) = L(s),

0 if L(r) > L(s).

This implies (1) by (1.2.1) and 1.3 (4). Then (2) follows by 1.3 (6). �
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Lemma 3.2. Let WI be a finite parabolic subgroup of W generated by I ⊆ S, and
w0 be the longest element of WI . For any x, y ∈W , if hw0,x,y 6= 0, then I ⊆ L(y).

Proof. This follows from (1.4.9). �

Proposition 3.3. Assume (3.0.1) on (W,S,L).

(1) ctcw′0 = cw0
, so {w′0} is the second lowest two-sided cell in WI .

(2) If x, y ∈W satisfy hw′0,x,y 6= 0, then `(w′0y) = `(y)− `(w′0).

Proof. If there exists y0 ∈ W with ty0 < y0 < w′0 and µty0,w′0
6= 0, then by Lemma

3.1(2), I − {t} ⊆ L(y0). So L(y0) = I, contradicting with y0 < w′0. We obtain
ctcw′0 = cw0

. Consequently, for y1 ∈ WI , if y1 ←I,L w′0 or y1 ←I,R w′0, then

y1 = w0. But {w0} is the lowest two-sided cell in WI , so {w′0} is the second lowest
two-sided cell in WI .

To prove (2), we only have to show

I ⊆ L(y) or I ⊆ L(ty).(3.3.1)

By (1), we have

cw0
cx = ctcw′0cx =

∑
y′

hw′0,x,y′ctcy′(3.3.2)

=
∑

y′;ty′<y′

hw′0,x,y′
(
vL(t) + v−L(t)

)
cy′ +

∑
y′;ty′>y′

hw′0,x,y′

cty′ +
∑

z;tz<z<y′

µtz,y′cz

 .

Write

A1 =
∑

y′;ty′<y′

hw′0,x,y′
(
vL(t) + v−L(t)

)
cy′

A2 =
∑

y′;ty′>y′

hw′0,x,y′cty′

A3 =
∑

y′,z;ty′>y′>z>tz

hw′0,x,y′µ
t
z,y′cz

For any y′ ∈W with hw′0,x,y′ 6= 0, we have

L(y′) ⊇ L(w′0) = I − {t},(3.3.3)

by (1.4.9). So only those cu with I ⊆ L(u) appears in A1 with nonzero coefficient.
By Lemmas 3.2, only those cu with I ⊆ L(u) appears in A1 +A2 +A3 with nonzero
coefficient. Since I − {t} = L(w′0) ⊆ L(y′) for any y′ ∈ W with hw′0,x,y′ 6= 0, by
Lemma 3.1, only those cu with I ⊆ L(u) appears in A3 with nonzero coefficient.
As a result, only those cu with I ⊆ L(u) appears in A2 with nonzero coefficient.

As hw′0,x,y 6= 0, if ty < y, then I ⊆ L(y) by (3.3.3). If ty > y, then cty appears
in A2 with nonzero coefficients. So I ⊆ L(ty). So (3.3.1) is true. �

Corollary 3.4. Assume (3.0.1) on (W,S,L).

(1) If x, y ∈ W satisfy L(x) ∩ I = ∅, ty < y < w′0x and µty,w′0x
6= 0, then

I ⊆ L(y).
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(2) If x, y, z ∈ W satisfy `(w′0x) = `(x)− `(w′0) and hx,y,z 6= 0, then `(w′0z) =
`(z)− `(w′0).

Proof. (1) By 1.3 (6), we have L(y) ⊇ I − {t} = L(w′0) ⊆ L(w′0x) by the
assumptions µty,w′0x

6= 0 and L(t) < min{L(t′)|t′ ∈ I − {t}}. This implies

I ⊆ L(y) since ty < y.
(2) To prove (2), we use induction on n = `(x)− `(w′0) ≥ 0. When n = 0, this

is shown in Proposition 3.3(2). When n > 0, write x = w′0 · x0. Then

cxcy =

(
cw′0cx0 −

∑
x′<x

hw′0,x0,x′cx′

)
cy

= cw′0cx0cy −
∑
x′<x

hw′0,x0,x′cx′cy

Since hx,y,z 6= 0, z appears in cw′0cx0cy or cx′cy for some x′ < x with
hw′0,x0,x′ 6= 0. If z appears in cw′0cx0cy, then by Proposition 3.3(2), `(w′0z) =
`(z) − `(w′0). For x′ < x with hw′0,x0,x′ 6= 0, we have `(x′) < `(x), and
`(w′0x

′) = `(x′) − `(w′0) following from Proposition 3.3(2). Consequently,
if z appears in cx′cy, then we have `(w′0z) = `(z)− `(w′0) by the inductive
hypothesis. So the result follows.

�

Proposition 3.5. Assume (3.0.1) on (W,S,L). Let u ∈ WI and x, y ∈ W satisfy
u ≤ w′0, (u · x)I = u and (w′0 · y)I = w′0. Then deg pux,w′0y ≤ deg pu,w′0 , and the
equality holds only when x = y.

Proof. If for all t′ ∈ I − {t}, the order of tt′ is 2, then the result is true since

deg pux,w′0y = deg v−L(w′0)+L(u)pw′0x,w′0y ≤ −L(w′0) + L(u) = deg pu,w′0 .

by 1.3 (3). Now assume that we are not in this case. We shall prove our result
by induction on n := `(w′0)− `(u) ≥ 0.

When n = 0, the result is trivial. Now suppose n > 0. If L(w′0) = I−{t} 6⊆ L(u),
then by taking s ∈ L(w′0)− L(u), we get

pux,w′0y = v−L(s)psux,w′0y,

pu,w′0 = v−L(s)psu,w′0 ,

and su ≤ w′0. So the result follows by the inductive hypothesis. Now assume that
L(u) = I − {t}. By Corollary 3.4, we have

ctcw′0y = cw0y +
∑

z;I⊆L(z)

µtz,w′0ycz,(3.5.1)

ctcw′0 = cw0 .(3.5.2)

So by comparing the coefficients of ctux (resp., ctu) on both sides of (3.5.1) (resp.,
(3.5.2)), we get

pux,w′0y = ptux,w0y − vL(t)ptux,w′0y +
∑

z;I⊆L(z)

µtz,w′0yptux,z,(3.5.3)

pu,w′0 = ptu,w0
− vL(t)ptu,w′0 .(3.5.4)
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First assume tu 6≤ w′0. Then there exists some z1 ∈WI−{t} such that z1·tu = w0 and

ptux,w′0y = v−L(z1)pw0x,w′0y
by 1.3 (3). So L(z1) = L(w0) − L(tu) = L(w′0) − L(u).

We see by (3.5.3) that,

vL(w′0)−L(u)pux,w′0y

= vL(w′0)−L(u)

ptux,w0y − vL(t)ptux,w′0y +
∑

z;I⊆L(z)

µtz,w′0yptux,z


= pw0x,w0y − vL(t)pw0x,w′0y

+
∑

z;I⊆L(z)

µtz,w′0ypw0x,z (by 1.3 (3))

≡ pw0x,w0y (by 1.3 (4))

≡

{
1 if x = y,

0 if x 6= y.

On the other hand, we see by (3.5.4) that pu,w′0 = ptu,w0
= v−L(w′0)+L(u). So the

result follows in this case.
Next assume tu ≤ w′0. By Proposition 3.3, ctcw′0 = cw0

, so

pu,w′0 = ptu,w0
− vL(t)ptu,w′0 = v−L(w′0)+L(u) − vL(t)ptu,w′0 .

Moreover,

deg vL(t)ptu,w′0 ≥ L(t) + L(tu)− L(w′0), (by 1.3(1))

deg ptu,w0
= L(tu)− L(w0). (by 1.3(3))

So deg ptu,w0
< deg vL(t)ptu,w′0 , and

deg pu,w′0 = deg vL(t)ptu,w′0 ≥ L(t) + L(tu)− L(w′0)

by (3.5.4).
Also, we have

deg ptux,w0y ≤ L(tu)− L(w0) < deg pu,w′0

and

degµtz,w′0yptux,z ≤ L(t) + L(tu)− L(w0) < deg pu,w′0

for any z ∈ W with I ⊆ L(z), by 1.3 (4), (1). Now we must prove the relation
deg pux,w′0y ≤ deg pu,w′0 . If deg pux,w′0y ≥ deg pu,w′0 , then

(3.5.5)

deg pux,w′0y = deg vL(t)ptux,w′0y ≤ deg vL(t)ptu,w′0 = deg pu,w′0 ≤ deg pux,w′0y

by (3.5.3) and the inductive hypothesis. Hence all the equalities in (3.5.5) must
hold. But this is the case only when x = y by the equation deg ptux,w′0y = deg ptu,w′0
and the inductive hypothesis. The result is proved. �

3.6. For (W,S,L) under the assumption (3.0.1), we define nt : WI → N by
sending any x ∈WI to the number of occurrence of t in one (thus any) reduced
expression of x. Set n′0 = nt(w

′
0). So nt(w0) = n′0 + 1.
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Take xi ∈ WI , yj ∈ WI−{t} for i ∈ [0, n′0], j ∈ [0, n′0 − 1] recursively in the
following way: Let x0 be the longest element in WI−{t}. Then for i ∈ [n′0], suppose
that we have defined all xj and yj−1 for j < i. Take yi−1 ∈ WI−{t} such that
yi−1txi−1 is the longest element in the coset WI−{t}txi−1. Let xi = yi−1txi−1.
Then xi = yi−1 · t · xi−1.

Lemma 3.7. Assume (3.0.1) on (W,S,L). For any i ∈ [0, n′0] and j ∈ [0, n′0 − 1],
let xi ∈WI , yj ∈WI−{t} be given as in 3.6.

(1) We have
(a) L(xi) = R(xi) = I − {t} for any i ∈ [0, n′0];
(b) xn′0 = w′0.

(2) Let u ≤ w′0 in WI .
(a) If z ∈WI−{t} satisfy `(zu) = `(z) + `(u), then pu,w′0 = v−L(z)pzu,w′0 .

(b) If tu > u, then pu,w′0 = vL(u)−L(w′0) − vL(t)ptu,w′0 .

(3) For i ∈ [0, n′0−1], pxi,w′0 = vL(xi)−L(w′0)−vL(t)−L(yi)pxi+1,w′0
, with deg pxi,w′0 =

L(t)− L(yi) + deg pxi+1,w′0
.

(4) deg pe,w′0 = −L(w′0) + 2n′0L(t).

Proof. (1) Clearly, L(x0) = R(x0) = I − {t}. Now let i ∈ [n′0]. Suppose that
the relation L(xj) = R(xj) = I − {t} has been proved for any j < i in
[n′0]. Then L(xi) = I − {t} follows by the construction of xi. On the other
hand, R(xi) ⊇ R(xi−1) = I − {t}. We have t 6∈ R(xi) since xi < w0 by
the fact nt(xi) < nt(w0) = n′0 + 1. So R(xi) = I − {t}. This proves (a) by
induction.

Since L(xn′0) = I − {t}, we have txn′0 > xn′0 . We claim that txn′0 = w0.
Since nt(txn′0) = nt(w0), we have txn′0t < txn′0 . So t ∈ R(txn′0). Moreover,
I − {t} = R(xn′0) ⊆ R(txn′0). So R(txn′0) = I and txn′0 = w0. Thus
xn′0 = w′0.

(2) (a) follows by 1.3 (3) and the fact L(w′0) = I − {t}. By the equation
ctcw′0 = cw0 , we get ptu,w0 = pu,w′0 + vL(t)ptu,w′0 . Thus we see by 1.3 (3)
that

pu,w′0 = ptu,w0
− vL(t)ptu,w′0

= vL(tu)−L(w0) − vL(t)ptu,w′0

= vL(u)−L(w′0) − vL(t)ptu,w′0 .

This proves (b).
(3) By (2), we see that for any i ∈ [0, n′0 − 1],

pxi,w′0 = vL(xi)−L(w′0) − vL(t)ptxi,w′0(3.7.1)

= vL(xi)−L(w′0) − vL(t)−L(yi)pxi+1,w′0
,

with xi, yi in the places of u, z, respectively. Since deg vL(t)−L(yi)pxi+1,w′0
≥

L(t)−L(yi)+L(xi+1)−L(w′0) = 2L(t)+L(xi)−L(w′0) > L(xi)−L(w′0) by 1.3
(1) and the relation xi+1 = yi·t·xi, we have deg pxi,w′0 = deg vL(t)−L(yi)pxi+1,w′0

=
L(t)− L(yi) + deg pxi+1,w′0

by (3.7.1).
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(4) By (3) and (1b), we have, for i ∈ [0, n′0 − 1], that

deg pxi,w′0 =

n′0−1∑
j=i

(L(t)− L(yj)) + deg pxn′0 ,w
′
0

= (n′0 − i)L(t)−
n′0−1∑
j=i

L(yj).

In particular, deg px0,w′0
= n′0L(t)−

∑n′0−1
j=0 L(yj). So by (1) and 1.3 (3),

deg pe,w′0 = −L(x0) + deg px0,w′0

= n′0L(t)−
n′0−1∑
j=0

L(yj)− L(x0)

= 2n′0L(t)− L(w′0).

�

Proposition 3.8. Assume (3.0.1) on (W,S,L). Then

deg hw′0,w′0,w′0 = −deg pe,w′0 = L(w′0)− 2n′0L(t).

Proof. By Lemma 3.3(1), {w′0} is the second lowest two-sided cell of WI . So we
have hw′0,w′0,z = 0 for any z ∈W − {w′0, w0} by (1.4.9). This implies that

cw′0cw′0 = hw′0,w′0,w0
cw0 + hw′0,w′0,w′0cw′0 .(3.8.1)

By comparing the coefficient of Te on both sides of (3.8.1), we see by 1.3 (3) that

h′w′0,w′0,e = hw′0,w′0,w0
pe,w0

+ hw′0,w′0,w′0pe,w′0

= v−L(w0)hw′0,w′0,w0
+ hw′0,w′0,w′0pe,w′0 .

By (1.4.4), we further get∑
x1,x2

px1,w′0
px2,w′0

fx1,x2,e = v−L(w0)hw′0,w′0,w0
+ hw′0,w′0,w′0pe,w′0 .(3.8.2)

Since the relation fx1,x2,e 6= 0 implies that x2 = x−1 and fx1,x2,e = 1 by (1.1.1),
we have

(3.8.3)∑
x1,x2

px1,w′0
px2,w′0

fx1,x2,e =
∑
x1

px1,w′0
px−1

1 ,w′0
= 1 +

∑
x1<w′0

px1,w′0
px−1

1 ,w′0
.

Since deg hw′0,w′0,w0
≤ L(w′0) < L(w0) by (1.4.8), we have deg v−L(w0)hw′0,w′0,w0

<
0. This, together with (3.8.2)-(3.8.3), implies that deg hw′0,w′0,w′0pe,w′0 = 0. So
deg hw′0,w′0,w′0 = deg pe,w′0 = L(w′0)− 2n′0L(t) by Lemma 3.7. �

4. The degree estimate involving some α- and h′-polynomials

4.1. From now on, we come back to the assumption in Section 2 that S = I t J ,
where J consists of universal elements. Moreover, we assume that L takes a
constant value LJ on J and that WI is finite, with w0 its longest element. Since
the case when LJ ≥ L(w0) is considered in Section 2, we now assume LJ < L(w0).
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There is a special kind of WI which will be of interest in the following discussion.

(∗) The Coxeter graph of WI is connected and there exists t ∈ I
with L(t) < min{L(t′)|t′ ∈ I − {t}}.

When this is the case, we always set w′0 = tw0. Note that in this case, WI must be

(1) a dihedral group (W,S) with S = {s, t} such that the order of st is even,
or

(2) of type Bk for k ≥ 3,

and L must only take two values L1 < L2 on I and L1 = L(t).
Moreover, if (∗) is satisfied, we will also assume the following to hold.

For any x ∈WI − {w′0, w0} and y ∈W,aI(x) < aI(w
′
0),

and deg hx,y,w < aI(w
′
0).

(4.1.1)

Remark 4.2. It is proved in [Lu2] that if WI is a finite dihedral group with
unequal parameters, then (4.1.1) always holds. Moreover, computation with GAP
shows that (4.1.1) also holds for WI of type B3. We suspect that (4.1.1) is true for
any finite WI satisfying (∗).

If (∗) is satisfied, then let πw′0 = maxx,y;x 6=w′0 deg hx,y,w′0 . Then πw′0 ≤ a(w′0).
We further have πw′0 < a(w′0) if (4.1.1) holds for WI .

Lemma 4.3. Suppose WI satisfies (∗). For any u ∈ WI with u < w′0 and L(u) =
I − {t},

(1) deg ptu,w′0 ≤ −L2,
(2) deg pu,w′0 ≤ L1 − L2.

Proof. (1) We have L(w′0) = I − {t} 6⊆ L(tu) since tu 6= w0. Take any s ∈
L(w′0) − L(tu). Then ptu,w′0 = v−L2pstu,w′0 by 1.3 (3). Thus deg ptu,w′0 ≤
−L2.

(2) By Lemma 3.1, we have∑
z

pz,w0Tz = cw0 = ctcw′0 =
(
Tt + v−1

t Te
)∑

z

pz,w′0Tz.(4.3.1)

So

ptu,w0
= pu,w′0 + vL(t)ptu,w′0 .(4.3.2)

By comparing the coefficients of Ttu on both sides of (4.3.1). We have
deg ptu,w0

= L(tu)−L(w0) ≤ −L2 by 1.3 (3) and deg vL(t)ptu,w′0 ≤ L1−L2

by (1). So deg pu,w′0 ≤ max{−L2, L1 − L2} = L1 − L2 by (4.3.2).
�

Following Lusztig in [Lu2, Subsection 14.1], we define, for any z ∈ W , some
∆(z) ∈ N by

pe,z = nzv
−∆(z) + strictly smaller powers of v, nz ∈ Z− {0}.

Define D = {z ∈ W |a(z) = ∆(z)}. Clearly, z ∈ D if and only if z−1 ∈ D. Define
∆I and DI for WI similarly.

The sets D, DI play an important role in the cell representations of W , WI and
the associated Hecke algebras H, HI , respectively.

Lemma 4.4. Suppose that WI satisfies (∗) and that (4.1.1) holds in WI . Then
aI(w

′
0) = deg hw′0,w′0,w′0 = ∆I(w

′
0). In particular, w′0 ∈ DI .



KAZHDAN-LUSZTIG CELLS IN SOME WEIGHTED COXETER GROUPS 23

Proof. We see by Proposition 3.8 that ∆I(w
′
0) = deg hw′0,w′0,w′0 ≤ aI(w

′
0). By

(4.1.1), we have aI(w
′
0) = deg hw′0,w′0,w′0 . So aI(w

′
0) = ∆I(w

′
0), which implies

w′0 ∈ DI . �

Note that Lemma 4.4 is proved without assuming (P1).
Define τI,X := max{aI(w)|w ∈ WI −X} for any X ⊆ WI . Recall the notation

h′x,y,z for x, y, z ∈W defined in 1.4.

Lemma 4.5. Let u1, x ∈WI − {w0}, t1 ∈ I − L(x) and u2 ∈WI .

(1) We have

deg
(
h′u1,u2,x − v

−L(t1)h′u1,u2,t1x

)
≤ τI,{w0}.

(2) Suppose that WI satisfies (∗) and that (4.1.1) holds in WI . Suppose that
u1 6= w′0.
(a) If x = w′0, then t1 = t and

deg
(
h′u1,u2,x − v

−L(t1)h′u1,u2,t1x

)
< aI(w

′
0).

(b) If x 6= w′0,

deg
(
h′u1,u2,x − v

−L(t1)h′u1,u2,t1x − δt,t1hu1,u2,w′0

(
px,w′0 − v

−L(t)ptx,w′0

))
≤ τI,{w′0,w0}.

Proof. By (1.4.5), we have

h′u1,u2,x − v
−L(t1)h′u1,u2,t1x(4.5.1)

≡ hu1,u2,x +
∑
x1>x

hu1,u2,x1
px,x1

−v−L(t1)

(
hu1,u2,t1x +

∑
x1>t1x

hu1,u2,x1pt1x,x1

)
= hu1,u2,x +

∑
x1;t1x1>x1>x

hu1,u2,x1
px,x1

−v−L(t1)
∑

x1;t1x1>x1>x

hu1,u2,x1pt1x,x1 (by 1.3 (3))

= hu1,u2,x +
∑

x1;t1x1>x1>x

hu1,u2,x1

(
px,x1

− v−L(t1)pt1x,x1

)
.

(1) We have deg hu1,u2,x ≤ aI(x) ≤ τI,{w0} and deg hu1,u2,x1
≤ aI(x1) ≤

τI,{w0} for any x1 ∈ W with x1 > x and t1x1 > x1. So the result fol-
lows by (4.5.1).

(2) (a) By (4.5.1), h′u1,u2,x − v
−L(t1)h′u1,u2,t1x ≡ hu1,u2,x for x = w′0. Since

deg hu1,u2,w′0
< aI(w

′
0) by (4.1.1) and the assumption u1 ∈ WI −

{w0, w
′
0}, the result is true.

(b) Since x ∈WI − {w′0, w0}, we have deg hu1,u2,x ≤ τI,{w′0,w0} the defini-
tion of τI,{w′0,w0}. Let x1 ∈W satisfy t1x1 > x1 > x. If x1 6= w′0, then
deg hu1,u2,x1

≤ τI,{w′0,w0} by (4.1.1). If x1 = w′0, then t1 = t. So the
result follows by (4.5.1).

�
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Recall the notation αx,y,z, βx,y,z, q
′
x,y for x, y, z ∈ W defined in 1.4, and the

notation f
mod A≤m
≡ g defined in 1.3.

Corollary 4.6. Let u1, x ∈WI − {w0}, t1 ∈ I − L(x) and u2 ∈WI .

(1) We have

deg
(
αu1,u2,x − v−L(t1)αu1,u2,t1x

)
≤ τI,{w0}.

(2) Suppose that WI satisfies (∗) and that (4.1.1) holds in WI . Suppose u1 6=
w′0.
(a) If x = w′0, then t1 = t and

deg
(
αu1,u2,x − v−L(t1)αu1,u2,t1x

)
< aI(w

′
0).

(b) If x 6= w′0, then,

deg
(
αu1,u2,x − v−L(t1)αu1,u2,t1x − δt,t1βu1,u2,w′0

(
px,w′0 − v

−L(t1)pt1x,w′0

))
≤ τI,{w′0,w0}.

Proof. Apply induction on n := `(u2) ≥ 0. When n = 0, the result is obvious. Now
suppose n > 0. We have

cu1Tu2 = cu1

(
cu2 −

∑
y<u2

py,u2Ty

)
(4.6.1)

= cu1
cu2
−
∑
y<u2

py,u2
cu1

Ty.

By comparing the coefficients of Tz′ on both sides of (4.6.1), we get

αu1,u2,z′ = h′u1,u2,z′ −
∑
y<u2

py,u2
αu1,y,z′(4.6.2)

for any z′ ∈WI . So (1) and (2a) follow by induction and Lemma 4.5.
Now assume we are in the case of (2b). Denote τ := τI,{w′0,w0} and ∆x :=

δt,t1(px,w′0−v
−L(t1)pt1x,w′0). Then by (4.6.2), Lemma 4.5 and the inductive hypoth-

esis, we get that

αu1,u2,x − v−L(t1)αu1,u2,t1x

=
(
h′u1,u2,x − v

−L(t1)h′u1,u2,t1x

)
−
∑
y1<u2

py1,u2

(
αu1,y1,x − v−L(t1)αu1,y1,t1x

)
mod A≤τ
≡ hu1,u2,w′0

∆x −
∑
y1<u2

py1,u2

(
αu1,y1,x − v−L(t1)αu1,y1,t1x

)
(by Lemma 4.5)

mod A≤τ
≡ hu1,u2,w′0

∆x −
∑
y1<u2

py1,u2

(
hu1,y1,w′0

∆x −
∑
y2<y1

py2,y1

(
αu1,y2,x − v−L(t1)αu1,y2,t1x

))
(by Lemma 4.5)

= hu1,u2,w′0
∆x −

∑
y1<u2

py1,u2hu1,y1,w′0
∆x +

∑
y2<y1<u2

py1,u2
py2,y1

(
αu1,y2,x − v−L(t1)αu1,y2,t1x

)
.



KAZHDAN-LUSZTIG CELLS IN SOME WEIGHTED COXETER GROUPS 25

We repeat the above computation with y1 in the place of u2 and so on, then we get

αu1,u2,x − v−L(t1)αu1,u2,t1x

mod A≤τ
≡ ∆x

∑
e≤yk<yk−1<···<y0=u2;k∈N

(−1)kpyk,yk−1
· · · py1,y0hu1,yk,w′0

= ∆x

∑
yk≤u2

q′yk,u2
hu1,yk,w′0

(by 1.4)

= ∆xβu1,u2,w′0
. (by (1.4.7))

This proves (2b). �

For any x ∈W , we have xI ∈WI and xI ∈W defined in 1.3.

Lemma 4.7. Let u1 ∈ WI − {w0} and y, z ∈ W satisfy L(z) = {s} ⊆ J , y < u1z
and I 6⊆ L(y). Write y = u · y′ with u = yI < w0 and y′ = yI . Let t1 ∈ I − L(u).

(1) Suppose that L(w0) > LJ > τI,{w0}. Then

deg
(
h′u1,z,y − v

−L(t1)h′u1,z,t1y

)
< 0.

(2) Suppose that WI satisfies (∗) and that (4.1.1) holds in WI . Suppose that
u1 6= w′0 and that aI(w

′
0) ≥ LJ > τI,{w′0,w0}.

(a) If u = w′0, then t1 = t and

deg
(
h′u1,z,y − v

−L(t1)h′u1,z,t1y

)
< aI(w

′
0)− LJ .

(b) If u 6= w′0, then

deg

h′u1,z,y − v
−L(t1)h′u1,z,t1y − δt,t1v

−LJ (pu,w′0 − v
−L(t1)pt1u,w′0)

∑
x2∈WI−{e}

psx2y′,zβu1,x2,w′0

 < 0.

Proof. We see by (1.4.4) that

h′u1,z,y − v
−L(t1)h′u1,z,t1y

= pu,u1py′,z +
∑

x1,x′2;(x1,x′2) 6=(u,y′)

px1,u1px′2,zfx1,x′2,y

−v−L(t1)pt1u,u1
py′,z − v−L(t1)

∑
x1,x′2;(x1,x′2) 6=(t1u,y′)

px1,u1
px′2,zfx1,x′2,t1y

.

Since s ∈ J , for x1, x
′
2 with x1 ≤ u1 and sx′2 < x′2, we have fx1,x′2,y

6= 0 (resp.
fx1,x′2,t1y

6= 0) if and only if x1 = u and x′2 = y′ (resp. x1 = t1u and x′2 = y′).
Consequently,

h′u1,z,y − v
−L(t1)h′u1,z,t1y(4.7.1)

= pu,u1
py′,z − v−L(t1)pt1u,u1

py′,z

+
∑

x1,x′2;sx′2>x
′
2

px1,u1px′2,z

(
fx1,x′2,y

− v−L(t1)fx1,x′2,t1y

)
(by (1.4.4))

≡
∑

x1,x′2;sx′2>x
′
2

px1,u1px′2,z

(
fx1,x′2,y

− v−L(t1)fx1,x′2,t1y

)
.
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It is easy to notice that for any x1 ≤ u1 and x′2 ≤ z with sx′2 > x′2 and fx1,x′2,y
6= 0

(resp. fx1,x′2,t1y
6= 0), we have x′2 = x2y

′ with x2 ∈WI −{e} and fx1,x′2,y
= fx1,x2,u

(resp. fx1,x′2,t1y
= fx1,x2,t1u). As a result,

h′u1,z,y − v
−L(t1)h′u1,z,t1y(4.7.2)

= v−LJ
∑

x1∈WI ,x2∈WI−{e}

px1,u1psx2y′,z

(
fx1,x2,u − v−L(t1)fx1,x2,t1u

)

= v−LJ
∑

x2∈WI−{e}

psx2y′,z

( ∑
x1∈WI

px1,u1

(
fx1,x2,u − v−L(t1)fx1,x2,t1u

))

= v−LJ
∑

x2∈WI−{e}

psx2y′,z

(
αu1,x2,u − v−L(t1)αu1,x2,t1u

)
.

(1) By Corollary 4.6(1) and (4.7.2),

deg
(
h′u1,z,y − v

−L(t1)h′u1,z,t1y

)
≤ τI,{w0} − LJ < 0.

(2) (a) By Corollary 4.6(2a) and (4.7.2),

deg
(
h′u1,z,y − v

−L(t1)h′u1,z,t1y

)
< aI(w

′
0)− LJ .

(b) By Corollary 4.6(2b) and (4.7.2),

deg

h′u1,z,y − v
−L(t1)h′u1,z,t1y − δt,t1v

−LJ (pu,w′0 − v
−L(t1)pt1u,w′0)

∑
x2∈WI−{e}

psx2y′,zβu1,x2,w′0


≤ τI,{w′0,w0} − LJ < 0.

�

Lemma 4.8. Let u1 ∈ WI and y, z ∈ W satisfy L(z) = {s} ⊆ J and y < u1z.
Then deg h′u1,z,y ≤ L(w0)− LJ and the equality holds only when u1 = w0.

Proof. By (1.4.4) and the assumption L(z) = {s} ⊆ J and y < u1z, we have

h′u1,z,y =
∑
x1,x′2

px1,u1
px′2,zfx1,x′2,y

(4.8.1)

≡
∑

x1,x′2;sx′2>x
′
2

px1,u1px′2,zfx1,x′2,y

= v−LJ
∑

x1,x′2;sx′2>x
′
2

px1,u1
psx′2,zfx1,x′2,y

.

We see by (4.8.1) that if u1 = w0, then deg h′u1,z,y ≤ L(w0)−LJ and that if u1 < w0,
then deg h′u1,z,y < L(w0)− LJ . �

5. Left multiplication by cu for u ∈WI

Keep the assumptions on the weighted Coxeter group (W,S,L) in 4.1.

Lemma 5.1. Suppose L(w0) > LJ > τI,{w0}. Let u1 ∈ WI − {w0} and y, z ∈ W
satisfy L(z) ⊆ {s} ⊆ J , y < u1z and hu1,z,y 6= 0. Then deg hu1,z,y < L(w0) − LJ
and L(y) = I.
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Proof. We have z 6= e by the assumptions y < u1z and hu1,z,y 6= 0. So L(z) = {s}.
By Lemma 4.8, deg h′u1,z,y < L(w0)−LJ . So deg hu1,z,y < L(w0)−LJ by (1.4.5)

and induction on `(u1z)− `(y) ≥ 1.
Now assume L(y) 6= I, then L(y) ( I. Let Y = {y′ ∈ W |L(y′) ( I, y′ <

u1z, hu1,z,y′ 6= 0}. If Y = ∅, then the result follows. Now suppose Y 6= ∅, and let
y0 be maximal in Y with respect to the partial order ≤. Take t1 ∈ I − L(y0).

By (1.4.5),

hu1,z,y0 = h′u1,z,y0
−
∑
x>y0

hu1,z,xpy0,x.

Since y0 is maximal in Y with respect to ≤, we have

hu1,z,y0 = h′u1,z,y0
−

∑
x>y0,xI=w0

hu1,z,xpy0,x

= h′u1,z,y0
− hu1,z,t1y0py0,t1y0 −

∑
x>t1y0,xI=w0

hu1,z,xpy0,x

= h′u1,z,y0
− v−L(t1)

hu1,z,t1y0 +
∑

x>t1y0,xI=w0

hu1,z,xpt1y0,x


≡ h′u1,z,y0

− v−L(t1)h′u1,z,t1y0
≡ 0,

by Lemma 4.7(1). Thus hu1,z,y0 = 0, a contradiction. So Y = ∅ and the proof is
completed. �

Recall the notation πw′0 preceding Lemma 4.3.

Lemma 5.2. Suppose that WI satisfies (∗), and that (4.1.1) holds in WI , and that
LJ > max{τI,{w′0,w0}, πw′0 + L1 − L2}. Let u1 ∈ WI − {w′0, w0}, y, z ∈ W satisfy
L(z) ⊆ {s} ⊆ J and y < u1z. Let u = yI .

(1) If u = w0, then deg hu1,z,y < L(w0)− LJ .
(2) If u = w′0, then deg hu1,z,y ≤ πw′0 − LJ .
(3) If u 6∈ {w′0, w0}, then hu1,z,y = 0.

Proof. When z = e, hu1,z,y = 0 as y 6= u1z. The result follows. Now assume
z 6= e. Then L(z) = {s}. By Lemma 4.8, deg h′u1,z,y < L(w0)−LJ , so deg hu1,z,y <
L(w0)−LJ by (1.4.5) and induction on `(u1z)− `(y) ≥ 1. (1) is just a special case
of this conclusion and hence is proved.

Let Y be the set of y′ < u1z in W satisfying one of the following (i) or (ii),

(i) y′I 6∈ {w′0, w0} and hu1,z,y′ 6= 0,
(ii) y′I = w′0 and deg hu1,z,y′ > πw′0 − LJ .

If Y = ∅, then (2) and (3) follow. Now suppose Y 6= ∅. Let y0 be a maximal
element in Y with respect to ≤. Let u0 = y0

I .
If L(w′0) 6⊆ L(u0), then u0 6∈ {w′0, w0}. Take some t1 ∈ L(w′0) − L(u0). So by

1.3(0), u0 ≤ w′0 if and only if t1u
0 ≤ w′0. By (1.4.4) and the maximality of y0 in Y ,
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we have

hu1,z,y0 = h′u1,z,y0
−

∑
y′′>y0,y′′I ∈{w′0,w0}

hu1,z,y′′py0,y′′

= h′u1,z,y0
− v−L(t1)hu1,z,t1y0 −

∑
y′′>y0,y′′ 6=t1y0,y′′I ∈{w′0,w0}

v−L(t1)hu1,z,y′′pt1y0,y′′

≡ h′u1,z,y0
− v−L(t1)h′u1,z,t1y0

.

So hu1,z,y0 ≡ 0 following from Lemma 4.7. We have hu1,z,y0 = 0, contradicting
with hu1,z,y0 6= 0.

If L(w′0) ⊆ L(u0), then L(u0) = L(w′0) and u0 ≤ w′0 by the assumption u0 ∈
WI − {w0}. Let y′0 = (u0)−1y0. Then

(5.2.1)

hu1,z,y0

= h′u1,z,y0
−

∑
y′′>y0,y′′I ∈{w′0,w0}

hu1,z,y′′py0,y′′ (by (1.4.4) and the maximality of y0)

= h′u1,z,y0
− δu0,w′0

hu1,z,ty0py0,ty0 −
∑

y′′>y0,y′′I =w′0

(
hu1,z,y′′py0,y′′ + hu1,z,ty′′py0,ty′′

)
= h′u1,z,y0

− hu1,z,ty0py0,ty0 −∑
y′′>y0,y′′I =w′0

(hu1,z,y′′py0,y′′ + hu1,z,ty′′py0,ty′′) (hu1,z,ty0 = 0 if u0 6= w′0)

= h′u1,z,y0
− v−L(t)h′u1,z,ty0

+ v−L(t)
∑

y′′>ty0,y′′I ∈{w′0,w0}

hu1,z,y′′pty0,y′′ −

∑
y′′>y0,y′′I =w′0

(
hu1,z,y′′py0,y′′ + v−L(t)hu1,z,ty′′pty0,ty′′

)
(by 1.3 (3) and (1.4.4))

= h′u1,z,y0
− v−L(t)h′u1,z,ty0

+ v−L(t)
∑

y′′>ty0,y′′I =w′0

hu1,z,y′′pty0,y′′ −
∑

y′′>y0,y′′I =w′0

hu1,z,y′′py0,y′′

= h′u1,z,y0
− v−L(t)h′u1,z,ty0

+
∑

y′′>y0,y′′I =w′0

hu1,z,y′′

(
v−L(t)pty0,y′′ − py0,y′′

)
≡ v−LJ (pu0,w′0

− v−L(t)ptu0,w′0
)

∑
x2∈WI−{e}

psx2y′0,zβu1,x2,w′0
+

∑
y′′>y0,y′′I =w′0

hu1,z,y′′

(
v−L(t)pty0,y′′ − py0,y′′

)
. (by Lemma 4.7)

If u0 = w′0, then we see by (5.2.1) that

(5.2.2)

hu1,z,y0 ≡ v
−LJ

∑
x2∈WI−{e}

psx2y′0,zβu1,x2,w′0
+

∑
y′′>y0,y′′I =w′0

hu1,z,y′′(v
−L(t)pty0,y′′ − py0,y′′).

For any x2 ∈WI −{e}, we see by (1.4.7), (4.1.1) and the assumption on LJ that

deg v−LJpsx2y′0,zβu1,x2,w′0
≤ πw′0 − LJ < L2 − L1.(5.2.3)
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By the maximality assumption on y0, we have

deg hu1,z,y′′ ≤ πw′0 − LJ < L2 − L1(5.2.4)

for any y′′ > y0 with y′′I = w′0.
So deg hu1,z,y0 ≤ πw′0 −LJ by (5.2.2)-(5.2.3). As y0 ∈ Y , we have u0 6∈ {w′0, w0}

and hu1,z,y0 6= 0.
Since u0 6= w′0,

hu1,z,y0 ≡ A1 −A2,(5.2.5)

by (5.2.1) and 1.3(3), where

A1 = v−LJ (pu0,w′0
− v−L(t)ptu0,w′0

)
∑

x2∈WI−{e}

psx2y′0,zβu1,x2,w′0

A2 =
∑

y′′>y0,y′′I =w′0

hu1,z,y′′

(
py0,y′′ − v−L(t)pty0,y′′

)
.

By Proposition 3.5 and Lemma 4.3, we have

deg(pu0,w′0
− v−L(t)ptu0,w′0

) ≤ L1 − L2,(5.2.6)

deg(py0,y′′ − v−L(t)pty0,y′′) ≤ L1 − L2,

for any y′′ > y0 with y′′I = w′0. So we see by (5.2.3) and (5.2.6) that degA1 ≤
−LJ + L1 − L2 + πw′0 < 0, hence A1 ≡ 0. On the other hand, we get A2 ≡ 0 by
(5.2.4) and (5.2.6). Thus hu1,z,y0 ≡ 0 by (5.2.5), and hu1,z,y0 = 0, contradicting
with hu1,z,y0 6= 0. This contradiction shows that Y = ∅. So (2) and (3) are
proved. �

Lemma 5.3. Let u ∈WI , s ∈ I−L(u) and y, z ∈W satisfy sy < y < uz, µsy,uz 6= 0
and L(z) ⊆ J . Suppose one of the following conditions (1)-(2) is satisfied,

(1) L(w0) > LJ > τI,{w0},
(2) WI satisfies (∗) and (4.1.1) holds in WI , and LJ = aI(w

′
0).

Then either yI = w0 or y = u′z for some u′ < u in WI .

Proof. If u = w0, then

cucz = cuz +
∑

y′<uz;y′I=w0

hu,z,y′cy′ .(5.3.1)

If u < w0, by Lemmas 5.1-5.2, we also have (5.3.1).
So

(5.3.2)

cscuz = cs

cucz − ∑
y′<uz;y′I=w0

hu,z,y′cy′


= (cscu) cz −

∑
y′<uz;y′I=w0

hu,z,y′
(
vL(s) + v−L(s)

)
cy′

=

csu +
∑

u′;su′<u′<u

µsu′,ucu′

 cz −
∑

y′<uz;y′I=w0

hu,z,y′
(
vL(s) + v−L(s)

)
cy′ .
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Now assume yI 6= w0. Then we see by (5.3.2) that

hsu,z,y +
∑

u′;su′<u′<u

µsu′,uhu′,z,y 6= 0.

Similar argument as in showing (5.3.1) gives

hsu,z,y +
∑

u′;su′<u′<u

µsu′,uhu′,z,y =
∑

u′;su′<u′<u

µsu′,uδu′z,y,

from Lemmas 5.1-5.2. Thus y = u′z for some u′ < u in W with µsu′,u 6= 0. �

Lemma 5.4. Let u ∈WI , s ∈ I−L(u) and y, z ∈W satisfy sy < y < uz, µsy,uz 6= 0
and L(z) ⊆ J . Suppose that WI satisfies (∗), and that (4.1.1) holds in WI , and
that aI(w

′
0) > LJ > max{τI,{w′0,w0}, πw′0 + L1 − L2}. Then either yI ∈ {w0, w

′
0} or

y = u′z for some u′ < u in WI .

Proof. As the condition (3.0.1) in Section 3 is satisfied, by Proposition 3.3, if u ∈
{w′0, w0}, then

cucz = cuz +
∑

y′<uz;y′I∈{w0,w′0}

hu,z,y′cy′ .(5.4.1)

If u 6∈ {w,w0}, we also have (5.4.1) by Lemma 5.2. So

(5.4.2)

cscuz = cs

cucz − ∑
y′<uz;y′I=w0

hu,z,y′cy′ −
∑

y′<uz;y′I=w′0

hu,z,y′cy′


= (cscu) cz −

∑
y′<uz;y′I=w0

hu,z,y′
(
vL(s) + v−L(s)

)
cy′ −

∑
y′<uz;y′I=w′0

hu,z,y′cscy′

=

csu +
∑

u′;su′<u′<u

µsu′,ucu′

 cz −
∑

y′<uz;y′I=w0

hu,z,y′
(
vL(s) + v−L(s)

)
cy′

−
∑

y′<uz;y′I=w′0

hu,z,y′cscy′ .

Assume yI 6∈ {w0, w
′
0}. Then we see by (5.4.2) that

hsu,z,y +
∑

u′;su′<u′<u

µsu′,uhu′,z,y 6= 0.

By Lemma 5.2, we have

hsu,z,y +
∑

u′;su′<u′<u

µsu′,uhu′,z,y =
∑

u′;su′<u′<u

µsu′,uδu′z,y.

So y = u′z for some u′ < u in WI with µsu′,u 6= 0. �

Lemma 5.5. Suppose that WI satisfies (∗), and that (4.1.1) holds in WI , and
that LJ = aI(w

′
0). Let z ∈ W be with L(z) ⊆ {s} ⊆ J . Let s′ ∈ J . Then

hw′0,s′w′0z,w′0z ≡ v
−LJhw′0,w′0,w′0 6= 0.
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Proof. Let

K = {y ∈W |y > w0z, hw′0,s′w′0z,y 6= 0},
K ′ = {y ∈W |y > w′0z, hw′0,s′w′0z,y 6= 0}.

For any y ∈ K ′, by Proposition 3.3, yI ∈ {w0, w
′
0}. As w′0z < y ≤ w′0s

′w′0z, if
yI = w0, then y = w0z. If yI = w′0 then y must be of the form y = w′0 · s′ · x · z for
some x ∈WI with e < x ≤ w′0.

We claim that K ′ ⊆ {w′0s′w′0z, w0z}. By (1.4.5), to prove this, we only have to
show

h′w′0,s′w′0z,w′0s′xz ≡

{
1 if x = w′0,

0 if e < x < w′0.

This follows by (1.4.4), as (1.4.4) implies that

h′w′0,s′w′0z,w′0s′xz = pw′0,w′0ps′xz,s′w′0zfw′0,s′xz,w′0s′zx

= ps′xz,s′w′0z.

From the fact K ′ ⊆ {w′0s′w′0z, w0z}, we have K = {w′0s′w′0z}. So

hw′0,s′w′0z,w0z

≡ h′w′0,s′w′0z,w0z
(by (1.4.5) and the claim)

=
∑

x1,x′2∈W

px1,w′0
px′2,s′w′0zfx1,x′2,w0z (by (1.4.4)) .

For x1 ≤ w′0 and x′2 ≤ s′w′0z, if fx1,x′2,w0z 6= 0, then L(x′2) ⊆ I, and there exists
x2 ∈WI with x′2 = x2 · z. Consequently,

hw′0,s′w′0z,w0z(5.5.1)

=
∑

x1,x2∈WI

px1,w′0
px2z,s′w′0z

fx1,x2z,w0z

= v−LJ
∑

x1,x2∈WI

px1,w′0
ps′x2z,s′w′0z

fx1,x2z,w0z (by 1.3 (3))

= v−LJ
∑

x1,x2∈WI

px1,w′0
ps′x2z,s′w′0z

fx1,x2,w0

= v−LJ
∑

x1,x2∈WI

px1,w′0
px2,w′0

fx1,x2,w0
(by 1.3 (5), (7))

= v−LJh′w′0,w′0,w0
(by (1.4.4))

≡ v−LJhw′0,w′0,w0
. (by (1.4.5))

As K ′ ⊆ {w′0s′w′0z, w0z}, we have

hw′0,s′w′0z,w′0z

≡ h′w′0,s′w′0z,w′0z − hw′0,s′w′0z,w0zpw′0z,w0z (by (1.4.5))

=
∑

x1,x′2∈W

px1,w′0
px′2,s′w′0zfx1,x′2,w

′
0z
− hw′0,s′w′0z,w0zpw′0z,w0z. (by (1.4.4))

For x1 ≤ w′0 and x′2 ≤ s′w′0z with fx1,x′2,w0z 6= 0, if L(x′2) 6⊆ I, then w′0z = x1 ·x′2,
so x1 = w′0 and x′2 = z. If L(x′) ⊆ I, then there exists x2 ∈WI−{e} with x2 = x2·z.
Consequently,
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hw′0,s′w′0z,w′0z

=
∑

x1,x2∈WI

px1,w′0
px2z,s′w′0z

fx1,x2z,w′0z
− hw′0,s′w′0z,w0zpw′0z,w0z

≡ v−LJ
∑

x1,x2∈WI

px1,w′0
ps′x2z,s′w′0z

fx1,x2,w′0
− v−LJhw′0,w′0,w0

pw′0,w0
(by 1.3 (3) and (5.5.1))

= v−LJ
∑

x1,x2∈WI

px1,w′0
px2z,w′0

fx1,x2,w′0
− v−LJhw′0,w′0,w0

pw′0,w0
(by 1.3 (5), (7))

= v−LJh′w′0,w′0,w′0 − v
−LJhw′0,w′0,w0

pw′0,w0
(by (1.4.4))

≡ v−LJhw′0,w′0,w′0 . (by (1.4.5))

Therefore our proof is complete by Lemma 4.4 and the assumption aI(w
′
0) = LJ .

�

Recall the notation Cx (x ∈ W ) defined in 1.6. Note that hx,y,z = hy−1,x−1,z−1

for any x, y, z ∈W . Recall the definition of z appearing in α for z ∈W and α ∈ H.

Lemma 5.6. For s ∈ J and u ∈ WI , let x ∈ Csu, s′ ∈ S and y ∈ W satisfy
s′y < y < x < s′x and µs

′

y,x 6= 0.

(1) If L(w0) > LJ > τI,{w0}, then y ∈ Csu ∪ Cw0
.

(2) Suppose that WI satisfies (∗) and that (4.1.1) holds in WI . If aI(w
′
0) ≥

LJ > max{τI,{w′0,w0}, πw′0 + L1 − L2}, then y ∈ Csu ∪ Cw′0 .

Proof. We prove the result using induction on n = `(x)− `(su) ≥ 0. When n = 0,
x = su and cs′csu = cs′su as s′ 6≤ su. Now suppose n > 0. Write x = x′ · su for
some x′ ∈W . Then

cs′cx = cs′

(
cx′scu −

∑
z′<x

hx′s,u,z′cz′

)
(5.6.1)

= cs′cx′scu −
∑
z′<x

hx′s,u,z′cs′cz′ .

For any y′′, z′′ ∈W with R(z′′) = {s} and hz′′,u,y′′ 6= 0 (hence hu−1,z′′−1,y′′−1 6= 0),
we have

(1’) y′′ ∈ Csu ∪ Cw0
if L(w0) > LJ > τI,{w0}, by Lemma 5.1, and

(2’) y′′ ∈ Csu ∪ Cw′0 if WI satisfies (∗) and (4.1.1) holds in WI and aI(w
′
0) ≥ LJ >

max{τI,{w′0,w0}, πw′0 + L1 − L2}, by Lemma 5.2 with u−1
1 , z′′−1, y′′−1 in the

places of u1, z, y, respectively.

Write A = cs′cx′scu and B =
∑
z′<x hx′s,u,z′cs′cz′ . Then cs′cx = A − B. Since

µs
′

y,x 6= 0, y appears in A or B.
If y appears in A, then we have (1) and (2) following from (1’) and (2’). Now

suppose y does not appear in A. Thus it appears in B, and there exists z′ < x with
hx′s,u,z′ 6= 0 and hs′,z′,y 6= 0.

As hx′s,u,z′ 6= 0, when L(w0) > LJ > τI,{w0}, we have z′ ∈ Csu ∪ Cw0 by (1’).
Now hs′,z′,y 6= 0. If z′ ∈ Cw0

, then y ∈ Cw0
. If z′ ∈ Csu, then y ∈ Csu ∪ Cw0

by the
inductive hypothesis.

WhenWI satisfies (∗) and (4.1.1) holds inWI and aI(w
′
0) ≥ LJ > max{τI,{w′0,w0}, πw′0+

L1 − L2}, we have z′ ∈ Csu ∪ Cw′0 by (2’). If z′ ∈ Cw′0 , then y ∈ Cw′0 by Corollary
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3.4(2). If z′ ∈ Csu, then y ∈ Csu ∪ Cw′0 by the inductive hypothesis. The result
follows.

�

6. The multiplication by cs for s ∈ J

Keep the assumptions for the weighted Coxeter group (W,S,L) in 4.1.

Lemma 6.1. Let z ∈W and L(z) = {s′} ⊆ J and s ∈ J − {s′}. Then

cscz = csz + εcs′z,

where ε =

{
1 if s ∈ L(s′z),

0 if s 6∈ L(s′z).

Proof. From 1.3 (3), we see that for any y ∈W with sy < y < z,

vLJpy,z = ps′y,z ≡ δs′y,z = δy,s′z.

So the result follows by Lemma 1.8. �

Lemma 6.2. Let z = u1 · z′ for some u1 ∈ WI − {e} and z′ ∈ W with L(z′) =
{s′} ⊆ J . Let s ∈ J −L(z). Suppose that one of the following conditions (a)-(b) is
satisfied

(a) L(w0) > LJ > τI,{w0} and u1 6= w0;
(b) WI satisfies (∗) and (4.1.1) holds in WI , LJ > max{τI,{w′0,w0}, πw′0 +L1−L2}

and u1 6∈ {w′0, w0},
Then

(1) vLJhu1,z′,z′′py,z′′ ≡ 0 for any z′′, y ∈W with sy < y ≤ z′′ < z;
(2) cscz = csz + µ1cz′ + µ2cu1s′z′ where µ1, µ2 ∈ A are defined by µ1 = µ̄1 ≡{

vLJpe,u1
if s = s′,

0 if s 6= s′,
and µ2 =

{
1 if s ∈ L(u1s

′z′),

0 if s 6∈ L(u1s
′z′).

Proof. (1) In case (a), hu1,z′,z′′ 6= 0 implies z′′I = w0 and deg vLJhu1,z′,z′′ <
L(w0) by Lemma 5.1. So deg vLJhu1,z′,z′′py,z′′ < L(w0)−L(w0) = 0 by 1.3
(3) and the fact L(y) = {s} ⊆ J .

In case (b), we see by Lemma 5.2 that hu1,z′,z′′ 6= 0 implies z′′I ∈ {w′0, w0}
and deg hu1,z′,z′′ < aI(z

′′
I ) − LJ . By 1.3 (3), the fact L(y) = {s} ⊂

J , Propositions 3.5, 3.8 and Lemma s4.4, we see that if z′′I = w0, then
deg vLJhu1,z′,z′′py,z′′ < LJ+(L(w0)−LJ)−L(w0) = 0, and that if z′′I = w′0,
then deg vLJhu1,z′,z′′py,z′′ < LJ + (aI(w

′
0)− LJ)− aI(w

′
0) = 0.

So the result is proved in either case.
(2) If s = s′, then µsz′,z ≡ vLJpe,u1

= vLJps,u1s′ by 1.3 (4), (7). If s 6= s′, then

µsz′,z = 0. In this case, vLJps,u1s′ = 0.

Let y ∈W be with sy < y < z and y 6= z′. Then y < z′. The result will
follow by Lemma 1.8 if

vLJpy,z − vLJps,u1s′py,z′ ≡

{
1 if y = u1s

′z′,

0 if y 6= u1s
′z′.

(6.2.1)
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But

vLJpy,z − vLJps,u1s′py,z′

= vLJ
∑
x1,x2

px1,u1
px2,z′fx1,x2,y −

∑
z′′<z

vLJhu1,z′,z′′py,z′′ − vLJps,u1s′py,z′

≡ vLJ
∑
x1,x2

px1,u1px2,z′fx1,x2,y − vLJps,u1s′py,z′ (by (1))

=
(
vLJpe,u1

py,z′ − vLJps,u1s′py,z′
)

+ vLJ
∑

x1,x2;x1 6=e

px1,u1
px2,z′fx1,x2,y

≡ vLJ
∑

x1,x2;x1 6=e

px1,u1
px2,z′fx1,x2,y.

We see by (1.1.1) that the conditions fx1,x2,y 6= 0, x1 ∈ WI − {e},
L(y) = {s}, L(z′) = {s′} and s, s′ ∈ J imply x2 = x−1

1 y, fx1,x2,y = 1 and
px2,z′ = v−LJps′x2,z′ . So

vLJpy,z − vLJps,u1s′py,z′ ≡
∑

x1,x2;x1 6=e

px1,u1
ps′x−1

1 y,z′ ≡

{
1 if y = u1s

′z′,

0 if y 6= u1s
′z′.

So (6.2.1) is true and the result follows.
�

Lemma 6.3. Let z = u1 · z′ for some u1 ∈ WI − {e} and z′ ∈ W with L(z′) =
{s′} ⊆ J . Let s ∈ J − L(z).

(1) If LJ < L(w0) and u1 = w0, then cscz = csz.
(2) Suppose that WI satisfies (∗) and that (4.1.1) holds in WI . If LJ ≤ aI(w

′
0)

and u1 = w′0, then

cscz = csz + ε2cz′ ,

where ε ∈ Z−{0} and it is given by ε = ε̄ ≡

{
vLJpe,w′0 if LJ = aI(w

′
0) and s = s′,

0 otherwise.

Proof. (1) Let E := {y ∈ W |µsy,z 6= 0; sy < y < z}. If E 6= ∅, take y the
maximal in E with respect to ≤, then

µsy,z ≡ vLJpy,z(6.3.1)

by 1.3 (4). If LJ < L(w0) and u1 = w0, then µsy,z ≡ vLJ−L(w0)pw0y,z ≡ 0
by (6.3.1) and 1.3 (3), a contradiction. This proves (1).

(2) Let E′ = {y ∈ W |sy < y < z, vLJpy,w 6≡ 0}. Take y ∈ E′. Under the
assumptions of (2), we have LJ = aI(w

′
0), y = z′ and vLJpy,w ≡ vLJpe,w′0

and deg vLJpy,w ≤ 0 by 1.3 (7), Propositions 3.5, 3.8 and Lemma 4.4.
So E′ ⊆ {z′}, and vLJpz′,w ≡ vLJpe,w′0 with deg vLJpz′,w ≤ 0. So the

result follows by Lemma 1.8.
�

7. Left and two-sided cells Γ of W with Γ ∩ J 6= ∅

Keep all the assumptions in 4.1 for (W,S,L). We shall describe all the left cells
and two-sided cells (say Γ) of W with Γ ∩ J 6= ∅ in the cases

(1) L(w0) > LJ > τI,{w0} (see Proposition 7.4), and
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(2) WI satisfies (∗) and (4.1.1) holds inWI , aI(w
′
0) ≥ LJ > max{τI,{w′0,w0}, πw′0+

L1 − L2} (see Proposition 7.5).

Lemma 7.1. Let u1 ∈WI . Let z ∈W be with L(z) = {s} ⊆ J and s′ ∈ J−L(u1z).
Suppose one of the following (1)-(2) is true.

(1) L(w0) > LJ > τI,{w0} and u1 6= w0.
(2) WI satisfies (∗) and (4.1.1) holds in WI , L(w0) > LJ > max{τI,{w′0,w0}, πw′0+

L1 − L2} and u1 6∈ {w′0, w0}.
Then z ∼L u1z ∼L s′u1z.

Proof. When u1 = e, z ∼L s′z follows by Lemma 6.1. Now suppose u1 > e.
Applying Lemma 6.2 with u−1

1 s′uz in the place of z, we get µs
z,u−1

1 s′u1z
= 1. So

z ≤L u−1
1 s′u1z ≤L s′u1z ≤L u1z ≤L z, and z ∼L u1z ∼L s′u1z. �

Lemma 7.2. Suppose that WI satisfies (∗), and that (4.1.1) holds in WI , and that
LJ = aI(w

′
0). Let z ∈W − {e}.

(1) If L(z) ⊆ J , then z ∼L w′0z.
(2) If zI = w′0 < z, then z ∼L sz for any s ∈ J .

Proof. (1) Take s ∈ L(z) ⊆ J . By Lemma 6.3, µsz,w′0z
6= 0. So z ≤L w′0z ≤ z

and z ∼L w′0z.
(2) By Lemma 5.5, hu1,sz,z 6= 0. So z ≤L sz ≤L z and z ∼L sz.

�

Recall the notation y ←L x, Ωx and ΩX for x, y ∈W and X ⊆W defined in 1.6.

Lemma 7.3. Let x, y ∈ W . Then y 6←L x if one of the following conditions is
satisfied.

(1) L(w0) > LJ > τI,{w0}. Either x ∈ Ωw0
and y 6∈ Ωw0

or x ∈ ΩJ and
y 6∈ ΩJ ∪ {w0}.

(2) WI satisfies (∗) and (4.1.1) holds in WI , LJ = aI(w
′
0). Either x ∈ Ωw0

and y 6∈ Ωw0
or x ∈ ΩJ and y 6∈ ΩJ ∪ Ωw′0 .

(3) WI satisfies (∗) and (4.1.1) holds in WI , aI(w
′
0) > LJ > max{τI,{w′0,w0}, πw′0+

L1 − L2}. Either x ∈ Ωw′0 and y 6∈ Ωw′0 or x ∈ ΩJ and y 6∈ ΩJ ∪ Ωw′0 .

Proof. We must prove the equation hs,x,y = 0 for any s ∈ S. When s ∈ I, this
follows by Lemmas 5.3-5.4.

Now suppose s ∈ J . Then this is obvious if x ∈ ΩJ and y 6∈ ΩJ .

(1) If L(w0) > LJ > τI,{w0}, x ∈ Ωw0
and y 6∈ Ωw0

, then hs,x,y = 0 follows by
Lemmas 6.1, 6.2 (a) and 6.3 (1).

(2) If WI satisfies (∗) and (4.1.1) holds in WI , LJ = aI(w
′
0), x ∈ Ωw0

and
y 6∈ Ωw0

, then hs,x,y = 0 follows by Lemmas 6.1, 6.2 (b) and 6.3 (2).
(3) IfWI satisfies (∗) and (4.1.1) holds inWI , aI(w

′
0) > LJ > max{τI,{w′0,w0}, πw′0+

L1 − L2}, x ∈ Ωw′0 and y 6∈ Ωw′0 , then hs,x,y = 0 follows by Lemmas 6.1,
6.2 (b) and 6.3.

�

Theorem 7.4. Suppose L(w0) > LJ > τI,{w0}.

(1) Ωw0
is a union of two-sided cells.

(2) ΩJ − Ωw0
is a two-sided cell of W .

(3) Csx − Ωw0
is a left cell of W for any s ∈ J and x ∈WI − {w0}.
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Proof. (1) follows by Lemma 7.3 (1). Then (3) is a consequence of Lemmas 5.6 (1)
and 7.1.

Take s′ ∈ J . For any z ∈ ΩJ − Ωw0 , there exists s ∈ J and x ∈ WI − {w0}
with z ∈ Csx − Ωw0

. So by (3), z ∼L sx. Moreover, by Lemma 7.1 and 1.3 (4),
sx ∼R s ∼L s′s ∼R s′. So z ∼LR s′ and ΩJ −Ωw0

is contained in a single two-sided
cell of W . It is known by Lemma 7.3 (1) that ΩJ − Ωw0

is a union of two-sided
cells of W . So ΩJ − Ωw0 itself forms a two-sided cell of W . �

Theorem 7.5. Suppose that WI satisfies (∗) and that (4.1.1) holds in WI .

(1) If LJ = aI(w
′
0), then

(a) Ωw0 is a union of two-sided cells of W ;
(b) (ΩJ ∪ {w′0})− Ωw0

is a two-sided cell of W ;
(c) {Cw′0 − Ωw0

} ∪ {Csx − Ωw0
|s ∈ J, x ∈ WI − {w′0, w0}} is the set of left

cells of W in (ΩJ ∪ {w′0})− Ωw0
;

(2) If aI(w
′
0) > LJ > max{τI,{w′0,w0}, πw′0 + L1 − L2}, then

(a) Ωw′0 is a union of two-sided cells of W ;
(b) ΩJ − Ωw′0 is a two-sided cell of W ;
(c) {Csx − Ωw′0 |s ∈ J, x ∈ WI − {w′0, w0}} is the set of left cells of W in

ΩJ − Ωw′0 .

Proof. (1) (a) follows by Lemma 7.3 (2). By Lemmas 5.6, 7.1 and 7.2, Csx−Ωw0

is a left cell for any x ∈WI − {w′0, w0}. Moreover, Cw′0 − Ωw0
is a left cell.

Let z ∈ ΩJ −Ωw0
. If z ∈ Cw′0 −Ωw0

, then z ∼L w′0 as Cw′0 −Ωw0
is a left

cell. If z 6∈ Cw′0−Ωw0
, then z ∈ Cs′x′−Ωw′0 for some x′ ∈WI−{w0, w

′
0} and

s′ ∈ J . We have s′x′ ∼R s′ ∼L w′0s′ ∼R w′0 by Lemma 7.2. So z ∼LR w′0.
Thus (ΩJ ∪ {w′0})− Ωw0

is contained in a single two-sided cell of W .
By Lemma 7.3 (2), we see that (ΩJ ∪{w′0})−Ωw0

is a union of two-sided
cells. So (b) and (c) follow.

(2) (a) follows by Lemma 7.3 (3). By Lemmas 5.6 and 7.1, Csx − Ωw′0 is a left
cell of W for any x ∈WI − {w′0, w0}.

Let s1 ∈ J and z ∈ ΩJ − Ωw′0 . Then z ∈ Cs′x′ for some s′ ∈ J and
x′ ∈ WI − {w0, w

′
0}. Since Cs′x′ − Ωw′0 is a left cell, z ∼L s′x′. Moreover,

s′x′ ∼R s′ by Lemma 7.1, and s′ ∼L s1. So z ∼LR s1. Thus ΩJ − Ωw′0 is
contained in one two-sided cell.

Moreover, ΩJ − Ωw′0 is a union of left cells of W by Lemma 7.3 (3). So
(b) and (c) are true.

�
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