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ABSTRACT. Let (W, S) be a Coxeter system with a strictly complete Coxeter graph. The
present paper is concerned with the set Red(z) of all reduced expressions for any z € W. By
associating each bc-expression to a certain symbol, we describe the set Red(z) and compute
its cardinal |Red(z)| in terms of symbols. An explicit formula for |[Red(z)| is deduced, where
the Fibonacci numbers play a crucial role.

Let (W, S) be a Coxeter system, that is, W is a Coxeter group with S its Coxeter
generator set. Let Red(z) be the set of all reduced expressions of z € W. When W is
either a finite or an affine Coxeter group, it is known that the set Red(z) is closely related
with various objects in combinatorics, geometry and representation theory such as Young
tableaux, hyperplane arrangements, Schubert functions, symmetric functions, etc (see [1,
3, 5, 6]). The present paper is concerned with the case where the Coxeter graph I'(W)
of W is strictly complete, that is, the order myg; of the product st is greater than 2 for
any s # t in S and there does not exist any triple {s,r,t} in S with mgs,. = mg = 3
and my, < co. The aim of the paper is to describe the set Red(z) and to compute the
cardinal |Red(z)| for any z € W. To this end, we first reduce ourselves to the case where
z has a bc-expression (see 1.5 and Theorem 1.10), then we associate each bc-expression
¢ € Red(z) to a certain symbol S(() (see 3.2) and establish a bijection between the set
Red(z) and the associated symbol set Symb(z) in the case of £,(z) > 1 (see Theorem

Key words and phrases. Coxeter system; strictly complete Coxeter graph; bc-expressions; symbols.
Supported by the NSF of China (11131001 and 11471115) and Program of Shanghai Subject Chief
Scientist (11xd1402200) and Shanghai Key Laboratory of PMMP

Typeset by AMS-TEX



2 Jian-yi Shi

4.1), by which we reduce ourselves to study the set Symb(z) (see Corollary 4.2). We
describe all the symbols associated to be-expressions of W up to equivalence in Theorem
3.9. To compute |Red(z)| for any z € W having a bc-expression, we reduce ourselves
to the case where aqy p, 1y,... n,.1,. € Symb(z) for some integers r,nq,11,...,n., 1, > 1 and
lo = 0 (see Proposition 5.3) and deduce an explicit formula of |Red(z)| for such z € W

(see Theorem 5.7). The Fibonacci numbers play a crucial role in such formulation.

In the study of the set Red(z), there is an interesting phenomenon that the structure
and the cardinal of Red(z) only depend on the set Sg, := {{s,t} C S| s #t,ms < 0o},
but are independent of the precise values mg; for {s,t} € Sg,, provided that T'(W) is
strictly complete. I wonder if a modified phenomenon occurs in a more general case. We

shall make some further investigation concerning this in a forthcoming paper.

The contents of the paper are organized as follows. The concept of a bc-expression is
introduced in Section 1. Then the properties of be-expressions are investigated in Section
2. In Section 3, we associate each bc-expression to a symbol and describe all the symbols
associated to be-expressions of W. The computation of |Red(z)| is reduced to that of

|Symb(z)| in Section 4. Finally, an explicit formula is deduced for |Red(z)| in Section 5.

§1. bc-expressions.

In this section, we introduce the concept of a bc-expression in a Coxeter system which

will be crucial in the subsequent discussion.

1.1. Let N (respectively, P) be the set of all non-negative (respectively, positive) integers.
For any 7 < j in N, denote by [i, j] the set {i,i+ 1,...,j} and denote [1,i] simply by [i]
for any 7 € P.

Let (W,S) be a Coxeter system. Each z € W can be expressed in the form z =
$182--- S, with s € S for any k € [r]. Define the length ¢(z) of z to be the smallest
number 7 among all such expressions for z and call any expression z = s182---5(2)

a reduced expression of z. Let Red(z) be the set of all reduced expressions of z. For

/.
J

sis5 - -+ s, to indicate the equations s, = s hold for all k € [r].

any $1Sg--- Sy, sysh--+s. in Red(z) with s;, s’ € S, we use the notation sysg---s, =
For any s # t in S and any k € N, denote by [sts---], [---sts], the expressions
sts---, ---sts (k factors) respectively. For example, [sts---|g = [---tstl¢ = ststst. A

transformation sq -+ - [sts - |m., -+ Sp = S1---[tst- - |m., - -+ Sp s called a braid-move if
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s # t in S satisfy mg < 0o. By a result of Tits in [4], we have

Lemma 1.2. Any two reduced expressions of z € W can be transformed from one to the

other by successively applying some braid-mowves.

1.3. We say that two expressions (,(’ in W are equivalent, written ¢ ~ (', if {’ can be
obtained from ( by successively applying some braid-moves. This defines an equivalence
relation on the expressions in W. By Lemma 1.2, we see that two reduced expressions
¢,¢" in W satisfy ¢ ~ ¢’ if and only if (,{’ € Red(z) for some z € W. So any equivalence
class of reduced expressions in W has the form Red(z) for some z € W.

From now on, we always assume that the Coxeter graph I'(W) of W is strictly com-
plete. For any I C S, the subgroup W; of W generated by [ is called a standard parabolic
subgroup of rank |I|.

Lemma 1.4. Any finite standard parabolic subgroup Wi, I C S, of W is of rank < 2.

Proof. Since T'(W) is a complete graph, any standard parabolic subgroup W; of W with
I C S and |I] > 3 is infinite by the classification of Coxeter groups (see [2]). O

1.5. Let ( = s1s2---s, be a reduced expression in W with s, € S for k € [r]. By a
segment of ¢, we mean a subexpression of ¢ of the form (;; = s;s;41---s; for some ¢ < j
in [r]. A segment (;; of ¢ is called proper, if (i,7) # (1,r).

A segment (;; of ¢ is called a braid factor of (, if (;; = [sts-- -] for some s # ¢ in
S with mg < co and k € {ms —c | c € {0,1,2}} and {s;—1,s;41} N {s,t} = 0. {s,t}
is called the associated pair in S for (;;. We see that the braid factor (;; = [sts -]
determines {s,t} unless (my:, k) = (3,1). A braid factor (;; = [sts- -] of ( is called full
if k = mg;. Two braid factors (;; = [sts---]j11-i, (pg = [§'t's’ -+ |q+1—p of ¢ are called
neighboring if i < p and j < ¢ and p € {j,j + 1}, in this case, call (;;, (pq intersect if
j = p, disjoint if p = j + 1, and braid-connected, if there exists some expression ¢’ in W
with ¢’ ~ ( satisfying one of the following conditions:

(i) j = p, and (},;, ¢, are full braid factors of ¢’ for some i, ¢" € [r] with ¢’ <4 and

i)
q<q;

11) p — j + 17 and C’L{/j/7 ‘;-/’q

( , are full braid factors of ¢’ for some i, j',¢" € [r] with
V<itand j<j <j+1landg<¢.
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Clearly, for two braid-connected braid factors (;;, (pq of ¢, the sum £((;5) + €(Cpq) is
> 3 in the case (i) and > 2 in the case (ii). The associated pairs {s.t}, {s’,t'} of (i;, (pq
respectively in S satisfy [{s.t} N {s’,#'}| = 1. Later we shall prove that for (, the pairs
({s,t},{s’,t'}) and ((;j;, (pq) are determined each other (see Lemma 2.2).

A result of Xi is reformulated below for the proof of Lemma 1.7.

Lemma 1.6. (see [7, Lemma 2.2]) Let r,s,t € S satisfy m.s,mpt,mge > 2. Then
there is no w € W such that either w = rw; = tswy or w = wyir = wyst, where
l(w) =L(wy) + 1 =L(wy) + 2.

The next result tells us that for a braid factor £ of a reduced expression ¢ in W, the

braid factor braid-connected with £ at a given side is unique whenever it exists.

Lemma 1.7. Let ( = s182--- 8, be a reduced expression in W with s € S for k € [r].
Let Cij, Cpgs Cmn be three braid factors of ¢ with i < p,m. If both (pq and Gy are
braid-connected with (;; then (p,q) = (m,n).

Proof. We have p,m € {j,j + 1} by the assumption on (;;, (pq, Gmn- Suppose (p,q) #
(m,n). Then (pq, Gmn must have different associated pairs in S, hence {p, m} = {7, j+1},
say p=j and m = j + 1 for the sake of definiteness. We claim that (,,, is not a proper
segment of (p,. For, otherwise, we would have m =n = j+1 and ¢ > j + 1. Hence there
would be a triple {s,¢,u} in S such that (;; = [- - - sus], and (ppn =t and (pq = [sts- -]k
for some h,k > 2 with {u,t}, {s,t} the associated pairs of (mn, (pq respectively in S.
Write ( = z[ - - sus|pty for some x,y € W with ¢(¢) = ¢(x) + ¢(y) + h + 1. Then
y = [sus--+]m,,y1 for some y; € W with £(y) = l(y1) + ms,. Since ms, = 3 by the
assumption of T'(W) being complete, this would imply that m, = mg = 3 and mg,, < oo
by Lemma 1.6, contradicting the assumption of I'(W) being strictly complete. Our claim
is proved. We see by the claim that i < j, ¢ = 7 + 1 < n and that there exists a triple
{s,t,u} in S, where (;; = [ - sus|p, (j j+1 = st and (j41,, = [tut - -] for some h, k > 2.
Hence ¢ = zustuy for some z,y € W with ¢(¢) = £(z) + ¢(y) + 4. Since both ¢, j4+1 and
(j+1,n are braid-connected with (;;, there would be some expressions ¢’,¢” in W with
(" ~ ¢ ~ (" such that (;;, (7, are full braid factors of (" with i <7 <j < ¢ < ¢/, and
that (15, (v, are full braid factors of ¢ with i <iand j <j” <j+1andn <n”

1

and that the associated pairs in S for C§q,, i

. are {s,t}, {t,u}, respectively. This

would imply that zus = z1[ - sus|p,., and wy = [usu-- -], y1 for some z1,y; € W
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with £(zus) = l(x1) + Mg, and l(uy) = £(y1) + My, hence mg = my,, = 3 and my,, < 0
by Lemma 1.6 and the assumption of I'(W) being complete. The latter contradicts the
assumption of I'(W) being strictly complete. Our proof is complete. [

1.8. A reduced expression ¢ = s189--- s, in W with s, € S for k € [r] is called a braid-
connected expression (or a be-expression in short) if there exists a sequence of braid factors
T 2 Civjrs Gingas -+ Cinjo Of ¢ with some a € P and 41 < ip < -+ < i, and (i1, j,) = (1,7)
such that either a = 1 with (; ;, full, or a > 1 with (;_j., Ci..,j.,, being braid-connected
for any ¢ € [a — 1]. In this case, denote by ¢, - (¢) the number a of braid factors in T,
call 7 a braid sequence of ( and call A : {t1,t]},...,{ta,t,} the associated pair sequence
in S for ¢, 7, where {t.,t.} is the associated pair in S for the braid factor ¢;_; . For any
c € [a], call ;,;, the cth braid factor of ¢, 7, and call {¢.,t.} the cth associated pair in S
for ¢, .

The next result is concerning a bc-expression obtained from a given bc-expression by

removing or adding a braid factor.

Lemma 1.9. Let ( be a be-expression in W with 7 : wy = [sts- - |k, wa, ..., w, its braid
sequence for some s #t in S. Let £ = [- - - uvul]y, for some uw # v in S and h € P.

(1) k € {mst,mg — 1}.

(2) &£C is a reduced expression if and only if u & {s,t} and at least one of three relations
Myy = 00, h < My, < 00 and v & {s,t} holds.

(8) &C is a be-expression if and only if u & {s,t}, v € {s,t} and h = my, — 1 < cc.

(4) Assume a > 1. If either wy,wq intersect or k = mg — 1, let (' be obtained from ¢

by removing the leftmost segment [sts---]m,.,—1, then (' is a be-expression.

Proof. The results follow directly by the definitions of a bc-expression and a reduced

expression in W. [J

A segment £ of a reduced expression ( is called a bc-segment, if £ itself is a bc-
expression. A bc-segment & of ( is called maximal, if € is not a proper segment of any

other be-segment of (.

Theorem 1.10. Any z € W can be expressed as a product

(1.10.1) 2= T121%222 L q2qTat+1
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of some x;,z; € W such that
a a+1
(1) U(z) = 3 pmr z) + 2220 Um1);
(2) z can be expressed as a maximal be-segment of some reduced expression of z for
any k € [a];
(3) x; has a unique reduced expression in W for any | € [a + 1].

The decomposition (1.10.1) is uniquely determined by the element z. We have |Red(z)| =
[Ti=y [Red(zx)|

Proof. Let ¢ = s182 -+ s, be areduced expression of z with s, € S for k € [r]. By Lemma
1.7, we see that any bc-segment of ( is a segment of a unique maximal bc-segment of
¢ and that any two different maximal bec-segments of ¢ are disjoint. Let z1, 29, ..., 2, be
all maximal bc-segments of ¢ arranging from left to right and let z;, j € [a + 1], be
the segment of ¢ consisting of all factors in § between z;_; and z; with the convention
that zg, 2441 are the empty segments located at the left end and the right end of (,
respectively. As an element of W, each of z;, x; remains unchanged under any braid-
move on (. This implies that the decomposition (1.10.1) of z uniquely exists. Finally,
the equation |Red(z)| = [[4_; [Red(zx)]| follows by Lemma 1.2. [

By Theorem 1.10, to compute |Red(z)| for any z € W, it is enough to consider the
case where z has a bc-expression. Hence in the subsequent discussion of the paper, we

always assume that z has a bce-expression unless otherwise specified.

§2. Some properties of a bc-expression.
In the section, we study the properties of a bc-expression in W. Let us first describe

the structure of a bc-expression in W.

Lemma 2.1. Let ( = s152---5s, be a reduced expression in W with r > 1 and s € S for
k € [r]. Then C is a be-expression if and only if there exists a braid sequence T : wy, ..., W,
and a pair sequence A : {t1,t}}, ..., {ta,t,} in S such that the following conditions (a)-(g)
hold:

(a) ta # ty, myy < oo ford€ [al; {te,te} N {ter1,toy | =1 forec€la—1] ifa> 1.

(b) For c € [a], we = Sp.415p.4+2 " Spotk. = [tetiote |k, with ke € {myp —d | d €
{0,1,2}} and {sp,, spothe41} N {te, te} = 0.

(¢) (P1,Pa + ko) = (0,7) and pa + ka € {pa+1,pa+1 + 1} for d € [a —1].
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Denote by he(C) or he the number ke — my 4 .

(d) hy = 0 if either a = 1, or wy,wy intersect; h, = 0 if either a = 1, or wge_1,w,
intersect; for ¢ € [2,a — 1], he = 0 if w. intersects with both w._1 and wey.

(e) Suppose h. = =2 for c € [a]. Then c € [2,a — 1]; there exist some e < ¢ < f in [a]
such that he = hy =0 and hqg = —1 for any d € [e+1, f — 1] — {c}; wp, wp41 are disjoint
for any b € le, f —1].

(f) Suppose h. = —1 for ¢ € [a]. Then a > 1 and one of the following cases (f1)-
(f2) occurs: (f1) there exists some e < c¢ in [a] such that he = 0 and hqg = —1 for any
d € [e+1,c—1] and that wy, wy41 are disjoint for any b € [e,c—1]; (f2) there exists some
f > cin[a] such that hy =0 and hg = —1 for any d € [c+ 1, f — 1] and that wy, wp41
are disjoint for any b € [c, f — 1].

(9) t(we) + l(weg1) > 2, he + hep1 = =3, w, ¢ Wtc+1t’c+1 and wey1 & Wi e for any
c€la—1].

Proof. By the definition of a reduced expression in W being a bc-expression (see 1.8),

our result can be proved by induction on ¢,({) := a > 1 and by Lemma 1.9. O

In Lemma 2.1, we notice that the conditions (b) and (e), together with the assumption
of T'(W) being strictly complete, imply (g) and that the cases (f1), (f2) can’t occur
simultaneously if h., = —1 since ( is a reduced expression.

The following result concerns the relation between a braid sequence 7 of a be-expression

¢ and the associated pair sequence in S for (, 7 occurring in Lemma 2.1.

Lemma 2.2. Let ( = 51898, with s, € S for k € [r] be a be-expression in W with
a braid sequence T : wy,...,w, and a pair sequence A : {t1,t)}, ..., {ta,t,} in S satisfying
the conditions (a)-(g) in Lemma 2.1.

(1) For the be-expression ¢, A and T determine each other.

(2) X and T are uniquely determined by the bc-expression (.

Proof. For a be-expression (, A clearly determines 7. Now we show that 7 determines .
For, it is obvious if @ = 1. Now assume a > 1 and ¢ € [a]. The cth term {t.,t.} of A is
uniquely determined by the cth term w. = [tctit.-- -], of T unless (my ¢, kc) = (3,1).

Now assume (m¢,.4,k.) = (3,1). Then w, determines ¢.. For ¢, we have c € [2,a — 1]

c?

and

(2'2'1) {tc—lvt/c—l} N {tmtlc} - {tc+17t/c—|—1} N {tC’t/c} = {t/c}
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and f(we—1),¢(weq1) = 2 by Lemma 2.1 (a), (g). Since {t.—1,t._,} and {tcy1,t. 1}
are uniquely determined by w._; and w41 respectively, we see by (2.2.1) that ¢t/ is
determined uniquely by the sets {t.—1,t._;} and {tc41,t.,;} unless that {t._i,t,_,} =
{tet1.tep } and my g, =my = 3, but the latter is impossible by the assumption of
['(W) being strictly complete. (1) is proved.

Let 71 : wy, ..., wq and 75 : 21, ..., 2 be two braid sequences of ¢ both satisfying (a)-(g)
in Lemma 2.1 for some a < b in P. To prove (2), we need only to prove that w. and
x. are the same segment of ¢ for any ¢ € [a] (this implies @ = b) by (1). The result is
obviously true if a = 1. Now assume a > 1. We have w; = x1 = [$158281 - - - |, for some
k1 > 2 by Lemma 1.9 (1). In general, if w. and x. are known as the same segment of
for some ¢ € [a — 1], then w.41 and z.41 are the same segment of ( by Lemma 1.7 and
the fact that both w.4; and x.;; are braid-connected with w,. and on the same side of
w, in ¢. This proves w,. and x. are the same segment of ¢ for any ¢ € [a] by induction
onc>1. So (2) is proved. [

2.3. By Lemma 2.2, for a be-expression ¢, we can call 7 : wy, ..., wg and A : {t1, ]}, ..., {ta, .}
in Lemma 2.1 the braid sequence of ( and the associated pair sequence in S for (, respec-
tively. For any ¢ € [a], call w. the cth braid factor of  and call {t.,t.} the cth associated
pair in S for ¢. Also, denote ¢, -(¢) simply by ¢,(¢) and call it the b-length of .

The next result concerns the effect of the braid-moves on a be-expression in W.

Lemma 2.4. Let (, (' be two expressions in W with (' ~ (. Assume that ¢ is a bc-
expression with £,(() = a.
(1) ' is a be-expression with €y((') = a.

(2) ¢’ has the same associated pair sequence as ¢ in S.

Proof. In our proof, we may assume that ¢’ is obtained from ¢ by applying a braid-move
at the cth braid factor for some ¢ € [a]. Hence the cth braid factor w,. of ¢ is full.

Let Giyjys-oes Giy g be the braid sequence of (. Take the segments Cl{’lji’ s szgj& of (' as
follows: (i}, 7)) = (ia,7a) if d € [a] — {c —1,¢+ 1}; when ¢ € [2,a], let (i__,,j._;) be
(te—1yJe—1 — 1) if je—1 = ic and (ie—1,7e—1 + 1) if jo—1 = i, — 1; when ¢ € [a — 1], let
(i1, 5001) be (o1 + 1, jepr) if desr = jo and (igg1 — 1, jer1) if iep1 = je + 1. Then
it is routine to check that ¢’ is a be-expression with Q(,l i 1{; . its braid sequence by

Lemma 2.1 (a)-(g) on ¢, (1) is proved.
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Now we compare the dth associated pairs {tq,t,}, {uq, u);} in S for (, ¢’ respectively for
any d € [a]. They are the same if d € [a] — {¢ —1,c¢+ 1}. Now assume d € {¢ —1,c+ 1}
(hence a > 1). By symmetry, we need only to consider the case of d = ¢ — 1 (hence
¢ € [2,a]). By the construction of Q{;,lj;, » Gir jr» we have K(C’ j; ) =40(Ci. vj.,) E£1,
Giege = [teteteIm, > Grjr = [teteteJm, ,, and 0 # {tc_1,t,_ 0 ey} ¢
{tc,te} (Say te—1 = uc—l ¢ {te, tc}). If {te—r,ti_1} # {Uc—la Up_1}, then {tc, 0} =
{t._,,u._4}, the braid factor pairs ;. ,;. ,,Ci.;. and Cf‘,: ” , either both intersect

i _Jh_ zg

or both are disjoint. This would imply £(G;. ;. ,) = €} ) € {1, 2}, a contradiction.
c—1J¢c—1

So {te—1,t._1} ={uc—1,u._}, as required. [

2.5. Assume that z € W has a be-expression ¢ with 4,(() = a. Let {t,t.} be the cth
associated pair in S for ¢ for any ¢ € [a]. Then any ¢’ € Red(z) is a bc-expression with
0, (¢") = a and with {t.,t.} the cth associated pair in S for ¢’ by Lemmas 1.2 and 2.4.
So we can denote £,(¢) by ¢y(z) and call {t.,t.} the cth associated pair in S for z for
any ¢ € [a]. Furthermore, call {t1,t]},...,{ta,t,} the associated pair sequence in S for
z. By Lemma 2.4, it will cause no confusion if we call a (maximal) bec-segment of ¢ a
(maximal) be-segment of z for any z € W.

Remark 2.6. Note that the assumption of I'(W) being strictly complete is necessary
for the assertions in Lemmas 2.2 and 2.4. When I'(W) is complete but not strictly
complete, there is a counter-example to those assertions: one bc-expression in W could
possibly have more than one cth braid factor and more than one cth associated pair
in S; equivalent bc-expressions could possibly have different cth associated pairs in S.
Assume that S = {s,r t} satisfies ms = 4 and my, = mg,. = 3. Then (4 = tstsrstst,
(o = ststrstst and (3 = stsrirsts are three equivalent bc-expressions. (7 has two 2nd
braid factors srs and r with two 2nd associated pairs {s,r} and {r,t} in S. Also, (o
has two 2nd braid factors ¢r and rs with two 2nd associated pairs {¢,r} and {r, s} in S.
Finally, (5 has only one 2nd braid factor rtr with one 2nd associated pair {t,r} in S.
2.7. Keep the notation in Lemma 2.1 for a bc-expression ¢ with ¢,({) = a. Define
a(¢;1) = 0 and define a((;¢), ¢ € [2,a], to be the number of all d € [¢ — 1] such that the
dth and the (d + 1)th braid factors of ¢ intersect. By Lemma 2.1 (a)-(g) on (, we have

(2.7.1) (¢ b) — (¢ d) + Zk e{k+zmtt,_1

k € {0, 1}}
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for any b < d in [a] with {b,d} N {1,a} # 0; in particular, —a(C;a) + > o_ ke = 1+
e (Mg, — 1),

§3. Symbols associated to a bc-expression in V.

In this section, we associate each bc-expression in W to a symbol and give a description
for all the admissible symbols (see Theorem 3.9).

3.1. For any a € N, define a symbol o of length (o) = a to be « := i1j212j2 " iaJa
with some i. € { [, ( } and j. € { ], ) } for any ¢ € [a]. Now assume a > 0. Call iy
the kth pair (or a pair in short) of a for any k € [a]. Call [ | a full pair. Next assume
a > 1. When the kth pair ixj; of « is full, denote by 7x(a) the symbol obtained from «
by replacing jx_1,ir+1 by ji,_1, 7}, respectively if k € [2,a — 1], iy by iy if £ = 1, and
Ja—1 by ji,_1 if k = a, where ji_,,7) | are given by the conditions {jx—1,j;,_1} ={], ) }
for k € [2,a] and {iry1,9, 1} =1{ [ (} for k € [a—1]. 7 is called a pair-reflection on «
at the kth pair. Let S, be the set of all symbols of length a and let S = U,enS,. Then
S forms a monoid with the empty symbol being its identity under the composition by
juxtaposition: a - 3 = af.

3.2. Keep the notation in Lemma 2.1 for a be-expression ¢ € Red(z) with ¢,(z) = a , we
associate ¢ to a symbol S({) = i1j112j2 -+ - iaja € Sa as follows.

(i) i1da = [ |;

(ii) For any c € [2,a], we set icje—1 = | ] if pe—1 + kee1 = pe + 1;

(iii) For any ¢ € [2,a] with pe—1 + ke—1 = pe, we set icje—1 = ( | if —a({5e—1) +
S ke = 14 S myy, — 1) and set iy = [ ) if —a(Ge— 1) + Yk, =
SO (g — 1) (see 2.7).

3.3. A symbol a € S is called admissible, if o = S({) for some bc-expression ¢ in W.
Denote by S.q the set of all admissible symbols in §. By the condition (2.7.1) on a
be-expression, we have i.j.—1 # ( ) for any i1j1i92j2 -+ - iaja € Saq and any ¢ € [2,al.

a,0 € S are said to be equivalent, written o ~ (3, if either § = «, or 3 can be
obtained from « by successively applying some pair-reflections. An equivalence class in
S containing « is denoted by @. Clearly, the relation o ~ 8 in S implies l(a) = [(3). If
a, 3 € S,q, then the relation a ~ 3 holds exactly when there are two be-expressions ¢, ¢’
in W with ¢ ~ ¢’ such that S(¢) = a and S(¢’) = 8. The set S,q is a union of some

equivalence classes in S.
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3.4. A segment £ of a bc-expression ( is called regular if any braid factor of ( in-
tersecting with ¢ is wholly contained in &. Keep the notation in Lemma 2.1 for (
with ¢,(() = a. A regular segment of a bc-expression ( is just a segment of the form
€ = Sp,+15p.+2 " Spy+k, With some e < d in [a], we define the associated symbol of &
to be S(§) = icjelet1fer1 - taja if S(C) = i1j102j2 - iqja- We also define £,(&) to be
d+ 1 — e. In general, the symbol S(&) satisfies the condition 3.2 (ii) but not necessarily
3.2 (1), (iii).
For X € {[ ],] ),( ]} and m € N, denote by X,, the symbol X --- X (m copies).

Example 3.5. Let (W,S) be a Coxeter system with S = {s,r ¢,u,v} and defining
relations (sr)* = (sv)” = (rt)® = (rv)" = (tu)® = (tv)* = (W)’ =2 =12 =2 = u? =

v? = 1. Then W has the Coxeter graph I'(W) in Fig. 1.

Fig. 1, Coxeter graph I'(W)

(1) ¢ = rsrvsvsvsvtvtuvuvurvrorv is a be-expression with £,(¢) = 5, where wy = rsr,
Wy = VSVSUSY, wy = vivt, wy = uvuvu, ws = rorovrv are braid factors of ¢ with we and
ws full. The associated symbol S(¢) is [ )[ |[ [{ ]{ ]. The segment & = wvuvurvrvrv
of  is regular with S(¢) = ( |( | the associated symbol.

(2) ¢ = tvtvrvrvrvuvuvutututrirt is a be-expression with £,(() = 5, where wy = totv,
Wo = VrUrurv, wi = vuvuvu, wy = ututut, ws = trtrt are braid factors of ¢, which are

all full, any two neighboring braid factors of ¢ intersect. Hence S(¢) =1 |[ [ |[ ][ -

Lemma 3.6. Let ¢ be a be-expression in W with S(() = i1j1i2j2 « - iaja- For any c € |a],
we have

(1) he(¢) = 0 if and only if icje = | |.

(2) hel) = —2 if and only if icje = ( ).

(3) he(¢) = =1 if and only if icje € {[ ),{ 1}.

Proof. This follows directly by the definition of the symbol S({) of a bc-expression (,
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the relation (2.7.1) and Lemma 2.1 (d)-(f). O

Examples 3.7. (1) Let ¢ be a be-expression in W with S({) = i1j1i2J2 - i4ja and
he(¢) = —2 for some ¢ € [2,a — 1]. By Lemmas 2.1 (e) and 3.6, we have

teJelet1Jet1 - ifgr = J{ Je—em1{ ) )f—c—1[ | for some e < c< fin [a].

(2) Let ¢ be as in Example 3.5 (2) and let (., ¢ € [5], be obtained from ¢ by applying a
braid-move at the cth braid factor. Then S((y), ..., S(¢s)are [ JCI[ I 1, IO 1C I 1T s
CIOOCTCIE LT U JC T, [ I I 1L ) ], respectively, each of them is obtained from
S(¢) by some pair-reflection.

3.8. Let S ={[ Yul Irs[ ]¢( Im|m,mneNrit € Pland So = {[ )n| |+{ |m|m,n € N,r € P}.
For k € [2], define Sj, to be the subset of S consisting of all symbols ajas - - -, with
a; € Sy, for some r € N and any i € [r], then Sy forms a submonoid of S generated by
Si. Denote k := 3 — k for any k € [2].
The following result describes the subset S.q of S.

Theorem 3.9. (1) For any o € S, k € [2], there exists some o' € S, satisfying o/ ~ .
(2) For 6 € Sy andn € {[ |,[ )}, there exists some k € Sy satisfying k ~ nd. If
d~d"inS andne{[ ],[ )}, then there exists somen’ € {[ 1,[ )} satisfying nd ~ n'd’".
(3) For any o € Saq, there exists some § € Sy with a ~ 6.
(4) Suppose that there is a sequence of pairwise distinct elements t1,ts, ..., t, in S with
some r > 2 such that my ., < oo for any c € [r] with the convention that t,.41 = t1.

Then for any 6 € S1, there exists some o € Spq with a ~ 4.

Proof. We have the inclusion S; € S, and hence S; € S,. On the other hand,
9l 3¢ o= [l 10 bl Jmn €81 i 7> Land [ bl 1 o~ [ dnal Ja Tt =
[ Vo1l 1] 12( Jmer €S1ifmyn >0and [ )] [{ ] € St if mn = 0. This implies (1).

For the first assertion of (2), we need only to deal with the case of § € S;, or only the
case where d = | |,,( ], and 7 =] ) for some n € N and m € P. But the latter can be
proved by the same argument as that in (1). For the last assertion of (2), let k be the

number of pair-reflections 71 (see 3.1) applied in transforming § to ¢’. Take ' = n if k is
even and ' € {[ |,[ )} — {n} if k is odd. Then nd ~ n'd’.
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Next consider (3). We have a = S({) for some bc-expression ¢ in W. Apply-
ing induction on ¢,(¢) > 1. If ¢,({) = 1, then ¢ is a full braid expression, hence

S(¢) =] ] € S; by Lemma 3.6 (1). Now assume £,(¢) > 1. Write S(¢) = By’
with some f8,v,a’ € S satisfying £,(¢) = (/) + 2 and I(8) = I(y) = 1. Then
Gye{l I LUINLTICHEIC) D) D] By € {l IC ][ ()}, then a braid-move
can be applied on ¢ at the 1st braid factor with the resulting be-expression ¢’ satisfying
S e{l 1l ], [ ][ )o'} by 3.1. So we may assume Sy € {[ ][ L1 ][ ),[)[ ).[ )[ ]} at
the beginning. When 3 is [ ] (respectively, [ )), the 1st braid factor of { is [srs -], (re-
spectively, [srs- -], —1) for some s # 7 in S with ms, < oo, and Byisin {[ ][ |,[ ][ )}
(respectively, {[ )] ],[ )[ )}) by our assumption, so the 1st and the 2nd braid factors of

¢ intersect (respectively, disjoint). Let (" be obtained from ¢ by removing the leftmost
segment [srs---|m,..—1. Then ¢” is a bc-expression with S(¢"”) = va’ by Lemma 1.9
(4). By inductive hypothesis, there exists some § € S; with § ~ ya/. By (2), there
exist some ¢’ € Sy and n € {[ ],[ )} satisfying &' ~ 76 ~ [ ]ya’ = S(¢) (respectively,
8 ~nd~1[ )ya' =5(()). (2) is proved.

Finally, consider (4). Let J = {t. | ¢ € [r]}. We shall prove a stronger result: For
any o € S1, there exists some be-expression ¢ in W with S(¢) ~ a. Applying induction
on l(a) > 1. If a € S; satisfies [(a) = 1 then a = [ ], any full braid expression
¢ in W satisfies @ = S(¢) € Saq. Now assume a € S satisfies (o) > 1. Write
a = fya’ for some o, 3,7 € S with l(a) = I(¢/) +2 and [(8) = I(y) = 1. Then
By e {10 LU I0 )0 10 L1000 )00 13- Since [ ]( Jo" ~ [ ][ ]Jo/ and

[ ] )/ ~ [ ][ )/, we may assume By € {[ ][ L[ I[ ),[ ) ).[ ) ]} at the
beginning. Hence ya/ € S;. By inductive hypothesis, there exists some bc-expression ¢’

in Wy with S(¢') ~ va’. The 1st braid factor of (' is [t;t;t; - - - |, for some ¢ # j in [r]
with my,¢; < oo and ky € {my,¢;, my;¢; — 1} by Lemma 1.9 (1). Let k be the number of
pair-reflections 7 applied in transforming S(¢’) to yo'. When either 3 = [ | with k even,
or 3= ) with k odd, take ( = [ - - tt;t];s,, —1(’, where t € I —{t;,t;} satisfies my;, < oo,
the existence of such ¢ is guaranteed by the assumption on J. When either § = [ ) with
k even, or 3 = [ | with k odd, take ( = [-- -ttjt]mttjflg“’, where t € I — {t;,t;} satisfies
myt, < 00, the existence of such ¢ is again guaranteed by the assumption on J. Then ¢
is a be-expression in Wy with S(¢) ~ a by (2) and Lemma 1.9 (3). This proves (3). O
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§4. The correspondence between the sets Red(z) and Symb(z).

To study the structure and the cardinal of the set Red(z) for any z € W, we need only
to consider the case where z has a bc-expression by Theorem 1.10. For such an element
z, denote Symb(z) := {S(¢) | ¢ € Red(z)}. In this section, we establish a bijection
between the sets Red(z) and Symb(z) in Theorem 4.1 when #,(z) > 1. Two kinds of
be-expressions in W (i.e., simple and ample) are important in the subsequent discussion.

For any z € W, let L(2) = {s € S| €(sz) < {(z)}. Recall a (maximal) bc-segment of

z Introduced in 2.5.

Theorem 4.1. Assume that z € W has a be-expression with €y(z) > 1. For any (,(’ €
Red(z), we have ¢ = ¢ if and only if S(¢) = S({’).

Proof. We know that all expressions in Red(z) are bc-expressions and have the same
b-length ¢,(z) by Lemma 2.4 and by the assumption that z has a bc-expression. The
implication “ = 7 is trivial. Now we prove the implication “ <= " by induction on
ly(z) = 2. Assume (, (" € Red(z) satisfy S(¢) = S(¢’) (denote by a this common symbol).
Write a = ya’ with some ,v,a’ € S satisfying l(a) = (/) + 2 and [(8) = I(y) = 1.
Then S e{[ [ )}

(i) First assume 3 = [ ]. Then the 1st braid factors of ¢, (" are [srs- -]y, , [s'7's" - ]m, ,
respectively for some s # r and s’ # r’ in S. The first claim is that {s,r} = {s',7'}.
For otherwise, we would have |£(z)| > 3 by the fact {s,r,s',7'} C L(z), contradict-
ing Lemma 1.4. The second claim is that (s,7) = (s’,7'). By Lemma 1.2, there is a
sequence Tj, , Ti,, ..., Ty, Of braid-moves to transform the expression ¢’ to ¢, where 7;; de-
notes a braid-move at the i,;th braid factor. If (s,r) = (r’,s’) then the cardinal of the
set {j € [b] | i; = 1} should be odd, but this would imply iy # 5 in S(() = i1j1i2j2 -
and S(¢") = {41575 -+ (see 3.1), contradicting the assumption S(¢) = S(¢’). Now
we have [srs---]n,, = [s'7's" -], . Let (1,(; be obtained from ¢, (" respectively by
removing the leftmost segment [srs---|n..—1 if vy € {[ ],[ )}, and by applying a braid-
move at the 1st braid factor followed by removing the leftmost segment [rsr-- -], _1 if
v€{(],( )} Then (1, (] are two be-expressions of some 2z’ € W satisfying S(¢1) = S(¢})
and ¢,(2") = p(2) — 1 by Lemma 1.9 (4). If 4,(2’) = 1, then both (; and (i are full braid
expressions in W with the same leftmost factor in S. This implies (; = (}. If 4,(¢") > 2,
then ¢; = {} by inductive hypothesis. So we get ¢ = (' in either case.



The reduced expressions in a Coxeter system 15

(ii)) Next assume f = [ ). Then = [ ),,[ ]o for some o/ € S and m € P
with {(a) = I(a/) + m + 1 by the definition of a symbol associated to a bc-expression
and Theorem 3.9. Let (1,({] be the bc-expressions obtained from ¢, (’, respectively
by applying braid-moves 7,,41, Tm, ..., 72 in turn. Then S(¢;) = S(¢}). Denote by ay
this common symbol. Then «; can be obtained from a by applying pair-reflections
T4l Tm, -, T2 I turn. We have ay = [ |3’ for some 3 € S with I(ay) = 1(5") + 1. The
relation ¢; = (] can be proved by the argument in (i) with ¢;,{] in the places of ¢, ¢’
respectively. This implies ( = ¢’ since (,(’ can be obtained from (7, (] respectively by
the same sequence of braid-moves.

So our result is proved. [J

Note that the assumption ¢,(z) > 1 can’t be removed for the assertion of Theorem
4.1. For, if £,(z) = 1 then z is the longest element in a standard parabolic subgroup Wi,
of W for some s # r in S with mg, < 0o, the set Red(z) contains two different full braid

expressions with the same associated symbol | |.

Corollary 4.2. Express any z € W in the form (1.10.1) with z1, z2, ..., 2, all mazimal
be-segments of some reduced expression of z. Then |Red(z)| = [[,_; ex|Symb(zx)|, where
€ =1 ifﬁb(zk) >1 and e, = 2 ifﬁb(zk) =1.

Proof. The result follows by Theorems 1.10, 4.1, Lemma 1.2 and the fact that |[Red(w)| =
2 and |Symb(w)| =1 if w € W has a bc-expression with f,(w) =1. O

By Corollary 4.2, to compute |Red(z)| for any z € W, it is enough to consider the
case where z has a bc-expression. Hence in the subsequent discussion of the paper, we
always assume that z has a bc-expression with £,(z) > 1 unless otherwise specified. We
need only to compute |Symb(z)| in order to get |[Red(z)| by Theorem 4.1.

4.3. A bc-expression ¢ with £,(¢) = a is called simple, if the associated symbol S(()
is either [ |, or one of the following symbols with @ > 2: [ |{ Jo—1, [ )a—1[ | and
[ Ya | ]2( Ja—d—2 for some d € [0,a — 2]. Note that those symbols are pairwise different

and form a single equivalence class of S in S,q for any given a € P.

Lemma 4.4. Ifz € W has a simple be-expression with £,(z) = a € P then all expressions

in Red(z) are simple bc-expressions with L, := |Red(z)| equal to a + 1.
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Proof. The result is obvious if @ = 1. Now assume a > 1. By Theorem 4.1, our result

follows directly by the definition of a simple bc-expression and the notice thereafter. [

4.5. A be-expression ¢ with £,(¢) = a is called ample, if the symbol S(¢) = i1j142j2 * * * taJa
satisfies the condition (4.5.1) below:

(4.5.1) tey1je—1 € {[ ],( )} forany c € [2,a — 1]. If ic41jc—1 = ( ) then i.j. =[ [;if
iz = < N then iljl = [ ]; ifja_l = > 5 then iaja = [ ]

Denote by F),,, m € N, the Fibonacci numbers defined by the relations

(452) FO = 0, F1 =1 and Fm_|_2 = Fm + Fm_|_1.
The following identities are well known:

(4.5.3) Frini1 = Frni1Fni1 + FoF),
(454) Fm+n+2 - Fm+2Fn+2 - Fan

for any m,n € N.

Lemma 4.6. Assume that z € W has a be-expression with (y(z) = a.
(1) ¢ € Red(z) is ample if and only if S(¢) ~ | Ja-
(2) If Red(z) contains an ample be-expression, then K, := |Red(2)| is equal to Fyyo.

Proof. The assertion (1) follows by the definition of an ample be-expression and the fact
that a braid-move on a bc-expression, whenever it is applicable, preserves the property
of being ample. For (2), apply induction on a > 1. It can be checked directly that
K; = F3 and Ko = F;. Now assume a > 2. Let E; (respectively, Es) be the set of all
1119272 - * " 1ajq € Symb(z) with j,_1 =] (respectively, j,—1 =) ). Then E; (respectively
E) consists of all symbols in Symb(z) which can be obtained from [ J,—1-[ | (respectively,
[ Ja—2-[ )[ ]) by applying some pair-reflections at the pairs contained in the underlined
place. So |Ey| = K,-1 and |Es| = K,_2. By Theorem 4.1, the assertion (2) follows by
inductive hypothesis, the fact Symb(z) = E1UE, and the identity (4.5.2). O

By Lemma 4.6 (2) and the fact (Fp, Fy, F») = (0,1,1), it is reasonable to set Ky =
K_1=1and K, =0 for any a < —1.
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§5. An explicit formula for the cardinal of the set Red(z).

In this section, we always assume z € W has a be-expression ¢ with S(¢) € Sy. Let

A1l yeyn, by ::[ ]lr+1[ >ﬂr[ ]lr"'[ >Tl1[ ]ll

for some r,l1,n1,...,0,n,. € P and [,;1 € N. To formulate |Red(z)|, we reduce ourselves
to the case where S(¢) = ai,\ n,1,,....n1,1; Dy Theorem 3.9 and Proposition 5.3. An

explicit formula is given for the number K}SR;T’ZT 77777 ny1, -= |Red(2)] in Theorem 5.7.

Lemma 5.1. Assume that z € W has a be-expression ¢ with S(¢) = [ |m( ]n for some
m € P and n € N. Then Kl,fn = |Red(z)| is equal to Fypo + nky,.

Proof. We have

(5.1.1) K5, =Lpsi =n+2=F+nk,
(5.1.2) K)o =Kp = Frio.

by Lemmas 4.4 and 4.6, the result is true in those cases. Now assume m > 1 and
n > 0. Let Ej (respectively, F3) be the set of all i1j1i2j2 -+ in Symb(z) with j,, =]
(respectively, j,, = ) ). Then E; consists of all symbols which can be obtained from
&- ( ]n by applying some pair-reflections at the pairs contained in the underlined

place. This implies |E;| = K, = F,,,42 by Lemma 4.6. On the other hand, we have

(5.1.3) [ Il Jn~ Dm—z [ )2l 1-[]C T2 ifn>1,
(5'1'4) [ ]m< ]nN[ ]m—2'[ >2[ ] ifn=1.

Denote by a the symbol on the right-hand side of (5.1.3) or (5.1.4) according to n > 1
orn = 1. Then Es consists of all symbols which can be obtained from a by applying some
pair-reflections at the pairs contained in the underlined place. This implies by Lemma
4.6 and (5.1.1) that |Bo| = K15, _yKm_s = nFy, if n > 1 and that |Ea| = K,,_s = Fy, if
n = 1. So our result follows by Theorem 4.1 and the fact Symb(z) = F1UFE,. O

Lemma 5.2. Assume that z € W has a be-expression ¢ with S(C) = [ |i[ )ml[ lp for
some l € N and m,p € P. Then KZI;,LP = |Red(2)| is equal to Fiypio +mFioF),.
Proof. When | = 0, we have K(|)7>nl,b7p = K]Lfm, the result follows by Lemma 5.1. Now

assume [ > 0. Let E; (respectively, FEs) be the set of all i1j1i272 -+ in Symb(z) with
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Q141 = | (respectively, 4,11 = ( ). Then F; consists of all symbols which can be obtained
from [ J;—1-[ ]-[ )m[ ]p by applying some pair-reflections at the pairs contained in the

underlined place. This implies that |E;| = K l—1K1L,<m- On the other hand, we have

(5.2.1) Ll dml Jo~ L - [0 0 ) - [Dmal ], iHE> 1T,
(5.2.2) [l dml o~ D10 - [maal 1y itl=1.

Denote by « the symbol on the right-hand side of (5.2.1) or (5.2.2) according to [ > 1
or | = 1. Then Fs consists of all symbols which can be obtained from « by applying
some pair-reflections at the pairs contained in the underlined place. This implies that
|Bo| = Ki_»K)5,_ if | > 1 and |Ey| = K}, if | = 1. Our result follows by Theorem

4.1, Lemmas 4.6, 5.1, the identity (4.5.4) and the fact Symb(z) = E1UFE>. O

Proposition 5.3. If z € W has a bc-expression, then there ezists some ¢ € Red(z) with

S(C) = v nyiinymy,y for some vl na, .l € Poand 1 € N

Proof. The result is trivial when ¢,(z) = 1. Now assume ¢,(z) > 1. By Theorem 3.9,
there exists some ( € Red(z) such that S({) = a := a,a,_1 -y for some r € P and

some o; € Sy, 1 € [r]. If

(%) ;=] Yn,[ Ji; with some n; € N and [; € P for any i € [r],
then we are done. Now assume we are not in the case. Then there exists some j € [r]
with a; = [ ];,( |n, for some [;,n; € P. Take j the smallest possible with this property
and denote it by n, (take n, = r + 1 in the case (x)). There are two possible cases as
follows.

(i) There exists some i € [j + 1,7] such that o, = [ )u,[ |1, and o = [ ]1,,( |n, for

any ke []72 - 1]7
(ii) ag = [ i, ( ]n, for any k € [, 7],
where [;, [, € P, n;,ni € N. In the case (i), let &’ € S be obtained from « by replacing

the part a;o;—1 -+ - by
[ >nz[ ]li+li71_2[ >ni71[ ]li72[ >ni72[ ]li73.”[ ]lj[ >nj[ ]2'

In the case (ii), let @’ € S be obtained from a by replacing the part a,a,—1---«a; by

A R O (Y iy Y B TP O [ B P
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if [, > 2 and by

DY R Ty iy Py B TSP N A v 2

if [, = 1. Then o ~ « in either case. Since ny > ny, our result follows by applying

reversing induction on n, < r + 1, 3.3 and Theorem 4.1. [

5.4. Denote Kl'fi‘?;r,lm...,nl,ll := |Red(2)| if z € W has a bc-expression with
Ay dyomayly € Symb(z).

By Theorem 3.9 and Proposition 5.3, we see that, in order to formulate |Red(z)| for
any z € W having a be-expression, it is enough to consider the case of o, .| n,.1,,....n1,1, €

Symb(z) for some r,ly,n1,...,0,n, € P and [,;1 € N.

The following result provides a recurrence formula for the number K l|(>|) ; I
1,5l TV,
st [>D" -
Proposition 5.5. For any r > 2, the number Klrﬂ,nr,lr ..... nyly U equal to
|1 |1 :
Flr+1+2Klr7nr—1alr—17"'7n17l1 + (anlT_+1+2 B Fl""l‘l)KZT‘_27TLT—1alr‘—17"'7n17l17 Zf lr 2 2’

F K|(>|)T71 + (n F —F )K|(>|)T71
lr+1+2 17”7‘*17[7'717”%”17[1 r lr+1+2 l"‘+1 0,ny

R Y SR S A Zf lr - ]_
Proof. Let Ey (respectively, E) be the set of all i1jiizjz--- in Symb(z) with
i,y +n,+1 = [ (respectively, i, yn,+1 = ( ). Then E; consists of all symbols which

can be obtained from [ ;. ,[ )n,:[ 1i.[ Jnvoil Jto_y -+ [ )nil |1 by applying some pair-
KGDT

r+1 T e 15l 1,

reflections at the pairs contained in the underlined place. So |E;| = K]

On the other hand, oy, ., n, i.,...n;,1; 18 equivalent to one of the following symbols:

e O | O I L R O [ ) o) [ A A LTH B [T LR 2

]
[ il D=2l L ICIC) Dnmaal Doy [l e e >0 =1
]

[ AR Y[ K I [ Y P N SRR I F I if I, >n, =1< by
I P T T I T A L A if I, >n, =1, l,;1=0,
R T I A L K e (T | N [ L A if n, =1, =1 < lq1.
I L A i e I e I L i if n, =1, =1, l,11=0.

Denote by « one of the symbols above according to the values of ny,ly,lg. Then Ey
consists of all symbols which can be obtained from « by applying some pair-reflections

at the pairs contained in the underlined place. So |Es| is equal to
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Kl|7‘>—t-|17nr—271Kl|£i|2),:’;,1_1,lr_l,...,nlJl7 if ne, 1. > 2,
l|,~>+|1,n,ﬂ—2,1 J)Eirl)_rl_—lLlr_l,...,nl,z1v ifnp > 1, =1,

Klr+1—1Kl|r(i|2),rr:,1,lr,l,...,nl,ll7 if lp >np =1,

Klr+1—1Kg)sil)_rl_jl,lr_l,...,nl,ll7 if np =1, =1.

Hence our result follows by Theorems 4.1, Lemmas 4.6, 5.2, and the fact Symb(z) =
E\UE,. O

5.6. Fix r,l1,n1,....,0-,n,. € Pand l,;1 € N. Let 1 = (41,1, ...,11). For any k € [r], let
Iy = {t = (t1,ta, ... 1) EPF |1 <t <ty <. <t <r}. Forany t = (t1,ta,...,t1) €

k k
Iy, let ng :=J[._y ne, and Fy) o= Fl, 4 2) 4l ol 4 [l Flootle—attle,
with the convention that ¢y = 0. Then the following is an explicit formula for the number
|(>D"

l'r‘+17nr7l7‘7~--7nl7ll .

Theorem 5.7. In the above setup, we have

T
|(>D" — } : } :

(571) KlH.l,nT,lr,...,nl,ll = F(lr+1+2)+lr+--~+l1 + ntFtvl.
k=1tcly ,

Proof. Apply induction on r > 1. When r = 1, the equation (5.7.1) is just Lemma 5.2.
KIGD"

L1 smlyoemin g A1 Proposition

Now assume r > 2. Consider the recurrence formula for
5.5 and regard it as a polynomial in nq,no,...,n,.. By inductive hypothesis, we can

compute the constant term and the coefficients f; of the term n¢ in K l'fi'); Loy, fOT

any t = (t1,t2,...,tx) € I, with k € [r] as follows. We denote ngl Fly oty e, 11
simply by H?Zl for any h € [r] and use the identities (4.5.2)-(4.5.4) and F» = F; =1 1in

the following computation. First assume [, > 2.

fo = (Fipv2 P2yt a bt = Pl Fl 242 1ttt n) - 1]

c=1
k
= F(lr+1+2)+lr+lr—1+'“+ltk+1 ’ H if tp <r.

c=1
k—1 k

Jo = Fro 2 F (-2 42) 4,1ty 1 [I=F.]] if & = 7.

c=1 c=1
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>)7 .
The constant term of K l|( D I 5 18
1M by, V1,00

Bl 2B o)+, tto s = Pl (@ —2)42) 1ot lo s = Fll42) 4t o

So our result is proved when [, > 2. Next assume [, = 1. We must consider the
following four cases in computing fi for t = (t1,ta, ..., tx) with k € [r]: (i) tx <7 —1; (ii)
tp =rand tp_1 <r—1; (ili) tx =r —1; (iv) (tg—1,tx) = (r — 1,7).

k
ft = Flr+1+2F3+l7‘71+"'+ltk+1 H _Er+1 (F2+l'r71+"‘+ltk+1 - FQF’ZT71+'“+1%+1) H

c=1 c=1

= (ﬂr+1+2F3+lr—l+"'+ltk+l - Flr+1F1+l'r-—1+"'+ltk+l) H

c=1

k
= Fli, 1 42) 4oty 1 H in the case (i).

c=1
k—1

fe = Flr+1+2(F2+lr71+"'+ltk_1+1 - F2F1lr71+"'+ltk_1+1) H

c=1
k—1

=Fl 2 bl e, H in the case (ii).

c=1
k k k k
ft = Flr+1+2F3 chl _Er+1F2 chl = (Er+1+2FS_Flr+1F1) chl = F(lr+1+2)+lr chl
in the case (iii) and fy = Fy,,, 42F% ch:ll = I, 420, H]c:ll in the case (iv). Finally,

> )
the constant term of K l|( ) ; 5 18
1M bryee 1,01

Flr+1+2F3+l7‘71+"'+ll - Fl'r+1 (F2+l7'71+"'+l1 - F2Fl7‘71+"'+l1> = F(lT+1+2)+lr+lw—1+'"+l1'

So our result is also proved when [, =1. [

Example 5.8. By (5.7.1), we have

(1) K-~ = Flust+2)+1o+1, T2l 42F1, 40, + 11 F 5 42) 41, F1y +nena Fig o F1, B,

l3,n2,l2,m1,l1

[>[>]>] _
(2) K} o sitomits = Flat2)yvistiorn + n3lr2 b1 + neFuo)r, Pl +

N1 12)1is 1 F1 + n3neFy, o Fi Fyy gy + mana By o B, Fiy + nana Fy, oy, Fi, Fry +

nyngoni by, 1o Fy, Fi, By,
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