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Abstract. Let (W, S) be a Coxeter system with a strictly complete Coxeter graph. The

present paper is concerned with the set Red(z) of all reduced expressions for any z ∈ W . By

associating each bc-expression to a certain symbol, we describe the set Red(z) and compute

its cardinal |Red(z)| in terms of symbols. An explicit formula for |Red(z)| is deduced, where

the Fibonacci numbers play a crucial role.

Let (W,S) be a Coxeter system, that is, W is a Coxeter group with S its Coxeter

generator set. Let Red(z) be the set of all reduced expressions of z ∈ W . When W is

either a finite or an affine Coxeter group, it is known that the set Red(z) is closely related

with various objects in combinatorics, geometry and representation theory such as Young

tableaux, hyperplane arrangements, Schubert functions, symmetric functions, etc (see [1,

3, 5, 6]). The present paper is concerned with the case where the Coxeter graph Γ(W )

of W is strictly complete, that is, the order mst of the product st is greater than 2 for

any s 6= t in S and there does not exist any triple {s, r, t} in S with msr = mst = 3

and mtr < ∞. The aim of the paper is to describe the set Red(z) and to compute the

cardinal |Red(z)| for any z ∈ W . To this end, we first reduce ourselves to the case where

z has a bc-expression (see 1.5 and Theorem 1.10), then we associate each bc-expression

ζ ∈ Red(z) to a certain symbol S(ζ) (see 3.2) and establish a bijection between the set

Red(z) and the associated symbol set Symb(z) in the case of `b(z) > 1 (see Theorem
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4.1), by which we reduce ourselves to study the set Symb(z) (see Corollary 4.2). We

describe all the symbols associated to bc-expressions of W up to equivalence in Theorem

3.9. To compute |Red(z)| for any z ∈ W having a bc-expression, we reduce ourselves

to the case where αl0,n1,l1,...,nr,lr ∈ Symb(z) for some integers r, n1, l1, ..., nr, lr > 1 and

l0 > 0 (see Proposition 5.3) and deduce an explicit formula of |Red(z)| for such z ∈ W

(see Theorem 5.7). The Fibonacci numbers play a crucial role in such formulation.

In the study of the set Red(z), there is an interesting phenomenon that the structure

and the cardinal of Red(z) only depend on the set Sfin := {{s, t} ⊆ S | s 6= t,mst < ∞},
but are independent of the precise values mst for {s, t} ∈ Sfin, provided that Γ(W ) is

strictly complete. I wonder if a modified phenomenon occurs in a more general case. We

shall make some further investigation concerning this in a forthcoming paper.

The contents of the paper are organized as follows. The concept of a bc-expression is

introduced in Section 1. Then the properties of bc-expressions are investigated in Section

2. In Section 3, we associate each bc-expression to a symbol and describe all the symbols

associated to bc-expressions of W . The computation of |Red(z)| is reduced to that of

|Symb(z)| in Section 4. Finally, an explicit formula is deduced for |Red(z)| in Section 5.

§1. bc-expressions.

In this section, we introduce the concept of a bc-expression in a Coxeter system which

will be crucial in the subsequent discussion.

1.1. Let N (respectively, P) be the set of all non-negative (respectively, positive) integers.

For any i 6 j in N, denote by [i, j] the set {i, i + 1, ..., j} and denote [1, i] simply by [i]

for any i ∈ P.

Let (W,S) be a Coxeter system. Each z ∈ W can be expressed in the form z =

s1s2 · · · sr with sk ∈ S for any k ∈ [r]. Define the length `(z) of z to be the smallest

number r among all such expressions for z and call any expression z = s1s2 · · · s`(z)

a reduced expression of z. Let Red(z) be the set of all reduced expressions of z. For

any s1s2 · · · sr, s′1s
′
2 · · · s′r in Red(z) with si, s

′
j ∈ S, we use the notation s1s2 · · · sr ≡

s′1s
′
2 · · · s′r to indicate the equations sk = s′k hold for all k ∈ [r].

For any s 6= t in S and any k ∈ N, denote by [sts · · · ]k, [· · · sts]k the expressions

sts · · · , · · · sts (k factors) respectively. For example, [sts · · · ]6 ≡ [· · · tst]6 ≡ ststst. A

transformation s1 · · · [sts · · · ]mst · · · sr 7→ s1 · · · [tst · · · ]mst · · · sr is called a braid-move if
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s 6= t in S satisfy mst < ∞. By a result of Tits in [4], we have

Lemma 1.2. Any two reduced expressions of z ∈ W can be transformed from one to the

other by successively applying some braid-moves.

1.3. We say that two expressions ζ, ζ ′ in W are equivalent, written ζ ∼ ζ ′, if ζ ′ can be

obtained from ζ by successively applying some braid-moves. This defines an equivalence

relation on the expressions in W . By Lemma 1.2, we see that two reduced expressions

ζ, ζ ′ in W satisfy ζ ∼ ζ ′ if and only if ζ, ζ ′ ∈ Red(z) for some z ∈ W . So any equivalence

class of reduced expressions in W has the form Red(z) for some z ∈ W .

From now on, we always assume that the Coxeter graph Γ(W ) of W is strictly com-

plete. For any I ⊆ S, the subgroup WI of W generated by I is called a standard parabolic

subgroup of rank |I|.

Lemma 1.4. Any finite standard parabolic subgroup WI , I ⊆ S, of W is of rank 6 2.

Proof. Since Γ(W ) is a complete graph, any standard parabolic subgroup WI of W with

I ⊆ S and |I| > 3 is infinite by the classification of Coxeter groups (see [2]). ¤

1.5. Let ζ ≡ s1s2 · · · sr be a reduced expression in W with sk ∈ S for k ∈ [r]. By a

segment of ζ, we mean a subexpression of ζ of the form ζij ≡ sisi+1 · · · sj for some i 6 j

in [r]. A segment ζij of ζ is called proper, if (i, j) 6= (1, r).

A segment ζij of ζ is called a braid factor of ζ, if ζij ≡ [sts · · · ]k for some s 6= t in

S with mst < ∞ and k ∈ {mst − c | c ∈ {0, 1, 2}} and {si−1, sj+1} ∩ {s, t} = ∅. {s, t}
is called the associated pair in S for ζij . We see that the braid factor ζij ≡ [sts · · · ]k
determines {s, t} unless (mst, k) = (3, 1). A braid factor ζij ≡ [sts · · · ]k of ζ is called full

if k = mst. Two braid factors ζij ≡ [sts · · · ]j+1−i, ζpq ≡ [s′t′s′ · · · ]q+1−p of ζ are called

neighboring if i < p and j < q and p ∈ {j, j + 1}, in this case, call ζij , ζpq intersect if

j = p, disjoint if p = j + 1, and braid-connected, if there exists some expression ζ ′ in W

with ζ ′ ∼ ζ satisfying one of the following conditions:

(i) j = p, and ζ ′i′j , ζ ′j,q′ are full braid factors of ζ ′ for some i′, q′ ∈ [r] with i′ 6 i and

q 6 q′;

(ii) p = j + 1, and ζ ′i′j′ , ζ ′j′,q′ are full braid factors of ζ ′ for some i′, j′, q′ ∈ [r] with

i′ 6 i and j 6 j′ 6 j + 1 and q 6 q′.
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Clearly, for two braid-connected braid factors ζij , ζpq of ζ, the sum `(ζij) + `(ζpq) is

> 3 in the case (i) and > 2 in the case (ii). The associated pairs {s.t}, {s′, t′} of ζij , ζpq

respectively in S satisfy |{s.t} ∩ {s′, t′}| = 1. Later we shall prove that for ζ, the pairs

({s, t}, {s′, t′}) and (ζij , ζpq) are determined each other (see Lemma 2.2).

A result of Xi is reformulated below for the proof of Lemma 1.7.

Lemma 1.6. (see [7, Lemma 2.2]) Let r, s, t ∈ S satisfy mrs,mrt,mst > 2. Then

there is no w ∈ W such that either w = rw1 = tsw2 or w = w1r = w2st, where

`(w) = `(w1) + 1 = `(w2) + 2.

The next result tells us that for a braid factor ξ of a reduced expression ζ in W , the

braid factor braid-connected with ξ at a given side is unique whenever it exists.

Lemma 1.7. Let ζ ≡ s1s2 · · · sr be a reduced expression in W with sk ∈ S for k ∈ [r].

Let ζij, ζpq, ζmn be three braid factors of ζ with i < p,m. If both ζpq and ζmn are

braid-connected with ζij then (p, q) = (m,n).

Proof. We have p,m ∈ {j, j + 1} by the assumption on ζij , ζpq, ζmn. Suppose (p, q) 6=
(m,n). Then ζpq, ζmn must have different associated pairs in S, hence {p,m} = {j, j+1},
say p = j and m = j + 1 for the sake of definiteness. We claim that ζmn is not a proper

segment of ζpq. For, otherwise, we would have m = n = j +1 and q > j +1. Hence there

would be a triple {s, t, u} in S such that ζij ≡ [· · · sus]h and ζmn ≡ t and ζpq ≡ [sts · · · ]k
for some h, k > 2 with {u, t}, {s, t} the associated pairs of ζmn, ζpq respectively in S.

Write ζ ≡ x[· · · sus]hty for some x, y ∈ W with `(ζ) = `(x) + `(y) + h + 1. Then

y = [sus · · · ]msuy1 for some y1 ∈ W with `(y) = `(y1) + msu. Since msu > 3 by the

assumption of Γ(W ) being complete, this would imply that mtu = mst = 3 and msu < ∞
by Lemma 1.6, contradicting the assumption of Γ(W ) being strictly complete. Our claim

is proved. We see by the claim that i < j, q = j + 1 < n and that there exists a triple

{s, t, u} in S, where ζij ≡ [· · · sus]h, ζj,j+1 ≡ st and ζj+1,n ≡ [tut · · · ]k for some h, k > 2.

Hence ζ ≡ xustuy for some x, y ∈ W with `(ζ) = `(x) + `(y) + 4. Since both ζj,j+1 and

ζj+1,n are braid-connected with ζij , there would be some expressions ζ ′, ζ ′′ in W with

ζ ′ ∼ ζ ∼ ζ ′′ such that ζ ′i′j , ζ ′jq′ are full braid factors of ζ ′ with i′ 6 i < j < q 6 q′, and

that ζ ′′i′′j′′ , ζ ′′j′′n′′ are full braid factors of ζ ′′ with i′′ 6 i and j 6 j′′ 6 j + 1 and n 6 n′′

and that the associated pairs in S for ζ ′jq′ , ζ ′′j′′n′′ are {s, t}, {t, u}, respectively. This

would imply that xus = x1[· · · sus]msu
and uy = [usu · · · ]msu

y1 for some x1, y1 ∈ W
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with `(xus) = `(x1)+msu and `(uy) = `(y1)+msu, hence mst = mtu = 3 and msu < ∞
by Lemma 1.6 and the assumption of Γ(W ) being complete. The latter contradicts the

assumption of Γ(W ) being strictly complete. Our proof is complete. ¤

1.8. A reduced expression ζ ≡ s1s2 · · · sr in W with sk ∈ S for k ∈ [r] is called a braid-

connected expression (or a bc-expression in short) if there exists a sequence of braid factors

τ : ζi1j1 , ζi2j2 , ..., ζiaja of ζ with some a ∈ P and i1 < i2 < · · · < ia and (i1, ja) = (1, r)

such that either a = 1 with ζi1j1 full, or a > 1 with ζicjc , ζic+1jc+1 being braid-connected

for any c ∈ [a − 1]. In this case, denote by `b,τ (ζ) the number a of braid factors in τ ,

call τ a braid sequence of ζ and call λ : {t1, t′1}, ..., {ta, t′a} the associated pair sequence

in S for ζ, τ , where {tc, t′c} is the associated pair in S for the braid factor ζicjc . For any

c ∈ [a], call ζicjc the cth braid factor of ζ, τ , and call {tc, t′c} the cth associated pair in S

for ζ, τ .

The next result is concerning a bc-expression obtained from a given bc-expression by

removing or adding a braid factor.

Lemma 1.9. Let ζ be a bc-expression in W with τ : w1 ≡ [sts · · · ]k, w2, ..., wa its braid

sequence for some s 6= t in S. Let ξ ≡ [· · ·uvu]h for some u 6= v in S and h ∈ P.

(1) k ∈ {mst,mst − 1}.
(2) ξζ is a reduced expression if and only if u /∈ {s, t} and at least one of three relations

muv = ∞, h < muv < ∞ and v /∈ {s, t} holds.

(3) ξζ is a bc-expression if and only if u /∈ {s, t}, v ∈ {s, t} and h = muv − 1 < ∞.

(4) Assume a > 1. If either w1, w2 intersect or k = mst − 1, let ζ ′ be obtained from ζ

by removing the leftmost segment [sts · · · ]mst−1, then ζ ′ is a bc-expression.

Proof. The results follow directly by the definitions of a bc-expression and a reduced

expression in W . ¤

A segment ξ of a reduced expression ζ is called a bc-segment, if ξ itself is a bc-

expression. A bc-segment ξ of ζ is called maximal, if ξ is not a proper segment of any

other bc-segment of ζ.

Theorem 1.10. Any z ∈ W can be expressed as a product

(1.10.1) z = x1z1x2z2 · · ·xazaxa+1
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of some xi, zj ∈ W such that

(1) `(z) =
∑a

k=1 `(zk) +
∑a+1

l=1 `(xl);

(2) zk can be expressed as a maximal bc-segment of some reduced expression of z for

any k ∈ [a];

(3) xl has a unique reduced expression in W for any l ∈ [a + 1].

The decomposition (1.10.1) is uniquely determined by the element z. We have |Red(z)| =∏a
k=1 |Red(zk)|.

Proof. Let ζ ≡ s1s2 · · · sr be a reduced expression of z with sk ∈ S for k ∈ [r]. By Lemma

1.7, we see that any bc-segment of ζ is a segment of a unique maximal bc-segment of

ζ and that any two different maximal bc-segments of ζ are disjoint. Let z1, z2, ..., za be

all maximal bc-segments of ζ arranging from left to right and let xj , j ∈ [a + 1], be

the segment of ζ consisting of all factors in S between zj−1 and zj with the convention

that z0, za+1 are the empty segments located at the left end and the right end of ζ,

respectively. As an element of W , each of zi, xj remains unchanged under any braid-

move on ζ. This implies that the decomposition (1.10.1) of z uniquely exists. Finally,

the equation |Red(z)| =
∏a

k=1 |Red(zk)| follows by Lemma 1.2. ¤

By Theorem 1.10, to compute |Red(z)| for any z ∈ W , it is enough to consider the

case where z has a bc-expression. Hence in the subsequent discussion of the paper, we

always assume that z has a bc-expression unless otherwise specified.

§2. Some properties of a bc-expression.

In the section, we study the properties of a bc-expression in W . Let us first describe

the structure of a bc-expression in W .

Lemma 2.1. Let ζ ≡ s1s2 · · · sr be a reduced expression in W with r > 1 and sk ∈ S for

k ∈ [r]. Then ζ is a bc-expression if and only if there exists a braid sequence τ : w1, ..., wa

and a pair sequence λ : {t1, t′1}, ..., {ta, t′a} in S such that the following conditions (a)-(g)

hold:

(a) td 6= t′d, mtdt′
d

< ∞ for d ∈ [a]; |{tc, t′c} ∩ {tc+1, t
′
c+1}| = 1 for c ∈ [a− 1] if a > 1.

(b) For c ∈ [a], wc ≡ spc+1spc+2 · · · spc+kc ≡ [tct′ctc · · · ]kc with kc ∈ {mtct′c − d | d ∈
{0, 1, 2}} and {spc , spc+kc+1} ∩ {tc, t′c} = ∅.

(c) (p1, pa + ka) = (0, r) and pd + kd ∈ {pd+1, pd+1 + 1} for d ∈ [a − 1].
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Denote by hc(ζ) or hc the number kc − mtct′c .

(d) h1 = 0 if either a = 1, or w1, w2 intersect; ha = 0 if either a = 1, or wa−1, wa

intersect; for c ∈ [2, a − 1], hc = 0 if wc intersects with both wc−1 and wc+1.

(e) Suppose hc = −2 for c ∈ [a]. Then c ∈ [2, a− 1]; there exist some e < c < f in [a]

such that he = hf = 0 and hd = −1 for any d ∈ [e + 1, f − 1]−{c}; wb, wb+1 are disjoint

for any b ∈ [e, f − 1].

(f) Suppose hc = −1 for c ∈ [a]. Then a > 1 and one of the following cases (f1)-

(f2) occurs: (f1) there exists some e < c in [a] such that he = 0 and hd = −1 for any

d ∈ [e+1, c−1] and that wb, wb+1 are disjoint for any b ∈ [e, c−1]; (f2) there exists some

f > c in [a] such that hf = 0 and hd = −1 for any d ∈ [c + 1, f − 1] and that wb, wb+1

are disjoint for any b ∈ [c, f − 1].

(g) `(wc) + `(wc+1) > 2, hc + hc+1 > −3, wc /∈ Wtc+1t′
c+1

and wc+1 /∈ Wtct′c for any

c ∈ [a − 1].

Proof. By the definition of a reduced expression in W being a bc-expression (see 1.8),

our result can be proved by induction on `b(ζ) := a > 1 and by Lemma 1.9. ¤

In Lemma 2.1, we notice that the conditions (b) and (e), together with the assumption

of Γ(W ) being strictly complete, imply (g) and that the cases (f1), (f2) can’t occur

simultaneously if hc = −1 since ζ is a reduced expression.

The following result concerns the relation between a braid sequence τ of a bc-expression

ζ and the associated pair sequence in S for ζ, τ occurring in Lemma 2.1.

Lemma 2.2. Let ζ ≡ s1s2 · · · sr with sk ∈ S for k ∈ [r] be a bc-expression in W with

a braid sequence τ : w1, ..., wa and a pair sequence λ : {t1, t′1}, ..., {ta, t′a} in S satisfying

the conditions (a)-(g) in Lemma 2.1.

(1) For the bc-expression ζ, λ and τ determine each other.

(2) λ and τ are uniquely determined by the bc-expression ζ.

Proof. For a bc-expression ζ, λ clearly determines τ . Now we show that τ determines λ.

For, it is obvious if a = 1. Now assume a > 1 and c ∈ [a]. The cth term {tc, t′c} of λ is

uniquely determined by the cth term wc ≡ [tct′ctc · · · ]kc of τ unless (mtct′c , kc) = (3, 1).

Now assume (mtct′c , kc) = (3, 1). Then wc determines tc. For t′c, we have c ∈ [2, a − 1]

and

(2.2.1) {tc−1, t
′
c−1} ∩ {tc, t′c} = {tc+1, t

′
c+1} ∩ {tc, t′c} = {t′c}
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and `(wc−1), `(wc+1) > 2 by Lemma 2.1 (a), (g). Since {tc−1, t
′
c−1} and {tc+1, t

′
c+1}

are uniquely determined by wc−1 and wc+1 respectively, we see by (2.2.1) that t′c is

determined uniquely by the sets {tc−1, t
′
c−1} and {tc+1, t

′
c+1} unless that {tc−1, t

′
c−1} =

{tc+1, t
′
c+1} and mtctc−1 = mtct′

c−1
= 3, but the latter is impossible by the assumption of

Γ(W ) being strictly complete. (1) is proved.

Let τ1 : w1, ..., wa and τ2 : x1, ..., xb be two braid sequences of ζ both satisfying (a)-(g)

in Lemma 2.1 for some a 6 b in P. To prove (2), we need only to prove that wc and

xc are the same segment of ζ for any c ∈ [a] (this implies a = b) by (1). The result is

obviously true if a = 1. Now assume a > 1. We have w1 ≡ x1 ≡ [s1s2s1 · · · ]k1 for some

k1 > 2 by Lemma 1.9 (1). In general, if wc and xc are known as the same segment of ζ

for some c ∈ [a − 1], then wc+1 and xc+1 are the same segment of ζ by Lemma 1.7 and

the fact that both wc+1 and xc+1 are braid-connected with wc and on the same side of

wc in ζ. This proves wc and xc are the same segment of ζ for any c ∈ [a] by induction

on c > 1. So (2) is proved. ¤

2.3. By Lemma 2.2, for a bc-expression ζ, we can call τ : w1, ..., wa and λ : {t1, t′1}, ..., {ta, t′a}
in Lemma 2.1 the braid sequence of ζ and the associated pair sequence in S for ζ, respec-

tively. For any c ∈ [a], call wc the cth braid factor of ζ and call {tc, t′c} the cth associated

pair in S for ζ. Also, denote `b,τ (ζ) simply by `b(ζ) and call it the b-length of ζ.

The next result concerns the effect of the braid-moves on a bc-expression in W .

Lemma 2.4. Let ζ, ζ ′ be two expressions in W with ζ ′ ∼ ζ. Assume that ζ is a bc-

expression with `b(ζ) = a.

(1) ζ ′ is a bc-expression with `b(ζ ′) = a.

(2) ζ ′ has the same associated pair sequence as ζ in S.

Proof. In our proof, we may assume that ζ ′ is obtained from ζ by applying a braid-move

at the cth braid factor for some c ∈ [a]. Hence the cth braid factor wc of ζ is full.

Let ζi1j1 , ..., ζiaja be the braid sequence of ζ. Take the segments ζ ′i′1j′
1
, ..., ζ ′i′aj′

a
of ζ ′ as

follows: (i′d, j
′
d) = (id, jd) if d ∈ [a] − {c − 1, c + 1}; when c ∈ [2, a], let (i′c−1, j

′
c−1) be

(ic−1, jc−1 − 1) if jc−1 = ic and (ic−1, jc−1 + 1) if jc−1 = ic − 1; when c ∈ [a − 1], let

(i′c+1, j
′
c+1) be (ic+1 + 1, jc+1) if ic+1 = jc and (ic+1 − 1, jc+1) if ic+1 = jc + 1. Then

it is routine to check that ζ ′ is a bc-expression with ζ ′i′1j′
1
, ..., ζ ′i′aj′

a
its braid sequence by

Lemma 2.1 (a)-(g) on ζ, (1) is proved.
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Now we compare the dth associated pairs {td, t′d}, {ud, u
′
d} in S for ζ, ζ ′ respectively for

any d ∈ [a]. They are the same if d ∈ [a] − {c − 1, c + 1}. Now assume d ∈ {c − 1, c + 1}
(hence a > 1). By symmetry, we need only to consider the case of d = c − 1 (hence

c ∈ [2, a]). By the construction of ζ ′i′
c−1j′

c−1
, ζ ′i′cj′

c
, we have `(ζ ′i′

c−1j′
c−1

) = `(ζic−1jc−1) ± 1,

ζicjc ≡ [tct′ctc · · · ]mtct′c
, ζ ′i′cj′

c
≡ [t′ctct

′
c · · · ]mtct′c

and ∅ 6= {tc−1, t
′
c−1} ∩ {uc−1, u

′
c−1} *

{tc, t′c} (say tc−1 = uc−1 /∈ {tc, t′c}). If {tc−1, t
′
c−1} 6= {uc−1, u

′
c−1}, then {tc, t′c} =

{t′c−1, u
′
c−1}, the braid factor pairs ζic−1jc−1 , ζicjc and ζ ′i′

c−1j′
c−1

, ζ ′i′cj′
c

either both intersect

or both are disjoint. This would imply `(ζic−1jc−1) = `(ζ ′i′
c−1j′

c−1
) ∈ {1, 2}, a contradiction.

So {tc−1, t
′
c−1} = {uc−1, u

′
c−1}, as required. ¤

2.5. Assume that z ∈ W has a bc-expression ζ with `b(ζ) = a. Let {tc, t′c} be the cth

associated pair in S for ζ for any c ∈ [a]. Then any ζ ′ ∈ Red(z) is a bc-expression with

`b(ζ ′) = a and with {tc, t′c} the cth associated pair in S for ζ ′ by Lemmas 1.2 and 2.4.

So we can denote `b(ζ) by `b(z) and call {tc, t′c} the cth associated pair in S for z for

any c ∈ [a]. Furthermore, call {t1, t′1}, ..., {ta, t′a} the associated pair sequence in S for

z. By Lemma 2.4, it will cause no confusion if we call a (maximal) bc-segment of ζ a

(maximal) bc-segment of z for any z ∈ W .

Remark 2.6. Note that the assumption of Γ(W ) being strictly complete is necessary

for the assertions in Lemmas 2.2 and 2.4. When Γ(W ) is complete but not strictly

complete, there is a counter-example to those assertions: one bc-expression in W could

possibly have more than one cth braid factor and more than one cth associated pair

in S; equivalent bc-expressions could possibly have different cth associated pairs in S.

Assume that S = {s, r, t} satisfies mst = 4 and mtr = msr = 3. Then ζ1 ≡ tstsrstst,

ζ2 ≡ ststrstst and ζ3 ≡ stsrtrsts are three equivalent bc-expressions. ζ1 has two 2nd

braid factors srs and r with two 2nd associated pairs {s, r} and {r, t} in S. Also, ζ2

has two 2nd braid factors tr and rs with two 2nd associated pairs {t, r} and {r, s} in S.

Finally, ζ3 has only one 2nd braid factor rtr with one 2nd associated pair {t, r} in S.

2.7. Keep the notation in Lemma 2.1 for a bc-expression ζ with `b(ζ) = a. Define

α(ζ; 1) = 0 and define α(ζ; c), c ∈ [2, a], to be the number of all d ∈ [c− 1] such that the

dth and the (d + 1)th braid factors of ζ intersect. By Lemma 2.1 (a)-(g) on ζ, we have

(2.7.1) α(ζ; b) − α(ζ; d) +
d∑

c=b

kc ∈

{
k +

d∑
c=b

(mtct′c − 1)

∣∣∣∣∣ k ∈ {0, 1}

}
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for any b 6 d in [a] with {b, d} ∩ {1, a} 6= ∅; in particular, −α(ζ; a) +
∑a

c=1 kc = 1 +∑a
c=1(mtct′c − 1).

§3. Symbols associated to a bc-expression in W .

In this section, we associate each bc-expression in W to a symbol and give a description

for all the admissible symbols (see Theorem 3.9).

3.1. For any a ∈ N, define a symbol α of length l(α) = a to be α := i1j2i2j2 · · · iaja

with some ic ∈ { [, 〈 } and jc ∈ { ], 〉 } for any c ∈ [a]. Now assume a > 0. Call ikjk

the kth pair (or a pair in short) of α for any k ∈ [a]. Call [ ] a full pair. Next assume

a > 1. When the kth pair ikjk of α is full, denote by τk(α) the symbol obtained from α

by replacing jk−1, ik+1 by j′k−1, i
′
k+1 respectively if k ∈ [2, a − 1], i2 by i′2 if k = 1, and

ja−1 by j′a−1 if k = a, where j′k−1, i
′
k+1 are given by the conditions {jk−1, j

′
k−1} = { ], 〉 }

for k ∈ [2, a] and {ik+1, i
′
k+1} = { [, 〈 } for k ∈ [a− 1]. τk is called a pair-reflection on α

at the kth pair. Let Sa be the set of all symbols of length a and let S = ∪a∈NSa. Then

S forms a monoid with the empty symbol being its identity under the composition by

juxtaposition: α · β = αβ.

3.2. Keep the notation in Lemma 2.1 for a bc-expression ζ ∈ Red(z) with `b(z) = a , we

associate ζ to a symbol S(ζ) = i1j1i2j2 · · · iaja ∈ Sa as follows.

(i) i1ja = [ ];

(ii) For any c ∈ [2, a], we set icjc−1 = [ ] if pc−1 + kc−1 = pc + 1;

(iii) For any c ∈ [2, a] with pc−1 + kc−1 = pc, we set icjc−1 = 〈 ] if −α(ζ; c − 1) +∑c−1
e=1 ke = 1 +

∑c−1
e=1(mtet′e − 1) and set icjc−1 = [ 〉 if −α(ζ; c − 1) +

∑c−1
e=1 ke =∑c−1

e=1(mtet′e − 1) (see 2.7).

3.3. A symbol α ∈ S is called admissible, if α = S(ζ) for some bc-expression ζ in W .

Denote by Sad the set of all admissible symbols in S. By the condition (2.7.1) on a

bc-expression, we have icjc−1 6= 〈 〉 for any i1j1i2j2 · · · iaja ∈ Sad and any c ∈ [2, a].

α, β ∈ S are said to be equivalent, written α ∼ β, if either β = α, or β can be

obtained from α by successively applying some pair-reflections. An equivalence class in

S containing α is denoted by α. Clearly, the relation α ∼ β in S implies l(α) = l(β). If

α, β ∈ Sad, then the relation α ∼ β holds exactly when there are two bc-expressions ζ, ζ ′

in W with ζ ∼ ζ ′ such that S(ζ) = α and S(ζ ′) = β. The set Sad is a union of some

equivalence classes in S.
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3.4. A segment ξ of a bc-expression ζ is called regular if any braid factor of ζ in-

tersecting with ξ is wholly contained in ξ. Keep the notation in Lemma 2.1 for ζ

with `b(ζ) = a. A regular segment of a bc-expression ζ is just a segment of the form

ξ ≡ spe+1spe+2 · · · spd+kd
with some e 6 d in [a], we define the associated symbol of ξ

to be S(ξ) = iejeie+1je+1 · · · idjd if S(ζ) = i1j1i2j2 · · · iaja. We also define `b(ξ) to be

d + 1 − e. In general, the symbol S(ξ) satisfies the condition 3.2 (ii) but not necessarily

3.2 (i), (iii).

For X ∈ {[ ], [ 〉, 〈 ]} and m ∈ N, denote by Xm the symbol X · · ·X (m copies).

Example 3.5. Let (W,S) be a Coxeter system with S = {s, r, t, u, v} and defining

relations (sr)4 = (sv)7 = (rt)5 = (rv)7 = (tu)6 = (tv)4 = (uv)6 = s2 = r2 = t2 = u2 =

v2 = 1. Then W has the Coxeter graph Γ(W ) in Fig. 1.

6

65

4 7

4

s

r v

ut

8

88

7

Fig. 1, Coxeter graph Γ(W )

(1) ζ ≡ rsrvsvsvsvtvtuvuvurvrvrv is a bc-expression with `b(ζ) = 5, where w1 ≡ rsr,

w2 ≡ vsvsvsv, w3 ≡ vtvt, w4 ≡ uvuvu, w5 ≡ rvrvrv are braid factors of ζ with w2 and

w3 full. The associated symbol S(ζ) is [ 〉[ ][ ]〈 ]〈 ]. The segment ξ ≡ uvuvurvrvrv

of ζ is regular with S(ξ) = 〈 ]〈 ] the associated symbol.

(2) ζ ≡ tvtvrvrvrvuvuvutututrtrt is a bc-expression with `b(ζ) = 5, where w1 ≡ tvtv,

w2 ≡ vrvrvrv, w3 ≡ vuvuvu, w4 ≡ ututut, w5 ≡ trtrt are braid factors of ζ, which are

all full, any two neighboring braid factors of ζ intersect. Hence S(ζ) = [ ][ ][ ][ ][ ].

Lemma 3.6. Let ζ be a bc-expression in W with S(ζ) = i1j1i2j2 · · · iaja. For any c ∈ [a],

we have

(1) hc(ζ) = 0 if and only if icjc = [ ].

(2) hc(ζ) = −2 if and only if icjc = 〈 〉.
(3) hc(ζ) = −1 if and only if icjc ∈ {[ 〉, 〈 ]}.

Proof. This follows directly by the definition of the symbol S(ζ) of a bc-expression ζ,
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the relation (2.7.1) and Lemma 2.1 (d)-(f). ¤

Examples 3.7. (1) Let ζ be a bc-expression in W with S(ζ) = i1j1i2j2 · · · iaja and

hc(ζ) = −2 for some c ∈ [2, a − 1]. By Lemmas 2.1 (e) and 3.6, we have

iejeie+1je+1 · · · if jf = [ ]〈 ]c−e−1〈 〉[ 〉f−c−1[ ] for some e < c < f in [a].

(2) Let ζ be as in Example 3.5 (2) and let ζc, c ∈ [5], be obtained from ζ by applying a

braid-move at the cth braid factor. Then S(ζ1), ..., S(ζ5) are [ ]〈 ][ ][ ][ ], [ 〉[ ]〈 ][ ][ ],

[ ][ 〉[ ]〈 ][ ], [ ][ ][ 〉[ ]〈 ], [ ][ ][ ][ 〉[ ], respectively, each of them is obtained from

S(ζ) by some pair-reflection.

3.8. Let S1 = { [ 〉n[ ]r, [ ]t〈 ]m|m,n ∈ N, r, t ∈ P} and S2 = { [ 〉n[ ]r〈 ]m|m,n ∈ N, r ∈ P}.
For k ∈ [2], define Sk to be the subset of S consisting of all symbols α1α2 · · ·αr with

αi ∈ Sk for some r ∈ N and any i ∈ [r], then Sk forms a submonoid of S generated by

Sk. Denote k̄ := 3 − k for any k ∈ [2].

The following result describes the subset Sad of S.

Theorem 3.9. (1) For any α ∈ Sk, k ∈ [2], there exists some α′ ∈ S k̄ satisfying α′ ∼ α.

(2) For δ ∈ S1 and η ∈ {[ ], [ 〉}, there exists some κ ∈ S1 satisfying κ ∼ ηδ. If

δ ∼ δ′ in S and η ∈ {[ ], [ 〉}, then there exists some η′ ∈ {[ ], [ 〉} satisfying ηδ ∼ η′δ′.

(3) For any α ∈ Sad, there exists some δ ∈ S1 with α ∼ δ.

(4) Suppose that there is a sequence of pairwise distinct elements t1, t2, ..., tr in S with

some r > 2 such that mtctc+1 < ∞ for any c ∈ [r] with the convention that tr+1 = t1.

Then for any δ ∈ S1, there exists some α ∈ Sad with α ∼ δ.

Proof. We have the inclusion S1 ⊆ S2 and hence S1 ⊆ S2. On the other hand,

[ 〉n[ ]r〈 ]m = [ 〉n[ ] · [ ]r−1〈 ]m ∈ S1 if r > 1 and [ 〉n[ ]〈 ]m ∼ [ 〉n−1[ ]3〈 ]m−1 =

[ 〉n−1[ ] · [ ]2〈 ]m−1 ∈ S1 if m,n > 0 and [ 〉n[ ]〈 ]m ∈ S1 if mn = 0. This implies (1).

For the first assertion of (2), we need only to deal with the case of δ ∈ S1, or only the

case where δ = [ ]m〈 ]n and τ = [ 〉 for some n ∈ N and m ∈ P. But the latter can be

proved by the same argument as that in (1). For the last assertion of (2), let k be the

number of pair-reflections τ1 (see 3.1) applied in transforming δ to δ′. Take η′ = η if k is

even and η′ ∈ {[ ], [ 〉} − {η} if k is odd. Then ηδ ∼ η′δ′.
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Next consider (3). We have α = S(ζ) for some bc-expression ζ in W . Apply-

ing induction on `b(ζ) > 1. If `b(ζ) = 1, then ζ is a full braid expression, hence

S(ζ) = [ ] ∈ S1 by Lemma 3.6 (1). Now assume `b(ζ) > 1. Write S(ζ) = βγα′

with some β, γ, α′ ∈ S satisfying `b(ζ) = l(α′) + 2 and l(β) = l(γ) = 1. Then

βγ ∈ {[ ][ ], [ ][ 〉, [ ]〈 ], [ ]〈 〉, [ 〉[ 〉, [ 〉[ ]}. If βγ ∈ {[ ]〈 ], [ ]〈 〉}, then a braid-move

can be applied on ζ at the 1st braid factor with the resulting bc-expression ζ ′ satisfying

S(ζ ′) ∈ {[ ][ ]α′, [ ][ 〉α′} by 3.1. So we may assume βγ ∈ {[ ][ ], [ ][ 〉, [ 〉[ 〉, [ 〉[ ]} at

the beginning. When β is [ ] (respectively, [ 〉), the 1st braid factor of ζ is [srs · · · ]msr (re-

spectively, [srs · · · ]msr−1) for some s 6= r in S with msr < ∞, and βγ is in {[ ][ ], [ ][ 〉}
(respectively, {[ 〉[ ], [ 〉[ 〉}) by our assumption, so the 1st and the 2nd braid factors of

ζ intersect (respectively, disjoint). Let ζ ′′ be obtained from ζ by removing the leftmost

segment [srs · · · ]msr−1. Then ζ ′′ is a bc-expression with S(ζ ′′) = γα′ by Lemma 1.9

(4). By inductive hypothesis, there exists some δ ∈ S1 with δ ∼ γα′. By (2), there

exist some δ′ ∈ S1 and η ∈ {[ ], [ 〉} satisfying δ′ ∼ ηδ ∼ [ ]γα′ = S(ζ) (respectively,

δ′ ∼ ηδ ∼ [ 〉γα′ = S(ζ)). (2) is proved.

Finally, consider (4). Let J = {tc | c ∈ [r]}. We shall prove a stronger result: For

any α ∈ S1, there exists some bc-expression ζ in WJ with S(ζ) ∼ α. Applying induction

on l(α) > 1. If α ∈ S1 satisfies l(α) = 1 then α = [ ], any full braid expression

ζ in WJ satisfies α = S(ζ) ∈ Sad. Now assume α ∈ S1 satisfies l(α) > 1. Write

α = βγα′ for some α′, β, γ ∈ S with l(α) = l(α′) + 2 and l(β) = l(γ) = 1. Then

βγ ∈ {[ ][ ], [ ][ 〉, [ ]〈 ], [ ]〈 〉, [ 〉[ 〉, [ 〉[ ]}. Since [ ]〈 ]α′ ∼ [ ][ ]α′ and

[ ]〈 〉α′ ∼ [ ][ 〉α′, we may assume βγ ∈ {[ ][ ], [ ][ 〉, [ 〉[ 〉, [ 〉[ ]} at the

beginning. Hence γα′ ∈ S1. By inductive hypothesis, there exists some bc-expression ζ ′

in WJ with S(ζ ′) ∼ γα′. The 1st braid factor of ζ ′ is [titjti · · · ]k1 for some i 6= j in [r]

with mtitj < ∞ and k1 ∈ {mtitj ,mtitj − 1} by Lemma 1.9 (1). Let k be the number of

pair-reflections τ1 applied in transforming S(ζ ′) to γα′. When either β = [ ] with k even,

or β = [ 〉 with k odd, take ζ ≡ [· · · ttit]mtti
−1ζ

′, where t ∈ I−{ti, tj} satisfies mtti < ∞,

the existence of such t is guaranteed by the assumption on J . When either β = [ 〉 with

k even, or β = [ ] with k odd, take ζ ≡ [· · · ttjt]mttj
−1ζ

′, where t ∈ I − {ti, tj} satisfies

mttj < ∞, the existence of such t is again guaranteed by the assumption on J . Then ζ

is a bc-expression in WJ with S(ζ) ∼ α by (2) and Lemma 1.9 (3). This proves (3). ¤
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§4. The correspondence between the sets Red(z) and Symb(z).

To study the structure and the cardinal of the set Red(z) for any z ∈ W , we need only

to consider the case where z has a bc-expression by Theorem 1.10. For such an element

z, denote Symb(z) := {S(ζ) | ζ ∈ Red(z)}. In this section, we establish a bijection

between the sets Red(z) and Symb(z) in Theorem 4.1 when `b(z) > 1. Two kinds of

bc-expressions in W (i.e., simple and ample) are important in the subsequent discussion.

For any z ∈ W , let L(z) = {s ∈ S | `(sz) < `(z)}. Recall a (maximal) bc-segment of

z introduced in 2.5.

Theorem 4.1. Assume that z ∈ W has a bc-expression with `b(z) > 1. For any ζ, ζ ′ ∈
Red(z), we have ζ ≡ ζ ′ if and only if S(ζ) = S(ζ ′).

Proof. We know that all expressions in Red(z) are bc-expressions and have the same

b-length `b(z) by Lemma 2.4 and by the assumption that z has a bc-expression. The

implication “ =⇒ ” is trivial. Now we prove the implication “ ⇐= ” by induction on

`b(z) > 2. Assume ζ, ζ ′ ∈ Red(z) satisfy S(ζ) = S(ζ ′) (denote by α this common symbol).

Write α = βγα′ with some β, γ, α′ ∈ S satisfying l(α) = l(α′) + 2 and l(β) = l(γ) = 1.

Then β ∈ {[ ], [ 〉}.
(i) First assume β = [ ]. Then the 1st braid factors of ζ, ζ ′ are [srs · · · ]msr , [s′r′s′ · · · ]ms′r′

respectively for some s 6= r and s′ 6= r′ in S. The first claim is that {s, r} = {s′, r′}.
For otherwise, we would have |L(z)| > 3 by the fact {s, r, s′, r′} ⊆ L(z), contradict-

ing Lemma 1.4. The second claim is that (s, r) = (s′, r′). By Lemma 1.2, there is a

sequence τi1 , τi2 , ..., τib
of braid-moves to transform the expression ζ ′ to ζ, where τij de-

notes a braid-move at the ijth braid factor. If (s, r) = (r′, s′) then the cardinal of the

set {j ∈ [b] | ij = 1} should be odd, but this would imply i2 6= i′2 in S(ζ) = i1j1i2j2 · · ·
and S(ζ ′) = i′1j

′
1i

′
2j

′
2 · · · (see 3.1), contradicting the assumption S(ζ) = S(ζ ′). Now

we have [srs · · · ]msr ≡ [s′r′s′ · · · ]ms′r′ . Let ζ1, ζ
′
1 be obtained from ζ, ζ ′ respectively by

removing the leftmost segment [srs · · · ]msr−1 if γ ∈ {[ ], [ 〉}, and by applying a braid-

move at the 1st braid factor followed by removing the leftmost segment [rsr · · · ]msr−1 if

γ ∈ {〈 ], 〈 〉}. Then ζ1, ζ
′
1 are two bc-expressions of some z′ ∈ W satisfying S(ζ1) = S(ζ ′1)

and `b(z′) = `b(z)− 1 by Lemma 1.9 (4). If `b(z′) = 1, then both ζ1 and ζ ′1 are full braid

expressions in W with the same leftmost factor in S. This implies ζ1 ≡ ζ ′1. If `b(ζ ′) > 2,

then ζ1 ≡ ζ ′1 by inductive hypothesis. So we get ζ ≡ ζ ′ in either case.



The reduced expressions in a Coxeter system 15

(ii) Next assume β = [ 〉. Then α = [ 〉m[ ]α′ for some α′ ∈ S and m ∈ P
with l(α) = l(α′) + m + 1 by the definition of a symbol associated to a bc-expression

and Theorem 3.9. Let ζ1, ζ
′
1 be the bc-expressions obtained from ζ, ζ ′, respectively

by applying braid-moves τm+1, τm, ..., τ2 in turn. Then S(ζ1) = S(ζ ′1). Denote by α1

this common symbol. Then α1 can be obtained from α by applying pair-reflections

τm+1, τm, ..., τ2 in turn. We have α1 = [ ]β′ for some β′ ∈ S with l(α1) = l(β′) + 1. The

relation ζ1 ≡ ζ ′1 can be proved by the argument in (i) with ζ1, ζ
′
1 in the places of ζ, ζ ′

respectively. This implies ζ ≡ ζ ′ since ζ, ζ ′ can be obtained from ζ1, ζ
′
1 respectively by

the same sequence of braid-moves.

So our result is proved. ¤

Note that the assumption `b(z) > 1 can’t be removed for the assertion of Theorem

4.1. For, if `b(z) = 1 then z is the longest element in a standard parabolic subgroup Wsr

of W for some s 6= r in S with msr < ∞, the set Red(z) contains two different full braid

expressions with the same associated symbol [ ].

Corollary 4.2. Express any z ∈ W in the form (1.10.1) with z1, z2, ..., zr all maximal

bc-segments of some reduced expression of z. Then |Red(z)| =
∏r

k=1 εk|Symb(zk)|, where

εk = 1 if `b(zk) > 1 and εk = 2 if `b(zk) = 1.

Proof. The result follows by Theorems 1.10, 4.1, Lemma 1.2 and the fact that |Red(w)| =

2 and |Symb(w)| = 1 if w ∈ W has a bc-expression with `b(w) = 1. ¤

By Corollary 4.2, to compute |Red(z)| for any z ∈ W , it is enough to consider the

case where z has a bc-expression. Hence in the subsequent discussion of the paper, we

always assume that z has a bc-expression with `b(z) > 1 unless otherwise specified. We

need only to compute |Symb(z)| in order to get |Red(z)| by Theorem 4.1.

4.3. A bc-expression ζ with `b(ζ) = a is called simple, if the associated symbol S(ζ)

is either [ ], or one of the following symbols with a > 2: [ ]〈 ]a−1, [ 〉a−1[ ] and

[ 〉d [ ]2〈 ]a−d−2 for some d ∈ [0, a − 2]. Note that those symbols are pairwise different

and form a single equivalence class of S in Sad for any given a ∈ P.

Lemma 4.4. If z ∈ W has a simple bc-expression with `b(z) = a ∈ P then all expressions

in Red(z) are simple bc-expressions with La := |Red(z)| equal to a + 1.



16 Jian-yi Shi

Proof. The result is obvious if a = 1. Now assume a > 1. By Theorem 4.1, our result

follows directly by the definition of a simple bc-expression and the notice thereafter. ¤

4.5. A bc-expression ζ with `b(ζ) = a is called ample, if the symbol S(ζ) = i1j1i2j2 · · · iaja

satisfies the condition (4.5.1) below:

(4.5.1) ic+1jc−1 ∈ {[ ], 〈 〉} for any c ∈ [2, a − 1]. If ic+1jc−1 = 〈 〉 then icjc = [ ]; if

i2 = 〈 , then i1j1 = [ ]; if ja−1 = 〉 , then iaja = [ ].

Denote by Fm, m ∈ N, the Fibonacci numbers defined by the relations

(4.5.2) F0 = 0, F1 = 1 and Fm+2 = Fm + Fm+1.

The following identities are well known:

Fm+n+1 = Fm+1Fn+1 + FmFn(4.5.3)

Fm+n+2 = Fm+2Fn+2 − FmFn.(4.5.4)

for any m,n ∈ N.

Lemma 4.6. Assume that z ∈ W has a bc-expression with `b(z) = a.

(1) ζ ∈ Red(z) is ample if and only if S(ζ) ∼ [ ]a.

(2) If Red(z) contains an ample bc-expression, then Ka := |Red(z)| is equal to Fa+2.

Proof. The assertion (1) follows by the definition of an ample bc-expression and the fact

that a braid-move on a bc-expression, whenever it is applicable, preserves the property

of being ample. For (2), apply induction on a > 1. It can be checked directly that

K1 = F3 and K2 = F4. Now assume a > 2. Let E1 (respectively, E2) be the set of all

i1j1i2j2 · · · iaja ∈ Symb(z) with ja−1 = ] (respectively, ja−1 = 〉 ). Then E1 (respectively

E2) consists of all symbols in Symb(z) which can be obtained from [ ]a−1·[ ] (respectively,

[ ]a−2 · [ 〉[ ]) by applying some pair-reflections at the pairs contained in the underlined

place. So |E1| = Ka−1 and |E2| = Ka−2. By Theorem 4.1, the assertion (2) follows by

inductive hypothesis, the fact Symb(z) = E1∪̇E2 and the identity (4.5.2). ¤

By Lemma 4.6 (2) and the fact (F0, F1, F2) = (0, 1, 1), it is reasonable to set K0 =

K−1 = 1 and Ka = 0 for any a < −1.
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§5. An explicit formula for the cardinal of the set Red(z).

In this section, we always assume z ∈ W has a bc-expression ζ with S(ζ) ∈ S1. Let

αlr+1,nr,lr,...,n1,l1 := [ ]lr+1 [ 〉nr [ ]lr · · · [ 〉n1 [ ]l1

for some r, l1, n1, ..., lr, nr ∈ P and lr+1 ∈ N. To formulate |Red(z)|, we reduce ourselves

to the case where S(ζ) = αlr+1,nr,lr,...,n1,l1 by Theorem 3.9 and Proposition 5.3. An

explicit formula is given for the number K
|(>|)r

lr+1,nr,lr,...,n1,l1
:= |Red(z)| in Theorem 5.7.

Lemma 5.1. Assume that z ∈ W has a bc-expression ζ with S(ζ) = [ ]m〈 ]n for some

m ∈ P and n ∈ N. Then K
|<
m,n := |Red(z)| is equal to Fm+2 + nFm.

Proof. We have

K
|<
1,n = Ln+1 = n + 2 = F3 + nF1,(5.1.1)

K
|<
m,0 = Km = Fm+2.(5.1.2)

by Lemmas 4.4 and 4.6, the result is true in those cases. Now assume m > 1 and

n > 0. Let E1 (respectively, E2) be the set of all i1j1i2j2 · · · in Symb(z) with jm = ]

(respectively, jm = 〉 ). Then E1 consists of all symbols which can be obtained from

[ ]m · 〈 ]n by applying some pair-reflections at the pairs contained in the underlined

place. This implies |E1| = Km = Fm+2 by Lemma 4.6. On the other hand, we have

[ ]m〈 ]n ∼ [ ]m−2 · [ 〉2[ ] · [ ]〈 ]n−2 if n > 1,(5.1.3)

[ ]m〈 ]n ∼ [ ]m−2 · [ 〉2[ ] if n = 1.(5.1.4)

Denote by α the symbol on the right-hand side of (5.1.3) or (5.1.4) according to n > 1

or n = 1. Then E2 consists of all symbols which can be obtained from α by applying some

pair-reflections at the pairs contained in the underlined place. This implies by Lemma

4.6 and (5.1.1) that |E2| = K
|<
1,n−2Km−2 = nFm if n > 1 and that |E2| = Km−2 = Fm if

n = 1. So our result follows by Theorem 4.1 and the fact Symb(z) = E1∪̇E2. ¤

Lemma 5.2. Assume that z ∈ W has a bc-expression ζ with S(ζ) = [ ]l[ 〉m[ ]p for

some l ∈ N and m, p ∈ P. Then K
|>|
l,m,p := |Red(z)| is equal to Fl+p+2 + mFl+2Fp.

Proof. When l = 0, we have K
|>|
0,m,p = K

|<
p,m, the result follows by Lemma 5.1. Now

assume l > 0. Let E1 (respectively, E2) be the set of all i1j1i2j2 · · · in Symb(z) with
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il+1 = [ (respectively, il+1 = 〈 ). Then E1 consists of all symbols which can be obtained

from [ ]l−1 · [ ] · [ 〉m[ ]p by applying some pair-reflections at the pairs contained in the

underlined place. This implies that |E1| = Kl−1K
|<
p,m. On the other hand, we have

[ ]l[ 〉m[ ]p ∼ [ ]l−2 · [ 〉[ ]〈 〉 · [ 〉m−1[ ]p if l > 1,(5.2.1)

[ ]l[ 〉m[ ]p ∼ [ ]〈 〉 · [ 〉m−1[ ]p if l = 1.(5.2.2)

Denote by α the symbol on the right-hand side of (5.2.1) or (5.2.2) according to l > 1

or l = 1. Then E2 consists of all symbols which can be obtained from α by applying

some pair-reflections at the pairs contained in the underlined place. This implies that

|E2| = Kl−2K
|<
p,m−1 if l > 1 and |E2| = K

|<
p,m−1 if l = 1. Our result follows by Theorem

4.1, Lemmas 4.6, 5.1, the identity (4.5.4) and the fact Symb(z) = E1∪̇E2. ¤

Proposition 5.3. If z ∈ W has a bc-expression, then there exists some ζ ∈ Red(z) with

S(ζ) = αlr+1,nr,lr,...,n1,l1 for some r, l1, n1, ..., lr, nr ∈ P and lr+1 ∈ N.

Proof. The result is trivial when `b(z) = 1. Now assume `b(z) > 1. By Theorem 3.9,

there exists some ζ ∈ Red(z) such that S(ζ) = α := αrαr−1 · · ·α1 for some r ∈ P and

some αi ∈ S1, i ∈ [r]. If

(∗) αi = [ 〉ni [ ]li with some ni ∈ N and li ∈ P for any i ∈ [r],

then we are done. Now assume we are not in the case. Then there exists some j ∈ [r]

with αj = [ ]lj 〈 ]nj for some lj , nj ∈ P. Take j the smallest possible with this property

and denote it by nα (take nα = r + 1 in the case (∗)). There are two possible cases as

follows.

(i) There exists some i ∈ [j + 1, r] such that αi = [ 〉ni [ ]li and αk = [ ]lk〈 ]nk
for

any k ∈ [j, i − 1],

(ii) αk = [ ]lk〈 ]nk
for any k ∈ [j, r],

where li, lk ∈ P, ni, nk ∈ N. In the case (i), let α′ ∈ S be obtained from α by replacing

the part αiαi−1 · · ·αj by

[ 〉ni [ ]li+li−1−2[ 〉ni−1 [ ]li−2 [ 〉ni−2 [ ]li−3 · · · [ ]lj [ 〉nj [ ]2.

In the case (ii), let α′ ∈ S be obtained from α by replacing the part αrαr−1 · · ·αj by

[ ]lr−2[ 〉nr [ ]lr−1 [ 〉nr−1 [ ]lr−2 · · · [ ]lj [ 〉nj [ ]2.
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if lr > 2 and by
[ 〉nr−1[ ]lr−1 [ 〉nr−1 [ ]lr−2 · · · [ ]lj [ 〉nj [ ]2.

if lr = 1. Then α′ ∼ α in either case. Since nα′ > nα, our result follows by applying

reversing induction on nα 6 r + 1, 3.3 and Theorem 4.1. ¤

5.4. Denote K
|(>|)r

lr+1,nr,lr,...,n1,l1
:= |Red(z)| if z ∈ W has a bc-expression with

αlr+1,nr,lr,...,n1,l1 ∈ Symb(z).

By Theorem 3.9 and Proposition 5.3, we see that, in order to formulate |Red(z)| for

any z ∈ W having a bc-expression, it is enough to consider the case of αlr+1,nr,lr,...,n1,l1 ∈
Symb(z) for some r, l1, n1, ..., lr, nr ∈ P and lr+1 ∈ N.

The following result provides a recurrence formula for the number K
|(>|)r

lr+1,nr,lr,...,n1,l1
.

Proposition 5.5. For any r > 2, the number K
|(>|)r

lr+1,nr,lr,...,n1,l1
is equal to

Flr+1+2K
|(>|)r−1

lr,nr−1,lr−1,...,n1,l1
+ (nrFlr+1+2 − Flr+1)K

|(>|)r−1

lr−2,nr−1,lr−1,...,n1,l1
, if lr > 2,

Flr+1+2K
|(>|)r−1

1,nr−1,lr−1,...,n1,l1
+ (nrFlr+1+2 − Flr+1)K

|(>|)r−1

0,nr−1−1,lr−1,...,n1,l1
, if lr = 1.

Proof. Let E1 (respectively, E2) be the set of all i1j1i2j2 · · · in Symb(z) with

ilr+1+nr+1 = [ (respectively, ilr+1+nr+1 = 〈 ). Then E1 consists of all symbols which

can be obtained from [ ]lr+1 ·[ 〉nr ·[ ]lr [ 〉nr−1 [ ]lr−1 · · · [ 〉n1 [ ]l1 by applying some pair-

reflections at the pairs contained in the underlined place. So |E1| = Klr+1K
|(>|)r−1

lr,nr−1,lr−1,...,n1,l1
.

On the other hand, αlr+1,nr,lr,...,n1,l1 is equivalent to one of the following symbols:

[ ]lr+1 [ 〉nr−2[ ] · [ ]〈 ]2 · [ ]lr−2[ 〉nr−1 [ ]lr−1 · · · [ 〉n1 [ ]l1 if nr, lr > 2.

[ ]lr+1 [ 〉nr−2[ ] · [ ]〈 ]〈 〉 · [ 〉nr−1−1[ ]lr−1 · · · [ 〉n1 [ ]l1 if nr > lr = 1.

[ ]lr+1−1 · [ 〉[ ]〈 ]2 · [ ]lr−2[ 〉nr−1 [ ]lr−1 · · · [ 〉n1 [ ]l1 if lr > nr = 1 6 lr+1.

[ ]〈 ]2 · [ ]lr−2[ 〉nr−1 [ ]lr−1 · · · [ 〉n1 [ ]l1 if lr >nr =1, lr+1 =0.

[ ]lr+1−1 · [ 〉[ ]〈 ]〈 〉 · [ 〉nr−1−1[ ]lr−1 · · · [ 〉n1 [ ]l1 if nr = lr = 1 6 lr+1.

[ ]〈 ]〈 〉 · [ 〉nr−1−1[ ]lr−1 · · · [ 〉n1 [ ]l1 if nr = lr =1, lr+1 =0.

Denote by α one of the symbols above according to the values of n1, l1, l0. Then E2

consists of all symbols which can be obtained from α by applying some pair-reflections

at the pairs contained in the underlined place. So |E2| is equal to
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K
|>|
lr+1,nr−2,1K

|(>|)r−1

lr−2,nr−1,lr−1,...,n1,l1
, if nr, lr > 2,

K
|>|
lr+1,nr−2,1K

|(>|)r−1

0,nr−1−1,lr−1,...,n1,l1
, if nr > lr = 1,

Klr+1−1K
|(>|)r−1

lr−2,nr−1,lr−1,...,n1,l1
, if lr > nr = 1,

Klr+1−1K
|(>|)r−1

0,nr−1−1,lr−1,...,n1,l1
, if nr = lr = 1.

Hence our result follows by Theorems 4.1, Lemmas 4.6, 5.2, and the fact Symb(z) =

E1∪̇E2. ¤

5.6. Fix r, l1, n1, ..., lr, nr ∈ P and lr+1 ∈ N. Let l = (lr+1, lr, ..., l1). For any k ∈ [r], let

Ik,r := {t := (t1, t2, ..., tk) ∈ Pk | 1 6 t1 < t2 < · · · < tk 6 r}. For any t = (t1, t2, ..., tk) ∈
Ik,r, let nt :=

∏k
c=1 ntc and Ft,l := F(lr+1+2)+lr+lr−1+···+ltk+1

∏k
c=1 Fltc+ltc−1+···+ltc−1+1

with the convention that t0 = 0. Then the following is an explicit formula for the number

K
|(>|)r

lr+1,nr,lr,...,n1,l1
.

Theorem 5.7. In the above setup, we have

(5.7.1) K
|(>|)r

lr+1,nr,lr,...,n1,l1
= F(lr+1+2)+lr+···+l1 +

r∑
k=1

∑
t∈Ik,r

ntFt,l.

Proof. Apply induction on r > 1. When r = 1, the equation (5.7.1) is just Lemma 5.2.

Now assume r > 2. Consider the recurrence formula for K
|(>|)r

lr+1,nr,lr,...,n1,l1
in Proposition

5.5 and regard it as a polynomial in n1, n2, ..., nr. By inductive hypothesis, we can

compute the constant term and the coefficients ft of the term nt in K
|(>|)r

lr+1,nr,lr,...,n1,l1
for

any t = (t1, t2, ..., tk) ∈ Ik,r with k ∈ [r] as follows. We denote
∏h

c=1 Fltc+ltc−1+···+ltc−1+1

simply by
∏h

c=1 for any h ∈ [r] and use the identities (4.5.2)-(4.5.4) and F2 = F1 = 1 in

the following computation. First assume lr > 2.

ft = (Flr+1+2F(lr+2)+lr−1+···+ltk+1 − Flr+1F((lr−2)+2)+lr−1+···+ltk+1) ·
k∏

c=1

= F(lr+1+2)+lr+lr−1+···+ltk+1 ·
k∏

c=1

if tk < r.

ft = Flr+1+2F((lr−2)+2)+lr−1+···+ltk−1+1

k−1∏
c=1

= Flr+1+2

k∏
c=1

if tk = r.
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The constant term of K
|(>|)r

lr+1,nr,lr,...,n1,l1
is

Flr+1+2F(lr+2)+lr−1+···+l2+l1 − Flr+1F((lr−2)+2)+lr−1+···+l2+l1 = F(lr+1+2)+lr+···+l2+l1 .

So our result is proved when lr > 2. Next assume lr = 1. We must consider the

following four cases in computing ft for t = (t1, t2, ..., tk) with k ∈ [r]: (i) tk < r− 1; (ii)

tk = r and tk−1 < r − 1; (iii) tk = r − 1; (iv) (tk−1, tk) = (r − 1, r).

ft = Flr+1+2F3+lr−1+···+ltk+1

k∏
c=1

−Flr+1(F2+lr−1+···+ltk+1 − F2Flr−1+···+ltk+1)
k∏

c=1

= (Flr+1+2F3+lr−1+···+ltk+1 − Flr+1F1+lr−1+···+ltk+1)
k∏

c=1

= F(lr+1+2)+lr+···+ltk+1

k∏
c=1

in the case (i).

ft = Flr+1+2(F2+lr−1+···+ltk−1+1 − F2Flr−1+···+ltk−1+1)
k−1∏
c=1

= Flr+1+2Flr+lr−1+···+ltk−1+1

k−1∏
c=1

in the case (ii).

ft = Flr+1+2F3

∏k
c=1 −Flr+1F2

∏k
c=1 = (Flr+1+2F3−Flr+1F1)

∏k
c=1 = F(lr+1+2)+lr

∏k
c=1

in the case (iii) and ft = Flr+1+2F2

∏k−1
c=1 = Flr+1+2Flr

∏k−1
c=1 in the case (iv). Finally,

the constant term of K
|(>|)r

lr+1,nr,lr,...,n1,l1
is

Flr+1+2F3+lr−1+···+l1 − Flr+1(F2+lr−1+···+l1 − F2Flr−1+···+l1) = F(lr+1+2)+lr+lr−1+···+l1 .

So our result is also proved when lr = 1. ¤

Example 5.8. By (5.7.1), we have

(1) K
|>|>|
l3,n2,l2,n1,l1

= F(l3+2)+l2+l1 +n2Fl3+2Fl2+l1 +n1F(l3+2)+l2Fl1 +n2n1Fl3+2Fl2Fl1 .

(2) K
|>|>|>|
l4,n3,l3,n2,l2,n1,l1

= F(l4+2)+l3+l2+l1 + n3Fl4+2Fl3+l2+l1 + n2F(l4+2)+l3Fl2+l1 +

n1F(l4+2)+l3+l2Fl1 + n3n2Fl4+2Fl3Fl2+l1 + n3n1Fl4+2Fl3+l2Fl1 + n2n1F(l4+2)+l3Fl2Fl1 +

n3n2n1Fl4+2Fl3Fl2Fl1 .
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