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Abstract. The affine Weyl group ( eCn, S) can be realized as the fixed point

set of the affine Weyl group ( eA2n−1, eS) under a certain group automorphism

α with α(eS) = eS. Let e` be the length function of eA2n−1. We study the cells

of the weighted Coxeter group ( eCn, e`). The main results of the paper are to

give an explicit description for all the cells of ( eCn, e`) corresponding to the

partitionss

§0. Introduction.

The cells of a weighted Coxeter group (W,L) are discussed in [7]. A

particular interesting case is that W is the fixed point set of a finite or affine

Coxeter system (W̃ , S̃) under a group automorphism α with α(S̃) = S̃ and

L is the restriction of the length function of W̃ (see [7, Chapter 16], [5], [1],

[3]). In this paper we discuss the case that W̃ is of type Ã2n−1 and W is of

type C̃n.

For any i 6 j in the integer set Z, denote by [i, j] the set {i, i + 1, ..., j}.
Denote [1, j] simply by [j]. There is a natural bijection between the set of

two-sided cells of Ã2n−1 and the set Λ2n of partitions of 2n (see [8], [6]).
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Let Ωλ be the two-sided cell of Ã2n−1 corresponding to λ ∈ Λ2n. We are

interested in the sets Eλ = Ωλ ∩ C̃n. We describe all the cells in the sets

Ek12n−k (Theorem 4.9) and Eh212n−h−2 (Theorem 5.1) for all k ∈ [2n] and

h ∈ [2, 2n − 2] and also all the cells of the weighted Coxeter group (C̃3, ˜̀5)
(Theorem 6.1).

For all considered λ ∈ Λ2n, we prove that all left (respectively, two-sided)

cells in Eλ are left- (respectively, two-sided-) connected (see 2.15 and Theo-

rems 4.9, 5.1 and 6.1). I conjecture that this should be true for the left cells

and two-sided cells of any weighted Coxeter group.

The paper is organized as follows. Section 1 is devoted to collect some

basic concepts and known facts concerning cells of weighted Coxeter groups.

In Sections 2-3, we focus on the weighted Coxeter group (C̃n, ˜̀2n−1). Then

we discuss the sets Ek12n−k and Eh212n−h−2 for all k ∈ [2n] and h ∈ [2, 2n−2]

in Sections 4 and 5, respectively. Finally, we discuss cells of the weighted

Coxeter group (C̃3, ˜̀5).
§1. Cells in Coxeter groups.

In this section, we collect some concepts and results concerning cells of a

weighted Coxeter group, all but Lemma 1.4 follow Lusztig in [7].

1.1. Let (W,S) be a Coxeter system with ` its length function and 6 the

Bruhat-Chevalley ordering on W . A weight function on W is a function

L : W −→ Z such that L(wu) = L(w) + L(u) if `(wu) = `(w) + `(u) for

w, u ∈ W . Call (W,L) a weighted Coxeter group. Call (W,L) in the split

case if L = `.

When α is a group automorphism of W with α(S) = S, let Wα = {w ∈
W | α(w) = w}. For any α-orbit J on S, let wJ ∈ Wα be the longest element

in the subgroup WJ of W generated by J . Let Sα be the set of elements wJ

with J ranging over all α-orbits on S. Then (Wα, Sα) is a Coxeter group

and the restriction to Wα of the length function ` is a weight function on

Wα. The weighted Coxeter group (Wα, `) is called in the quasi-split case.
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1.2. Let 6
L
, 6

R
, 6

LR
be the preorders on (W,L) defined in [7, Chapter 8]. The

corresponding equivalence classes in W are called left cells, right cells, two-

sided cells of W , respectively. For w ∈ W , define L(w) = {s ∈ S | sw < w}
and R(w) = {s ∈ S | ws < w}. If y, w ∈ W satisfy y 6

L
w (respectively,

y 6
R

w), then R(y) ⊇ R(w) (respectively, L(y) ⊇ L(w)). In particular, if

y ∼
L

w (respectively, y ∼
R

w), then R(y) = R(w) (respectively, L(y) = L(w))

(see [7, Lemma 8.6]).

1.3. In [7, Chapter 13], Lusztig defined a function a : W −→ N ∪ {∞} for

a weighted Coxeter group (W,L), he proved the following results when W is

either a finite or an affine Coxeter group and when (W,L) is either in the

split case or in the quasi-split case.

(1) y 6
LR

w in W implies a(w) 6 a(y). Hence y ∼
LR

w in W implies

a(w) = a(y).

(2) If w, y ∈ W satisfy a(w) = a(y) and y 6
L

w (respectively, y 6
R

w,

y 6
LR

w) then y ∼
L

w (respectively, y ∼
R

w, y ∼
LR

w).

For any X ⊂ W , write X−1 := {x−1 | x ∈ X}.

Lemma 1.4. Suppose that W is either a finite or an affine Coxeter group

and that (W,L) is either in the split case or in the quasi-split case.

Let E be a non-empty subset of W satisfying the following conditions:

(a) There exists some k ∈ N with a(x) = k for any x ∈ E;

(b) E is a union of some left cells of W ;

(c) E−1 = E.

Then E is a union of some two-sided cells of W .

Proof. By (b)-(c), E is also a union of some right cells of W . The set W(k) :=

{w ∈ W | a(w) = k} is a union of some two-sided cells of W by 1.3 (1). If

the result is false, then by (c), there must exist some x ∈ E and y ∈ W(k) \E

such that either x 6
L

y or y 6
L

x. In either case, we would have x ∼
L

y by 1.3

(2), contradicting (b). This proves our result. ¤
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§2. The affine Weyl groups Ã2n−1 and C̃n.

From now on, we focus on the weighted Coxeter groups (Ã2n−1, ˜̀) and

(C̃n, ˜̀), where ˜̀ is the length function of the affine Weyl group Ã2n−1.

2.1. The affine Weyl group Ã2n−1 can be realized as the following permuta-

tion group on the set Z (see [4, Subsection 3.6] and [8, Subsection 4.1)]:

Ã2n−1 =

{
w : Z −→ Z

∣∣∣∣∣(i + 2n)w = (i)w + 2n,

2n∑
i=1

(i)w =
2n∑
i=1

i

}
.

The Coxeter generator set S̃ = {si | i ∈ [0, 2n − 1]} of Ã2n−1 is given by

(t)si =


t, if t 6≡ i, i + 1 (mod 2n),
t + 1, if t ≡ i (mod 2n),
t − 1, if t ≡ i + 1 (mod 2n),

for t ∈ Z and i ∈ [0, 2n − 1]. Any w ∈ Ã2n−1 can be realized as a Z × Z

monomial matrix Aw = (aij)i,j∈Z, where aij is 1 if j = (i)w and 0 if otherwise.

The row (respectively, column) indices of Aw are increasing from top to

bottom (respectively, from left to right).

Let α be the group automorphism of Ã2n−1 determined by α(si) = s2n−i

for i ∈ [0, 2n−1]. Then the affine Weyl group C̃n can be realized as the fixed

point set of Ã2n−1 under α. As a permutation group on Z, we have

C̃n = {w : Z −→ Z | (i + 2n)w = (i)w + 2n, (i)w + (1 − i)w = 1, ∀ i ∈ Z}

with the Coxeter generator set S = {ti | i ∈ [0, n]}, where ti = sis2n−i for

i ∈ [n−1], t0 = s0 and tn = sn. For the sake of convenience, we define si and

tj for any i, j ∈ Z by setting s2qn+b = sb and t2pn±a = ta for any p, q ∈ Z,

b ∈ [0, 2n − 1], a ∈ [0, n].

2.2. By a partition of an integer n > 0, we mean an r-tuple λ := (λ1, λ2, ..., λr)

of integers λ1 > · · · > λr > 0 with
∑r

k=1 λk = n for some r > 1. Call λi a

part of λ. We sometimes denote λ in the form jk1
1 jk2

2 · · · jkm
m (boldfaced) with
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j1 > j2 > · · · > jm if ji is a part of λ with multiplicity ki > 1 for i > 1. Let

Λn be the set of all partitions of n.

Fix w ∈ Ã2n−1. For any i 6= j in [2n], we write i ≺w j, if there exist some

p, q ∈ Z such that 2pn + i > 2qn + j and (2pn + i)w < (2qn + j)w. In the

matrix of w, this means that the position (2qn + j, (2qn + j)w) is located at

the northeastern of the position (2pn + i, (2pn + i)w). This defines a partial

order ¹w on the set [2n].

A sequence a1, a2, ..., ar in [2n] is called a w-chain, if a1 ≺w a2 ≺w · · · ≺w

ar. Sometimes we identify a w-chain a1, a2, ..., ar with the corresponding set

{a1, a2, ..., ar}. For any k > 1, a k-w-chain-family is by definition a disjoint

union X =
⋃̇k

i=1Xi of k w-chains X1, ..., Xk in [2n]. Let dk be the maximally

possible cardinal of a k-w-chain-family for any k > 1. Then there exists some

r > 1 such that d1 < d2 < · · · < dr = 2n. Let λ1 = d1 and λk+1 = dk+1 − dk

for k ∈ [r − 1]. Then λ1 > λ2 > · · · > λr by a result of Greene in [2]. Hence

w 7→ ψ(w) := (λ1, ..., λr) defines a map ψ : Ã2n−1 −→ Λ2n.

2.3. Let ˜̀, ` be the length functions on (Ã2n−1, S̃), (C̃n, S), respectively. By

1.1, we see that the weighted Coxeter group (Ã2n−1, ˜̀) is in the split case,

while (C̃n, ˜̀) is in the quasi-split case (see [7, Lemma 16.2]).

For any x ∈ Ã2n−1 and k ∈ Z, let mk(x) = #{i ∈ Z | i < k and (i)x >

(k)x}. Then the formulae for the functions ˜̀ and ` are as follows.

Proposition 2.4. For any w ∈ Ã2n−1 and x ∈ C̃n, we have

(1) ˜̀(w) =
∑

16i<j62n

∣∣∣∣⌊ (j)w − (i)w
2n

⌋∣∣∣∣ =
∑2n

k=1 mk(w);

(2) `(x) = 1
2 (˜̀(x) + m1(x) + mn+1(x)),

where bac is the largest integer not larger than a, and |a| is the absolute value

of a for any a ∈ Q.

Proof. The first equality of (1) is just [8, Lemma 4.2.2], while the sec-

ond equality of (1) follows by the facts that for any i < j in [2n], at

most one of mij(w) := #{k ∈ Z | k ≡ i (mod 2n); k < j; (k)w > (j)w}
and mji(w) := #{k ∈ Z | k ≡ j (mod 2n); k < i; (k)w > (i)w} is pos-
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itive, that
∣∣∣∣⌊ (j)w − (i)w

2n

⌋∣∣∣∣ = max{mij(w),mji(w)} and that mk(w) =∑
i∈[2n]\{k} mik(w). (2) follows by the definition of ti’s in terms of sj ’s. ¤

2.5. Let 6, 6C be the Bruhat-Chevalley orders on (Ã2n−1, S̃), (C̃n, S),

respectively. Since the condition x 6C y is equivalent to x 6 y for any

x, y ∈ C̃n, we may use 6 for both 6 and 6C from now on.

Let L̃(x) = {s ∈ S̃ | sx < x} and R̃(x) = {s ∈ S̃ | xs < x} for x ∈ Ã2n−1

and let L(y) = {t ∈ S | ty < y} and R(y) = {t ∈ S | yt < y} for y ∈ C̃n.

Corollary 2.6. For any x ∈ C̃n and i ∈ [0, n],

si ∈ L̃(x) ⇐⇒ s2n−i ∈ L̃(x) ⇐⇒ ti ∈ L(x)

⇐⇒ (i)x > (i + 1)x ⇐⇒ (2n + 1 − i)x < (2n − i)x,

si ∈ R̃(x) ⇐⇒ s2n−i ∈ R̃(x) ⇐⇒ ti ∈ R(x)

⇐⇒ (i)x−1 > (i + 1)x−1 ⇐⇒ (2n + 1 − i)x−1 < (2n − i)x−1

Proof. The equivalent conditions involving the si’s hold by [8, Lemma 4.2.4],

while those involving the tj ’s hold by the expression of tj in terms of si’s and

by Proposition 2.4. ¤

2.7. Any w ∈ C̃n is determined uniquely by the n-tuple ((1)w, (2)w, ..., (n)w).

Hence we may denote w by [(1)w, (2)w, ..., (n)w]. For any a ∈ Z, denote by

〈a〉 the unique integer in [2n] satisfying a ≡ 〈a〉 (mod 2n). Let η be the

group automorphism of C̃n determined by η(ti) = tn−i for any i ∈ [0, n].

The following results are related to the expression w = [a1, a2, ..., an] ∈ C̃n.

Proposition 2.8. Let w = [a1, a2, ..., an] and w′ = η(w) = [a′
1, a

′
2, ..., a

′
n] be

in C̃n. Let k ∈ [0, n]. Then

(1) tk ∈ L(w) if and only if ak > ak+1, with the convention that a0 = 1 and

an+1 = n.

(2) Let 〈ai〉, 〈aj〉 ∈ {k, k + 1, 2n− k, 2n + 1− k} for some i 6= j in [n]. Then

tk ∈ R(w) if one of the following conditions holds:
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(i) (〈ai〉, 〈aj〉) ∈ {(k, k + 1), (2n− k, 2n + 1− k)}. Either aj − ai > 2n, or

i > j and aj > ai.

(ii) (〈ai〉, 〈aj〉) = (k, 2n − k) and ai + aj < 1.

(iii) (〈ai〉, 〈aj〉) = (2n + 1 − k, k + 1) and ai + aj > 2n + 1.

(3) a′
i = n + 1 − an+1−i for any i ∈ [n].

Proof. (1)-(2) follow by Corollary 2.6. For (3), apply induction on `(w) > 0.

It is trivial when `(w) = 0. If `(w) > 0, write w = tiy for some ti ∈ L(w),

then η(w) = tn−iη(y). We have η(y) = [n+1− bn, n+1− bn−1, ..., n+1− b1]

for y = [b1, ..., bn] by inductive hypothesis. So η(w) = [n + 1 − an, n + 1 −
an−1, ..., n + 1 − a1] by the relations η(w) = tn−iη(y) and w = tiy. ¤

2.9. For any i ∈ [0, 2n−1], let D̃R(i) = {w ∈ Ã2n−1 | |{si, si+1}∩R̃(w)| = 1}.
When w ∈ D̃R(i), define w∗ by the condition w∗ ∈ {wsi, wsi+1} ∩ D̃R(i),

call the transformation w 7→ w∗ a right {si, si+1}-star operation (or a right

star operation in short) on w. For any w ∈ Ã2n−1, let M̃(w) be the set of

all y ∈ Ã2n−1 which is either w or obtained from w by successively applying

right star operations. Define a graph M̃(w): its vertex set is M̃(w); each

x ∈ M̃(w) is labeled by R̃(x); x, y ∈ M̃(w) are joined by a solid edge if y

can be obtained from x by a right star operation. By a path in M̃(w), we

mean a sequence x0, x1, ..., xr in M̃(w) with some r > 0 such that xi−1 and

xi are joined by a solid edge for every i ∈ [r]. Say w, y ∈ Ã2n−1 have the

same generalized τ -invariants, if for any path w1 = w,w2, ..., wr in M̃(w),

there exists a path y1 = y, y2, ..., yr in M̃(y) such that R̃(wi) = R̃(yi) for

every i ∈ [r] and if this condition still holds when the roles of w and y are

interchanged.

For any i ∈ [0, n − 1], let DR(i) = {w ∈ C̃n | |{ti, ti+1} ∩ R(w)| = 1}.
Regarding C̃n as a subset of Ã2n−1, we have DR(i) = C̃n ∩ D̃R(i) = C̃n ∩
D̃R(2n − i − 1). When w ∈ DR(i), we have |{wti, wti+1} ∩ DR(i)| = 1

unless that i ∈ {0, n − 1} and w ∈ {xtiti+1, xti+1ti} for some x ∈ C̃n with

R(x) ∩ {ti, ti+1} = ∅. In this excepted case, both wti and wti+1 are in
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DR(i). When |{wti, wti+1} ∩ DR(i)| = 1, define w∗ by the condition w∗ ∈
{wti, wti+1}∩DR(i), then w∗ can be obtained from w by a pair of right star

operations if i ∈ [n−2] and, by a single right star operation if w∗ ∈ {wt0, wtn}
with i ∈ {0, n− 1} and, by none of the above two ways if w∗ ∈ {wt1, wtn−1}
with i ∈ {0, n − 1}. When {wti, wti+1} ⊂ DR(i), define w∗

1 , w∗
2 by the

conditions {w∗
1 , w∗

2} = {wti, wti+1} and w∗
1 < w∗

2 , then x ∈ {w∗
1 , w∗

2} can be

obtained from w by one right star operation if x ∈ {wt0, wtn} and, not by

one or two right star operation if x ∈ {wt1, wtn−1}.

In the remaining part of the paper, when we mention a right star operation

and the generalized τ -invariants on w ∈ C̃n, we always regard w as an element

of Ã2n−1.

2.10. For any w ∈ C̃n, define M(w) to be the set of all y ∈ C̃n, where

there exists x0 = w, x1, ..., xr = y with some r > 0 such that for every

i ∈ [r], x−1
i xi−1 ∈ S and xi can be obtained from xi−1 by one or two right

star operations. Define a graph M(w): its vertex set is M(w); label each

x ∈ M(w) by R(x); join x, y ∈ M(w) by a solid edge if x−1y ∈ S and x can

be obtained from y by one or two right star operations.

It is easy to see that if y, w ∈ C̃n have the same generalized τ -invariants,

then for any path w1 = w,w2, ..., wr in M(w), there exists a path y1 =

y, y2, ..., yr in M(y) such that R(wi) = R(yi) for every i ∈ [r] and the above

condition still holds when interchanging the roles of w, y. In Section 6, the

graphs M(w) with w ∈ C̃3 will be used to confirm that two elements of C̃3

have different generalized τ -invariants.

2.11. For any λ = (λ1, λ2, ..., λr) and µ = (µ1, µ2, ..., µt) in Λ2n, we write

λ 6 µ if λ1 + · · · + λk 6 µ1 + · · · + µk for any 1 6 k 6 min{r, t}. This

defines a partial order on Λ2n. If x ∈ Ã2n−1 and s ∈ L̃(x) and t ∈ R̃(x)

then ψ(sx), ψ(xt) 6 ψ(x) (see [8, Lemma 5.5 and Corollary 5.6]). This

implies by Corollary 2.6 that if x ∈ C̃n and s ∈ L(x) and t ∈ R(x) then

ψ(sx), ψ(xt) 6 ψ(x).

Let ã, a be the a-functions of the weighted Coxeter groups (Ã2n−1, ˜̀),
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(C̃n, ˜̀), respectively (see 2.3 and 1.3).

Lemma 2.12. (see [7, Lemma 16.5]) a(z) = ã(z) for any z ∈ C̃n.

Lemma 2.13. (see [7, Lemma 16.14]) Let x, y ∈ C̃n. Then x ∼
L

y (respec-

tively, x ∼
R

y) in C̃n if and only if x ∼
L

y (respectively, x ∼
R

y) in Ã2n−1.

By Lemma 2.13, we can just use the notation x ∼
L

y (respectively, x ∼
R

y)

for x, y ∈ C̃n without indicating whether the relation refers to the group

Ã2n−1 or C̃n.

For any λ = (λ1, ..., λr) ∈ Λ2n, define µ = (µ1, ..., µt) ∈ Λ2n by setting

µj = #{k ∈ [r] | λk > j} for any j > 1, call µ the dual partition of λ.

Lemma 2.14. Let x, y ∈ Ã2n−1.

(1) x ∼
L

y if and only if x, y have the same generalized τ -invariants (see

[8, Theorem 16.1.2]).

(2) x 6
LR

y if and only if ψ(y) 6 ψ(x). The set ψ−1(λ) forms a two-sided

cell of Ã2n−1 for any λ ∈ Λ2n (see [6, Theorem 6] and [8, Theorem 17.4] and

[10, Theorem B]).

(3) ã(x) =
∑t

i=1(i − 1)µi, where (µ1, ..., µt) is the dual partition of ψ(x)

(see [9, Subsection 6.27]).

2.15. A non-empty subset E of a Coxeter group W = (W,S) is said left-

connected, (respectively, right-connected) if for any x, y ∈ E, there exists a

sequence x0 = x, x1, ..., xr = y in E such that xi−1x
−1
i ∈ S (respectively,

x−1
i xi−1 ∈ S) for every i ∈ [r]. E is said two-sided-connected if for any

x, y ∈ E, there exists a sequence x0 = x, x1, ..., xr = y in E such that either

xi−1x
−1
i or x−1

i xi−1 is in S for every i ∈ [r].

Let F ⊆ E in W . Call F a left-connected component (or lcc in short) of

E, if F is a maximal left-connected subset of E. One can define a right-

connected component and a two-sided-connected component (or rcc and tcc

in short) of E similarly.

For any λ ∈ Λ2n, denote Eλ := C̃n ∩ ψ−1(λ).
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Lemma 2.16. Let λ ∈ Λ2n.

(1) Any lcc (respectively, rcc, tcc) of ψ−1(λ) is contained in some left

(respectively, right, two-sided) cell of Ã2n−1.

(2) Any lcc (respectively, rcc, tcc) of Eλ is contained in some left (respec-

tively, right, two-sided) cell of C̃n.

(3) The set Eλ is either empty or a union of some two-sided cells of C̃n.

Proof. (1)-(2) follow by 1.3 (1)-(2), Lemmas 2.12 and 2.14. By Lemmas 2.13-

2.14, we see that Eλ is either empty or a union of some left cells of C̃n with

E−1
λ = Eλ for any λ ∈ Λ2n. So (3) follows by Lemmas 2.12 and 1.4. ¤

Corollary 2.17. Let x, y ∈ Ã2n−1 satisfy x, y ∈ ψ−1(λ) for some λ ∈ Λ2n.

(1) If ˜̀(y) = ˜̀(x) + ˜̀(yx−1) then x, y are in the same lcc of ψ−1(λ) and

hence x ∼
L

y.

(2) If ˜̀(y) = ˜̀(x) + ˜̀(x−1y) then x, y are in the same rcc of ψ−1(λ) and

hence x ∼
R

y.

Let x, y ∈ C̃n be in Eλ for some λ ∈ Λ2n.

(3) If `(y) = `(x) + `(yx−1) then x, y are in the same lcc of Eλ and hence

x ∼
L

y.

(4) If `(y) = `(x)+ `(x−1y) then x, y are in the same rcc of Eλ and hence

x ∼
R

y.

Proof. By symmetry, we need only to show (1) and (3).

(1) Let yx−1 = sirsir−1 · · · si2si1 be a reduced expression of yx−1 with

sij ∈ S̃. Let xk = sik
sik−1 · · · si2si1x for k ∈ [0, r], where we stipulate

x0 = x. Then ˜̀(xk) = ˜̀(xk−1) + 1 for any k ∈ [r]. Hence ψ(x) = ψ(x0) 6
ψ(x1) 6 · · · 6 ψ(xr) = ψ(y) = ψ(x) by 2.11. This implies that x, y are in

the same lcc of ψ−1(λ). Hence x ∼
L

y by Lemma 2.16.

(3) Let yx−1 = tir tir−1 · · · ti1 be a reduced expression of yx−1 with tij ∈ S.

Let xk = tik
tik−1 · · · ti1x for k ∈ [0, r], where we stipulate x0 = x. Then

`(xk) = `(xk−1) + 1 for any k ∈ [r]. Hence ψ(x) = ψ(x0) 6 ψ(x1) 6 · · · 6
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ψ(xr) = ψ(y) = ψ(x) by 2.11. This implies that x, y are in the same lcc of

Eλ. Hence x ∼
L

y by Lemmas 2.13 and 2.16. ¤

§3. Partial order ¹w on [2n] determined by an element w.

In this section, we introduce two technical tools. One is a transformation

on an element in 3.3, which is a crucial step in proving the left-connectedness

of a left cell and in finding a representative set for the left cells of C̃n in Eλ,

λ ∈ Λ2n. The other is a generalized tabloid in 3.5, by which we can check if

two elements of C̃n are in the same left cell.

3.1. i, j ∈ [2n] are said 2n-dual, if i + j = 2n + 1; in this case, denote j = ī.

Further, denote E := {̄i | i ∈ E} for E ⊆ [2n]. Recall the relation ¹w on [2n]

defined in 2.2 for w ∈ Ã2n−1 and that C̃n is regarded as a subset of Ã2n−1

(see 2.1). Fix w ∈ Ã2n−1. Say i 6= j in [2n] w-comparable if either i ≺w j or

j ≺w i, and w-uncomparable if otherwise. When w ∈ C̃n, say i ∈ [2n] w-wild

if i, ī are w-comparable and w-tame if otherwise. Say i ∈ [2n] a w-wild

head (respectively, a w-tame head), if i is w-wild (respectively, w-tame) with

(̄i)w < (i)w.

i < j in [2n] are w-uncomparable if and only if (i)w < (j)w < (i)w + 2n.

Call E ⊆ [2n] a w-chain, if E = {i1, i2, ..., ir} and i1 ≺w i2 ≺w · · · ≺w ir.

Lemma 3.2. Fix w ∈ C̃n. Let i, j, k ∈ [2n].

(i) j ≺w k if and only if k̄ ≺w j̄;

Now suppose that j 6= k are w-wild heads and i is w-tame.

(ii) j̄ ≺w k if and only if j̄, k are w-comparable.

(iii) If j̄, k are w-uncomparable then so are j, k (respectively, j̄, k̄);

(iv) i and k are w-comparable if and only if i ≺w k.

(v) {j, i, j̄} is a w-chain if and only if j is w-comparable with both i and ī;

(vi) {j, k, j̄, k̄} is a w-chain if and only if j, k are w-comparable.

Proof. (i)-(iv) can be checked directly. Then (v) follows by (i) and (iv).

Finally, (vi) is a simple consequence of (i)-(iii). ¤

3.3. Let
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(3.3.1)
ti,j = ti+j−1ti+j−2 · · · ti+1ti,

di,j = ti−j+1ti−j+2 · · · ti−1ti.

for any i, j ∈ Z with j > 0. Suppose that x ∈ C̃n and i ∈ Z satisfy

(i)x− 2n > (j)x for any i < j 6 i + a with some a ∈ [2n− 1]. Let x′ = ti,ax.

Then `(x′) = `(x) − a and ψ(x) = ψ(x′). Moreover, if (i)x − 2n > (j)x for

any i < j < i + 2n, let x′′ = ti,2nx, then

(k)x′′ =


(k)x − 2n, if k ≡ i (mod 2n),
(k)x + 2n, if k ≡ 2n − i (mod 2n),
(k)x, if otherwise.

for any k ∈ Z, where x′′ satisfies `(x′′) = `(x) − 2n and ψ(x) = ψ(x′′).

Fix w ∈ C̃n. Suppose that E1 = {i1, i2, ..., ia} and E2 = {j1, j2, ..., jb} are

two subsets of [2n] satisfying that

(i) i1 < i2 < · · · < ia and j1 < j2 < · · · < jb with a > 0 and b > 0 and

a + b = n;

(ii) the elements of E1 ∪ E2 are pairwise not 2n-dual;

(iii) (k̄)w < (k)w for any k ∈ E1 ∪ E2;

(iv) If b > 0 then (i)w − (j)w > 2ln for any i ∈ E1 and j ∈ E2; if b = 0

then (i)w > (2l + 1)n for any i ∈ E1, where l is some positive integer.

By repeatedly left multiplying various elements of the form ti,j on w, we

can obtain some w′ ∈ C̃n such that there are some 1 6 k1 < k2 < · · · < kb 6
2b (the latter is an empty condition if b = 0) satisfying that

(1) `(w′) = `(w) − `(ww′−1);

(2) If b > 0 then [2b] = {k1, k2, ..., kb, 2b+1−k1, 2b+1−k2, ..., 2b+1−kb}
and the map φ : {j1, j2, ..., jb, j̄1, j̄2, ..., j̄b} −→ [2b] given by φ(jm) = km and

φ(j̄m) = 2b + 1 − km for m ∈ [b] is an order-preserving bijection.

(3) (p)w′ = (ip)w−2l′n and (a+kq)w′ = (jq)w for any p ∈ [a] and q ∈ [b],

where l′ ∈ Z and l′ > l;

(4) (〈c〉)w′ < (〈c〉)w′ for any c ∈ [a] ∪ {a + km | m ∈ [b]};
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(5) If b > 0 then 0 < min{(c)w′ − (a + km)w′ | c ∈ [a],m ∈ [b]} < 2n; if

b = 0 then n < min{(c)w′ | c ∈ [n]} 6 3n.

We see by Lemma 3.2 that ψ(w′) = ψ(w) (denoted by λ) and by Corollary

2.17 that w,w′ are in the same lcc of Eλ.

Example 3.4. (a) Let w = [8, 30, 4,−11, 27, 2] ∈ C̃6. Then E1 = {2, 5, 9}
and E2 = {1, 7, 10} satisfy 3.3 (i)-(iv) with n = 6 and (a, b, l) = (3, 3, 1). Let

w′ = t4,9t5,8t9,4w. Then w′ = [18, 15, 12, 8, 4, 2] ∈ C̃6. Hence w′ satisfies 3.3

(1)-(5) with b > 0 and ψ(w′) = ψ(w) = 93.

(b) Let w = [20, 30,−8,−11, 27,−10] ∈ C̃6. Then E1 = {1, 2, 5, 7, 9, 10}
and E2 = ∅ satisfy 3.3 (i)-(iv) with n = 6 and (a, b, l) = (6, 0, 1). Let

w′ = t6,7t6,7t6,7t7,6t9,4t10,3w. Then w′ = [8, 18, 15, 11, 12, 9] ∈ C̃6. Hence w′

satisfies 3.3 (1)-(5) with b = 0 and ψ(w′) = ψ(w) = 822.

3.5. By a composition of 2n, we mean an r-tuple (a1, a2, ..., ar) of positive

integers a1, ..., ar with some r > 1 such that
∑r

i=1 ai = 2n. Let Λ̃2n be the

set of all compositions of 2n. Clearly, Λ2n ⊆ Λ̃2n.

A generalized tabloid of rank 2n is, by definition, an r-tuple T = (T1, T2, ..., Tr)

with some r ∈ N such that [2n] is a disjoint union of some non-empty subsets

Tj , j ∈ [r]. We have ξ(T) := (|T1|, |T2|, ..., |Tr|) ∈ Λ̃2n, where |Ti| denotes the

cardinal of the set Ti. Let i1, i2, ..., ir be a permutation of 1, 2, ..., r such that

|Ti1 | > |Ti2 | > · · · > |Tir |. Then ζ(T) := (|Ti1 |, |Ti2 |, ..., |Tir |) ∈ Λ2n. Let C2n

be the set of all generalized tabloids of rank 2n. Then both ξ : C2n −→ Λ̃2n

and ζ : C2n −→ Λ2n are surjective maps.

Let Ω be the set of all w ∈ Ã2n−1 such that there is some T = (T1, T2, ..., Tr) ∈
C2n satisfying:

(i) If i < j in [r] then 〈(a)w−1〉 ≺w 〈(b)w−1〉 for any a ∈ Ti and b ∈ Tj ;

(ii) 〈(a)w−1〉, 〈(b)w−1〉 are w-uncomparable if a 6= b in Ti, i ∈ [r].

Clearly, T is determined entirely by w ∈ Ω, denote T by T (w). The map

T : Ω −→ C2n is surjective by [8, Proposition 19.1.2]. By a result of Greene

in [2], ζ(T (w)) is the dual partition of ψ(w).

The following known result will be crucial in subsequent discussion.
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Lemma 3.6. (see [8, Lemma 19.4.6]) Let y, w ∈ Ã2n−1 be in Ω with ξ(T (y)) =

ξ(T (w)). Then y ∼
L

w if and only if T (y) = T (w).

§4. The set Ek12n−k .

Fix λ ∈ Λ2n. Recall the set Eλ defined in 2.15. We have E−1
λ = Eλ. The

group automorphism η of C̃n (see 2.7) stabilizes each Eλ.

In the present section, we shall describe all the cells of C̃n in the set

Ek12n−k for all k ∈ [2n]. E12n consists of the identity element of C̃n. In the

subsequent discussion, we shall always assume k > 1.

4.1. First assume k = 2m + 1 ∈ [2n] odd. Let l = n − m. By Lemma 3.2,

w ∈ C̃n is in Ek12n−k if and only if w satisfies the condition (4.1.1) below.

(4.1.1) There exist some pairwise not 2n-dual i1, i2, ..., il, j1, j2, ..., jm in [2n]

such that (i) i1, i2, ..., il are all w-tame heads with i1 < i2 < · · · < il and

(i1)w < (i2)w < · · · < (il)w; (ii) j1, j2, ..., jm are all w-wild heads with

j1 ≺w j2 ≺w · · · ≺w jm and with either ī1, i1 ≺w j1 or īl, il ≺w j1.

Let F o
1 (respectively, F o

2 ) be the set of all w ∈ C̃n satisfying the condition

(4.1.2) below.

(4.1.2) There exist some pairwise not 2n-dual i1, i2, ..., il, j1, j2, ..., jm in [2n]

such that (i) i1, i2, ..., il are all w-tame heads with i1 < i2 < · · · < il and

(i1)w < (i2)w < · · · < (il)w; (ii) j1, j2, ..., jm are all w-wild heads with

0 < (ja+1)w − (ja)w < 2n for any a ∈ [m − 1]; (iii) (i1)w < (j1)w <

(̄il)w + 2n and (̄il, īl−1, ..., ī2, jm, jm−1, ..., j1, ī1) = (1, 2, ..., n) (respectively,

(̄il)w + 2n < (j1)w < (i1)w + 2n and (i1, i2, ..., il−1, jm, jm−1, ..., j1, il) =

(n + 1, n + 2, ..., 2n)).

4.2. Next assume k = 2m ∈ [2n] even. Let l = n − m. By Lemma 3.2,

w ∈ C̃n is in Ek12n−k if and only if w satisfies the condition (4.2.1) below.

(4.2.1) There exist some pairwise not 2n-dual i1, i2, ..., il, j1, j2, ..., jm in [2n]

such that (i) i1, i2, ..., il are all w-tame heads with i1 < i2 < · · · < il and

(i1)w < (i2)w < · · · < (il)w; (ii) j1, j2, ..., jm are all w-wild heads with

j1 ≺w j2 ≺w · · · ≺w jm; (iii) j1 is w-uncomparable with ia, īa for all a ∈ [l].

If m = n then (4.2.1) (iii) is an empty condition. Now assume m < n.
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Under the assumption of (4.2.1) (i)-(ii), the condition (4.2.1) (iii) is equivalent

to that either ī1 < j1 < i1 and (̄i1)w < (j1)w < (i1)w, or il < j1 < īl + 2n

and (il)w < (j1)w < (̄il)w + 2n. Since j1 is a w-wild head, this is also

equivalent to that either ī1 < j1 6 n and n < (j1)w < (i1)w, or il < j1 6 2n

and 2n < (j1)w < (̄il)w + 2n. Let E′
k12n−k (respectively, E′′

k12n−k) be the

set of all w ∈ Ek12n−k such that ī1 < j1 6 n and n < (j1)w < (i1)w

(respectively, il < j1 6 2n and 2n < (j1)w < (̄il)w + 2n). Then Ek12n−k =

E′
k12n−k∪̇E′′

k12n−k (disjoint union).

Let F e
1 (respectively, F e

2 ) be the set of all w ∈ C̃n satisfying the condition

(4.2.2) below.

(4.2.2) There exist some pairwise not 2n-dual i1, i2, ..., il, j1, j2, ..., jm in [2n]

such that (i) i1, i2, ..., il are all w-tame heads with i1 < i2 < · · · < il and

(i1)w < (i2)w < · · · < (il)w; (ii) j1, j2, ..., jm are all w-wild heads with

0 < (ja+1)w − (ja)w < 2n for any a ∈ [m − 1]; (iii) n < (j1)w < (i1)w

and (̄il, īl−1, ..., ī1, jm, jm−1, ..., j1) = (1, 2, ..., n) (respectively, 2n < (j1)w <

(īl)w + 2n and (i1, i2, ..., il, jm, jm−1, ..., j1) = (n + 1, n + 2, ..., 2n)).

When m = n, the sets E′
k12n−k and E′′

k12n−k (respectively, F e
1 and F e

2 ) can

also be defined by the condition (4.2.1) (respectively, (4.2.2)) if we stipulate

i1 = (i1)w = 2n + 1, ī1 = (̄i1)w = 0, il = (il)w = n and īl = (̄il)w = n + 1.

Clearly, F e
1 ⊂ E′

k12n−k and F e
2 ⊂ E′′

k12n−k .

Lemma 4.3. F ε
1 ∪F ε

2 ⊂ Ek12n−k , where ε is o if k is odd and e if k is even.

For any w ∈ Ek12n−k , there exists some w′ ∈ F ε
1 ∪ F ε

2 such that w′, w are in

the same lcc of Ek12n−k .

Proof. It is a direct consequence of 3.3 and 4.1-4.2. ¤

Lemma 4.4. Let ε be given as in Lemma 4.3.

(1) The map η (see 2.7) interchanges the sets F ε
1 and F ε

2 .

(2) If k ∈ [2n−2] is even, then E′
k12n−k

−1 = E′
k12n−k and E′′

k12n−k

−1 = E′′
k12n−k .

The map η interchanges the sets E′
k12n−k and E′′

k12n−k .

(3) Each of F ε
1 and F ε

2 is contained in an rcc of Ek12n−k .
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Proof. (1)-(2) follow by 4.1-4.2 and Proposition 2.8 (3). For (3), we need

only to show that F ε
1 is contained in an rcc of Ek12n−k .

(I) First assume ε being o. For J = {tl, tl+1, ..., tn}, w(o) := tnwJ =

[1, 2, ..., l − 1, 2n + 1 − l, 2n − l, ..., n + 2, n] is the unique shortest element

in F o
1 . Take any w ∈ F o

1 . Keep the notation in (4.1.2).

(a) First assume (ja)w − (ja−1)w = 1 for any a ∈ [2,m]. Since (i1)w <

(j1)w < (̄il)w+2n, there exists the largest b ∈ [l] with (ib)w < (j1)w. If b = l

then w ∈ {w1, w2} with w1 = [n+1− l, n+2− l, ..., n−1, 2n, 2n−1, ..., n+ l+

1, n] and w2 = [n+1−l, n+2−l, ..., n−1, 3n−l, 3n−l−1, ..., 2n+1, n]. Let J =

{t1, t2, ..., tn−2}, J1 = J \ {tn−l}, I1 = {t1, t2, ..., tn−l−1} and I = I1 ∪ {t0}.
Then w2 = w1wI1wI , w1 = w(o)wJwJ1 satisfy `(w2) = `(w1) + `(wI1wI),

`(w1) = `(w(o)) + `(wJwJ1) by Proposition 2.8 (2). Hence w1, w2, w(o)

are in the same rcc of Ek12n−k by Corollary 2.17. Now assume b < l. Since

(i1)w < (j1)w < (̄il)w+2n, we have w = [1, 2, ..., l−b, n+1−b, n+2−b, ..., n−
1, 2n + b− l, 2n + b− l− 1, ..., n + b + 1, n]. Let J = {tl+1−b, tl+2−b, ..., tn−2},
J1 = J \ {tn−b}. Then w = w(o)wJwJ1 and `(w) = `(w(o)) + `(wJwJ1) by

Proposition 2.8 (2). So w, w(o) are in the same rcc of Ek12n−k by Corollary

2.17.

(b) Next assume (ja)w − (ja−1)w > 1 for some a ∈ [2,m]. Take a the

largest with such a property. Then d := (ja)w−1 ≡ (k)w (mod 2n) for some

k ∈ {jb, j̄b, ic, īc, j̄a | b ∈ [a − 1], c ∈ [l]}. When d 6≡ (j̄a)w (mod 2n), let

y1 = wtdtd+1 · · · tm+d−a. Then for any t ∈ Z, we have

(t)y1 =



(t)w − 1, if t ≡ (jh)w (mod 2n) for some h ∈ [a,m],
(t)w + 1, if t ≡ (j̄h)w (mod 2n) for some h ∈ [a,m],
(t)w + (m + 1 − a), if t ≡ (k)w (mod 2n),
(t)w − (m + 1 − a), if t ≡ (k̄)w (mod 2n),
(t)w, if otherwise.

We see that either (jh)w − (k)w > 2n for all h ∈ [a,m], or k = if with

(ja)w = (if )w + 1 for some f ∈ [l] (hence jh < k for any h ∈ [a,m] in the
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latter case) by the condition (4.1.2) on w ∈ F o
1 and by the choice of a. We see

by Corollary 2.6 and Proposition 2.8 (2) that `(y1) = `(w)− (m+1− a) and

y1 ∈ F o
1 . When d ≡ (j̄a)w (mod 2n), we have d ≡ n, 0 (mod 2n) and (ja)w−

(j̄a)w > 2n. In this case, let y1 = wwJ1wJ with J = {tn, tn−1, ..., tn+a−m}
and J1 = J \ {tn} if d ≡ n (mod 2n) and J = {t0, t1, ..., tm−a} and J1 =

J \{t0} if d ≡ 0 (mod 2n). By Corollary 2.6 and Proposition 2.8 (2), we have

`(y1) = `(w) − (wJ1wJ) and y1 ∈ F o
1 . By induction on p := `(w) > `(w(o)),

we see that there exists a sequence y0 = w, y1, ..., yr in F o
1 with some r > 0

such that `(yh) = `(yh−1) − `(y−1
h−1yh) and (ja)yr − (ja−1)yr = 1 for any

h ∈ [r] and a ∈ [2,m]. This implies by Corollary 2.17 that y0, y1, ..., yr are

in the same rcc of Ek12n−k . Since yr and w(o) are in the same rcc of Ek12n−k

by (a), F o
1 is contained in an rcc of Ek12n−k .

(II) Next assume ε being e. Then w(e) := wJ = [1, 2, ..., l, 2n − l, 2n − l −
1, ..., n + 1] is the unique shortest element in F e

1 with J = {tl+1, tl+2, ..., tn}.
Take any w ∈ F e

1 \ {w(e)}. There exists some a ∈ [2,m] with (ja)w −
(ja−1)w > 1. Take a the largest with such a property. By the same argument

as that in (I) (b), we can find y0 = w, y1, ..., yr = w(e) in F e
1 with some r > 0

such that `(yh) = `(yh−1) − `(y−1
h−1yh) for every h ∈ [r]. By Corollary 2.17,

we see that F e
1 is contained in an rcc of Ek12n−k . ¤

Lemma 4.5. For k ∈ [2, 2n], ε ∈ {o, e} and i = 1, 2, let F ε
i ⊂ Ek12n−k be

defined as in 4.1-4.2. Then |F ε
1 | = |F ε

2 | = 2b
k
2 c−1n!/(n − bk−1

2 c)!.

Proof. We have |F ε
1 | = |F ε

2 | by Lemma 4.4 (1).

First we enumerate the set F o := F o
1 ∪F o

2 . Let Go be the set of all w ∈ C̃n

satisfying (4.1.2) but with (iii) replaced by (iii)′ below:

(iii)′ (i1)w < (j1)w < (i1)w+2n and (̄il, īl−1, ..., ī2, jm, jm−1, ..., j1, ī1) =

(1, 2, ..., n).

Then F o
1 ⊂ Go. There exists a bijection λx : Go \ F o

1 −→ F o
2 given

by λx(w) = xw, where, when l > 1, let x = wIwI1wJwJ1tn with J =

{tl, tl+1, ..., tn}, J1 = J \ {tn−1, tn}, I = {t2, t3, ..., tn−2} and I1 = I \ {tl−1};
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when l = 1, let x = wJ1wJdn−1,n−1 (see (3.3.1)) with J = {t2, t3, ..., tn} and

J1 = J \ {tn}.

Note that in either case, we have `(xw) = `(w)− `(x) and ψ(w) = ψ(xw),

hence xw ∼
L

w by Corollary 2.17 and Lemma 2.16.

Now we enumerate the set Go. Any w ∈ Go is determined entirely by the

integers (i1)w, (i2)w, ..., (il)w, (j1)w, (j2)w, ..., (jm)w under the conditions

(4.1.2) (i)-(ii) and (iii)′. There are
(
n
l

)
=

n!
l!(n − l)!

different choices for the

integers (i1)w, (i2)w, ..., (il)w by the condition n < (i1)w < (i2)w < · · · <

(il)w 6 2n. Once they are fixed, the numbers of different choices for (j1)w,

(j2)w, ..., (jm)w are 2m, 2(m − 1), ..., 2 in turn by the conditions (4.1.2) (i)-

(ii), (iii)′ and the facts that m + l = n and b 6≡ c, c̄ (mod 2n) for any b 6= c

in {(i1)w, ..., (il)w, (j1)w, ..., (jm)w}. So |Go| =
(
n
l

)
2mm!. The assertion is

proved for ε being o by the facts |F o
1 | = |F o

2 | = 1
2 |G

o| and m + l = n.

Next we compute |F e
1 |. Any w ∈ F e

1 is determined entirely by the in-

tegers (i1)w, (i2)w, ..., (il)w, (j1)w, (j2)w, ..., (jm)w under the condi-

tion (4.2.2). There are
(

n
l+1

)
different choices for the integers (j1)w, (i1)w,

(i2)w, ..., (il)w by the condition n < (j1)w < (i1)w < (i2)w < · · · <

(il)w 6 2n. Once they are fixed, the numbers of different choices for (j2)w,

(j3)w, ..., (jm)w are 2(m− 1), 2(m− 2), ..., 2 in turn by the condition (4.2.2)

and the facts that m + l = n and b 6≡ c, c̄ (mod 2n) for any b 6= c in

{(i1)w, ..., (il)w, (j1)w, ..., (jm)w}. So |F e
1 | =

(
n

l+1

)
2m−1(m − 1)!. The as-

sertion is proved for ε being e by the fact m + l = n. ¤

Lemma 4.6. No two elements of F ε
1 ∪ F ε

2 are in the same left cell of C̃n.

Proof. Let w ∈ F o
1 be as in (4.1.2). If l = 1 then let w′ = w; if l > 1

then let w′ = wJ6wJ7tnwJ1wJ5wJ3wJ4wJ1wJ2w, where J1 = {t1, t2, ..., tn−2},
J2 = J1 \ {tl−1}, J3 = {t0, t1, ..., tm−1}, J4 = J3 \ {t0}, J5 = J1 \ {tm},
J6 = {tl, tl+1, ..., tn} and J7 = J6 \{tn, tn−1} (see Figure 1). Regarding w′ as

an element of Ã2n−1, we have w′ ∈ Ω (see 3.5), which satisfies ψ(w) = ψ(w′)

and `(w′) = `(w) + `(w′w−1), hence w ∼
L

w′ by Corollary 2.17.
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Let α = (1, ..., 1, 2l, 1, ..., 1) ∈ Λ̃2n with 2l the (m + 1)-th component. We

see that T (w′) = (T1, T2, ..., T2m+1) ∈ ξ−1(α) with Tc = (〈j̄m+1−c)w〉 for

c ∈ [m], Tm+1 = {〈(̄ia)w〉, 〈(ia)w〉 | a ∈ [l]} and Td = {〈(jd−m−1)w〉} for

d ∈ [m + 2, 2m + 1] (see 2.7 for the notation 〈q〉).
Similarly, for w ∈ F o

2 as in (4.1.2), we can find some w′ ∈ C̃n satisfy-

ing w ∼
L

w′ and w′ ∈ Ω as an element of Ã2n−1. We again get T (w′) =

(T1, T2, ..., T2m+1) ∈ ξ−1(α) with Tc = (〈j̄m+1−c)w〉 for c ∈ [m], Tm+1 =

{〈(̄ia)w〉, 〈(ia)w〉 | a ∈ [l]} and Td = {〈(jd−m−1)w〉} for d ∈ [m + 2, 2m + 1].

w

l−1

1
1

l−1

m

m

l−1

1

1st column (n+1)th column

w’

l−1

1
1

l−1

l−1

1

m

m

(n+1)th column

1st row

(n+1)th row

1st column

Figure 1

Figure 1 displays the corresponding parts for the matrix forms of w and w′

if l > 1, where the symbol p (respectively, p ) stands for a rectangular

submatrix A with p rows each row has a unique non-zero entry 1, the entries

1 of A are going down to the right (respectively, to the left).

We see that the above T (w′) with w′ ∼
L

w and w′ ∈ Ω depends only on

w ∈ F o
1 ∪F o

2 and α but not on the choice of w′ in Ω. So we can denote T (w′)

by Tα(w). We claim that Tα(w) should be pairwise different in ξ−1(α) as

w ranges over F o
1 ∪ F o

2 . For, recall that in the proof of Lemma 4.5, there

is a bijective map τ from Go to F o
1 ∪ F o

2 which satisfies w ∼
L

τ(w) for any

w ∈ Go. We see that Tα(w) = (T1, T2, ..., T2m+1) with Tc = (〈j̄m+1−c)w〉
for c ∈ [m], Tm+1 = {〈(̄ia)w〉, 〈(ia)w〉 | a ∈ [l]} and Td = {〈(jd−m−1)w〉} for

d ∈ [m + 2, 2m + 1] should be pairwise different as w ranges over Go. This

proves our assertion by Lemma 3.6 when ε is o.

If m = n, then F e
1 ∪ F e

2 ⊆ Ω. The set {T (w) | w ∈ F e
1 ∪ F e

2 } is equal

to {({a1}, ..., {a2n}) | {a1, ..., a2n} = [2n]; ai = a2n+1−i, ∀ i ∈ [n]}. So our
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result in this case follows by Lemmas 3.6 and 2.13. Now assume m < n. Let

β = (1, ..., 1, 2l + 1, 1, ..., 1) ∈ Λ̃2n with 2l + 1 the (m + 1)th component. Let

w ∈ F e
1 be as in (4.2.2). When m = 1, let w′ = wJwJ1w with J = S̃ \ {sn}

and J1 = J \ {sn+1}; when m > 1, let w′ = wI3wI4wI1wI2w with I1 =

S̃ \ {sn−1, sn}, I2 = I1 \ {sl}, I3 = S̃ \ {sn+m−1} and I4 = I3 \ {sn+2m−1}
(see Figure 2 if m > 1). Then w′ is in Ã2n−1, but not in C̃n. We have w′ ∈ Ω,

which satisfies ψ(w) = ψ(w′) and ˜̀(w′) = ˜̀(w) + ˜̀(w′w−1), hence w ∼
L

w′ by

Corollary 2.17.

w’

l

l

l

1st column (n+1)th column

w

(n+1)th column1st column

1st row

(n+1)th row
1

1

1

m−1

m−1

1
m−1

m−11

l

l

l

Figure 2

We have T (w′) = (T1, T2, ..., T2m) ∈ ξ−1(β) with Tc = (〈j̄m+1−c)w〉 for

c ∈ [m], Tm+1 = {〈(j1)w〉, 〈(̄ia)w〉, 〈(ia)w〉 | a ∈ [l]} and Td = {〈(jd−m)w〉}
for d ∈ [m + 2, 2m].

Similarly, for w ∈ F e
2 as in (4.2.2), we can find some w′ ∈ Ã2n−1 satisfying

w ∼
L

w′ and w′ ∈ Ω. We again get T (w′) = (T1, T2, ..., T2m) with Tc =

(〈j̄m+1−c)w〉 for c ∈ [m], Tm+1 = {〈(j1)w〉, 〈(̄ia)w〉, 〈(ia)w〉 | a ∈ [l]} and

Td = {〈(jd−m)w〉} for d ∈ [m + 2, 2m].

Again, the above T (w′) with w′ ∼
L

w and w′ ∈ Ω depends only on w ∈ F e
1 ∪

F e
2 and β but not on the choice of w′ in Ω. So we can denote T (w′) by Tβ(w).

Then Tβ(w) are pairwise different in ξ−1(β) as w ranges over F e
1 (respectively,

F e
2 ) by the proof of Lemma 4.5. We claim that Tβ(w) = (T1, ..., T2m) for

w ∈ F e
1 is different from that for w ∈ F e

2 . For, Tm = {〈(j̄1)w〉} satisfies

〈(j̄1)w〉 6 n if w ∈ F e
1 and 〈(j̄1)w〉 > 〈(il)w〉 > n if w ∈ F e

2 . The claim is

proved. So our assertion follows by Lemmas 3.6 and 2.13 when ε is e. ¤
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Lemma 4.7. The set Ek12n−k forms a single two-sided cell of C̃n if either

k ∈ [2n] is odd or k = 2n. In particular, E2n is the lowest two-sided cell of

C̃n under the relation 6
LR

.

Proof. First assume k = 2m+1 ∈ [2n] odd. Let w(o) = tnwJ and y(o) = t0wI

with J = {tl, tl+1, ..., tn} and I = {t0, t1, ..., tn−l}, where l = n − m. Then

y(o) = η(w(o)). By (4.1.1)-(4.1.2) and the proof of Lemma 4.4, we see that

any w ∈ Ek12n−k is in a tcc of Ek12n−k containing either w(o) or y(o). Thus

by Lemma 2.16, in order to show our result, we need only to show that w(o)

and y(o) are contained in the same tcc of Ek12n−k .

When l = 1, let I1 = S \ {tn−1, tn}, I2 = I1 \ {t0}, I3 = S \ {t0, t1}
and I4 = I3 \ {tn} and let y0 = w(o), y1 = wI2wI1y0, y2 = dn−1,n−1y1,

y3 = y2t1,n−1 and y4 = y3wI4wI3 ; when l > 1, let J1 = {t1, t2, ..., tn−2},
J2 = J1 \ {tl−1}, J3 = {t0, t1, ..., tm}, J4 = J3 \ {t0}, J5 = {tl, tl+1, ..., tn},
J6 = J5\{tn−1, tn}, J7 = {t2, t3, ..., tn−2} and J8 = J7\{tl−1}. Let y0 = w(o),

y1 = wJ1wJ2y0, y2 = t0wJ3wJ4y1, y3 = y2tnwJ6wJ5 and y4 = y3wJ8wJ7 . In

either case, we have y4 = y(o).

1
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1

1
1
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Figure 3
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In Figure 3, we display the corresponding parts of the matrix forms of

y0, ..., y4 for l > 1, the notation
l

stands for the l × l identity submatrix,

while
m

stands for the m × m anti-diagonal submatrix with all the anti-

diagonal entries being 1.

We have yi ∈ Ek12n−k for any i ∈ [0, 4]. Also, `(y1) = `(y0) + `(y1y
−1
0 ),

`(y2) = `(y1)+`(y2y
−1
1 ), `(y3) = `(y2)−`(y−1

2 y3) and `(y4) = `(y3)−`(y−1
3 y4)

(see Figure 3 for l > 1). This implies by Corollary 2.17 that w(o) and y(o)

are contained in the same tcc of Ek12n−k .

Next assume k = 2n. By the part (II) in the proof of Lemma 4.4, we

see that any w ∈ E2n is in the tcc of E2n containing either wJ or wI with

J = S\{t0} and I = S\{tn}. Let K = S\{t0, tn} and let y = wKwIwJ . Then

y = wIwJwK ∈ E2n satisfies `(y) = `(wJ) + `(wKwI) = `(wI) + `(wJwK).

So wJ , wI are contained in the same tcc of E2n by Corollary 2.17. Hence

E2n is two-sided-connected and forms a two-sided cell of C̃n by Lemma 2.16,

which is the lowest one under the relation 6
LR

by Lemmas 2.13-2.14. ¤

In the proof of Lemma 4.7, we actually show that if k ∈ [2n] is either odd

or 2n then the set Ek12n−k is two-sided-connected. By 3.3, 4.2 and Lemmas

4.3-4.4, we see that if k = 2m < 2n is even then each of the sets E′
k12n−k and

E′′
k12n−k is contained in some tcc of Ek12n−k . Now we have

Lemma 4.8. If k = 2m ∈ [2n − 2] is even, then the set Ek12n−k has two

tccs E′
k12n−k and E′′

k12n−k .

Proof. Keep the notation in (4.2.1) for w ∈ Ek12n−k . Denote the integers

ja, j̄a, ib, īb by j′a, j̄′a, i′b, ī
′
b , resp,. j′′a , j̄′′a , i′′b , ī′′b for a ∈ [m] and b ∈ [l], ac-

cording to w being w′ ∈ E′
k12n−k , resp., w′′ ∈ E′′

k12n−k . Observe the follow-

ing facts: If w′′ is obtained from w′ by left multiplying some t ∈ S, then

j′′1 = 〈(j′1)t〉 (see 2.7) and (j′′1 )w′′ = (j′1)w
′. If w′′ is obtained from w′ by

right multiplying some t ∈ S, then j′′1 = j′1 and (j′′1 )w′′ = (j′1)w
′t.

We see that w′ ∈ E′
k12n−k satisfies ī′1 < j′1 6 n and n < (j′1)w

′ < (i′1)w
′,

and that w′′ ∈ E′′
k12n−k satisfies i′′l < j′′1 6 2n and 2n < (j′′1 )w′′ < (̄i′′l )w′′+2n.
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Since i′′l > n + 1 and ī′1 > 1, we have j′1 ∈ [2, n] and j′′1 ∈ [n + 2, 2n], hence

j′′1 6= 〈(j′1)t〉 for any t ∈ S. So no element of E′′
k12n−k could be obtained from

an element of E′
k12n−k by left multiplying some t ∈ S. Since (i′1)w

′ 6 2n,

we have (j′1)w
′ 6 2n − 1 and 2n + 1 6 (j′′1 )w′′, hence (j′′1 )w′′ 6= (j′1)w

′t for

any t ∈ S. So no element of E′′
k12n−k could be obtained from an element

of E′
k12n−k by right multiplying some t ∈ S. So E′

k12n−k , E′′
k12n−k form two

different tccs of Ek12n−k by the fact Ek12n−k = E′
k12n−k∪̇E′′

k12n−k . ¤

Theorem 4.9. (1) If k = 2m + 1 ∈ [2n] is odd, then Ek12n−k is a two-sided

cell of C̃n containing 2mn!/(n − m)! left cells.

(2) E2n is the lowest two-sided cell of C̃n consists of 2nn! left cells.

(3) If k = 2m ∈ [2n − 2] is even, then Ek12n−k is a union of two

two-sided cells E′
k12n−k , E′′

k12n−k of C̃n, each of E′
k12n−k , E′′

k12n−k contains

2m−1n!/(n − m + 1)! left cells. The group automorphism η interchanges

E′
k12n−k , E′′

k12n−k .

(4) Each left (respectively, two-sided) cell of C̃n in Ek12n−k is left- (re-

spectively, two-sided-) connected.

(5) The set Ek12n−k is infinite unless k = 1, 2.

Proof. By Lemma 2.16, we see that Eλ is either empty or a union of some

two-sided cells of C̃n for any λ ∈ Λ2n. Hence (1)-(2) follow by Lemmas 4.3

and 4.5-4.7. For (3), we see by Lemmas 4.3-4.4 and 4.6 that each of E′
k12n−k

and E′′
k12n−k contains 2m−1n!/(n−m+1)! left cells. By Lemmas 1.4, 4.4 and

2.12, we see that each of E′
k12n−k and E′′

k12n−k is a union of some two-sided

cells of C̃n. On the other hand, each of E′
k12n−k and E′′

k12n−k is a tcc of

Ek12n−k by Lemma 4.8, which should be contained in some two-sided cell

of C̃n by Lemma 2.16. So each of E′
k12n−k and E′′

k12n−k forms a single two-

sided cell of C̃n. The last assertion of (3) follows by Lemma 4.4. This proves

(3). (4) follows by (1)-(3) and Lemmas 4.3, 4.6. Finally, E12n = {1} and

E212n−2 = {t0, tn}. When k = 2m > 4 or k = 2m+1 > 3, the number of the

choices for (jm)w in (4.1.1) or (4.2.1) is infinite. This proves (5). ¤
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§5. The set E(k,2,1,...,1) with (k, 2, 1, ..., 1) ∈ Λ2n.

In this section, we describe cells of C̃n in the set E(k,2,1,...,1) with (k, 2, 1, ..., 1) ∈
Λ2n. The main result is as follows.

Theorem 5.1. Let λ = (2m, 2, 1, ..., ) and µ = (2m+1, 2, 1, ..., 1) be in Λ2n.

(1) The set Eλ forms a single two-sided cell of C̃n if m = n − 1 and is a

union of two two-sided cells (say E′
λ and E′′

λ) of C̃n if m < n − 1. The set

Eµ is a union of two two-sided cells (say E′
µ and E′′

µ) of C̃n.

(2) Let n(ν) be the number of left cells of C̃n in Eν for ν = λ, µ. Then

n(λ) = 2m−1n!(n+3−m)
(n+1−m)! and n(µ) = 2m·n!

(n−m)! .

Let n′(ν) and n′′(ν) be the numbers of left cells in E′
ν and E′′

ν respec-

tively for ν = λ, µ. Then {n′(λ), n′′(λ)} =
{

2m−1n!
(n+1−m)! ,

2m−1n!(n+2−m)
(n+1−m)!

}
and

n′(µ) = n′′(µ) = 2m−1·n!
(n−m)! .

(3) Any left (respectively, two-sided) cell of C̃n in Eλ∪Eµ is left- (respectively,

two-sided-) connected.

(4) |Ek212n−k−2 | = ∞ unless k = 2, 3.

We shall prove Theorem 5.1 in the remaining part of the section.

5.2. Let l = n − m − 1. Then w ∈ C̃n is in Eλ if and only if one of the

conditions (a)-(c) on w holds:

(a) There are some pairwise not 2n-dual j1, j2, ..., jm, k, i1, i2, ..., il in [2n]

with j1, j2, ..., jm, k w-wild heads and i1, i2, ..., il w-tame heads such that

(a1) j1 ≺w j2 ≺w · · · ≺w jm;

(a2) i1 < i2 < · · · < il and (i1)w < (i2)w < · · · < (il)w;

(a3) j1 (respectively, k) is w-comparable with none of ih, īh for h ∈ [l];

(a4) k is w-uncomparable with jp for some p ∈ [m].

Both (a2) and (a3) become empty condition if m = n − 1.

(b) There are some pairwise not 2n-dual j1, j2, ..., jm, i1, i2, ..., il, il+1 in [2n]

with j1, j2, ..., jm w-wild heads and i1, i2, ..., il, il+1 w-tame heads such that

(b1) j1 ≺w j2 ≺w · · · ≺w jm;

(b2) i1 < i2 < · · · < il < il+1 and (i1)w < (i2)w < · · · < (il)w < (il+1)w;
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(b3) j1 is w-comparable with at least one of i1, ī1, il+1, īl+1, but not with

ih, īh simultaneously for any h ∈ {1, l + 1}.

(c) There are some pairwise not 2n-dual j1, j2, ..., jm−1, i1, i2, ..., il+2 in [2n]

with j1, j2, ..., jm−1 w-wild heads and i1, i2, ..., il+2 w-tame heads such that

(c1) j̄1 ≺w iq ≺w ip ≺w j1 ≺w j2 ≺w · · · ≺w jm−1 for some p, q ∈ [l + 2]

with l + 2 ∈ {p, q};

(c2) i1 < i2 < · · · < il < il+1 and (i1)w < (i2)w < · · · < (il)w < (il+1)w.

For any w1 ∈ Eλ satisfying (c), there exists some w2 ∈ Eλ satisfying (b)

such that w1 and w2 are in the same lcc of Eλ.

5.3. Let E′
λ be the set of all w ∈ Eλ satisfying 5.2 (a) with one additional

requirement that k̄ and j1 are w-uncomparable, that is, at least one of the

following two cases occurs:

(a5) ī1 < j1 < j̄1 < i1 and (̄i1)w < (j̄1)w < (j1)w < (i1)w and il − 2n <

k − 2n < k̄ < īl and (il)w − 2n < (k̄)w < (k)w − 2n < (̄il)w;

(a6) ī1 < k < k̄ < i1 and (̄i1)w < (k̄)w < (k)w < (i1)w and il − 2n <

j1 − 2n < j̄1 < īl and (il)w − 2n < (j̄1)w < (j1)w − 2n < (̄il)w.

Let E′′
λ = Eλ \ E′

λ.

Lemma 5.4. E′
λ
−1 = E′

λ and E′′
λ
−1 = E′′

λ for λ = (2m, 2, 1, ..., 1) ∈ Λ2n with

m < n − 1.

Proof. From the matrix forms of elements, we see that if w is in Eλ and

satisfies (a1)-(a5) (respectively, (a1)-(a4) and (a6)), then so does w−1. Hence

E′
λ
−1 = E′

λ. We also have E′′
λ
−1 = E′′

λ by the fact E−1
λ = Eλ. ¤

5.5. Let F ′
λ be the set of all w′ ∈ C̃n satisfying the condition (a′) below.

(a′) Let j1, ..., jm, k be w′-wild heads and i1, ..., il w′-tame heads such that

(a′1) either

(a′11) (k̄, īl, īl−1, ..., ī1, jm, jm−1, ..., j1) = (1, 2, ..., n) with 0 < (k)w′−
2n < (̄il)w′ < (̄il−1)w′ < · · · < (̄i1)w′ < (j1)w′ < (i1)w′ if m < n − 1 and

with 0 < (k)w′ − 2n 6 n < (j1)w′ 6 2n if m = n − 1,

or
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(a′12) (k̄, i1, i2, ..., il, jm, jm−1, ..., j1) = (n + 1, n + 2, ..., 2n) with n <

(k)w′ < (i1)w′ < (i2)w′ < · · · < (il)w′ < (j1)w′ < (̄il)w′ + 2n if m < n − 1

and with 0 < (j1)w′ − 2n 6 n < (k)w′ 6 2n if m = n − 1;

(a′2) 0 < (jh+1)w′ − (jh)w′ < 2n for any h ∈ [m − 1].

Let F ′′
λ be the set of all w′ ∈ C̃n satisfying one of (b′), (c′) below.

(b′) Let j1, ..., jm, k be w′-wild heads and i1, ..., il w′-tame heads such that

(b′1) either that (̄il, īl−1, ..., ī1, jm, jm−1, ..., j1, k) = (1, 2, ..., n) with n <

(j1)w′ < (k)w′ < (i1)w′ if m < n − 1 and with n < (j1)w′ < (k)w′ 6 2n if

m = n − 1,

or that (i1, i2, ..., il, jm, jm−1, ..., j1, k) = (n + 1, n + 2, ..., 2n) with 2n <

(j1)w′ < (k)w′ < (̄il)w′ + 2n if m < n − 1 and 2n < (j1)w′ < (k)w′ 6 3n if

m = n − 1;

(b′2) 0 < (jh+1)w′ − (jh)w′ < 2n for any h ∈ [m − 1];

(b′3) (i1)w′ < (i2)w′ < · · · < (il)w′.

(c′) Let j1, ..., jm be w′-wild heads and i1, ..., il+1 w′-tame heads with m <

n − 1 such that

(c′1) either

(c′11) (̄il+1, īl, ..., ī1, jm, jm−1, ..., j1)=(1, 2, ..., n) and (i1)w′<(j1)w′62n,

or

(c′12) (i1, i2, ..., il+1, jm, jm−1, ..., j1) = (n+1, n+2, ..., 2n) and (̄il+1)w′+

2n < (j1)w′ 6 3n;

(c′2) 0 < (jh+1)w′ − (jh)w′ < 2n for any h ∈ [m − 1];

(c′3) (i1)w′ < (i2)w′ < · · · < (il)w′ < (il+1)w′.

5.6. F ′
λ ⊆ E′

λ and F ′′
λ ⊆ E′′

λ by 5.2-5.3 and 5.5. Any lcc of E′
λ (respectively,

E′′
λ) contains some element of F ′

λ (respectively, F ′′
λ ) by 3.3 and Lemma 3.2.

Let α = (1, ..., 1, 2, 2(n − m), 1, ..., 1) ∈ Λ̃2n with 2 its m-th component.

Let Fλ := F ′
λ ∪ F ′′

λ . By the argument for Lemma 4.6, there is some y ∈ Ω

with y ∼
L

w′ and T (y) ∈ ξ−1(α) for any w′ ∈ Fλ. Now we describe T (y).

(1) If w′ satisfies (a′) or (b′) in 5.5, then T (y) is equal to
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(
{〈(j̄m)w′〉}, ..., {〈(j̄2)w′〉}, {〈(j̄1)w′〉, 〈(k̄)w′〉},

{〈(j1)w′〉, 〈(k)w′〉, 〈(̄ih)w′〉, 〈(ih)w′〉 | h ∈ [l]}, {〈(j2)w′〉}, ..., {〈(jm)w′〉}) ,

where (i) 0 < (k)w′ − 2n < (̄il)w′ and n < (j1)w′ < (i1)w′

if (k̄, īl, īl−1, ..., ī1, jm, jm−1, ..., j1) = (1, 2, ..., n);

(ii) n < (k)w′ < (i1)w′ and 2n < (j1)w′ < (̄il)w′ + 2n

if (k̄, i1, i2, ..., il, jm, jm−1, ..., j1) = (n + 1, n + 2, ..., 2n);

(iii) n < (j1)w′ < (k)w′ < (i1)w′

if (̄il, īl−1, ..., ī1, jm, jm−1, ..., j1, k) = (1, 2, ..., n);

(iv) 2n < (j1)w′ < (k)w′ < (̄il)w′ + 2n

if (i1, i2, ..., il, jm, jm−1, ..., j1, k) = (n + 1, n + 2, ..., 2n).

Here we stipulate (̄il)w′ = n + 1 and (i1)w′ = 2n + 1 if l = 0.

(2) If w′ satisfies 5.5 (c′) with (̄il+1, ..., ī1, jm, ..., j1) = (1, 2, ..., n) and

(ip)w′ < (j1)w′ < (ip+1)w′ for some p ∈ [l + 1] with the convention that

(il+2)w′ = 2n + 1, then T (y) is equal to

({〈(j̄m)w′〉}, ..., {〈(j̄2)w′〉}, {〈(j̄1)w′〉, 〈(ip)w′〉},

{〈(j1)w′〉, 〈(̄ih)w′〉, 〈(ih)w′〉 | h ∈ [l + 1]} \ {〈(ip)w′〉}, {〈(j2)w′〉}, ..., {〈(jm)w′〉}) .

(3) If w′ satisfies 5.5 (c′) with (i1, ..., il+1, jm, ..., j1) = (n+1, n+2, ..., 2n)

and (̄ip)w′ + 2n < (j1)w′ < (̄ip−1)w′ + 2n for some p ∈ [l + 1] with the

convention that (̄i0)w′ = n + 1, then T (y) is equal to

({〈(j̄m)w′〉}, ..., {〈(j̄2)w′〉}, {〈(j̄1)w′〉, 〈(̄ip)w′〉},

{〈(j1)w′〉, 〈(̄ih)w′〉, 〈(ih)w′〉 | h ∈ [l + 1]} \ {〈(̄ip)w′〉}, {〈(j2)w′〉}, ..., {〈(jm)w′〉}) .

5.7. By Lemma 3.6, we see that T (y) ∈ ξ−1(α) given in 5.6 only depends on

w′ ∈ Fλ and α but not on the choice of y ∈ Ω. We can denote T (y) by Tα(w′).

This defines a map Tα : Fλ −→ ξ−1(α). By 5.5-5.6, T = (T1, T2, ..., T2m) ∈
ξ−1(α) is in the image of the map Tα if and only if T satisfies the following

conditions:
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(1) Ti = T2m+1−i for any i ∈ [2m] \ {m,m + 1} (see 3.1).

(2) Tm ∪ Tm+1 = {q̄n+1−m, q̄n−m, ..., q̄1, q1, ..., qn−m, qn+1−m} for some

q̄1 < q1 < q2 < · · · < qn+1−m in [2n], and

(5.7.1) Tm ∈ {{q̄1, qn+1−m}, {q̄1, q̄2}, {qn−m, qn+1−m}, {q̄i+1, qi} | i ∈ [n−m]}.

When the equivalent conditions hold, we have |T−1
α (T)| = 1 if Tm ∈

{{q̄1, q̄2}, {qn−m, qn+1−m}} (i.e., 5.5 (b′)) and |T−1
α (T)| = 2 if otherwise.
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1 
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1 

1 
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m−1 
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m−1 

1st row

(n+1)th row

Figure 4

Suppose m < n−1. By 5.6, we see that Tα(w′) 6= Tα(w′′) for any w′ ∈ F ′
λ

and any w′′ ∈ F ′′
λ . This implies by 5.6 and Lemmas 3.6, 2.13-2.14 that each

of E′
λ and E′′

λ is a union of some left cells of C̃n.

First consider the case 5.5 (a′). Let F ′
i be the set of all w′ ∈ F ′

λ satisfying

(a′1i) and (a′2) for i = 1, 2. Then F ′
λ = F ′

1∪̇F ′
2. Use the notation in 5.6 and

in (2) above, w′ ∈ F ′
1 (respectively, w′ ∈ F ′

2) means that 〈(k̄)w′〉, 〈(j̄1)w′〉
(respectively, 〈(j̄1)w′〉, 〈(k̄)w′〉) in 5.6 are qn+1−m, q̄1 in (2), respectively.

Take any w′ ∈ F ′
1 with the notation as in 5.5 (a′). Let J1 = {t1, t2, ..., tn−2},

J2 = J1\{tl+1}, J3 = {t0, t1, ..., tm−2}, J4 = {t1, t2, ..., tm−1}. Let J ′
j = η(Jj)

for j ∈ [4]. If (j2)w′ < (k)w′, let w′′ = wJ4wJ3wJ1wJ2w
′, then w′′ ∈ F ′

2 with

`(w′′) = `(w′)+ `(wJ4wJ3wJ1wJ2) (see Figure 4). If (j2)w′ > (k)w′, let w′′ =

wJ′
2
wJ′

1
wJ′

3
wJ′

4
w′, then w′′ ∈ F ′

2 with `(w′′) = `(w′) − `(wJ′
2
wJ′

1
wJ′

3
wJ′

4
). In
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either case, w′′, w′ are in the same lcc of E′
λ by Corollary 2.17. So w′′ ∼

L
w′

and Tα(w′) = Tα(w′′) by Lemma 3.6. w′ 7→ w′′ is a bijection from F ′
1 to F ′

2.
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Next consider the case 5.5 (c′). Let F ′′
i be the set of all w′ ∈ F ′′

λ sat-

isfying (c′1i) and (c′2)-(c′3) for i = 1, 2. Then F ′′
1 ∩ F ′′

2 = ∅. Use the

notation in 5.6 and in (2) above, w′ ∈ F ′′
1 (respectively, w′ ∈ F ′′

2 ) means

that 〈(j̄1)w′〉, 〈(ip)w′〉 (respectively, 〈(̄ip)w′〉, 〈(j̄1)w′〉) in 5.6 are q̄p+1, qp

in (2), respectively. Take any w′ ∈ F ′′
1 . Let J1 = {t1, t2, ..., tn−2}, J2 =

J1 \ {tl}, J3 = {t0, t1, ..., tm−2}, J4 = J3 \ {t0}, J5 = {tn−1, tn−2, ..., tn+1−p},
J6 = J5 \ {tn−1}, J7 = {tm, tm+1, ..., tn−2−p}, J8 = J7 \ {tn−2−p} and J9 =

{t1, t2, ..., tm−1}. Let x1 = w′, x2 = wJ3wJ4wJ1wJ2x1, x3 = wJ5wJ6tnx2,

x4 = t0wJ9wJ4wJ7wJ8x3. Let w′′ = x4. Then xi ∈ E′′
λ for i ∈ [4] and
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w′′ ∈ F ′′
2 with `(x2) = `(x1)+`(wJ3wJ4wJ1wJ2), `(x3) = `(x2)−`(wJ5wJ6tn)

and `(x4) = `(x3) + `(t0wJ9wJ4wJ7wJ8) (see Figure 5). w′, w′′ are in the

same lcc of E′′
λ by Corollary 2.17. So w′ ∼

L
w′′ and hence Tα(w′) = Tα(w′′)

by Lemma 3.6. w′ 7→ w′′ is a bijection from F ′′
1 to F ′′

2 .

From 5.6 and the above discussion, we conclude that

Lemma 5.8. Let λ = (2m, 2, 1, ..., 1) ∈ Λ2n.

(1) Each of E′
λ and E′′

λ is a union of some left cells of C̃n if m < n − 1.

(2) Any left cell of C̃n in Eλ is left-connected.

Now consider the two-sided cells of C̃n in Eλ.

Lemma 5.9. Let λ = (2m, 2, 1, ..., 1) ∈ Λ2n.

(1) If m < n− 1, then each of E′
λ and E′′

λ is two-sided-connected and is a

two-sided cell of C̃n.

(2) E(2n−2,2) is two-sided-connected and is a single two-sided cell of C̃n.

Proof. By 1.3 (1)-(2), Lemmas 1.4, 5.4 and 5.8, to show our result, we need

only to prove that each of E′
λ and E′′

λ is two-sided-connected if m < n − 1

and that E(2n−2,2) is two-sided-connected.

(I) First assume m < n − 1.

(Ia) E′
λ is two-sided-connected.

Let w1 = [0, 2, 3, ..., n − m,n + m,n + m − 1, ..., n + 2, n + 1] and w2 =

[0,−1,−2, ...,−m + 1,m + 1,m + 2, ..., n − 1, n + 1] be in C̃n (see Figure 6).

Then w1, w2 ∈ F ′
λ. Let F ′

1, F ′
2 be defined as in 5.7. Then

(5.9.1) η(E′
λ) = E′

λ; wi ∈ F ′
i , η(wi) = w3−i, η(F ′

i ) = F ′
3−i for i = 1, 2.

by Proposition 2.8 (3). By 5.6, to show (Ia), we need only to prove that

(a) Any x ∈ F ′
i is in the rcc of E′

λ containing wi for i = 1, 2;

(b) w1 and w2 are in the same tcc of E′
λ.
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For (a), we need only to deal with the case of i = 1 by the fact (5.9.1),

while the argument for this part is similar to that for Lemma 4.4 (3) (hence

leaving it to the readers). Now consider (b). Let J1 = {t2, t3, ..., tn−2}, J2 =

J1\{tn−m}, J3 = {t0, t1, ..., tm−1}, J4 = J3\{t1}, J5 = {tn, tn−1, ..., tn+1−m},
J6 = J5 \ {tn−1} and y = wJ3wJ4wJ1wJ2w1. Then y = w2wJ1wJ2wJ6wJ5 ,

which is in E′
λ and satisfies `(y) = `(w1) + `(wJ3wJ4wJ1wJ2) = `(w2) +

`(wJ1wJ2wJ6wJ5) (see Figure 6). This proves (b) by Corollary 2.17.

(Ib) E′′
λ is two-sided-connected.

Let w1 = [1, 2, ..., n − m − 1, n + m,n + m − 1, ..., n + 1, n + m + 1] and

w2 = [−m, 0,−1,−2, ...,−m + 1,m + 2,m + 3, ..., n] be in C̃n (see Figure 7).

Let F ′′
1 , F ′′

2 be defined as in 5.7. Then

(5.9.2) wi ∈ F ′′
i , η(wi) = w3−i, η(F ′′

i ) = F ′′
3−i for i = 1, 2.

by Proposition 2.8 (3). By 5.6, to show (Ib), we need only to prove that

(a) Any x ∈ F ′′
i is in the rcc of E′′

λ containing wi for i = 1, 2;

(b) w1 and w2 are in the same tcc of E′′
λ .

By (5.9.2), to prove (a), we need only to deal with the case of i = 1,

the latter can be proved by the argument similar to that for Lemma 4.4 (3)

(hence leaving it to the readers). Next consider (b).
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Let J1 = {t1, t2, ..., tn−2}, J2 = J1\{tn−m−1}, J3 = {t0, t1, ..., tm−1}, J4 =

J3 \ {t0}, J5 = {tn, tn−1, ..., tn−m+1}, J6 = J5 \ {tn}, J7 = {t2, t3, ..., tn−1},
J8 = J7 \ {tn−m} and J9 = J4 \ {t1}. Let x0 = w1, x1 = tnx0, x2 =

wJ3wJ4wJ1wJ2x1, x3 = x2wJ6wJ5wJ8wJ7 , x4 = x3t0wJ9wJ4 and x5 = wJ9wJ4x4.

Then x5 = w2. We have xi ∈ E′′
λ for any i ∈ [0, 5] and `(x1) = `(x0) − 1,

`(x2) = `(x1)+ `(wJ3wJ4wJ1wJ2), `(x3) = `(x2)− `(wJ6wJ5wJ8wJ7), `(x4) =

`(x3) + `(t0wJ9wJ4), `(x5) = `(x4) − `(wJ9wJ4) (see Figure 7).
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By Corollary 2.17, we see that xi−1, xi are contained in the same tcc of

E′′
λ for any i ∈ [5]. This proves (b) and hence E′′

λ is two-sided connected.

(II) E(2n−2,2) is two-sided-connected.

Denote λ = (2n − 2, 2). Let w1 = [2n − 1, 2n − 2, ..., n + 1, 2n], w2 =

[0,−1, ...,−n + 2, n + 1], w3 = [0, 2n − 1, 2n − 2, ..., n + 1] and w4 = [−n +

1, 0,−1, ...,−n + 2] be in C̃n (see Figure 8). Then wi ∈ Fλ := F ′
λ ∪ F ′′

λ for

i ∈ [4]. By the argument similar to that for Lemma 4.4 (3), we can show that
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any element of Fλ is in the rcc of Eλ containing wi for some i ∈ [4] (hence

leaving it to the readers). Note that η(wi) = w5−i for i ∈ [4] by Proposition

2.8 (3). Thus to show that Eλ is two-sided-connected, we need only to prove

that w1, w2 (respectively, w2, w3) are in the same tcc of Eλ.

Let x1 = w1, x2 = wJ4wJ2x1, x3 = x2wJ5wJ3 , x′
1 = w3, x′

2 = tnwJ4wJ2wJ3wJ1x
′
1,

x′
3 = x′

2wJ1wJ5t0wJ1wJ3 , where J1 = {t2, t3, ..., tn−1}, J2 = {t1, t2, ..., tn−2},
J3 = J2 ∪ {tn−1}, J4 = J2 ∪ {t0}, J5 = J1 ∪ {tn}. Then x3 = x′

3 = w2 and

xi, x
′
i ∈ Eλ for i ∈ [3] and `(x2) = `(x1)+`(wJ4wJ2) = `(x3)+`(wJ3wJ5) and

`(x′
2)=`(x′

1)+`(tnwJ4wJ2wJ3wJ1)=`(x′
3)+`(wJ3wJ1t0wJ5wJ1) (see Figure 8).

We see by Corollary 2.17 that w1, w2, (respectively, w2, w3) are in the same

tcc of Eλ. So Eλ is two-sided-connected. ¤
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Recall the notation n(λ), n′(λ), n′′(λ) in Theorem 5.1 (2).

Lemma 5.10. n(λ) = 2m−1n!(n+3−m)
(n+1−m)! for λ = (2m, 2, 1, ..., 1) ∈ Λ2n. In this

case, if m < n − 1, then n′(λ) = 2m−1n!
(n+1−m)! and n′′(λ) = 2m−1n!(n+2−m)

(n+1−m)! .
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Proof. Consider T = (T1, ..., T2m) ∈ ξ−1(α) satisfying 5.7 (1)-(2). The num-

ber of the choices is
(

n
n+1−m

)
for E := Tm∪Tm+1 = {q̄n+1−m, q̄n−m, ..., q̄1, q1,

..., qn−m, qn+1−m} with q̄1 < q1 < q2 < · · · < qn+1−m in [2n]. Once E is fixed,

the number of the choices is n + 3 − m for Tm satisfying (5.7.1), while that

is 2m−1(m − 1)! for (T1, ..., Tm−1). We know that w′ is in E′
λ (respectively,

E′′
λ) if and only if the m-th component of T (w′) is {q̄1, qn+1−m} (respectively,

satisfies (5.7.1) but is not {q̄1, qn+1−m}). This proves our result. ¤

If m > 1, then the number of the choices is infinite for the integer (jm)w

in the case 5.2 (a), hence |E(2m,2,1,...,1)| = ∞. On the other hand, the set

E2212n−4 = {t0tn, titi+1 · · · tj , tjtj−1 · · · ti | 0 6 i 6 j 6 n} \ {t0, tn} is finite.

So far we have proved all the assertions of Theorem 5.1 involving the

partition λ = (2m, 2, 1, ..., 1) ∈ Λ2n.

5.11. Let µ = (2m + 1, 2, 1, ..., 1) ∈ Λ2n and l = n − m − 1. Then w ∈ C̃n is

in Eµ if and only if w satisfies the condition (5.11.1) below.

(5.11.1) There are some pairwise not 2n-dual j1, j2, ..., jm, k, i1, i2, ..., il in

[2n] with j1, j2, ..., jm, k w-wild heads and i1, i2, ..., il w-tame heads such

that (i) j1 ≺w j2 ≺w · · · ≺w jm; (ii) either ī1, i1 ≺w j1, or īl, il ≺w j1; (iii)

i1 < i2 < · · · < il and (i1)w < (i2)w < · · · < (il)w; (iv) k is w-comparable

with none of īh, ih, jq for any h ∈ [l] and some q ∈ [m].

According to (i)-(ii) and (iv), if k is w-comparable with jp for some p ∈ [m],

then k ≺w jp and p > 1 by Lemma 3.2. Thus under the assumption of (i)-

(ii), the condition (iv) is equivalent to that k is w-comparable with none of

īh, ih, j1 for any h ∈ [l].

5.12. Under the condition (5.11.1) on w ∈ Eµ, there are two possible cases:

(a) ī1, i1 ≺w j1. Then j1 < ī1 < i1 < j̄1 and (j̄1)w < (̄i1)w < (i1)w <

(j1)w and il−2n < k−2n < k̄ < īl and (il)w−2n < (k̄)w < (k)w−2n < (̄il)w;

(b) īl, il ≺w j1. Then j1−2n < il−2n < īl < j̄1 and (j̄1)w < (il)w−2n <

(̄il)w < (j1)w − 2n and ī1 < k < k̄ < i1 and (̄i1)w < (k̄)w < (k)w < (i1)w.

Let E′
µ (respectively, E′′

µ) be the set of all w ∈ Eµ in the case (a) (respec-

tively, (b)).
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From the matrix forms of elements, we see that w ∈ Eµ is in the case (a)

(respectively, (b)) if and only if so does w−1. So by 5.11, we get

Lemma 5.13. Let µ = (2m + 1, 2, 1, ..., 1) ∈ Λ2n. Then

(1) E′
µ
−1 = E′

µ and E′′
µ
−1 = E′′

µ.

(2) The group automorphism η of C̃n interchanges the sets E′
µ and E′′

µ.

(3) Eµ = E′
µ∪̇E′′

µ.

5.14. Let F ′
µ (respectively, F ′′

µ ) be the set of all w′ ∈ C̃n satisfying (a′)

(respectively, (b′)) below.

(a′) There exist w′-wild heads j1, j2, ..., jm, k and w′-tame heads i1, i2, ..., il

such that

(i) (k̄, īl, īl−1, ..., ī2, jm, jm−1, ..., j1, ī1) = (1, 2, ..., n);

(ii) 0 < (jh+1)w′ − (jh)w′ < 2n for any h ∈ [m − 1];

(iii) (i1)w′ < (i2)w′ < · · · < (il)w′ < (k̄)w′ + 2n 6 2n;

(iv) (ip)w′ < (j1)w′ < (ip+1)w′ for some p ∈ [l] with the convention that

(il+1)w′ = (k)w′.

(b′) There exist w′-wild heads j1, j2, ..., jm, k and w′-tame heads i1, i2, ..., il

such that

(i) (k̄, i1, i2, ..., il−1, jm, jm−1, ..., j1, il) = (n + 1, n + 2, ..., 2n);

(ii) 0 < (jh+1)w′ − (jh)w′ < 2n for any h ∈ [m − 1];

(iii) n < (k)w′ < (i1)w′ < (i2)w′ < · · · < (il)w′;

(iv) (̄ip)w′+2n < (j1)w′ < (̄ip−1)w′+2n for some p ∈ [l] with the convention

that (̄i0)w′ = (k)w′.

5.15. By 5.11-5.12 and 5.14, we have F ′
µ ⊆ E′

µ and F ′′
µ ⊆ E′′

µ. Also, by 3.3

and Lemma 3.2, any lcc of E′
µ (respectively, E′′

µ) contains some element of

F ′
µ (respectively,F ′′

µ ).

Let β = (1, ..., 1, 2, 2l +1, 1, ..., 1) ∈ Λ̃2n with 2 the (m+1)-th component.

Let Fµ := F ′
µ ∪ F ′′

µ . By the argument for Lemma 4.6, there is some z ∈ Ω

with z ∼
L

w′ and T (z) ∈ ξ−1(β) for any w′ ∈ Fµ. Now we describe T (z). If

w′ ∈ F ′
µ is as in 5.14 (a′), then
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(5.15.1) T (z) =
(
{〈(j̄m)w′〉}, ..., {〈(j̄1)w′〉}, {〈(k̄)w′〉, 〈(ip)w′〉},

{〈(k)w′〉, 〈(j1)w′〉, 〈(̄ih)w′〉, 〈(ih)w′〉 | h ∈ [l]} \ {〈(ip)w′〉},

{〈(j2)w′〉}, ..., {〈(jm)w′〉}) ,

where (i) 〈(k̄)w′〉 ∈ [(il)w′ + 1, 2n]; (ii) p ∈ [l]. If p < l, then (̄ip+1)w′ <

(j̄1)w′ < (̄ip)w′; if p = l then (j̄1)w′ is in one of the three cases: (k)w′−2n <

(j̄1)w′ < (̄il)w′, 1 6 (j̄1)w′ < (k)w′ − 2n, (k̄)w′ < (j̄1)w′ 6 0.

If w′ ∈ F ′′
µ is as in 5.14 (b′), then

(5.15.2) T (z) =
(
{〈(j̄m)w′〉}, ..., {〈(j̄1)w′〉}, {〈(k̄)w′〉, 〈(̄ip)w′〉},

{〈(k)w′〉, 〈(j1)w′〉, 〈(̄ih)w′〉, 〈(ih)w′〉 | h ∈ [l]} \ {〈(̄ip)w′〉},

{〈(j2)w′〉}, ..., {〈(jm)w′〉}) ,

where (i) 〈(k̄)w′〉 ∈ [(̄i1)w′ + 1, n]; (ii) p ∈ [l]. If p > 1 then (ip−1)w′ <

(j̄1)w′+2n < (ip)w′; if p = 1 then (j̄1)w′ is in one of the three cases: (k)w′ <

(j̄1)w′ + 2n < (i1)w′, n < (j̄1)w′ + 2n < (k)w′, (k̄)w′ < (j̄1)w′ + 2n 6 n.

5.16. We see that T (z) only depends on w′ ∈ Fµ and β, but not on the

choice of z ∈ Ω. We can denote T (z) by Tβ(w′). This defines a map Tβ :

Fµ −→ ξ−1(β). By 5.14-5.15, we see that T = (T1, T2, ..., T2m+1) ∈ ξ−1(β)

is in the image of Tβ if and only if T satisfies the following conditions:

(1) Ti = T2m+2−i for i ∈ [2m + 1] \ {m,m + 1,m + 2};
(2)

⋃m+2
i=m Ti = {q̄n−m+1, q̄n−m, ..., q̄1, q1, q2, ..., qn−m+1} with q̄1 < q1 <

q2 < · · · < qn−m+1 in [2n] and (Tm, Tm+1) ∈ E1 ∪E2 ∪E3 ∪E4, where E1 =

{({q̄i+1}, {qn−m+1, qi}) | i ∈ [n−m−1]}, E2 = {({qj}, {q̄1, q̄j+1}) | j ∈ [2, n−
m]}, E3 = {({q̄n−m+1}, {qn−m, qn−m−1}), ({qn−m+1}, {qn−m, qn−m−1})} and

E4 = {({q1}, {q̄2, q̄3}), ({q̄1}, {q̄2, q̄3})}.
5.17. Keep the notation in 5.14-5.15. For w ∈ Fµ, let Ti(w) be the i-

th component of Tβ(w) for i ∈ [2m + 1]. Then w′ ∈ F ′
µ if and only if

(Tm(w′), Tm+1(w′)) ∈ E1∪E3; w′′ ∈ F ′′
µ if and only if (Tm(w′′), Tm+1(w′′)) ∈
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E2 ∪ E4. So (Tm(w′), Tm+1(w′)) 6= (Tm(w′′), Tm+1(w′′)) (hence Tβ(w′) 6=
Tβ(w′′)) for any w′ ∈ F ′

µ and any w′′ ∈ F ′′
µ . Each of E′

µ and E′′
µ is a union of

some left cells of C̃n by Lemmas 3.6 and 2.13. This further implies by Lemmas

2.12, 2.14, 5.13 and 1.4 that each of E′
µ and E′′

µ is a union of some two-sided

cells of C̃n. Let w1 = [0, 2, 3, ..., n−m− 1, n + m + 1, n + m, ..., n + 2, n] and

w2 = [1,−1,−2, ...,−m,m+2,m+3, ..., n−1, n+1] be in C̃n (see Figure 9).

Then w1 ∈ F ′
µ and w2 ∈ F ′′

µ . By the argument similar to that for Lemma 4.4

(3), we can prove that F ′
µ (respectively, F ′′

µ ) is in the rcc of E′
µ (respectively,

E′′
µ) containing w1 (respectively, w2) (the proof is left to the readers). So by

5.15 and Lemma 2.16, we conclude that

(5.17.1) Each of E′
µ and E′′

µ is two-sided-connected and is a two-sided cell

of C̃n.

Let T = (T1, T2, ..., T2m+1) ∈ ξ−1(β) satisfy 5.16 (1)-(2). If (Tm, Tm+1) ∈
E1 ∪ E3, then w′ ∈ F ′

µ with Tβ(w′) = T is uniquely determined by 5.14

(a′) and (5.15.1). This implies by 5.15 that any left cell of C̃n in E′
µ is left-

connected. Since E′′
µ = η(E′

µ) by Lemma 5.13, any left cell of C̃n in E′′
µ is

also left-connected. So we conclude that

(5.17.2) All left cells of C̃n in Eµ are left-connected.

1st column (n+1)th column

1
1

1
1

l−1

l−1

m

m

l−1

wl w2

1st column (n+1)th column

1
1

1
1

m

l−1

m

l−1

l−1

1st row

(n+1)th row

Figure 9

5.18. Now we want to enumerate the left cells in E′
µ and E′′

µ. Since η(E′
µ) =

E′′
µ, we need only deal with the set E′

µ. By 5.16 and Lemma 3.6, we need only

to enumerate T = (T1, T2, ..., T2m+1) in ξ−1(β) satisfying 5.16 (1)-(2) but

with the condition (Tm, Tm+1) ∈ E1∪E2∪E3∪E4 replaced by (Tm, Tm+1) ∈
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E1 ∪ E3.

The number of the choices for E :=
⋃m+2

i=m Ti = {q̄n−m+1, q̄n−m, ..., q̄1, q1,

q2, ..., qn−m+1} is
(

n
n+1−m

)
. Once E is fixed, the number of the choices for

(Tm, Tm+1, Tm+2) is |E1 ∪ E3| = n + 1 − m, while that for (T1, T2, ..., Tm−1)

is 2m−1(m − 1)!. Recall the notation n(µ), n′(µ), n′′(µ) in Theorem 5.1 (3).

(5.18.1) n′(µ)=n′′(µ)=
1
2
n(µ)=

2m−1 · n!
(n − m)!

for µ=(2m+1, 2, 1, ..., 1) ∈ Λ2n.

When m > 1, the number of the choices for (jm)w in (5.11.1) is infinite.

(5.18.2) |E(2m+1,2,1,...,1)| = ∞.

Denote pi,j := titi−1 · · · t1t0tnt1 · · · tj−1tj for i, j ∈ [n] and qi,j = η(pi,j).

Then E′
3212n−5 = {qi,j | i, j ∈ [n]} and E′′

3212n−5 = {pi,j | i, j ∈ [n]}.

(5.18.3) The set E3212n−5 = E′
3212n−5 ∪ E′′

3212n−5 is finite.

By (5.17.1)-(5.17.2) and (5.18.1)-(5.18.3), it is proved for all the assertions

of Theorem 5.1 involving µ = (2m + 1, 2, 1, ..., 1) ∈ Λ2n.

§6. The cells in the weighted Coxeter group (C̃3, ˜̀).
As an application of Theorems 4.9 and 5.1, we shall describe all the cells

of the weighted Coxeter group (C̃3, ˜̀) in this section.

Recall the notation Eλ for λ ∈ Λ2n and η : C̃n −→ C̃n defined before (see

2.15 and 2.7). Let n(λ) be the number of left cells of C̃n in Eλ. When Eλ

is a union of two two-sided cells (say E′
λ, E′′

λ) of C̃n, denote by n′(λ), n′′(λ)

the numbers of left cells of C̃n in E′
λ, E′′

λ , respectively.

The main result of the section is as follows.

Theorem 6.1. In the weighted Coxeter group (C̃3, ˜̀), we have

(1) Eλ is a single two-sided cell of C̃3 if λ ∈ {6,51,42,32,313,23,16}
and is a union of two two-sided cells of C̃3 if λ ∈ {412,321,2212,214}. Eλ

is finite if λ ∈ {16,214,2212,321}, and infinite if otherwise.

(2) η stabilizes the two-sided cells E′
2212 and E′′

2212 , and interchanges the

following pairs of two-sided cells: E′
412 , E′′

412 ; E′
321, E′′

321; E′
214 , E′′

214 .

(3) The numbers n(λ) for any λ ∈ Λ6 are listed as follows.
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λ 6 51 42 412 32 321 313 23 2212 214 16

n(λ) 48 24 24 12 12 6 6 8 5 2 1

we have n′(412) = n′′(412) = 6, n′(321) = n′′(321) = 3, n′(2212) = 4,

n′′(2212) = n′(214) = n′′(214) = 1.

(4) Each left (respectively, two-sided) cell of C̃3 is left- (respectively, two-

sided-) connected.

6.2. All the results in Theorem 6.1 follow by Theorems 4.9 and 5.1 except

for those involving the partitions 32 and 23.

The following equivalent conditions on w ∈ C̃3 hold by Lemma 3.2:

(1) ψ(w) = 32 if and only if one of the conditions (1a)-(1c) holds for some

pairwise not 6-dual i, j, k in [6]:

(1a) i is w-tame and j, k are w-wild heads such that i ≺w k, that ī ≺w j

and that j, k are w-uncomparable;

(1b) k is a w-wild head and i, j are w-tame such that j ≺w i ≺w k and

that k̄ is w-uncomparable with j;

(1c) i, j, k are all w-tame with i ≺w j ≺w k.

(2) ψ(w) = 23 if and only if one of the conditions (2a)-(2c) holds for some

pairwise not 6-dual i, j, k in [6]:

(2a) i, j, k are all w-wild heads and pairwise w-uncomparable;

(2b) i is w-tame; j, k are w-wild heads and w-uncomparable; i is w-

comparable with some element in either {j, k} or {j̄, k̄} but not both;

(2c) k is a w-wild head and i, j are w-tame heads such that j ≺w i and

that k is w-uncomparable with i, j̄.

Since {[6i − 1, 6i, 3] | i ∈ Z \ {0}} ⊂ E32 and {[3i + 1, 3i + 2, 3i + 3] | i ∈
Z \ {0}} ⊂ E23 , we have

(6.2.1) |E32 | = |E23 | = ∞.

6.3. Let F ′
32 be the set of all w′ ∈ C̃3 satisfying (6.3.1) below.

(6.3.1) There exists some pairwise not 6-dual i, j, k in [6] such that one of

the following conditions holds:
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(a) i is a w′-tame head and j, k are w′-wild heads such that (i) j < k

and (j)w′ < (k)w′ < (j)w′ + 6; (ii) j < ī and k < i; (iii) (̄i)w′ < (j)w′ and

(i)w′ < (k)w′; (iv) either (k)w′ < (̄i)w′ + 6 or (j)w′ < (i)w′;

(b) k is a w-wild head and i, j are w-tame heads such that (i) i < j and

(i)w′ > (j)w′; (ii) either (k, i, j) = (4, 5, 6) and 6 < (4)w′ < (1)w′ + 6, or

(k, i, j) = (1, 4, 5) and 3 < (1)w′ < (4)w′;

(c) w′ = [3, 2, 1].

We see by 3.3 and 6.2 (1) that for any w ∈ E32 , there exists some w′ ∈ F ′
32

such that w,w′ are in the same lcc of E32 .

6.4. Let F1 = {[4, 2, 0], [4, 1,−1], [5, 3, 0], [5, 1,−2], [5, 1,−3], [6, 3,−1], [7, 3,−1],

[4, 2, 6], [5, 3, 6]}, F2 = {[3, 2, 0], [3, 1,−1], [4, 2, 1], [5, 3, 1]}, F3 = {[3, 2, 1]}.

Then w′ ∈ F ′
32 satisfies (6.3.1) (a) if and only if w′ is in the lcc of E32

containing some w ∈ F1. w′ ∈ F ′
32 satisfies (6.3.1) (b) (respectively, (6.3.1)

(c)) if and only if w′ ∈ F2 (respectively, w′ ∈ F3).

6.5. Let x1 = [4, 2, 6], x2 = [4, 2, 1], y1 = [5, 3, 6] and y2 = [5, 3, 1]. Then

x1, y1 ∈ F1, x2, y2 ∈ F2, x2 = t3x1 and y2 = t3y1. So x1, x2 (respectively,

y1, y2) are in the same lcc of E32 . Let F32 = (F1∪F2∪F3)\{[4, 2, 6], [5, 3, 6]}.
We see from Figure 10 that all the elements of F32 are in the same rcc of

E32 and have pairwise different generalized τ -invariants (see 2.9 and 2.10).
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Figure 10

So by Lemmas 2.13-2.14 and 2.16, we see that

(6.5.1) E32 is two-sided-connected and forms a two-sided cell of C̃3 with

n(32) = |F32 | = 12, each left cell of C̃3 in E32 is left-connected.

6.6. Next consider E23 . Let F ′
23 be the set of all w′ ∈ C̃3 satisfying (6.6.1)
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below.

(6.6.1) There exists some pairwise not 6-dual i, j, k in [6] satisfying one of

the conditions (a)-(c) below:

(a) i, j, k are all w′-wild heads satisfying: (i) i < j < k and 4 6 (i)w′ <

(j)w′ < (k)w′ 6 9; (ii) i ∈ [3] unless (i)w′ > 6; (iii) k = 6 unless (k)w′ 6 6;

(b) i is a w′-tame head and j, k are w′-wild heads such that (i) j < k and

(j)w′ < (k)w′ < (j)w′ + 6; (ii) Assume j < ī. If k < i then (k)w′ < (i)w′;

if k > i then (j)w′ < (i)w′ < (k)w′; (iii) Assume ī < j < i. If k < i then

(i)w′ < (k)w′ < (̄i)w′ + 6; if k > i then either (i)w′ < (j)w′ < (k)w′ <

(̄i)w′ +6, or (̄i)w′ < (j)w′ < (i)w′ and (̄i)w′ < (k)w′−6 < (i)w′; (iv) If i < j

then (̄i)w′ < (k)w′ − 6 < (i)w′;

(c) k is a w′-wild head and i, j are w′-tame heads with i < j and (j)w′ <

(i)w′ such that (i) j̄ < k and 3 < (k)w′ < (j̄)w′ + 6; (ii) Either i < k, or

k < i and 3 < (k)w′ < (i)w′.

By 6.2 (2) and 3.3, we see that for any w ∈ E23 , there exists some w′ ∈ F ′
23

such that w,w′ are in the same lcc of E23 .

6.7. Let F ′
1 = {[4, 5, 6], [0, 4, 5], [−1, 4, 6], [−2, 5, 6], [−2,−1, 0], [−1, 0, 4],

[−2, 0, 5], [−2,−1, 6]}, F ′
2 = {[4, 1, 5], [0, 4, 2], [2, 4, 6], [3, 5, 6], [2, 0, 4], [0, 3, 5],

[−1, 3, 6], [−1, 1, 4], [−2, 1, 5], [−1, 3, 0], [−2,−1, 1], [−2, 0, 2]}, F ′
3 = {[2, 1, 4],

[3, 1, 5], [0, 3, 2], [−1, 3, 1]}.

We see by 3.3 that any x ∈ F ′
23 satisfying (a) (respectively, (b), (c)) in

(6.6.1) is in a lcc of E23 containing some element of F ′
1 (respectively, F ′

2, F ′
3).

Let F23 = F1 ∪ F2, where F1 = {[0, 4, 2], [0, 3, 2], [−1, 3, 1], [−1, 3, 0]} and

F2 = {[2, 0, 4], [2, 1, 4], [3, 1, 5], [4, 1, 5]}.

Then any x ∈
⋃3

k=1 F ′
k is in a lcc of E23 containing some element of F23 .

6.8. We see from Figure 11 that no two elements of F23 have the same

generalized τ -invariants (see 2.9-2.10).

0

[−1,3,0] [2,0,4]

031 3

[4,1,5]

2 130203

[0,3,2][0,4,2] [3,1,5][−1,3,1] [2,1,4]

Figure 11
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Since [0, 4, 2] = t2t0t3 ∼
R

t0t2t3t1 ∼
L

t1t3 ∼
R

t1t0t3 = [2, 0, 4], the set F23 is

contained in a tcc of E23 . By Lemmas 2.13-2.14 and 2.16, we see that

(6.8.1) E23 is two-sided-connected and is a two-sided cell of C̃3 with n(23) =

|F23 | = 8, each left cell of C̃3 in E23 is left-connected.

So we complete the proof of Theorem 6.1 by Theorems 4.9, 5.1 and the

results (6,2,1), (6.5.1), (6.8.1).
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