KAZHDAN-LUSZTIG CELLS IN SOME WEIGHTED COXETER
GROUPS
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ABSTRACT. Let (W, S) be a Coxeter group with S = I'UJ such that J consists
of all universal elements of S and that I generates a finite parabolic subgroup
Wi of W with wg the longest element of W;. We describe all the left cells and
two-sided cells of the weighted Coxeter group (W, S, L) that have non-empty
intersection with J, where the weight function L of (W, S) is in one of the
following cases: (i) max{L(s)|s € J} < min{L(t)|t € I}; (ii) min{L(s)|s €
J} > L(wp); (iii) There exists some ¢ € I satisfying L(t) < L(s) for any
s € I—{t} and L takes a constant value L; on J with L in some subintervals
of [1,L(wp) — 1]. The results in the case (iii) are obtained under a certain
assumption on (W, Wr).

Lusztig introduced a weighted Coxeter group W = (W, S, L) and the (left, right
and two-sided) cells of W in his book [Lu2], where he expected to extend a number
of results in the equal parameter case (i.e., the weight function L is the length
function of (W, .5)) to the unequal parameter case (i.e., L is not constant on S) by
proposing 15 conjectures involving the cells of W. The progresses have been fully
achieved in describing cells for some weighted Coxeter groups (W, S, L), such as
I(m) (m is either even or infinity), Fy, Cy and Gy (see [Lu2, Ge, Gu]) and have
been partially achieved, such as B, C, and B, (n > 2) with certain special weight
functions (see [Lul, Bon, MS, Sh2, Sh3]).

In [SY], we describe all the left cells and two-sided cells of the weighted universal
Coxeter group (W, S, L) (i.e., the product st of any s # t in S has order o(st)
infinite) with L being arbitrary weight function of (W, S). In the present paper, we
shall extend our results in [SY] to some more general case: S is a disjoint union of
two non-empty subsets I and J, where J := {s € S|o(st) = oo for any ¢t € S — {s}}
(call J the universal part of S), and the subgroup Wy of W generated by I is finite
with wg the longest element. To avoid a degenerating case, we shall always assume
that the cardinality |I| of I is greater than 1 in the present paper.

We shall describe all the left cells and the two-sided cells of the weighted Coxeter
group (W, S, L) that have non-empty intersection with J. We do it for the weight
function L of (W, S) first in the cases (i): max{L(s)|s € J} < min{L(t)|t € I} and
(ii): min{L(s)|s € J} > L(wp). The main results in these two cases are included
in Theorems 2.2 and 2.11, respectively. Then we spend six sections of the paper
to consider the case (iii): there exists some t € I satisfying L(t) < L(s) for any
s € I —{t} and L takes a constant value L; on J with L; in some particular
subintervals of [1, L(wg) — 1]. The main results in this case are Theorems 7.4-7.5.

Key words and phrases. weighted Coxeter group; universal elements; left cells; two-sided cells;
the second largest weight element.

1 Supported by the NSF of China (11131001 and 11471115), Shanghai Key Laboratory of
PMMP, and STCSM (13dz2260400).

1



2 JIAN-YI SHIT, GAO YANG#

This is the most technical part in the paper. We reach our goal under a certain
assumption on (W, Wy) (i.e., (4.1.1)). The second largest weight element w{ of Wy
plays an important role in our discussion. We deduce some properties of wy(, some
of which are analogous to those of wy and of independent interest.

The contents of the paper are organized as follows. We collect some necessary
concepts and known results in Section 1. In Section 2, we describe the left and
two-sided cells of (W, S, L) in the cases (i)-(ii). In Section 3, we study the second
largest weight element of W;. We make some degree estimates involving some «-
and h/-polynomials in Section 4. Then in Sections 5-6, we investigate the c-basis
expansions obtained by left multiplication by ¢, with £ € W; U J and study the
relations ~,, ~pr in W. Finally, in Section 7, we describe the left cells and two-
sided cells of (W, S, L) intersecting J nontrivially in the case (iii).

1. PRELIMINARIES

1.1. Let Z (resp., N, P) denote the set of integers (resp., non-negative integers,
positive integers). For any ¢ < j in Z, denote by [i, j] the set {i,i +1,...,5} and
denote [1, j] simply by [j].

Let W be a Coxeter group with S its Coxeter generator set. Let £ be the length
function and < the Bruhat-Chevalley order on (W, S). Call L : W — N a weight
function on W if L(zy) = L(x) + L(y) for any z,y € W with {(zy) = () + £(y).
Hence L(s) = L(t) for any s,t € S conjugate in W. Call (W,S,L) a weighted
Cozeter group.

Let A = Z[v,v~1] be the ring of Laurent polynomials in an indeterminate v with
integer coefficients. Denote v, := v*(*) for w € W. We can define the degree of
the elements of A through the following map

deg: A — Z U {—o0}.

For ¢ € A, if ( =0, then deg(¢) = —oo; otherwise, deg({) is defined to be the the
integer d¢ maximal with respect to the condition that v=%( ¢ Zv~!] — Z. For
example, deg(v™3 4+ v~!) = —1 under this definition.

The Iwahori-Hecke algebra H := H(W,S,L) of (W,S,L) is by definition the
associative A-algebra with an A-basis {T,,|w € W} as a free A-module, subject to
the multiplication rule:

T? = (vs —v; )Ty + T, forseS,

(1.1.1) ToTy = Tyy for x,y € W with £(zy) = (z) + L(y),

where e is the identity element of W. For any n € Z, let A<, := @m;mgn Zo™,
Ay i= @m;m<n Zo™, Hen = P pew A<nTw and Heyp == P ey A<n Ty Define
a ring involution ~ : A — A by Y a;vt = Y a;v¢ with i,a; € Z and a ring
involution ~ : H — H by > a,Tw = Z@Tu}ll with a,, € A.
1.2. For any w € W, there exists a unique ¢,, € H<o satisfying that ¢, = ¢,, and
cw = Tw(mod Hp). Then {c, | w € W} forms an A<g-basis of H<p and an
A-basis of H (see [Lu2, Theorem 5.2]).

For any y,w € W, define p, ., € A<g by the relation ¢, = ZyGWpvaTy' Then
Pyw =01 y Lw, pyow=1and py., € Acp if y < w.
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For any w € W and s € S, we have

(vs + v Yew, if sw < w,

Lu2, Theorem 6.6
Csw + Zy;sy<y WywCy  if sw > w, (l 1)

(1.2.1) cs¢p = {

with py , € A satisfying fig ,, = py -

1.3. For any w,z,y € W, the notation w = z - y means that w = xy and

L(w) = 4(x) + £(y). In this case, call w a left-extension of y and a right-extension
of z. Call w=s185---8, with s; € S a reduced expression if r = {(w). Define
Lw)={se S |sw<w}and R(w)={s €S| ws<w}

d Ac, d Ay .
For f,g € A and n € Z, write f s g (resp. f I g)if f—ge A<,
od A

(resp. f—g € A.y). For n =0, we denote f N g simply by f = g.

For z € W and a € H, we say z appears in « if ¢, appears with nonzero coefficient
when we write « in the c-basis.

The notation ¢ is the Kronecker delta. In particular, for any z,y € W,

1 ifx=y,
5m,y: .
0 ifx#y.

The following results are known: Let y,w € W and s,t € S.

(0)Ify <wand s € L(w)—L(y), then sy < w. This is called the lifting property.

(1) If y < w, then degpy,w > L(y) — L(w).

(2) If a reduced expression of y can be obtained from that of w by deleting a
factor s, then p, ., = vy ! (see [Lu2, Section 6]).

(3) If y < w and s € L(w) — L(y), then py = vy 'psyw. This is an easy
consequence of [Lu2, Proposition 6.3].

(4) Assume sy < y < w < sw. Then m = fiy ,, and Zz;y§z<w;sz<z W3 wPy,z =
VsPy.w (see [Lu2, Proposition 6.3]). This implies that deg 15 ,, < L(s)—min{L(t)[t €
St.

(5) Psy,sw = Py,w + VsDsy,w — Zz;sy<z<w;sz<z ,Uz,wpsy,z if s ¢ ['(y) U E(’LU) (See
[Lu2, the proof of Theorem 6.6]).

(6) If sy <y <w < swand t e L{w)—L(y) and L(t) > L(s), then 5, # 0 if
and only if L(t) = L(s) and w = ty (see [Shl, Proposition 2.6]).

Let J C S. Denote by W the subgroup of W generated by J. Then W} is also a
Coxeter group with J its Coxeter generator set. We can define the weighted Coxeter
group (Wy,J, Llw,), the associated Iwahori-Hecke algebra H; := H(Wy,J, Llw,)
and the polynomials pi_’y € A<p and Ni’,i € A for x,y € W; and s € J accordingly,
where L|w, is the restriction of L to W.

Any w € W can be written uniquely in the form w = wyw’ with w; € W and
w?’ the shortest element in the coset W w.

(7) If y,w € W satisfy w’ = y/ then py = pj, ., = Pysw, and pf,, =
1y, = 15w, (Where s € J) whenever they are defined (see [Lu2, Lemma 9.10]).

1.4. Following Lusztig in [Lu2, Subsections 10.1 and 13.1], we set, for y,w € W,

q:I/J,’lU = Z(_l)npzo,zlpm,zz " Dan_y,an € A

summing over all sequences y = zp < 21 < 22+ < z, = w in W. Then ¢, ,, = 1,

Qyw € Ao if y # w, and Ty = 37 cyp ¢, Cy (see [Lu2, Subsection 10.7]).
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For '1:7 y7 z 6 W7 deﬁne fx,y,m fg,c7y7za hx,y,m h;j7y,za ax,y,mﬁx,y,z e A by
TxTy = Z fm,y,sz = Z f;;7y,zcza

zeW zeW
/
CrCy = g Ngy,2Cz = g hm,y,zTZ'
zeW zeW
CxTy = E am,y,sz = E ﬁz,y,zcz'
zeW zeW

Following [Lu2, Subsection 13.1 (a)-(c)], we have

(141) fa:7y,z = sz,zlf;c7y,z/ = Z qlx/7xq;,,yh;/7y/7z7
z/ z',y’

(1.4.2) Frge = D ooy
Z/

(143) hz,y,z = Z pl’l7$pyl7§‘/ :;:’,y”z = Zq;’zlh‘/x”y’zl’
Ly’ 2

(144) h;:,y,z = Z px’,xpy',yfac’,y’,z = sz,z/h%yvz/’
@y’ '

(145) hm,y,z = h;,y,z - Z hz,y,z’pz,z’v

z'>z

(146) Qg oy, = pr’,mfr’,yyza
g;/

(147) ﬁx,y,z = Z qu',th,y’,Z'
y/

The following result can be obtained from definitions and simple induction:

(1481f fr,y,z 7é 0 (resp., fa/c,y,z 7é 0, hx,y,z 7é 0, h;,y,z 7é 0, Qg y,z ?A 0, Bm,y,z 7é O)
then deg fo.y - (vesp., deg fy . deghayz degh, , ., degaq,y :, degfBay,:)
< min{L(z), L(y)}, and the equality holds if and only if there exists some
I C S with |[W;| < oo such that either z € Wy and I C L(y), or y € Wy

and I C R(x). When the equivalent conditions hold, we have either
z=yorz=ax.

(149044, #0= L(z) C L(2),R(y) S R(z),z <p x and z <1, y (see [Lu2]).

1.5. We say that (W, S, L) is bounded if there exists some N € N such that

deghyy . < N for any z,y,z € W (see [Lu2, Subsection 13.2]). We shall assume

(W, S, L) is bounded throughout the rest of the article. In this case, we may

define a function a : W — N such that for any z € W, h, ,, ., € v*3*)Z[v™!] for all

z,y € W and hy . ¢ v3E)71Z[v for some 2/,y’ € W. For any z,y,z € W,

define 7,,4,» € Z by the condition

(1.5.1)

ha oy, = 'yw)y’zflva(z) + strictly lower powers of v (see [Lu2, Subsection 13.6]).

The following facts are well known: Let z,y,z € W.
(1.5.2) a(e) = 0 and a(z) > min{L(s)|s € S} if z # e (see [Lu2, Proposi-
tion 13.7]).
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(1.5.3) a(z) = a(z™!) and v4,y,. = Yy-1,4-1,,-1 (see [Lu2, Proposition 13.9]).
(1.5.4) If hyy > # 0, then L(z) C L(z) and R(y) € R(z) (see [Lu2, Lemma 8.6]).

1.6. Let (W, S, L) be a Coxeter system.

Let W be finite with the longest element wg. It is known that conjugation by
wo on W preserves the length. If there exists some s € S such that L(s) < L(t) for
any t € S —{s}, then wgs = swy, and wys has the second largest weight among the
elements of (W, S, L).

In (W, S), call s € S universal if the order of st is infinite for any t € S — {s}.

Let I C S. For any function £ on W, the notation £; stands for the restriction
of £ to Wy. For example, a;(z) for € Wy is a(z) computed in terms of W;. If Wj
is finite, then for any I' C Wi, define 77 r = max{a;(w)|lw € W; —T'}.

For any © € W, set C, = {#z € W|z = 2’ - = for some 2’ € W}, and Q, = {z €
Wz =y1-x-ys for y1,ys € W}. For any X C W, set Qx = UpexQs-

In [Lu2, Chapter 14], Lusztig proposed 15 conjectures (P1)-(P15) on (W, S, L),
one of which is

(P7) For any ,y,2 € W, Vay» = Vy.z.z-

Denote x <1 y in W, if there exists some s € S such that either x = s -y or
Mz # 0. Denote x <—g y in W, if x7 !+ y~l. Denote z < v in W, if either
x4 yorz<py. Through < (resp. g, < rr), the preorder <y, (resp. <g,
<rr) and the corresponding equivalence relation ~j, (resp. ~g, ~pg) in W can
be defined as in [Lu2, Subsection 8.1]. The equivalence classes of W with respect
to ~r,~g,~rr are called left cells, right cells, two-sided cells, respectively.

The following result follows directly by the definition of the relation ~p g.

Lemma 1.7. Let I C S and X C W;. Suppose one of the following conditions is
satisfied.

(1) Foranyx € X andy e W — X, y ¢~Lr .

(2) Foranyzx € X andy e W — X, x LR y.
The for any x1,x2 € X, @1 ~ ®2 (resp. x1 ~pr T2) if and only if ©1 ~1,1 X2
(resp. x1 ~1,LRr T2), where ~y 1, and ~ r are the relations ~p and ~pr defined
m W[.

Lemma 1.8. Letw e W, s € S — L(w) and /" :={y € W|sy < y < w}.
(1) If for any y' € 7, degvspy v <0, then u, ,, = Vspy -

(2) Suppose that /' has a unique mazimal element yo, and deg(ty, ,,Pyyo —
VsPyw) <0 for any y € " —{yo}. Then fory' € .7,

s, = UsPy if ¥ = o,
v VsPy' . w — /szo,wpy/,yo Zf y, 75 Yo-
Proof. This follows by 1.3(4) and the induction on ¢(w) — £(y") > 1. O

2. CELLS OF W WHEN L IS NOT NECESSARILY CONSTANT ON W7

In this section, we assume that S = I U .J, and that .J consists of universal
elements. We shall describe the left cells and two-sided cells of the weighted Cox-
eter system (W, S, L) intersecting J nontrivially, in the case max{L(s)|s € J} <
min{L(t)|t € I} (Theorem 2.2) and in the case Wi is finite and min{L(s)|s € J} >
L(wg), where wy is the longest element of Wi (Theorems 2.11).
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The following fact is obvious: If w € W—{e}, then either L(w) C I or L(w) = {s}
for some s € J. Thus for w € W, I C L(w) implies L(w) = I.

Lemma 2.1. Suppose max{L(s)|s € J} < min{L(¢)|t € I}.
(1) Let w e Wy and z € W satisfy l(uz) = l(u) + £(z) and

max{L(s)|s € J;s < u} < max{L(t)|t € L(z)}.

Then we have
(a) cuc: = Cuz.
(b) Lett € L(z) and s € J — L(u) satisfy L(s) = L(t). Define p1,u2 € A

by

- UL(S)pe,u th =S,
H1 = M1 = 0 ift+s,

iy — {1 if s € L(utz),

0 ifs¢ L(utz).
(i) If u # e then
CsCuz = Csuz + H1Cz + U2Cutz-
(i) Ifu=-e and t # s, then
CsCuz = Csz + [2Ctz

(2) If c e Wy andy € W — Wy, then © LR y.
(3) For any xz,y € Wy, we have x ~p, y (resp. x ~rr y) if and only if x ~j5 1 y
(resp. * ~j LR Y)

Proof. (1) Apply induction on n := ¢(u) > 0. When n = 0, we only have to
check (b)(ii). But this follows by 1.3 (3) and 1.3 (4). Now assume n > 0.
Write u = r - o’ for some r € J and v’ € Wj.
Since u,u’ € Wy and f(uz) = l(u) + £(z), for any u” € W; with
W o 7 0, we have £(u"z) = £(u") + £(z), thus cyrc, = ¢y, by the induc-
tive hypothesis. Also, ¢, ¢, = ¢y, following by the inductive hypothesis.
Consequently, ¢,.cy/, = ¢ Cyrc,. So

(211) Z ,U/;/,M/ZCZ/ = Z /’LZ”,’U/C’M” C,

zhirz' <z'<u'z u'lru’! <u'' <u!

— T
= E ‘LLu//,u/Cu//z.

u'ru’! <u'' <u'



(2.1.3)

(2.1.4)
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Then
CuCs
Crew — D phucwr | o (by (1.2.1))
wsru <u' <u!
CrCulz — Z frr o Currz (Dy the inductive hypothesis for (a))

u'sru <u'' <u'
2 r § r
Cuz + :uz’,u’zcz/ ILLu”,u’C’U‘”Z
zhirz' <z'<u'z u'sru’ <u'' <u!

Cuz- (by (2.1.1))

Thus (a) is true.

Let y € W be with sy < y < uz. If y # z, then y < z. This is because
s€ L(y) CJ, s £ue Wy, and every element in J is universal. So if t = s,
then by 1.3(4), p3 .. = v, . =0 Ep, . If t # s, then sz > 2.

Now suppose y # 2. By comparing the coefficients of T}, on both sides
of the equation in (2.1.1), we have

0 O py s

L(s
= v (®) E le,upm’me,l’z,y

Z1,T2

= 'UL(S)pe,upy,z + UL(S) Z pwl,upmz,zfam,a:g,y-

T1,T2;T1F€

For any x1 < wu and o < z with 29 # e and f3, 4,4 7# 0, we have tzy > xa.
If twg < xo, then Ty Ty, = Ty, .0, We have y = 21 - %2 85 fy, 0y 7 0. But
this is not possible as t € L(y), t € L(x1 - x2) = L(x1). Consequently,

v py
= o'Op.upy. + 0l Z PoraPoss foran
T1,T2;x17€,tre>T)o
= ’UL(S)pe,upy,z + Z pxl,uptxg,zleﬁzg,y (by 1.3 (3))

T1,T2;T1F£€,tT2>T2

1 ifz=tu"ly

L(s) ’
v +

beuby.= {O if z ;é tu 1y.

If ¢t = s, then by (2.1.3),

V) py e — 11 oDy

= 0"Opy . — 0" peup,
1 if 2 = suly,

{O if 2 # su™ly.
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Ift # s, hsuz,. =0 by (1.4.9) and the assumption ¢ € L(z), s € J, and
(2.1.5) vEpy s

1 ifz=tu"ly,

— L(s)
= v e,u z + .
PeuPy, {0 if 2z # tu™1y,

L 1 if z =tu"ly,
Pe,ubty.z 0 if z #tuly,

1 if z =tuly,
0 if z #tu"ly,

by (2.1.3). So (b) follows by (2.1.4), (2.1.5) and Lemma 1.8.
(2) By (1), we have pj , = 0 for any r € J — L(y). This implies = -1 y.
Similarly, we can show that = g y.
(3) This follows from (2) and Lemma 1.7.
(I

Theorem 2.2. If max{L(s)|s € J} < min{L(t)|t € I}, then W is a union of left
cells, as well as a union of two-sided cells of W. The left (resp. two-sided) cells of
W in Wy are also left (resp. two-sided) cells of W; when considered as a Coxeter
group.

Proof. This is a direct result of Lemma 2.1. O

Since J consists of universal elements, the Coxeter group W, is a universal
Coxeter group. We refer the readers to [SY] for the detailed description for the left
and two-sided cells in any weighted universal Coxter groups.

Lemma 2.3. Suppose that Wy is finite with wqy the longest element, and that
min{L(s)|s € J} > L(wp). Then for any u € W and w € W with L(w) C J,
e {cuw + s if u=wp and L(w) = {s} and L(sw) =TI and L(s) = L(wy),

Cuw otherwise.

Proof. We have uw = u - w by our assumption. When w = e, the result is obvious.
Now assume w > e. Then L(w) = {s} for some s € J by the assumption £(w) C J.
Write

(231) CyCw = Cyw T+ Z hu,w,zcz'

z<uw

For any z € W with z < uw, by comparing the coefficients of T, on both sides
of (2.3.1), we get

hu,w,z = § p$1,up9c2,wf3:1,x2,z - § hu,w,z”pz,z” — Pzuw-

z1<u,z2<w z<z" <uw
So
(232) hu,w,z = Z pwl,upwz,wfwl,mg,z - Z hu,w,z"pz,z’“
z1<u,ro<w z<z!" <uw
If for all z < ww in W,
(233) deg Z pml,upxz,wf.rl,xQ,z < 0,

z1<u, o <w
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then we will have
(2'34) huﬂu,z = Z pzhupxz,wfa:l,xz,zv

z1<u,x2<w

for all z € W with z < uw, following by (2.3.3) and induction on ¢(uw) — £(z) > 0.

Now let 2/ € W satisfy 2/ < ww. If legu,mgw Dy uPws,wfaor,ze,2 Z 0, then
there exist some 21 < v and 2 < w With py, uDes,wfz1,2.,2> Z 0. In this case, we
claim that s & L(x2). For otherwise, since s € L(x3) is universal and z; € Wy, we
have 122 = 1 - x2 and hence Py, uPwy wfr1,22,» = 0 by the assumption 2z’ < ww,
a contradiction. The claim is proved. Then

—L(s
( )pacl uPsxo,w frl T2,z

(235) pzl,ume,qufrl,fcg,z/ =v
by 1.3 (3). Since z1 < win Wy, we see by (1.4.8) that deg fz, 4,,»» < L(wp), and the
equality holds if and only if 1 = u = wg and I C L(x2) and x5 = z’. This implies
by the assumption L(s) > L(wp), (1.4.8) and (2.3.5) that ps, uwPzs,wfer,2.,2 Z 0 if
and only if L(s) = L(wp), 1 = u = wp, w = sxo = sz’ and I C L(z"). When the
equivalent conditions hold, we have Py, uPzywfer,20,22 = 1 by (2.3.5). So (2.3.3) is
proved and (2.3.4) holds. We have

b )1 if 2= sw and u = wy and L(w) = {s} and L(sw) = I and L(s) = L(wyo),
“ 10 otherwise.

The result follows.
O

Corollary 2.4. Suppose that Wi is finite with wg the longest element and that
min{L(s)|s € J} > L(wp). Let uw € Wi —{wo}, w e W, s e Jandt € I — L(u)
satisfy L(uw) = £(u) + €(w) and L(w) C {s}. Set

1 L(w) = {s},tu=wo, I C L(sw) and L(s) = L(wyp),

0 otherwise.

E =

Then

(2.4.1) CiCouw = Ctuw + ECsw + Z utu,’ucu/w.
u/stu’ <u

Proof. We have

CtCyw = CtCyly

t
= Cgy + g Hor uCu | Cw

ustu’ <u'<u
— t
= CuCw + Z Moyt 0 Culw

u’stu <u' <u

t
= Ctuw T ECsw + Z Foay? 4y Culw -
u/stu’ <u’' <u
where the last equality follows by Lemma 2.3. O

For any n > n’ in N, we state a condition X(n,n’) condition on (W, S) with
S =1UJ and J consisting of universal elements.
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X(n,n’) Wy is finite with wp the longest element, and
min{L(s)|s € J} > L(wp). For any x € W with {(z) =n, if z = 1 - s - 2o with
s€J, x1,x0 € W, £(z1) = n' and one of the following conditions (1)-(2) holds:
(1) 1 € Wy and L(z1) < L(s),
(2) 21 € Wy and L(s) > max{L(s")|s' € J, s <1},
then ¢z, Copy = Cy.

We will prove that the condition X(n,n’) holds on (W, S) for any n > n’ in N.
But at the moment, it is only an assumption for the proof of some other facts.

Lemma 2.5. Suppose that Wy is finite with wqy the longest element, and that
min{L(s)|s € J} > L(wg). Let w € W and s € J — L(w). Assume s < w.
Write w =x - s - z for some x,z € W with s £ x.

(1) If I C L(z) and L(wo) = L(s), then

Co — Csw 1 Csz fo = Wo,
s Csw if x # wp.

(2) Suppose that X (n,n’) holds on W for any n’ < n in N whenever n < {(w),
and that © = 1 - s’ - xy for some s’ € J with L(s') > L(s), where either
x1 € Wr with L(z1) < L(s'") or 1 & W with L(s") > max{L(s")|s" €
J,s" < a1}, Then

Csw 1 Csz ZfL(S) :L(Sl)ax2 :xfla
CsCopp = .
Csw otherwise.

Proof. (1) Since I C L(x), we have L(z) = I. Write x = wp - 2’ for some
2/ € W. Then s £ 2/ as s £ x. Let y € W satisfy sy < y < w. Then
L(y) = {s} as s is universal. By 1.3(3) and the fact L(s) = L(wg), we have

UL(S)py,w

= ot g = L ifw = woy,
P00 i w # woy.

Since sy < y = wow = 2’ - s - z, we have 2’ = e as s is universal. So by
1 if z = wy,
0 if z # wo.
(2) Since X(n,n’) holds for any n’ < n whenever n < ¢(w), we have

Lemma 1.8, we have py ,, = The result follows.
(2.5.1) Cy Cslznsz = Cup-

By comparing the coefficients of T}, on both sides of (2.5.1), we get

(2.5.2) Pyw = Z Py1,@1Pya,s' 2252 fy1y2,0>

y1<z1,y2<s'w282

for any sy < y < w in W. For such y, the relations y; < 27 and yo < s'z9s2
and fy, 4oy # 0 imply that yo = y; ' -y and f,, 4., = 1 since s £ y; and
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s € L(y) is universal. By (2.5.2) and the assumption L(s") > L(s), we get
UL(S)py,w = UL(S) Z pylaxlpyfly,s’EQSz
y1<T1

= L)L)
= v py17m1p5/y1—1y’8/m2'§z.

y1<T1
1 if L(s) = L(s),z0 = xl_l,y = sz,
0 otherwise.

So the result follows from Lemma 1.8.
O

Lemma 2.6. Suppose that Wy is finite with wy the longest element, and that
min{L(s)|s € J} > L(wg). Let s € J and w € W satisfy sw > w > s. Let
n="Lw). Writtw=x-s-z forz,z € W with s £ x. Suppose that X (n,n’) holds
on W for any n’ < n in N whenever n < {(w). If either x € W with L(s) > L(z)
or x & Wi with L(s) > max{L(s")|s' € J,s' <z}, then

e Jesw + pCsy . if U(xz) = 0(2) — U(z) and s € L(xz),

T esw + pacss otherwise,

where p € A is given by py = iy = vL(S)pe’m.
Proof. By 1.3 (4) and (7),

(261) ,LL:z7rcsz = UL(S)psz,:csz = UL(S)pe,rc-
By X (¢(w), £(z)), we have
(2.6.2) CuCsr = Cope

Let y € W satisfy sy < y < w and y # sz. Then y < sz as s £ x and s is universal.
By comparing the coefficients of T, on both sides of (2.6.2), we get

(2.6.3) Pyw = Z Dyr wPyz,sz Sy 2y

y1<z,y2<s2
So we see by (2.6.1) and (2.6.3) and the equation w = z - s - z that

L(s) s — L(s)
(26.4) v Py,xsz = sz xszPy,sz = E VI Py 2Pys sz fyr ey
e<y1<z,y2<sz

- 2 L(s)
- v pylvxpyfly,sz
e<y1 <z

= § : pyhxpsyl_ly,sz

e<y1<w

B 1 ify=uxz,
B 0 ify+#az,
where we use the observation that if s € L(y) and s £ y1 and fy, 4,4 7 O then

yiye = y and £(y) = L(y2) — €(y1) and fy, 4,y = 1. So our result follows from
(2.6.1), (2.6.4) and Lemma 1.8. O

Lemma 2.7. Suppose that Wy is finite with wy the longest element, and that
min{L(s)|s € J} > L(wp). Then X(n,n’) holds on W for any n >n’ in N.
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Proof. We only have to consider the case when n’ > 0. Let x = x7 - s - xo for
some x1,x9 € W and s € J with {(z) = n and ¢(z1) = n'. When z; € W; and
L(z1) < L(s), we have ¢, ¢sz, = ¢; by Lemma 2.3 with z1, sz2 in the places of u, w
respectively. Now assume that z1 ¢ Wy and that L(s) > max{L(s')|s' € J, s’ < z1}.
We shall prove ¢, ¢s, = ¢; by induction first on n > 2 and then on n’,; 1 <n'/ < n.
When n = 2, we have ¢(x1) = n' = 1 and £(x3) = 0, the result is obvious. Now
assume n > 2. As xy € Wy, we can write x1 uniquely as x1 = x17 - 8’ - x19 for
211 € Wi, 2120 € W and s’ € J.
By the inductive hypothesis, we see that X(m,m’) and X(n,n”) hold on W for
any m’ < m <n and n” < min{n,n'} in P. We are going to prove X(n,n’) on W.
First assume that x1; = wg. Write 2’ = s'x15. By Lemma 2.3, if there exists
some s € JNL(z") with I C L(s"2") and L(s") = L(wy), then cy,Crr = Copga’ +Csr7a
and CuyyCo/swy = Cwon'szs + Cs/'zsz,- Lhis implies that
Cx1Cszy = (ngcz/ - Cz)csxg
=  CwoCax’sxy — Czsay
=  Cwoz'szy — Czx,
by the inductive hypothesis. If there is no such s” in J N L(z'), then we see by
Lemma 2.3 that cy,Cer = Cwpar a0 CuyCarszy = Cuwga szas SO
lecS$2

CwoCa' Csxy

CwoCx’szo
Cwoz'sxo — Cx»
by the inductive hypothesis.

Now assume that 17 # wg. Then L(z11) < L(s"). We have ¢, Cyzyy = Cay
and ¢z, Cs'zypsms = Cz Dy Lemma 2.3. If 211 > e, then ceg,,Cony = Cs'zynszs DY
the inductive hypothesis, and the result follows. If x1; = e, then x1 = s’xz1> where
s’ € Jand L(s') < L(s).

Let By = {21 € W‘S/,Zl <z <7129,
L1252, # 0}. We claim that

# 0}, and Fy = {20 € Wls'29 < 25 <

lewaQ
/'[/227(1?128132
(2.7.1) z1 > z18x9 is a bijective map from the set E; to Es

’
and satisfies p3, . =

S —
- u21$$2,$123372 and Cz1Cszs = Czys25-

!
If 8 £ 219, then ¢y cpyy = Csrzy,- By Lemma 2.5(2), CorCripszy = Cslmpnsza- SO
)

(2.7.1) follows. If s < 219, then we can write 212 = x% ~s’-x(2) with xgg),acgz and

s & x(l)

w$>ffor

L(zy (M 5 ) # I and max{L(s")|s" € J,s" < mglz)} > L(s'), or
) L <xg;>> # T and max{L(s")|s" € J,s" < 2\)} < L(s"),
then we can apply

(1) Lemma 2.5(1), or
(2) Lemma 2.5(2), or
(3) Lemma 2.6

respectively, to obtain (2.7.1).

(1
2
3
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Hence we have

!
p— S
Cz1Csxy = (Cs’czlg_ § /u'zl,mlrzcm)CSfﬁ‘z
z1€E,

’
_ 2 s
= Cg'Cg5Cspy — /Lzl,xlgczl Cszy
z1€E

’
_ . § s
=  Cg'Cgiysay /Lzhxnczlsxz
z1€F

’ /7
_ S _ s
- C:C"' E ,uzQ,xlgsxgczz E uzl,xlgcmsxz
z2€ 2 z1€E1

= Cg,

by (2.7.1).

Lemmas 2.5-2.6 can be restated as follows.
Lemma 2.5 . Suppose that W7 is finite with wq the longest element, and that
min{L(s)|s € J} > L(wp). Let w € W and s € J—L(w). If s £ w, then cscyy = Cqop.
If s <w, then w =z -s-z for some z,z € W with s £ x.
(1) If I C L(z) and L(wg) = L(s), then
Csw + Csz  if & = wp,
CsCy = .
Csw if & £ wy.

(2) Suppose that & = 1 - ¢’ - zo for some s’ € J and x1, 29 € W with L(s')
L(s), where either x1 € W with L(z1) < L(s') or 1 ¢ W; with L(s')
max{L(s")|s" € J,s" <z1}. Then

{csw o if L(s) = L(8'), 29 = 27,
CsCyy =

>
>

Csw otherwise.

(3) If either € Wy with L(s) > L(z) or x ¢ W with L(s) > max{L(s')|s' €
J,s" < x}, then

ol — Csw + H1Csz + €z if E(IZ) = g(z) - é(z)v s € E(xz),
o Csw + [11Csz otherwise,

where p11 € A is given by puy = iy = v®)p, .
Proof. This is a direct concequence of Lemmas 2.5-2.7. O

Recall the notation €2, x € W, defined in 1.6. For any ¢ € P, denote

Wi —{wo} if i < L(wp),
W(Z) = (US€J7L(S):iQS) U Qwo lf’L = L(wo)’
Useg,L(s)<if2s if i > L(wyg).

Lemma 2.8. Suppose that Wy is finite with wy the longest element, and that
min{L(s)|s € J} > L(wp). Lety,z € W, s € J and z € W71,
(1) Suppose y < z.
(a) If z € Cyy, then y € Cy, .
(b) Ify € Cu,, then z € WL(w0)),
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(c) If z € Csy, then y € Cyy.
(d) If y € Csy, then z € W (L(s))
(2) Suppose y < pp 2.
(a) If z € W (L(wo)) _ W(L(wo)fl)’ then y € WL (wo) _ p(L(wo)—1)
(b) Ify € W (Ewo)) _ yy (L(wo)=1)  yhep, » ¢ W(Lwo))
(¢) If z € W) _ W=D then y e WEE) _ -1,
(d) If y € WEE) W EE=D " then 2 € WEE),

Proof. We only prove (1). (2) will follow by similar arguments. Let y,z € W be
with y <1, z, then there exists s’ € S with hy ., # 0. If y = 5’2, then (1) hold.
Now suppose y # s'z, then s’y < y < z and ,uZ:Z # 0. Then (1) follows by Lemma
Corollary 2.4 (resp. Lemma 2.5" ) when s € I (resp. s € J). O

Lemma 2.9. Suppose that Wi is finite with wy the longest element, and that
min{L(s)|s € J} > L(wy).
(1) If u e Wy and w € W satisfy L(w) = {s'} C J, then w ~p, uw.
(2) If w e W and s' € J satisfy L(w) C J and L(s") = L(wo), then s'wow ~p,
wWoW.
(38) Let s € J, y € WES=Y and w € W satisfy £(syw) = L(y) + £(w) + 1. If
either L(w) = I and L(s) = L(wp) or L(w) = {s'} and L(s") > L(s), then
SYw ~p, yw.

Proof. (1) is trivial if u = e. Now assume u # e. Under the assumption of (1) (resp.,
(2)), we have ufﬂ'yuw # 0 by Lemma 2.5 (resp., huy,s'wow,wew 7 0 by Lemma 2.3).
This implies (1) (resp., (2)).

It remains to prove (3). If £L(w) = I and L(s) = L(wy), then the result follows
from (2) since y = e in this case. Now suppose L(w) = {s'} and L(s") > L(s). If
L(s") = L(s), then u“‘u;’y,lsyw # 0 by Lemma 2.5 . Since y lsyw =y~ 1 -s-y-w,
we have yw ~p syw by the relations w <p y 'syw <p syw <p yw <p w. If
L(s") > L(s), then 'u'i:,(sy)*ls’(sy)w # 0 by Lemma 2.5 . Since (sy)~'s'(sy)w =
(sy)~t-s'-s-y-w, we again get yw ~p syw by the relations w <p, (sy)~!s'syw <p
syw <r yw <p w. U

Corollary 2.10. Suppose that Wy is finite with wg the longest element, and that
min{L(s)|s € J} > L(wy). Lety € W.

(1) If y € Copy N WL then y ~p wy.

(2) Let s € J and x € WL Ify e Cop NWES) | then y ~p, sx.

(3) If y € WEwo) —yy(Lwo)=1) " then y ~p g wp.

(4) Let s€ J. Ify € W) _WEE=D  then y ~pg s.

Proof. (1) Let y € Cypy N WE)) We show y ~p wp using induction on
n = {(y) — L(wog) > 0. When n =0, y = wg ~, wy. Now suppose n > 0
and o/ ~, wo for any ' € Cypy N WL with £(y') — £(wo) < n.
If £L(y) C I, then we can write y = u - y° where u = y; # e and
Yo € CwOﬂW(L(“’U)). Then y° ~;, wg by the inductive hypothesis. Moreover,
y ~r y° by Lemma 2.9(1). So y ~, wo.
If L(y) € I, then L(y) = {s} C J, and L(s) = L(wp). Write y = s - y?
for y' € Cp, N WEW) If £(y') = I, then y ~1 y' by Lemma 2.9(2).
If L(y') # I, then we can write y' = y; - &' - yo with y; € W(Ewo)=1)
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y2 € W and s’ € J satisfy L(s’) = L(s). Then y ~ y* by Lemma 2.9(3).
Moreover, ' ~1, wg by the inductive hypothesis. So y ~r, wp.

(2) Let y € Cop NWEE) . We show y ~p, sz using induction on n := £(y) —
l(sz) > 0. When n =0, y = sz ~r, sz. Now suppose n > 0 and y’ ~p, sz
for any y' € Cop N W) with £(y') — £(wo) < n.

If £(y) C I, then write y = u-y° with u = y; # e and y° € Cor, NW (L),
Then y° ~, sz by the inductive hypothesis. Moreover, y ~, y° by Lemma
2.9(1). So y ~, sz.

If L(y) Z I, then L(y) = {s'} C J, and L(s') < L(s). Write y = 5" - ¢*
for y' € Cop N WG If L(y') = I, then y ~p y' by Lemma 2.9(2).
If L(y') # I, then we can write y' = y; - s’ - yo with y; € W=D
yo € W and s” € J satisfy L(s") > L(s"). Then y ~, y! by Lemma 2.9(3).
Moreover, ' ~p, sz by the inductive hypothesis. So y ~, sx.

(3) Let y € WEwo)) _ yyLlwo)=1) " 1f € C,,, then by (1), y ~p wo. If
y & Cu,, then there exists s € J and x € W)~ with L(s) = L(wg) and
y € Cou NWEED So by (2), y ~1, sz. Moreover, s& ~p § ~1, WS ~g Wy
by Lemma 2.9. So y ~pr wg.

(4) Let y € WG —wEE =1 1f L(s) = L(wp), then by (3), y ~rr wo ~Lr
s. Now suppose L(s) > L(wg). Then there exists s’ € J, L(s") = L(s)
and 2/ € W)=Y with y € Cyypr. By (2), y ~1 s'z’. Moreover, s'a’ ~p
s’ ~pr s by Lemma 2.9. So y ~pR s.

([l

Now we are ready to describe all the left cells and the two-sided cells of (W, S, L)
under certain assumptions on I,.J, L. Recall that L; is the weight function of Wy
obtained by restriction of L to W7j.

Theorem 2.11. Suppose that Wy is finite with wy the longest element, and that
min{L(s)|s € J} > L(wy).
(1) The left cells of W are
(a) Cuy N W (L(wo))
(b) Csu NWEE) for any s € J and x € WEE-1),
(c) Any left cell of the weighted Coxeter group (Wy,I,Ly) in Wi — {wo}.
(2) The two-sided cells of W are
(a) W(Lwo))
() WO — WU fori € P, ifi > L(woy) and there exists s € J with

L(s) =i.
(c) Any two-sided cell of the weighted Coxeter group (Wy,I,Ly) in Wi —
{wo}.

(8) Let X =W — (Wy—{wo}). Then (1a) and (1b) (resp. (2a) and (2b) give a
complete and irredundant list of the left cells (resp. two-sided cells) in X.

Proof. Tt follows by Lemma 2.8 and Corollary 2.10 for the sets in (1a) and (1b)
being left cells of W and for those in (2a) and (2b) being two-sided cells of W.

By Lemmas 2.3 and 2.5" | we have y; ¢ Lr y2 for any y; € Wi — {wp} and
y2 & Wr —{wo}. So it follows by Lemma 1.7 for the sets in (1c) being left cells of
W and for those in (2c) being two-sided cells of W.

From the definition of the sets W, it is noticed that the sets in (2a) and (2b)
give a complete, irredundant list of the two-sided cells in X.
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Let s,5' € J, & € WEE-D and 2/ € WEE)=D with L(s) > L(s'). We claim

that
(i) (Cox NWEEY A (Cyy NWEW)) = and
(ii) (Cox NWEE) N (Cyrpr N W(L(S/)) =0ifs#s orx#a.

If L(s) > L(wp), then Cy, N WE0) = . So (i) holds. If L(s) = L(wp) and
CswNCuy # 0, then R(z) = I, contradicting with 2 € W) =1 = W (L(wo)=1) e
also have (i).

If L(s) > L(s'), then Cyp N WEGD) = (), so (i) holds. If L(s) = L(s') and
Csz NCyrzr # 0, then sz = s'z’, as 2’ € WEE) =1 So (ii) holds.

Let w € X. If there exists s’ € J with s’ < w and L(s") > L(wp), then we can
write w = y - s-x with s € J, x € WEE=D o ¢ W and L(s) = max{L(s')|s’ €
J, s < w}. Sow € Coyp NWEED, Tf L(s'") = L(wp) for all (if any) s’ € J with
s' <w, then w € Cy, N W (L(wo)) when R(w) =1I; w € Cyy NWEE) for some s € J
and z € W)= with s < w, when R(w) # 1.

We conclude that(1a) and (1b) give a complete, irredundant list of the left cells
in X.

g

3. ON THE SECOND LARGEST WEIGHT ELEMENT w),

In this section, we temporarily drop the previous assumptions on (W, S, L), and
consider Coxeter groups with a finite parabolic subgroup, in which there is a unique
simple reflection of minimal weight. We will find some properties of the element
of the second largest weight in this finite parabolic subgroup, see Propositions 3.3,
3.5 and 3.8.

In 3.1-3.2, we put no assumption on (W, S, L). From 3.3 until the end of this
section, we put the following assumption on (W, S, L).

(3.0.1) I C S, Wy is a finite parabolic subgroup of W,
and t € I satisfy L(t) < min{L(#)|t' € I — {t}}.
Under this assumption, we always denote wy the longest element of W and w{ =

t’u)() .

Lemma 3.1. Let w € W and s € S — L(w). If there exists r € L(w) with
L(r) > L(s), then

(1)
CsCyy = Csp T ECryy + Z Mi,wcza
z352<2<Ww,z£TW
1 ifLir)=1L dseLl ,
where & — if L(r) (s) and s (rw)

0  otherwise;
(2) rz < z for any z € W with sz < z <w, z # rw and 3, # 0.

Proof. If s € L(rw), then we see by 1.3 (4), (2) that
1 if L(r) = L(s),

s — ,L(s) = L(s)—L(r) =
Py 0 =V Prw,w v {0 if L(T) > L(S)

This implies (1) by (1.2.1) and 1.3 (4). Then (2) follows by 1.3 (6). O
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Lemma 3.2. Let Wy be a finite parabolic subgroup of W generated by I C S, and
wo be the longest element of Wi. For any x,y € W, if hyy oy # 0, then I C L(y).

Proof. This follows from (1.4.9). O
Proposition 3.3. Assume (3.0.1) on (W, S, L).

(1) ciCwy = Cu,, 50 {wp} is the second lowest two-sided cell in Wr.
(2) If v,y € W satisfy huy 24 # 0, then {(wyy) = £(y) — £(wp).

Proof. If there exists y° € W with ty° < ¢y < w{, and “;O,wg # 0, then by Lemma
3.1(2), I —{t} € L(%°). So L(y°) = I, contradicting with y° < w{. We obtain
CiCuly = Cuy- Consequently, for y' € Wy, if y' <11 wgy or y' <1 r wp, then
yt = wo. But {wp} is the lowest two-sided cell in Wy, so {w}} is the second lowest
two-sided cell in W;.

To prove (2), we only have to show

(3.3.1) IC L(y)orIC L(ty).
By (1), we have
(3.3.2) CwyCo = ctcwécm:Zhwéﬁz’y,ctcy/
y/
S g (00 e s
Yty <y’
D ey [t D Hiycs
Yty >y’ zitz<z<y’
Write
A = Z B 0 (vm) +U7L(t>) cy
Y5ty <y’
S Ty
Yty >y’
Ay = Z hw('),:c,y/,ufi,ylcz

Yy zity' >y >z>tz

For any y' € W with hyy ., # 0, we have
(3.3.3) L) 2 Llwh) =T {2},
by (1.4.9). So only those ¢, with I C L(u) appears in A; with nonzero coefficient.
By Lemmas 3.2, only those ¢, with I C £(u) appears in A; + Ay + A3 with nonzero
coefficient. Since I — {t} = L(wg) C L(y') for any y' € W with hyy ., # 0, by
Lemma 3.1, only those ¢, with I C L(u) appears in Az with nonzero coefficient.
As a result, only those ¢, with T C £L(u) appears in Ay with nonzero coefficient.

As hyy ey # 0, if ty <y, then I C L(y) by (3.3.3). If ty >y, then ¢, appears
in Ay with nonzero coefficients. So I C L(ty). So (3.3.1) is true. O

Corollary 3.4. Assume (3.0.1) on (W, S, L).

(1) If z,y € W satisfy L(x)NT =0, ty < y < whz and uf

)z # 0, then
IS L(y).
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(2) If x,y,z € W satisfy l(wyz) = () — €(wpy) and hy . # 0, then l(wyz) =
€(z) — £(wp).
Proof. (1) By 1.3 (6), we have L(y)
assumptions N’Z,w(’)w # 0 and L(t)
I C L(y) since ty < y.
(2) To prove (2), we use induction on n = #(z) — £(w() > 0. When n = 0, this
is shown in Proposition 3.3(2). When n > 0, write z = w}, - °. Then

CpCy = (Cwécxo — Z hw&,x“,m’%x’) Cy

' <z

I —{t} = L(wy) € L(wyr) by the

2
< min{L(#')|t' € I — {t}}. This implies

= CyyCz0Cy — Z Py 20 20 Car Cy
' <z

Since hy,y . # 0, z appears in ¢, cocy Or ¢yrcy for some 2/ < x with
Py 20 2 7 0. If z appears in ¢, c;0¢y, then by Proposition 3.3(2), £(wyz) =
£(2) — l(wp). For ' < x with hyy 40 . # 0, we have £(z) < £(z), and
lwhz') = £(z") — £(w]) following from Proposition 3.3(2). Consequently,
if z appears in ¢y ¢y, then we have {(w)z) = {(z) — ¢(w;) by the inductive

hypothesis. So the result follows.
(I

Proposition 3.5. Assume (3.0.1) on (W,S,L). Let w € Wy and x,y € W satisfy
u < wp, (u-x)r =u and (wy - y);r = wy. Then degpuz wyy < degpy .y, and the
equality holds only when © = y.

Proof. 1f for all ¢ € I — {t}, the order of ¢’ is 2, then the result is true since
degpuz,wéy = deg U_L(wO)+L(u)pw6x,w6y < —L(U)6) + L(U) = degpu,wé'

by 1.3 (3). Now assume that we are not in this case. We shall prove our result
by induction on n := £(w() — ¢(u) > 0.

When n = 0, the result is trivial. Now suppose n > 0. If L(w()) = I—{t} Z L(u),
then by taking s € L(w() — L(u), we get

va(s)

puac,w[)y psum,wéyv

,UfL(s)

pu,wg psu,w(’)a

and su < wj. So the result follows by the inductive hypothesis. Now assume that
L(u) =1 — {t}. By Corollary 3.4, we have

(351) thw(’Jy =  Cuwoy + Z /’(';w()ycz’
2z ICL(2)

(3.5.2) CtCuwyy = Cuyg-

So by comparing the coefficients of ¢y, (resp., ¢,) on both sides of (3.5.1) (resp.,
(3.5.2)), we get

L(

(353) pua:,w(’]y = Ptuz,woy — U t)ptuw7w6y+ Z Mz7w6yth$7Z7

zICL(2)

(354) pu7w6 = Ptu,wo — vL(t)ptu,wé'
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First assume tu £ wy. Then there exists some z; € Wj_4 such that z;-tu = wp and
ptum,w(')y = 'UiL(Zl)pwox,w(’)y by 1.3 (3) So L(Zl) = L(’wo) - L(tu) = L(wé)) - L(U)
We see by (3.5.3) that,

L) —L(w)

Puz,wliy
= UL(U]O)_L(M) ptuw,woy - UL(t)ptua:,w(’)y + Z M;wéyptua:,z
z;1CL(z)
=  DPwoz,woy — 'UL(t)pwox,w(’)y + Z .ui,w{]ypwoﬂ?,z (by 1.3 (3))
z,ICL(2)

pwgz,wgy (by 1'3 (4))
_ 1 ifz=y,
N 0 ifzx#y.
On the other hand, we see by (3.5.4) that py w; = Pruw, = v~ Lwo)+L(w) - §g the

result follows in this case.
Next assume tu < w(,. By Proposition 3.3, CtCuyy = Cugs SO

_ pL®) ~L(wh)+L(u) _ o L(1)

Pu,wly = Ptu,wo Ptuwy =V Ptu,wy-

Moreover,
degv"py, 0y > L(t) + L(tu) — L(wp), (by 1.3(1))
degpiuw, = L(tu)— L(wo). (by 1.3(3))
So deg pru,w, < deg vL(t)pm’wé, and
deg oy, = deg v pyy > L(t) + L(tu) — L(w))

by (3.5.4).
Also, we have

deg pruz,wey < L(tu) — L(wo) < degpy,uy,
and
deg Iu’i,w(’,ypt’U«%Z < L(t) + L(tu) - L(wo) < degpu,w6
for any z € W with I C L(z), by 1.3 (4), (1). Now we must prove the relation
degpu;v,w&y < degpu,w6~ If degpuw,wéy > degpu,w67 then
(3.5.5)

degpu:c,w{)y = deg UL(t)

Ptuz, why < deg UL(t)ptu,ws = degpu,’w(’) < degpux,w(’)y

by (3.5.3) and the inductive hypothesis. Hence all the equalities in (3.5.5) must
hold. But this is the case only when x = y by the equation deg piuz wyy = deg pru,wy,
and the inductive hypothesis. The result is proved. (Il

3.6. For (W, S, L) under the assumption (3.0.1), we define n; : Wy — N by
sending any & € Wy to the number of occurrence of ¢ in one (thus any) reduced
expression of z. Set nj = ng(w(). So ny(wp) = nj + 1.
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Take x; € Wy, y; € Wi_yy for i € [0,ng], j € [0,ny — 1] recursively in the
following way: Let xo be the longest element in W;_gy. Then for i € [ng], suppose
that we have defined all x; and y;_; for j < i. Take y;—1 € Wj_(4 such that
Yi_1tx;_1 is the longest element in the coset WI_{t}tmi_l. Let x; = y;_1tx; 1.
Then i =1Yi—1" t- Ti—1-

Lemma 3.7. Assume (3.0.1) on (W,S,L). For any i € [0,n(] and j € [0,ny — 1],
let x; € Wy, y; € Wr_(4y be given as in 3.6.

(1) We have
(a) L(x;) = R(x;) =1 —{t} for any i € [0,n(];
(b) ;= wp.

(2) Let u < w( in Wry.
(a) If 2 € Wi_gyy satisfy £(zu) = £(z) + L(u), then py ., = U_L(Z)pzu,wg-
(b) If tu > u, then Puw) = pEw—Lwy) _ UL(t)Ptu,w()-
(8) Fori € [0,n5—1], pa, wy = vL(“)_L(wé)—vL(t)_L(yi)pmiﬂ,wé, with deg py, wy =
L(t) — L(yi) + degpxuhw(')'
(4) degpe,wo = _L(wé) + 2n6L(t)

Proof. (1) Clearly, L(z9) = R(zo) = I — {t}. Now let i € [nj]. Suppose that
the relation L£(z;) = R(z;) = I — {t} has been proved for any j < ¢ in
[no]. Then L(z;) = I — {t} follows by the construction of z;. On the other
R(x
ny

hand, R(z;) 2 R(x;—1) = I — {t}. We have ¢t € R(x;) since z; < wg by
the fact ny(x;) < ne(wg) = ny + 1. So R(x;) = I — {¢}. This proves (a) by
induction.

Since L(z,;) = I — {t}, we have tx,; > z,,. We claim that tz,, = wo.
Since ny(twy, ) = ( 0), we have tz,,t < tz,, . Sot € R(tx,;). Moreover,
I —{t} = R(zn,) € R(txy,). So R(tw,,) = I and tx, = wg. Thus

Ty = WY
(2) (a)0 follows by 1.3 (3) and the fact L(w() = I — {t}. By the equation
CtCuly = Cuwgs We et Dtu,wy = Puywy + vL(t)ptu)wé. Thus we see by 1.3 (3)

that
Puwy = Ptuwo — UL(t)ptu,w(’)
ot =bte) — ot Op
= WHImE) "’L(t)Ptu,wé'
This proves (b).
(3) By (2), we see that for any ¢ € [0,n{, — 1],
(3.7.1) Povw, = oL@ —L(w)) _ UL(t)ptzi,w(’)

pL(@i)—L(wy) _ vL(t)fL(yi)prhwé’

with z;, y; in the places of u, z, respectively. Since deg UL(t)_L(yi)ple’wg >
L(8)~L(ys)+ L(wis1)~L{wh) = 2L(1)+ L)~ L(wh) > L{z:)—L(wh) by 1.3

(1) and the relation x; 41 = y;-t-x;, we have deg py, .y = deg vl O=Llyy o =
L(t) — L(y:) + degpz,,y wy DY (3.7.1).
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(4) By (3) and (1b), we have, for i € [0,n{ — 1], that
néfl

degpwi,wé = Z (L<t) - L(yj)) + degpzné,w(’)
Jj=t

né—l
= (np—)L{t) = Y L(y;)-
j=i
In particular, deg py, w;, = noL(t) — Z;igl L(y;j). So by (1) and 1.3 (3),
degpe,w6 = _L(xO) + degp:m,wé

’
ny—1

= noL(t) = > L(y;) — L()
Jj=0

= 2n{L(t) — L(wy).

Proposition 3.8. Assume (3.0.1) on (W, S,L). Then
deg huy wy wy, = — deg pewy, = L(wg) — 2noL(t).

Proof. By Lemma 3.3(1), {w(} is the second lowest two-sided cell of W;. So we
have hy wy - =0 for any z € W — {w}, wo} by (1.4.9). This implies that
(3.8.1) Cwt, Cwly = hwé,wé,u)o Cwo T hwé,w(),wgcwg .

By comparing the coefficient of T, on both sides of (3.8.1), we see by 1.3 (3) that

/ —
whwh,e hw{),w{),wope,wo + hw(’),u)(’),wépe,u)(’J

— gy L(wo)
= v hwé,wé,wg + hwé,w{),w{)pe,wé .

By (1.4.4), we further get
(382) Z pxl,w{]pmg,wéfm,zz,e = viL(wO)hw{],wé,wg + hw{),w{),w{)pe,wé~
T1,%2

Since the relation f;, 4, . # 0 implies that x5 = 27! and fy, 4, = 1 by (1.1.1),
we have

(3.8.3)
E pxl,wéng,wéfml,mg,e = E pml,wépzfl’wé =1+ g pml,w()prl’w[’)'
T1,T2 1 1 <wy)

Since deg My, wyw, < L(wy) < L(wp) by (1.4.8), we have degv‘L(U’O)hwé,wé,wO <
0. This, together with (3.8.2)-(3.8.3), implies that deghuy w) wyPew, = 0. So
deg huy wp wy = deg pe,w; = L(wp) — 2ng L(t) by Lemma 3.7. a

4. THE DEGREE ESTIMATE INVOLVING SOME - AND h/-POLYNOMIALS

4.1. From now on, we come back to the assumption in Section 2 that S =11 J,
where J consists of universal elements. Moreover, we assume that L takes a
constant value Ly on J and that W7 is finite, with wq its longest element. Since
the case when Lj > L(wy) is considered in Section 2, we now assume L < L(wp).



22 JIAN-YI SHIT, GAO YANG#

There is a special kind of W; which will be of interest in the following discussion.
(+) The Coxeter graph of Wy i§ connected and there exists t € T
with L(t) < min{L(t')|t' € T — {t}}.
When this is the case, we always set w(, = twg. Note that in this case, W; must be
(1) a dihedral group (W,S) with S = {s,¢} such that the order of st is even,
or
(2) of type By, for k > 3,
and L must only take two values Ly < Ly on I and Ly = L(t).
Moreover, if (x) is satisfied, we will also assume the following to hold.
For any x € W; — {w{,wo} and y € W, a;(z) < ar(w}),

(4.1.1) and deg hyy 0 < ar(wh).

Remark 4.2. It is proved in [Lu2| that if W; is a finite dihedral group with
unequal parameters, then (4.1.1) always holds. Moreover, computation with GAP
shows that (4.1.1) also holds for W of type Bs. We suspect that (4.1.1) is true for
any finite W satisfying ().

If (x) is satisfied, then let 7, = max, y.ozw; deghyywy. Then m, < a(wp).
We further have 7, < a(wp) if (4.1.1) holds for Wr.

Lemma 4.3. Suppose Wi satisfies (x). For any v € Wi with u < w(, and L(u) =
I— {t}7
(‘Z) degptu,w(’] < _L2:
(2) degpu,w{) < Ll - L2~
Proof. (1) We have L(w)) = I — {t} € L(tu) since tu # wy. Take any s
L(wg) — L(tu). Then py .y = U_szsm’wé by 1.3 (3). Thus deg pyu,wy,
— L.
(2) By Lemma 3.1, we have

(431) ZPZ,WOTZ = Cwy = thw6 - (Tt + v;lTe) sz,w{,Tz~

IA M

So

(432) Ptu,wo = Pu,w) + UL(t)ptu,w(')~
By comparing the coefficients of T}, on both sides of (4.3.1). We have
deg pruw, = L(tu) — L(wg) < —Lg by 1.3 (3) and deg UL(t)ptu’w() <Li—Ls
by (1) So degpww& S max{fLQ, Ll - Lg} = L1 — Lg by (432)
(]

Following Lusztig in [Lu2, Subsection 14.1], we define, for any z € W, some
A(z) € N by
De,z = no 80 4 strictly smaller powers of v, n, € Z — {0}.
Define D = {z € Wla(z) = A(z)}. Clearly, z € D if and only if 2= € D. Define
Ay and Dy for Wy similarly.
The sets D, Dy play an important role in the cell representations of W, W; and
the associated Hecke algebras H, H, respectively.

Lemma 4.4. Suppose that Wy satisfies (x) and that (4.1.1) holds in W;. Then
ar(wp) = deg huy wy wy = Ar(wg). In particular, wy € Dr.
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(4.1.1), we have aj(wy) = deghyy wyw,- So ar(wy) = AI(wé),_which implies
w,'J € Dj. O

Proof. We see by Proposition 3.8 that Ar(wg) = deghyy wyw, < ar(wp). By

Note that Lemma 4.4 is proved without assuming (P1).
Define 77 x := max{a;(w)lw € W; — X} for any X C W;. Recall the notation
h! for z,y,z € W defined in 1.4.

Z,Y,z

Lemma 4.5. Let ui,v € Wi —{wo}, t1 € [ — L(z) and uz € Wr.
(1) We have
deg (h/ul,uz,x - rUiL(tl)h/m,Uq,hﬂC) < TI {wo}-

(2) Suppose that Wi satisfies (x) and that (4.1.1) holds in Wr. Suppose that

uy # wp.
(a) If x = wy, then t; =t and

aeg (P, upe = 0 2l 1y 10 ) < A1),
(b) If & # wp,
deg (h;l’u%z — v_L(tl)h;l’u%tlz = Oty Py um (pm,w(g — U_L(t)Pta:,w;,>) < TI {whwo}-
Proof. By (1.4.5), we have
(4.5.1) h, — v Fp]

u,U2,% uy,u2,t1e

Py iy, + E Py us 21 P,

T1>T

—L(t
—v (1) <hu1,u27t1x+ E : hu17u27w1pt11@1>

x1>t1x

= huyupz + E Py us 1 Py

x13t1T1>TI >

_U_L(tl) Z hu17u2711pt1$7zl (by 1.3 (3))

T1it1T1>21>T

= huupe + Z sy uz 1 (px,m - UﬁL(tl)ptlxﬁl;l) :

T1t1T1>T1>T

(1) We have deghu, up,e < ar(x) < 71 {wey and deghy, upey < ar(ry) <
TI {wo} for any ry € W with z; > x and t121 > z;. So the result fol-
lows by (4.5.1).

(2) (a) By (45.1), b,y — v EOIRL o = By g for @ = w). Since

deg hy, uywy < ar(wp) by (4.1.1) and the assumption w3 € Wi —
{wg, w}}, the result is true.

(b) Since x € Wi — {wp, wo}, we have deg huy uy,e < Tr {u) w,} the defini-
tion of I {w)wo}- Let 1 € W satisfy t121 > x1 > a. If 1 # w)), then
deg huy uszy < TI{w)woe} DY (4.1.1). If 21 = wy, then t; =¢. So the

result follows by (4.5.1).
O
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Recall the notation oy -, Bey.z, ¢, for z,y,2 € W defined in 1.4, and the

mod .Agm

notation f = g defined in 1.3.

Corollary 4.6. Let uy,xz € Wy —{wo}, t1 € I — L(x) and uy € Wr.
(1) We have

7L(t1

deg (aul>u27m —-v )aul,uz,tlﬂﬁ) < TI,{wo}"

(2) Suppose that Wy satisfies (x) and that (4.1.1) holds in W;. Suppose uy #
wy.
(a) If x = wy, then t; =t and

_L(t /
deg (auhuzw — o 1)0‘u17u2»t11‘> < aI(wO)'

(b) If © # wy], then,

—L(t1)

—L(ty
deg (aul,uz,x - Ay ug,trz — 6t,tlﬂu1,u2,w(’) (pac,wé —-v ( )ptlx,w{))) < T1,{w},wo}+

Proof. Apply induction on n := £(ug) > 0. When n = 0, the result is obvious. Now
suppose n > 0. We have

(4.6.1) ciTuy = Cuy (% -> py,uQTy>

y<uz
= CuyCuy — Z pyyu2cu1Ty'
y<uz
By comparing the coefficients of T, on both sides of (4.6.1), we get
(4.6.2) Ay ug,z! = h;huz,z’ - Z Py,usCuyy, 2
y<uz
for any 2z’ € Wi. So (1) and (2a) follow by induction and Lemma 4.5.
Now assume we are in the case of (2b). Denote T := 77 (uy w,} and A, =

Ot,t1 (P —U_L(tl)ptw,wé). Then by (4.6.2), Lemma 4.5 and the inductive hypoth-
esis, we get that

—L(t1)
Quyup,e — U Quy ug,tr @
_ / —L(t1)p/ —L(t1)
- (hul,uz,m —-v huhuz,tlm - Pyius | Quq,yi,z — U Quyyy ti
y1<uz
mod A<,
d Ac —L(t
= huhuz;wéAQJ - § : Pyi1,uz (am,ylw —-v ( 1)au17y17t1w) (by Lemma 4'5)
y1<uz
mod A<,
— = 7L(t1)
= huhuzaw{)A@‘ - E : Py1,uz huhthéAﬂU - E : Pys 1 (O‘uhyzf»ﬂ -v Quyyo,ty
y1<ug Y2<y1

(by Lemma 4.5)
= hul,uQ,wéAar - Z py1,u2hu1,y1,w6A$ =+

y1<uz

E —L(t1)
Py1,u2Py2,1 <au17y27m - Quyys iz | -
Y2 <yi<uz
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We repeat the above computation with y; in the place of us and so on, then we get

_ L)

Qg ug Ay us,trx
; U2,

mod A<
J— =7 k
= A, § (_1) Pyi,yp—1 " 'pylvyﬂh’uhykvwé

e<yr<yr—1<--<yo=uz;keEN

- Aq Z q;;muzhm,yk,wg (by 1.4)

yrSuz

= Awﬁul,u%w(’]- (by (147))
This proves (2b). O

For any z € W, we have x; € W and 2! € W defined in 1.3.

Lemma 4.7. Let u; € Wy —{wo} and y,z € W satisfy L(z) = {s} C J, y < u1z
and I € L(y). Writey =u -y withu =yr <wo andy' =y!. Lett; € I — L(u).

(1) Suppose that L(wo) > Ly > 71 {wy}- Then

deg (h’ _ Ly ) <0.

u1,2,Y u1,2,01y

(2) Suppose that W satisfies (x) and that (4.1.1) holds in Wi. Suppose that
u1 # wy and that ar(wg) > Ly > Tr w) wo} -
(a) If u = wy{, then t; =t and

degs (R oy — 0" "M, Ly, ) < ar(h) — Ly,

(b) If u# wyj, then

/ —L(t1) 7 —Ly —L(t1)
deg h’ul,z,y -v hu17z7t1y - 6t,t1v (puﬂu(’] -0 ptlu,w[’)) pswzy’7zﬁu1,m2,w()

@2 EWr—{e}
Proof. We see by (1.4.4) that
{ul,z,y — v L) ;1,z,t1y
= PuwPy,:+ > PavunPaty 2 foy oty
z1,mh;(1,25)#(u.y')
—0 H )y iy e — v E) > [ R

w1,255(w1,25) #(t1u,y’)

Since s € J, for x1, 25 with x1 < u; and sz < x5, we have fy, .r , # 0 (resp.
fei,aptiy 7 0) if and only if z1 = w and 25 = y' (vesp. z1 = tyu and 25 = ¥').
Consequently,

(4.7.1) Rl

—L(t1) !
ui,z,y v h

u1,z,01y

—L(t
= PuuPy’,z — U (t)

+ Z Py uiPaty 2 (fa:l,w’z,y - UﬁL(tl)fwhﬂé'Q,hy) (by (144))

x1,xh;8TH>x)

—L(t1
g Pz1,u1 Py, 2 (facl,ac;,y —-v ( )f.m,ac;,hy) .

xT1,xh;8TL>Th

Ptiu,ui Py’ 2
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It is easy to notice that for any 1 < uy and x4, < z with sxf > a4 and ferayy 70
(resp. fu, zy,t,y 7 0), we have xhy = xoy’ with xo € Wy —{e} and forahy = faywau
(vesp. fu, .y try = for,aa.tiu). As aresult,

(4.72) hl, . —o L@y

u1,2,Y u1,2,t1y

—L. —L(t
= v d E Pxy,uy Psaoy’ 2 (frl,xg,u -V ( l)fatl,zg,tlu)
z1EWr,x2€Wr—{e}

v Z Dsway’,2 ( Z Pzy,un <f$17$27u - UL(tl)fxl,xz,h“))
{e}

ro€EWr— 1 EW

—Ly —L(t
v E Pszay’ 2 (am@z,u —-v ( l)auhwz,tlu) .
IQGW}*{E}

(1) By Corollary 4.6(1) and (4.7.2),
deg ( ;1,z,y - U_L(tl)h;n,z,tly) S TI,{wO} - LJ < 0.
(2) (a) By Corollary 4.6(2a) and (4.7.2),
deg (h;hz,y - U_L(tl)hill,z,tly) < a[(w(lJ) - LJ~

(b) By Corollary 4.6(2b) and (4.7.2),

/ —L(t / —L —L(t
deg ui,z,y Y ( l)hul,z,tly - 5t,tlv J(pu,w[) —-v ( 1)pt1u,w6) § p3$2y/725U1,$2,w6
IQEW}*{E}
< T {w! wo} — Lj;<O.
O

Lemma 4.8. Let uy € Wy and y,z € W satisfy L(z) = {s} C J and y < uyz.
Then degh;,, ., < L(wo) — L; and the equality holds only when uy = wy.

Proof. By (1.4.4) and the assumption £(z) = {s} C J and y < w1z, we have
(481) h;l,z,y = Z pml,ulpw’z,z.fml,zé,y

’
T1,To

§ prl,ulpI'Z,folﬂﬂ/g,y

x1,xh sl >l

_ —L, §
= v pw1,u1psm’2,zfz1,a:’2,y'

x1,xh 5w, >,

We see by (4.8.1) that if u; = wy, then deg b/ < L(wg)— Ly and that if u; < wy,

u1,2,y

then degh! < L(wy) — Ly. O

u1,2,Y

5. LEFT MULTIPLICATION BY ¢, FOR u € W;
Keep the assumptions on the weighted Coxeter group (W, S, L) in 4.1.

Lemma 5.1. Suppose L(wo) > Ly > Ty fwyy- Let up € Wi — {wo} and y,z € W
satisfy L(z) C {s} C J, y < uiz and hy, -y # 0. Then deghy, -, < L(wo) — L
and L(y) = 1.
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Proof. We have z # e by the assumptions y < w1z and hy, 4 # 0. So L(z) = {s}.
By Lemma 4.8, degh;,, ., < L(wo) — L. So deghy, .y < L(wo) — L by (1.4.5)
and induction on £(uyz) — £(y) > 1.
Now assume L(y) # I, then L(y) € I. Let Y = {y € W|L(Y) € L,y
w12, hyy 2 # 0}, IfY = 0, then the result follows. Now suppose Y # (), and let
y" be maximal in Y with respect to the partial order <. Take t; € I — L(y°).
By (1.4.5),

7

huhz,y - u1 2,90 Z hul,z Py x-

x>y0

Since ° is maximal in Y with respect to <, we have

— / _
huhz,yo = hul,z,yf’ E : hulvzviﬁpyoﬂﬂ
>y, zr=wo
_ /
- hul z,y° hulyzytlyopyoqtlyo - § : hul,z,a:pyogg

x>t1y0,11:w0

_ / —L(t
= hul,z yo — U (82) hul,zatlyo + E : hul’z’wptlyoax

z>t1y0,zr=wo

n Y, — U—L(tl)h/ 0 =0,

u1,2,Y u1,z,t1y

by Lemma 4.7(1). Thus Ay, ., = 0, a contradiction. So Y = ) and the proof is
completed. 0O

Recall the notation m,, preceding Lemma 4.3.

Lemma 5.2. Suppose that Wy satisfies (%), and that (4.1.1) holds in Wy, and that
Ly > max{7s {w)wo}> Twy + L1 — La}. Let uy € Wi — {wg,wo}, y,z € W satisfy
L(z) C{s}CJ andy < wuyz. Let u=yj.

(1) If u= wo, then deg hy, -y < L(wo) — Ly.
(2) If u=wy, then deghy, -, < <y, — L.
(3) If u & {wj,wo}, then hy, ., =0.

Proof. When z = e, hy, -y = 0 as y # u1z. The result follows. Now assume
z #e. Then L(z ) = {s} By Lemma 4.8, deg hy,, ., < L(wo) — Ly, so deg hy, - <
L(wg) — Ly by (1.4.5) and induction on £(u1z) — é( ) > 1. (1) is just a special case
of this conclusion and hence is proved.

Let Y be the set of ¢y’ < uiz in W satisfying one of the following (i) or (ii),

(1) v; & {wh, wo} and hy, . # 0,
(i) y; = wh and deghy, 2y > Ty — L.

If Y = 0, then (2) and (3) follow. Now suppose Y # (. Let y° be a maximal
element in Y with respect to <. Let u® = y9.

If L(wfy) € L(u®), then u® ¢ {wf,wo}. Take some t; € L(wf) — L(u’). So by
1.3(0), u® < w} if and only if t;u® < wj. By (1.4.4) and the maximality of y° in Y/,
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we have
_ !
hul,z,yo = hul,z,yo - § hul,z,y”pyoyy”
y"' >y €{wl,wo}
_ / _ —L(tl) _ —L(tl)
= Py o — 0 Py 2 8140 v Py 27 Pty g0,y
Y >y0y" #t1y0 .y e{wl,wo}
—_ / . —L(t1) g
- hu1>2,y0 v huhzilyo'

50 Ny, 540 = 0 following from Lemma 4.7. We have h,, . 0 = 0, contradicting
with Ty, L g0 # 0.

If L(w)) C L(u), then L(u®) = L(wf) and u® < w} by the assumption u® €
Wi —{wp}. Let y"® = (u®)~1y°. Then

(5.2.1)
Py 20
= Ry g0 — Z Ry 2 Pyo g (by (1.4.4) and the maximality of y°)
¥ >y% 7 e{wp,wo}
= ;1,z,y° - 5u°7w6hu17z,ty°py°7ty° - Z (huh%y”pyo,y” + hU17Z7ty”py°>ty”)

"_

Y >y0,yY =wg
/
huhZﬁUO - hul’z’tyopyowtyo -

_ : 0 /
E (hul,z,y”pyo,y” + hul,z,ty”pyo,ty”) (hul,z,tyﬂ = 0if u” # wp)
Y >y yf =wp
Y —L(t) —L(t)
- hul,z,yo -v hul,z,tyo +v hul,z,y”ptyo,y” -

Y >tyOyy €{wh,wo }

3 (hul,z,y,,pyo,y,,+U*L“)hul7z7ty,,ptyo,ty,/) (by 1.3 (3) and (1.4.4))

Y >y0yf =wp
o L) —L(t) _
- hul,z,yo v hul,z,tyo +v huhz,y”ptyoyy” hth,y”pyO,y”
Y >ty Y =wq v >y0,yf =wp
_ ’ =Lt § : —L(t) _
- h’ul,z,yo v hul,z,tyo + huhZJ// (U Ptyo .y Pyo
Y >y0,y7 =wy
—Ly —L(t
v (puo,w6 —-v ( )ptuo,wé) E psmgy/o,zﬂul,IQ,w(’) +

o €Wr—{e}

Z I (UﬁL(t)ptyqyu — py07yu> . (by Lemma 4.7)

Y >y0,yf =wg

If u® = w}, then we see by (5.2.1) that
(5.2.2)

_ ., —Ljy —L(t
huhZ,yO =v E : pswzy’072/8u1,$27w6 + E : huhz,y” (U ( )ptyo,y” _pyo,y”)'
zo€Wr—{e} Yy >y0 y =w]

For any x2 € Wi — {e}, we see by (1.4.7), (4.1.1) and the assumption on L that

(5.2.3) deg viLJpsxw/ozﬂuhm’wé <y, — Ly <Ly— L.
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By the maximality assumption on 3", we have
(524) deg hul,z,y” < Tl — Ly<Ly—14

for any y” > y° with y7 = w}.

So deg hy, 2.yo < Ty — Ly by (5.2.2)-(5.2.3). Asy° € Y, we have u® ¢ {wg, wo}
and hy,, .0 # 0.

Since u® # wy},

(525) hul’z’yo = Al — Ag,
by (5.2.1) and 1.3(3), where
Al = ’UfLJ (puo,w[’] - UﬁL(t)ptuO,w()) Z pswzy’o,zﬁul,xg,w[’)
ZQGWI*{@}
A2 = Z hu1,2,y” (pyo,y// — U_L(t)ptyoﬁy//) .

y//>y07y}/:w6
By Proposition 3.5 and Lemma 4.3, we have
(5.2.6) deg(puo wy, — U_L(t)ptuowé) < L;— Lo,
_L(t)ptyo)y//) < L1 - LQ,

deg(pyo v — v

for any y” > y" with y¥ = w}. So we see by (5.2.3) and (5.2.6) that deg A; <
—L;+ Ly — Ly + myy <0, hence Ay = 0. On the other hand, we get Ay = 0 by
(5.2.4) and (5.2.6). Thus hy, .,0 = 0 by (5.2.5), and h,, .0 = 0, contradicting
with hy, ,,0 # 0. This contradiction shows that ¥ = (. So (2) and (3) are
proved. ([l

Lemma 5.3. Letu € Wi, s € I—L(u) andy,z € W satisfy sy < y < uz, Hyuz 70
and L(z) C J. Suppose one of the following conditions (1)-(2) is satisfied,

(1) L(’wo) > LJ > TI {wo}>
(2) Wy satisfies (x) and (4.1.1) holds in Wi, and Ly = ar(wy).

Then either y; = wo or y = u'z for some v’ < u in Wr.
Proof. If u = wy, then
(531) CuCz = Cyz + Z hu,zay,c?/'

Y’ <uz;yi=wo

If u < wp, by Lemmas 5.1-5.2, we also have (5.3.1).

So
(5.3.2)
CsCyr — Cg | CyCy — Z hu,z,y’cy’
Y/ <uzyp=wo
= (csCu)Cs — Z R 2y (UL(S) + U—L(s)) ey

Yy <uz;yi=wo

Csu + Z NZ,Mcu/ cy — Z hu;’y, <UL(S) + U*L(S)) ey

u'ssu’' <u' <u y' <uz;yi=wo



30 JIAN-YI SHIT, GAO YANG#

Now assume y; # wg. Then we see by (5.3.2) that

hsuzy + Z P il 2y # 0.

ujsu’ <u’'<u

Similar argument as in showing (5.3.1) gives

s _ S
hsu7z7y + E : /‘u’,uhu”z,y - § Mu’,u(sulz’y’
u'ssu/ <u' <u u'ssu’' <u' <u
from Lemmas 5.1-5.2. Thus y = «’z for some «' < u in W with pf, , # 0. O
;

Lemma 5.4. Letu € Wy, s € I—L(u) andy,z € W satisfy sy < y < uz, Hyuz 70
and L(z) C J. Suppose that Wi satisfies (x), and that (4.1.1) holds in Wy, and
that ar(wp) > Ly > max{Ts, {w) wo}> Twy + L1 — La}. Then either yr € {wo,wp} or
y =u'z for some v < wu in Wr.

Proof. As the condition (3.0.1) in Section 3 is satisfied, by Proposition 3.3, if u €
{w{, wo}, then

(5.4.1) CuCy = Cys + E D 2y Cyr-
y' <uzyyi€{wo,wy}

If u & {w,wo}, we also have (5.4.1) by Lemma 5.2. So

(5.4.2)
CsCyz = Cs | CuCy — § hu,z,y/cy/ - E hu7z,y’cy’
y' <uz;yp=wo Y <uz;yr=w
L(s —L(s
= (csCy)Cy — g Mo 2,y (v () 4 =L« )> Cyr — E B 2y CsCyr
Y <uziyp=iwo Y <uziyj=wj
s L(s —L(s
= Csy T Z Hor 4 Cu | €2 — Z hu’%y, (U (s) IS )) cy
ujsu’ <u'<u y' <uz;yj=wo

- § : P 2y CsCyr-

’ wny! —apn!
Yy’ <uzyyi=w,

Assume y; & {wo,w(,}. Then we see by (5.4.2) that

hsu,z,y + Z :ui’,uhu/v%’y 7& 0.

ujsu’ <u’'<u

By Lemma 5.2, we have

§ : s § s
hsu,z,y + Nu',uhu’,z,y - p’u’,u(sulzvy‘
u’jsu’ <u'<u u'jsu’ <u'<u
So y = u'z for some v’ < w in Wi with u2, ,, # 0. O
,

Lemma 5.5. Suppose that Wi satisfies (), and that (4.1.1) holds in Wi, and
that Ly = aj(w}). Let z € W be with L(z) C {s} C J. Let s € J. Then

= —LJs
P! stav! 2tz =V Powt ot 7 0.
wq,s"'wgz,wo 2 W, Wq,Wq
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Proof. Let

K = {yeWly>woz, huy swyy 7 0},

K' = {yeWly>wyz, hy suwzy 7 0}
For any y € K’', by Proposition 3.3, y; € {wo,w(}. As wyz < y < wis'wyz, if
yr = wo, then y = woz. If yr = w), then y must be of the form y = w(,- s’ -z - z for

some x € W with e < z < wj,.
We claim that K’ C {w{s'w{z, woz}. By (1.4.5), to prove this, we only have to

show
, 1 itz = wyp,
hwé,s’w(’)z,w(’)s’mz =

0 ife<z<wy.
This follows by (1.4.4), as (1.4.4) implies that

1
! ! ! ! ol = 7 ’ ’ ! ’ ’ ’ ! o
w8’ wyz,wi s’z pwo,wops r2z,8 woszo,s Tz,wH8 2T

ps’wz,s’w[’)z-
From the fact K’ C {w}s'w}z, woz}, we have K = {w}s'wj)z}. So

hwg,s’wgz,woz

Wy 57wtz 00> (BY (1.4.5) and the claim)

Wq
Z pxl,wépxg,s’w{,zfxl,ac’Q,woz (by (144)) .
T1,cLbEW
For z; < wg and oy < s'wyz, if fo, 4p wy= 7 0, then L(z5) C I, and there exists
xg9 € Wi with zf, = x5 - 2. Consequently,
(5.5.1) hwé,s’w()z,woz

= E pml,w{)pmrzz,s/w{)zfxl,xgz,woz
z1,22€EWT

—L
= v 7 Z pwl,wgps’wgz,s’wézf$1,9322,11)02 (by 1.3 (3))
r1,22€EWT

E pwl,w(’)ps’wgz,s’w(’)zfm,ﬂcz,wg
z1,22€EWT

= v Z pml,wépmz,w()fll,mz,wo (by 1.3 (5), (7))
x1,x2€EWT
= U_LJh’{wé,’wé,wo (by (1.4.4))
= U_Ljhw67w67w0. (by (1.4.5))
As K’ C {w(s'w)z,wpz}, we have

hw{),s’w{)z,w()z
/
hw{),s’w{)z,w{)z - hwé,s/wéz,wozpwéz,wgz (by (145))

Z pxl,w(’)pxé,s’w[’)zfxl,xfz,w(')z - hw(),s’w{)z,wozpwéz,wgr (by (144))
x1,2HEW

For x1 < wg and 24 < s'wpz with fo, o1 w,= # 0, if L(z5) € I, then wyz = 1 -3,
sox; = wjand xh = z. If L(2) C I, then there exists x2 € Wy—{e} with xo = z3-2.
Consequently,
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h ! alan/ ’
wg,s'wi z,wih z

- E pxl,w[’)pwgz,s’w[’)sz1,wgz,w(')z - hw('),s’w(')z,wozpwéz,wgz
z1,22€EWT

z1,22€EW]
—L —L
= v 7 E pml,wépwgz,wéfﬁl,wbwé - Jhwé,wé,wopw67wo (by 1.3 (S)a (7))
z1,22€EWT
— =Lyt —Ly
= v h‘u;{,,u}(',ﬂu(’J —-v hw(’),wé,wopwé,wo (by (144))

= ’UfL"hw(/)’w(/)’wé. (by (1.4.5))

Therefore our proof is complete by Lemma 4.4 and the assumption aj(w() = L.
|

Recall the notation C, (z € W) defined in 1.6. Note that hy . = hy-1 -1 -1
for any z,y,z € W. Recall the definition of z appearing in « for z € W and a € H.

Lemma 5.6. For s € J and u € Wy, let x € Cqy, 8 € S and y € W satisfy
sy<y<z<sz anduzl}w £ 0.
(1) If L(wo) > Ly > Tr {we}, then y € Cou U Cuyy -
(2) Suppose that Wi satisfies (x) and that (4.1.1) holds in Wy. If ar(wf) >
Ly > max{TI7{w67w0}77rw6 + L1 — La}, then y € Csy UCyy -

Proof. We prove the result using induction on n = #(z) — ¢(su) > 0. When n = 0,
T = su and cyCgy = Cyrgy as 8 £ su. Now suppose n > 0. Write x = 2’ - su for
some =’ € W. Then

(5.6.1) Cs'Cy = Cg (cIrscu — Z hg;/&u)zfc,z/)

z'<x
=  Cs/CglsCy — Z hz’s,u,z’cs’cz’-
Z'<x

For any y”, 2" € W with R(2") = {s} and h.» 4y # 0 (hence hy—1 -1 -1 # 0),
we have
(1) y" € Csu UCuy if L(wo) > Ly > T7 {w,}, by Lemma 5.1, and
(2") y" € Csu UCyy if Wy satisfies (x) and (4.1.1) holds in Wy and aj(wg) > Ly >

max{7s {w) wo}» Twy + L1 — La}, by Lemma 5.2 with upt, 2”71 "~ in the

places of uy, z, y, respectively.

Write A = cgyr¢prsc, and B = ZZ,Q: hy'su,2CsCyr. Then ¢y = A — B. Since
u;’jz # 0, y appears in A or B.

If y appears in A, then we have (1) and (2) following from (1’) and (2’). Now
suppose y does not appear in A. Thus it appears in B, and there exists 2’ < x with
hz’s,mz’ # 0 and hs’,z’,y 7é 0.

As hyrsu,r # 0, when L(wo) > Ly > 77 fu,}, We have 2" € Cygy U Cyy by (17).
Now hgr niy # 0. If 2/ € Cyy,, then y € Cy,. If 2’ € Cyy, then y € Cq, UCy,, by the
inductive hypothesis.

fU?LJ Z pxl,w()ps/xrzz,s/w()zfxl,mg,w{] - UﬁLJhw(),w(),wopw(’),wo (by 1.3 (3) and (551))

When W satisfies () and (4.1.1) holds in Wy and aj(wg) > Ly > max{77, {w) wo}s Twy+

Ly — La}, we have 2 € Cs, UCyy by (2'). If 2’ € Cyy, then y € C,y by Corollary
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3.4(2). If 2/ € Cgy, then y € Cy, U Cuwy;, by the inductive hypothesis. The result
follows.

O
6. THE MULTIPLICATION BY ¢, FOR s € .J
Keep the assumptions for the weighted Coxeter group (W, S, L) in 4.1.
Lemma 6.1. Let z € W and L(z) ={s'} CJ and s € J — {s'}. Then
CsCy = Cs» + ECy 2,

where & — {1 if s € L(s'2),

0 ifs¢g L(s2).
Proof. From 1.3 (3), we see that for any y € W with sy < y < z,

0Py s = Peryz = Osry = Oy ez

So the result follows by Lemma 1.8. O

Lemma 6.2. Let z = uy - 2’ for some uy € Wy — {e} and 2’ € W with L(2') =
{s'} CJ. Let s € J — L(z). Suppose that one of the following conditions (a)-(b) is
satisfied
(a) L(wo) > Ly > T1 fwy} and uy # wo;
(b) Wi satisfies (x) and (4.1.1) holds in Wy, Lj > max{Tr {w) we}> Twy + L1 — L2}
and uy & {wh, wo},
Then
(1) vEI by, o iy =0 for any 2",y € W with sy <y < 2" < z;
(2) csCy = Csp + p1Co + oy, sz where py, po € A are defined by py = iy =

’UL‘]pe,ul ifs=¢, J 1 ifse Lus'?),
an =
0 if s# ¢, Hz 0 ifsé& Llugs's’).
Proof. (1) In case (a), hy, o .n # 0 implies 2¥ = wy and degvL7hy, v <

L(wo) by Lemma 5.1. So deg v27 hy,, o/ 2inpy .n < L(wo) — L(wg) = 0 by 1.3
(3) and the fact L(y) = {s} C J.

In case (b), we see by Lemma 5.2 that hy,, . .~ # 0 implies 2}/ € {wg, wo}
and deg hy, .. < aj(zy) — L;. By 1.3 (3), the fact L(y) = {s} C
J, Propositions 3.5, 3.8 and Lemma s4.4, we see that if z{ = wy, then
deg 27 hyy o 2ipy v < Ly+(L(wo)—Ly)—L(wg) = 0, and that if 2/ = wy,
then deg ’ULJhuhz/yz//py’Z// < Ljy+ (aI(wé) - LJ) — aI(wé) =0.

So the result is proved in either case.

(2) If s = &, then pf, , = v peu, = V" Py, by 1.3 (4), (7). If s # ', then
por , = 0. In this case, 0" Py = 0.

Let y € W be with sy < y < z and y # z’. Then y < z’. The result will

follow by Lemma 1.8 if

1 ify=us?,

L L —
(62.1) O Py = 0 Doy = {o iy # w2
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But
L L
VI Dy e — U7 Psuy s/ Dy, 2

L. 2: 2: L, L.
= v’ prl,ulng,z’le,mg,y* v Ihul,z’,z”py,z” —v ]ps,uls’py,z’

T1,T2 zl'<z

— LJ LJ

= v E p$17u1p1’2’z’f11,12,y — U " Psuis'Py,z’ (by (1))
T1,T2

L L L
= (’U Jpeﬂnpy:Z' —v Jps,uls'p%z') +ou™’ § : pw17u1pw2,z’fm1,z27y

z1,T2;T17€

Ly E
v p$1,u1p$2,z'f$179027y'

T1,T2;T1#£€
We see by (1.1.1) that the conditions fy, 4,y # 0, 1 € Wi — {e},
L(y) = {s}, L(Z') = {s'} and s,s" € J imply x5 = xfly, Jo1,20y = 1 and
Pxo,z’ = ’UfLJps’azz,z“ So

Ly Ly —
UV " Py,z =V "Psus'Py,z = § pw17u1ps/x;1y72/

T1,T2;T1#€

So (6.2.1) is true and the result follows.

1 ify=uys'?,
0 ify#wus'?.

d

Lemma 6.3. Let z = uy - 2’ for some uy € Wy — {e} and 2’ € W with L(z') =
{}C J. Let se J— L(z).
(1) If Ly < L(wp) and uy = wy, then csc, = cys.
(2) Suppose that W satisfies (x) and that (4.1.1) holds in Wy. If L; < ay(w()
and uy = wy|, then
CsCy = Csz + €2Cy,
vLJpe’wé if Ly = ar(w() and s = ¢,

where e € Z—{0} and it is given bye = & = .
0 otherwise.

Proof. (1) Let E = {y € Wlu; , # 0;sy <y < z}. If E # 0, take y the
maximal in £ with respect to <, then

(6.3.1) ty . = vlp, .

by 1.3 (4). If L; < L(wo) and u; = wo, then py . = vlo=Llwo)p, . =0
by (6.3.1) and 1.3 (3), a contradiction. This proves (1).

(2) Let B = {y € Wlsy <y < z,vEp,,, # 0}. Take y € E'. Under the
assumptions of (2), we have L; = ar(w}), y = 2’ and v7p, ,, = vL"pe’wé
and deg v’/ p, ., <0 by 1.3 (7), Propositions 3.5, 3.8 and Lemma 4.4.

So E' C {#'}, and vlp,. ,, = vL"pe’wé with degvf7p,/,, < 0. So the
result follows by Lemma 1.8.
(Il

7. LEFT AND TWO-SIDED CELLS I' OF W WITH I' N J # ()

Keep all the assumptions in 4.1 for (W, S, L). We shall describe all the left cells
and two-sided cells (say T') of W with T'NJ # ) in the cases

(1) L(wo) > Ly > 71 {w,) (see Proposition 7.4), and
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(2) Wi satisfies (x) and (4.1.1) holds in Wy, a(wg) > Ly > max{7s uw} wo}» Tw)+
Ly — Ly} (see Proposition 7.5).
Lemma 7.1. Letuy € Wy. Let z € W be with L(z) = {s} C J and s’ € J—L(u12).
Suppose one of the following (1)-(2) is true.
(1) L(wo) > Ly > 71wy} and uy 7# wo.
(2) Wi satisfies (x) and (4.1.1) holds in Wi, L(wo) > Ly > max{7r {w) we}> Twj+
Ly — Lo} and uy & {w(, wo}.
Then z ~1 u1z ~1, s'ujz.

Proof. When u; = e, z ~p s’z follows by Lemma 6.1. Now suppose u; > e.

Applying Lemma 6.2 with ufls’uz in the place of z, we get 1ot = L So
s 1

z <p, ul_ls’ulz <rp s'urz <p w1z <, z, and z ~p u1z ~p, s'uy 2. O

Lemma 7.2. Suppose that Wy satisfies (), and that (4.1.1) holds in Wi, and that
Ly =ar(wpy). Let z € W —{e}.

(1) If L(z) C J, then z ~1, w)z.

(2) If z1 = w( < z, then z ~, sz for any s € J.

Proof. (1) Take s € L(z) € J. By Lemma 6.3, p whz #0. So z <p wiz <z
and z ~p w)z.
(2) By Lemma 5.5, hy, sz, # 0. So 2z <p, sz <y, z and z ~, sz.
O

Recall the notation y <, x, 2, and Qx for z,y € W and X C W defined in 1.6.

Lemma 7.3. Let x,y € W. Then y ¢ x if one of the following conditions is
satisfied.

(1) L(wo) > Ly > Trfwey- Bither v € Qu, and y & Qy, or x € Q; and
y & QyU{we}.

(2) Wi satisfies (x) and (4.1.1) holds in Wi, Ly = aj(w}). Either x € Qy,
and y & Qu, orz € Qy and y & Qy U Q.

(8) Wr satisfies (x) and (4.1.1) holds in Wr, ar(wg) > Ly > max{Ts fuw},wo}» Tw)+
Ly — Lao}. Either x € Quy and y & Qyy or v € Qg and y & Q5 UQyy.

Proof. We must prove the equation hs ., = 0 for any s € S. When s € I, this
follows by Lemmas 5.3-5.4.
Now suppose s € J. Then this is obvious if x € Q; and y € Q.
(1) If L(wo) > Ly > Tr {wo}s T € Quy and y & Qyy, then h ., = 0 follows by
Lemmas 6.1, 6.2 (a) and 6.3 (1).
(2) If Wy satisfies (%) and (4.1.1) holds in Wy, L; = ar(w(), z € Q,, and
Y & Q. then hg 4, = 0 follows by Lemmas 6.1, 6.2 (b) and 6.3 (2).
(3) If Wi satisfies () and (4.1.1) holds in Wy, ar(wg) > Ly > max{7s fuw} wo}> Twy+
Ly — Ly}, x € Qyy and y &€ Qyy, then hs,, = 0 follows by Lemmas 6.1,
6.2 (b) and 6.3.
O

Theorem 7.4. Suppose L(wo) > Ly > T7 {w,} -
(1) Qyy is a union of two-sided cells.
(2) Qj — Qu, 1s a two-sided cell of W.
(8) Csy — Q15 a left cell of W for any s € J and x € Wi — {wp}.
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Proof. (1) follows by Lemma 7.3 (1). Then (3) is a consequence of Lemmas 5.6 (1)
and 7.1.

Take s’ € J. For any z € Qj; — Qy,, there exists s € J and z € W — {wo}
with 2z € Csz — Quo- So by (3), z ~, sz. Moreover, by Lemma 7.1 and 1.3 (4),
st ~g s~ ss~ps. Soz~pgr s and Q;— €y, is contained in a single two-sided
cell of W. Tt is known by Lemma 7.3 (1) that Q; — Q,, is a union of two-sided
cells of W. So Q5 — £, itself forms a two-sided cell of W. [l

Theorem 7.5. Suppose that Wy satisfies (x) and that (4.1.1) holds in Wj.
(1) If Ly = ar(wy]), then
(a) Qu, s a union of two-sided cells of W ;
() (QyU{wy}) — Qu, is a two-sided cell of W ;
(¢) {Cuwpy — Quy } U{Cse — Quyls € J,x € Wi — {wg,wo}} is the set of left
cells of Win (g U{w(}) — Qg s
(2) If aj(wy) > Ly > max{Ts {w) wo}> Twy + L1 — L2}, then
(a) Quy is a union of two-sided cells of W;
(b) Qg — Qyy is a two-sided cell of W;
(c) {Csu — Quyls € J,o € Wi — {wg,wo}} is the set of left cells of W in
Qs — Quy-

Proof. (1) (a) follows by Lemma 7.3 (2). By Lemmas 5.6, 7.1 and 7.2, Cs;, — 2y,
is a left cell for any » € W — {wp, wo}. Moreover, Cy; — Qu, is a left cell.
Let z € Q) — Quy. If 2 € Cyy — Quyy, then z ~p, w(, as Cupy — Qg 15 a left
cell. If 2 &€ Cyy — Quyy, then 2 € Corpr — €2y, for some x' € Wr—{wo,w(} and
s’ € J. We have 'z’ ~p s ~p w)s' ~r w{ by Lemma 7.2. So z ~pr w).
Thus (Q; U {w(}) — Qu, is contained in a single two-sided cell of .
By Lemma 7.3 (2), we see that (Q2;U{w{}) — £y, is a union of two-sided
cells. So (b) and (c) follow.
(2) (a) follows by Lemma 7.3 (3). By Lemmas 5.6 and 7.1, Csy — (2 is a left
cell of W for any x € Wi — {w{, wo}.
Let 51 € J and z € Q5 — Q. Then 2z € Cyy for some s’ € J and
' € Wr — {wo,w}. Since Cgrpr — Qyy is a left cell, 2 ~p, s'z’. Moreover,
s't’ ~p s’ by Lemma 7.1, and s’ ~p s1. So z ~pr s1. Thus Q; — Quy s
contained in one two-sided cell.
Moreover, Q; — §,,; is a union of left cells of W by Lemma 7.3 (3). So
(b) and (c) are true.
U
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