THE CELLS OF THE AFFINE WEYL GROUP \widetilde{C}_n IN A CERTAIN QUASI-SPLIT CASE

JIAN-YI SHI

Department of Mathematics, East China Normal University Shanghai, 200241, P.R.China

Dedicated to Professor Roger W. Carter on his 80th birthday

ABSTRACT. The affine Weyl group (\widetilde{C}_n, S) can be realized as the fixed point set of the affine Weyl group $(\widetilde{A}_{2n-1}, \widetilde{S})$ under a certain group automorphism α with $\alpha(\widetilde{S}) = \widetilde{S}$. Let $\widetilde{\ell}$ be the length function of \widetilde{A}_{2n-1} . We study the cells of the weighted Coxeter group $(\widetilde{C}_n, \widetilde{\ell})$. The main results of the paper are to give an explicit description for all the cells of $(\widetilde{C}_n, \widetilde{\ell})$ corresponding to the partitionss

§0. Introduction.

The cells of a weighted Coxeter group (W, L) are discussed in [7]. A particular interesting case is that W is the fixed point set of a finite or affine Coxeter system $(\widetilde{W}, \widetilde{S})$ under a group automorphism α with $\alpha(\widetilde{S}) = \widetilde{S}$ and L is the restriction of the length function of \widetilde{W} (see [7, Chapter 16], [5], [1], [3]). In this paper we discuss the case that \widetilde{W} is of type \widetilde{A}_{2n-1} and W is of type \widetilde{C}_n .

For any $i \leq j$ in the integer set \mathbb{Z} , denote by [i,j] the set $\{i,i+1,...,j\}$. Denote [1,j] simply by [j]. There is a natural bijection between the set of two-sided cells of \widetilde{A}_{2n-1} and the set Λ_{2n} of partitions of 2n (see [8], [6]).

 $Key\ words\ and\ phrases.$ Affine Weyl group; weighted Coxeter group; quasi-split case; cells; partitions.

Supported by the NSF of China (11131001 and 11471115) and Program of Shanghai Subject Chief Scientist (11xd1402200)

Let Ω_{λ} be the two-sided cell of \widetilde{A}_{2n-1} corresponding to $\lambda \in \Lambda_{2n}$. We are interested in the sets $E_{\lambda} = \Omega_{\lambda} \cap \widetilde{C}_n$. We describe all the cells in the sets $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ (Theorem 4.9) and $E_{\mathbf{h}\mathbf{2}\mathbf{1}^{2\mathbf{n}-\mathbf{h}-2}}$ (Theorem 5.1) for all $k \in [2n]$ and $h \in [2, 2n-2]$ and also all the cells of the weighted Coxeter group $(\widetilde{C}_3, \widetilde{\ell}_5)$ (Theorem 6.1).

For all considered $\lambda \in \Lambda_{2n}$, we prove that all left (respectively, two-sided) cells in E_{λ} are left- (respectively, two-sided-) connected (see 2.15 and Theorems 4.9, 5.1 and 6.1). I conjecture that this should be true for the left cells and two-sided cells of any weighted Coxeter group.

The paper is organized as follows. Section 1 is devoted to collect some basic concepts and known facts concerning cells of weighted Coxeter groups. In Sections 2-3, we focus on the weighted Coxeter group $(\widetilde{C}_n, \widetilde{\ell}_{2n-1})$. Then we discuss the sets $E_{\mathbf{k}\mathbf{1}^{2n-k}}$ and $E_{\mathbf{h}\mathbf{2}\mathbf{1}^{2n-k-2}}$ for all $k \in [2n]$ and $h \in [2, 2n-2]$ in Sections 4 and 5, respectively. Finally, we discuss cells of the weighted Coxeter group $(\widetilde{C}_3, \widetilde{\ell}_5)$.

§1. Cells in Coxeter groups.

In this section, we collect some concepts and results concerning cells of a weighted Coxeter group, all but Lemma 1.4 follow Lusztig in [7].

1.1. Let (W,S) be a Coxeter system with ℓ its length function and \leq the Bruhat-Chevalley ordering on W. A weight function on W is a function $L:W\longrightarrow \mathbb{Z}$ such that L(wu)=L(w)+L(u) if $\ell(wu)=\ell(w)+\ell(u)$ for $w,u\in W$. Call (W,L) a weighted Coxeter group. Call (W,L) in the split case if $L=\ell$.

When α is a group automorphism of W with $\alpha(S) = S$, let $W^{\alpha} = \{w \in W \mid \alpha(w) = w\}$. For any α -orbit J on S, let $w_J \in W^{\alpha}$ be the longest element in the subgroup W_J of W generated by J. Let S_{α} be the set of elements w_J with J ranging over all α -orbits on S. Then (W^{α}, S_{α}) is a Coxeter group and the restriction to W^{α} of the length function ℓ is a weight function on W^{α} . The weighted Coxeter group (W^{α}, ℓ) is called in the quasi-split case.

- **1.2.** Let \leq , \leq , \leq be the preorders on (W, L) defined in [7, Chapter 8]. The corresponding equivalence classes in W are called *left cells*, *right cells*, *two-sided cells* of W, respectively. For $w \in W$, define $\mathcal{L}(w) = \{s \in S \mid sw < w\}$ and $\mathcal{R}(w) = \{s \in S \mid ws < w\}$. If $y, w \in W$ satisfy $y \leq w$ (respectively, $y \leq w$), then $\mathcal{R}(y) \supseteq \mathcal{R}(w)$ (respectively, $\mathcal{L}(y) \supseteq \mathcal{L}(w)$). In particular, if $y \sim w$ (respectively, $y \sim w$), then $\mathcal{R}(y) = \mathcal{R}(w)$ (respectively, $\mathcal{L}(y) = \mathcal{L}(w)$) (see [7, Lemma 8.6]).
- **1.3.** In [7, Chapter 13], Lusztig defined a function $a: W \longrightarrow \mathbb{N} \cup \{\infty\}$ for a weighted Coxeter group (W, L), he proved the following results when W is either a finite or an affine Coxeter group and when (W, L) is either in the split case or in the quasi-split case.
- (1) $y \leqslant w$ in W implies $a(w) \leqslant a(y)$. Hence $y \sim_{LR} w$ in W implies a(w) = a(y).
- (2) If $w, y \in W$ satisfy a(w) = a(y) and $y \leq w$ (respectively, $y \leq w$, $y \leq w$) then $y \sim w$ (respectively, $y \sim w$, $y \sim w$).

For any $X \subset W$, write $X^{-1} := \{x^{-1} \mid x \in X\}$.

Lemma 1.4. Suppose that W is either a finite or an affine Coxeter group and that (W, L) is either in the split case or in the quasi-split case.

Let E be a non-empty subset of W satisfying the following conditions:

- (a) There exists some $k \in \mathbb{N}$ with a(x) = k for any $x \in E$;
- (b) E is a union of some left cells of W;
- (c) $E^{-1} = E$.

Then E is a union of some two-sided cells of W.

Proof. By (b)-(c), E is also a union of some right cells of W. The set $W_{(k)} := \{w \in W \mid a(w) = k\}$ is a union of some two-sided cells of W by 1.3 (1). If the result is false, then by (c), there must exist some $x \in E$ and $y \in W_{(k)} \setminus E$ such that either $x \leq y$ or $y \leq x$. In either case, we would have $x \sim y$ by 1.3 (2), contradicting (b). This proves our result. \square

$\S 2$. The affine Weyl groups \widetilde{A}_{2n-1} and \widetilde{C}_n .

From now on, we focus on the weighted Coxeter groups $(\widetilde{A}_{2n-1}, \widetilde{\ell})$ and $(\widetilde{C}_n, \widetilde{\ell})$, where $\widetilde{\ell}$ is the length function of the affine Weyl group \widetilde{A}_{2n-1} .

2.1. The affine Weyl group A_{2n-1} can be realized as the following permutation group on the set \mathbb{Z} (see [4, Subsection 3.6] and [8, Subsection 4.1)]:

$$\widetilde{A}_{2n-1} = \left\{ w : \mathbb{Z} \longrightarrow \mathbb{Z} \left| (i+2n)w = (i)w + 2n, \sum_{i=1}^{2n} (i)w = \sum_{i=1}^{2n} i \right. \right\}.$$

The Coxeter generator set $\widetilde{S} = \{s_i \mid i \in [0, 2n-1]\}$ of \widetilde{A}_{2n-1} is given by

$$(t)s_i = \begin{cases} t, & \text{if } t \not\equiv i, i+1 \ (\bmod 2n), \\ t+1, & \text{if } t \equiv i \ (\bmod 2n), \\ t-1, & \text{if } t \equiv i+1 \ (\bmod 2n), \end{cases}$$

for $t \in \mathbb{Z}$ and $i \in [0, 2n-1]$. Any $w \in \widetilde{A}_{2n-1}$ can be realized as a $\mathbb{Z} \times \mathbb{Z}$ monomial matrix $A_w = (a_{ij})_{i,j \in \mathbb{Z}}$, where a_{ij} is 1 if j = (i)w and 0 if otherwise. The row (respectively, column) indices of A_w are increasing from top to bottom (respectively, from left to right).

Let α be the group automorphism of \widetilde{A}_{2n-1} determined by $\alpha(s_i) = s_{2n-i}$ for $i \in [0, 2n-1]$. Then the affine Weyl group \widetilde{C}_n can be realized as the fixed point set of \widetilde{A}_{2n-1} under α . As a permutation group on \mathbb{Z} , we have

$$\widetilde{C}_n = \{ w : \mathbb{Z} \longrightarrow \mathbb{Z} \mid (i+2n)w = (i)w + 2n, (i)w + (1-i)w = 1, \ \forall \ i \in \mathbb{Z} \}$$

with the Coxeter generator set $S = \{t_i \mid i \in [0, n]\}$, where $t_i = s_i s_{2n-i}$ for $i \in [n-1]$, $t_0 = s_0$ and $t_n = s_n$. For the sake of convenience, we define s_i and t_j for any $i, j \in \mathbb{Z}$ by setting $s_{2qn+b} = s_b$ and $t_{2pn\pm a} = t_a$ for any $p, q \in \mathbb{Z}$, $b \in [0, 2n-1]$, $a \in [0, n]$.

2.2. By a partition of an integer n > 0, we mean an r-tuple $\lambda := (\lambda_1, \lambda_2, ..., \lambda_r)$ of integers $\lambda_1 \ge \cdots \ge \lambda_r > 0$ with $\sum_{k=1}^r \lambda_k = n$ for some $r \ge 1$. Call λ_i a part of λ . We sometimes denote λ in the form $\mathbf{j_1^{k_1} j_2^{k_2} \cdots j_m^{k_m}}$ (boldfaced) with

 $j_1 > j_2 > \cdots > j_m$ if j_i is a part of λ with multiplicity $k_i \ge 1$ for $i \ge 1$. Let Λ_n be the set of all partitions of n.

Fix $w \in \widetilde{A}_{2n-1}$. For any $i \neq j$ in [2n], we write $i \prec_w j$, if there exist some $p,q \in \mathbb{Z}$ such that 2pn+i>2qn+j and (2pn+i)w<(2qn+j)w. In the matrix of w, this means that the position (2qn+j,(2qn+j)w) is located at the northeastern of the position (2pn+i,(2pn+i)w). This defines a partial order \leq_w on the set [2n].

A sequence $a_1, a_2, ..., a_r$ in [2n] is called a w-chain, if $a_1 \prec_w a_2 \prec_w \cdots \prec_w$ a_r . Sometimes we identify a w-chain $a_1, a_2, ..., a_r$ with the corresponding set $\{a_1, a_2, ..., a_r\}$. For any $k \ge 1$, a k-w-chain-family is by definition a disjoint union $X = \bigcup_{i=1}^k X_i$ of k w-chains $X_1, ..., X_k$ in [2n]. Let d_k be the maximally possible cardinal of a k-w-chain-family for any $k \ge 1$. Then there exists some $r \geqslant 1$ such that $d_1 < d_2 < \cdots < d_r = 2n$. Let $\lambda_1 = d_1$ and $\lambda_{k+1} = d_{k+1} - d_k$ for $k \in [r-1]$. Then $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_r$ by a result of Greene in [2]. Hence $w \mapsto \psi(w) := (\lambda_1, ..., \lambda_r)$ defines a map $\psi : \widetilde{A}_{2n-1} \longrightarrow \Lambda_{2n}$.

2.3. Let $\widetilde{\ell}$, ℓ be the length functions on $(\widetilde{A}_{2n-1}, \widetilde{S})$, (\widetilde{C}_n, S) , respectively. By 1.1, we see that the weighted Coxeter group $(\widetilde{A}_{2n-1}, \widetilde{\ell})$ is in the split case, while $(\widetilde{C}_n, \widetilde{\ell})$ is in the quasi-split case (see [7, Lemma 16.2]).

For any $x \in \widetilde{A}_{2n-1}$ and $k \in \mathbb{Z}$, let $m_k(x) = \#\{i \in \mathbb{Z} \mid i < k \text{ and } (i)x > i \}$ (k)x. Then the formulae for the functions $\tilde{\ell}$ and ℓ are as follows.

Proposition 2.4. For any
$$w \in \widetilde{A}_{2n-1}$$
 and $x \in \widetilde{C}_n$, we have
 $(1) \ \widetilde{\ell}(w) = \sum_{1 \leq i < j \leq 2n} \left| \left\lfloor \frac{(j)w - (i)w}{2n} \right\rfloor \right| = \sum_{k=1}^{2n} m_k(w);$

(2)
$$\ell(x) = \frac{1}{2}(\widetilde{\ell}(x) + m_1(x) + m_{n+1}(x)),$$

where |a| is the largest integer not larger than a, and |a| is the absolute value of a for any $a \in \mathbb{Q}$.

Proof. The first equality of (1) is just [8, Lemma 4.2.2], while the second equality of (1) follows by the facts that for any i < j in [2n], at most one of $m_{ij}(w) := {}^{\#}\{k \in \mathbb{Z} \mid k \equiv i \pmod{2n}; k < j; (k)w > (j)w\}$ and $m_{ji}(w) := {}^{\#}\{k \in \mathbb{Z} \mid k \equiv j \pmod{2n}; k < i; (k)w > (i)w\}$ is positive, that $\left| \left\lfloor \frac{(j)w - (i)w}{2n} \right\rfloor \right| = \max\{m_{ij}(w), m_{ji}(w)\}$ and that $m_k(w) = \sum_{i \in [2n] \setminus \{k\}} m_{ik}(w)$. (2) follows by the definition of t_i 's in terms of s_j 's. \square

2.5. Let \leq , \leq_C be the Bruhat-Chevalley orders on $(\widetilde{A}_{2n-1}, \widetilde{S})$, (\widetilde{C}_n, S) , respectively. Since the condition $x \leq_C y$ is equivalent to $x \leq y$ for any $x, y \in \widetilde{C}_n$, we may use \leq for both \leq and \leq_C from now on.

Let $\widetilde{\mathcal{L}}(x) = \{ s \in \widetilde{S} \mid sx < x \}$ and $\widetilde{\mathcal{R}}(x) = \{ s \in \widetilde{S} \mid xs < x \}$ for $x \in \widetilde{A}_{2n-1}$ and let $\mathcal{L}(y) = \{ t \in S \mid ty < y \}$ and $\mathcal{R}(y) = \{ t \in S \mid yt < y \}$ for $y \in \widetilde{C}_n$.

Corollary 2.6. For any $x \in \widetilde{C}_n$ and $i \in [0, n]$,

$$s_{i} \in \widetilde{\mathcal{L}}(x) \iff s_{2n-i} \in \widetilde{\mathcal{L}}(x) \iff t_{i} \in \mathcal{L}(x)$$

$$\iff (i)x > (i+1)x \iff (2n+1-i)x < (2n-i)x,$$

$$s_{i} \in \widetilde{\mathcal{R}}(x) \iff s_{2n-i} \in \widetilde{\mathcal{R}}(x) \iff t_{i} \in \mathcal{R}(x)$$

$$\iff (i)x^{-1} > (i+1)x^{-1} \iff (2n+1-i)x^{-1} < (2n-i)x^{-1}$$

Proof. The equivalent conditions involving the s_i 's hold by [8, Lemma 4.2.4], while those involving the t_j 's hold by the expression of t_j in terms of s_i 's and by Proposition 2.4. \square

2.7. Any $w \in \widetilde{C}_n$ is determined uniquely by the *n*-tuple ((1)w, (2)w, ..., (n)w). Hence we may denote w by [(1)w, (2)w, ..., (n)w]. For any $a \in \mathbb{Z}$, denote by $\langle a \rangle$ the unique integer in [2n] satisfying $a \equiv \langle a \rangle \pmod{2n}$. Let η be the group automorphism of \widetilde{C}_n determined by $\eta(t_i) = t_{n-i}$ for any $i \in [0, n]$. The following results are related to the expression $w = [a_1, a_2, ..., a_n] \in \widetilde{C}_n$.

Proposition 2.8. Let $w = [a_1, a_2, ..., a_n]$ and $w' = \eta(w) = [a'_1, a'_2, ..., a'_n]$ be in \widetilde{C}_n . Let $k \in [0, n]$. Then

- (1) $t_k \in \mathcal{L}(w)$ if and only if $a_k > a_{k+1}$, with the convention that $a_0 = 1$ and $a_{n+1} = n$.
- (2) Let $\langle a_i \rangle$, $\langle a_j \rangle \in \{k, k+1, 2n-k, 2n+1-k\}$ for some $i \neq j$ in [n]. Then $t_k \in \mathcal{R}(w)$ if one of the following conditions holds:

(i) $(\langle a_i \rangle, \langle a_j \rangle) \in \{(k, k+1), (2n-k, 2n+1-k)\}$. Either $a_j - a_i > 2n$, or i > j and $a_j > a_i$.

(ii)
$$(\langle a_i \rangle, \langle a_j \rangle) = (k, 2n - k)$$
 and $a_i + a_j < 1$.

(iii)
$$(\langle a_i \rangle, \langle a_j \rangle) = (2n+1-k, k+1)$$
 and $a_i + a_j > 2n+1$.

(3)
$$a'_i = n + 1 - a_{n+1-i}$$
 for any $i \in [n]$.

Proof. (1)-(2) follow by Corollary 2.6. For (3), apply induction on $\ell(w) \ge 0$. It is trivial when $\ell(w) = 0$. If $\ell(w) > 0$, write $w = t_i y$ for some $t_i \in \mathcal{L}(w)$, then $\eta(w) = t_{n-i}\eta(y)$. We have $\eta(y) = [n+1-b_n, n+1-b_{n-1}, ..., n+1-b_1]$ for $y = [b_1, ..., b_n]$ by inductive hypothesis. So $\eta(w) = [n+1-a_n, n+1-a_{n-1}, ..., n+1-a_1]$ by the relations $\eta(w) = t_{n-i}\eta(y)$ and $w = t_i y$. \square

2.9. For any $i \in [0, 2n-1]$, let $\widetilde{D}_R(i) = \{w \in \widetilde{A}_{2n-1} \mid |\{s_i, s_{i+1}\} \cap \widetilde{\mathcal{R}}(w)| = 1\}$. When $w \in \widetilde{D}_R(i)$, define w^* by the condition $w^* \in \{ws_i, ws_{i+1}\} \cap \widetilde{D}_R(i)$, call the transformation $w \mapsto w^*$ a right $\{s_i, s_{i+1}\}$ -star operation (or a right star operation in short) on w. For any $w \in \widetilde{A}_{2n-1}$, let $\widetilde{M}(w)$ be the set of all $y \in \widetilde{A}_{2n-1}$ which is either w or obtained from w by successively applying right star operations. Define a graph $\widetilde{\mathcal{M}}(w)$: its vertex set is $\widetilde{M}(w)$; each $x \in \widetilde{M}(w)$ is labeled by $\widetilde{\mathcal{R}}(x)$; $x, y \in \widetilde{M}(w)$ are joined by a solid edge if y can be obtained from x by a right star operation. By a path in $\widetilde{\mathcal{M}}(w)$, we mean a sequence $x_0, x_1, ..., x_r$ in $\widetilde{M}(w)$ with some $r \geqslant 0$ such that x_{i-1} and x_i are joined by a solid edge for every $i \in [r]$. Say $w, y \in \widetilde{A}_{2n-1}$ have the same generalized τ -invariants, if for any path $w_1 = w, w_2, ..., w_r$ in $\widetilde{\mathcal{M}}(w)$, there exists a path $y_1 = y, y_2, ..., y_r$ in $\widetilde{\mathcal{M}}(y)$ such that $\widetilde{\mathcal{R}}(w_i) = \widetilde{\mathcal{R}}(y_i)$ for every $i \in [r]$ and if this condition still holds when the roles of w and y are interchanged.

For any $i \in [0, n-1]$, let $D_R(i) = \{w \in \widetilde{C}_n \mid |\{t_i, t_{i+1}\} \cap \mathcal{R}(w)| = 1\}$. Regarding \widetilde{C}_n as a subset of \widetilde{A}_{2n-1} , we have $D_R(i) = \widetilde{C}_n \cap \widetilde{D}_R(i) = \widetilde{C}_n \cap \widetilde{D}_R(i) = \widetilde{C}_n \cap \widetilde{D}_R(2n-i-1)$. When $w \in D_R(i)$, we have $|\{wt_i, wt_{i+1}\} \cap D_R(i)| = 1$ unless that $i \in \{0, n-1\}$ and $w \in \{xt_it_{i+1}, xt_{i+1}t_i\}$ for some $x \in \widetilde{C}_n$ with $\mathcal{R}(x) \cap \{t_i, t_{i+1}\} = \emptyset$. In this excepted case, both wt_i and wt_{i+1} are in $D_R(i)$. When $|\{wt_i, wt_{i+1}\} \cap D_R(i)| = 1$, define w^* by the condition $w^* \in \{wt_i, wt_{i+1}\} \cap D_R(i)$, then w^* can be obtained from w by a pair of right star operations if $i \in [n-2]$ and, by a single right star operation if $w^* \in \{wt_0, wt_n\}$ with $i \in \{0, n-1\}$ and, by none of the above two ways if $w^* \in \{wt_1, wt_{n-1}\}$ with $i \in \{0, n-1\}$. When $\{wt_i, wt_{i+1}\} \subset D_R(i)$, define w_1^*, w_2^* by the conditions $\{w_1^*, w_2^*\} = \{wt_i, wt_{i+1}\}$ and $w_1^* < w_2^*$, then $x \in \{w_1^*, w_2^*\}$ can be obtained from w by one right star operation if $x \in \{wt_0, wt_n\}$ and, not by one or two right star operation if $x \in \{wt_1, wt_{n-1}\}$.

In the remaining part of the paper, when we mention a right star operation and the generalized τ -invariants on $w \in \widetilde{C}_n$, we always regard w as an element of \widetilde{A}_{2n-1} .

2.10. For any $w \in \widetilde{C}_n$, define M(w) to be the set of all $y \in \widetilde{C}_n$, where there exists $x_0 = w, x_1, ..., x_r = y$ with some $r \geq 0$ such that for every $i \in [r], x_i^{-1}x_{i-1} \in S$ and x_i can be obtained from x_{i-1} by one or two right star operations. Define a graph $\mathcal{M}(w)$: its vertex set is M(w); label each $x \in M(w)$ by $\mathcal{R}(x)$; join $x, y \in M(w)$ by a solid edge if $x^{-1}y \in S$ and x can be obtained from y by one or two right star operations.

It is easy to see that if $y, w \in \widetilde{C}_n$ have the same generalized τ -invariants, then for any path $w_1 = w, w_2, ..., w_r$ in $\mathcal{M}(w)$, there exists a path $y_1 = y, y_2, ..., y_r$ in $\mathcal{M}(y)$ such that $\mathcal{R}(w_i) = \mathcal{R}(y_i)$ for every $i \in [r]$ and the above condition still holds when interchanging the roles of w, y. In Section 6, the graphs $\mathcal{M}(w)$ with $w \in \widetilde{C}_3$ will be used to confirm that two elements of \widetilde{C}_3 have different generalized τ -invariants.

2.11. For any $\lambda = (\lambda_1, \lambda_2, ..., \lambda_r)$ and $\mu = (\mu_1, \mu_2, ..., \mu_t)$ in Λ_{2n} , we write $\lambda \leqslant \mu$ if $\lambda_1 + \cdots + \lambda_k \leqslant \mu_1 + \cdots + \mu_k$ for any $1 \leqslant k \leqslant \min\{r, t\}$. This defines a partial order on Λ_{2n} . If $x \in \widetilde{A}_{2n-1}$ and $s \in \widetilde{\mathcal{L}}(x)$ and $t \in \widetilde{\mathcal{R}}(x)$ then $\psi(sx), \psi(xt) \leqslant \psi(x)$ (see [8, Lemma 5.5 and Corollary 5.6]). This implies by Corollary 2.6 that if $x \in \widetilde{C}_n$ and $s \in \mathcal{L}(x)$ and $t \in \mathcal{R}(x)$ then $\psi(sx), \psi(xt) \leqslant \psi(x)$.

Let \widetilde{a} , a be the a-functions of the weighted Coxeter groups $(\widetilde{A}_{2n-1}, \widetilde{\ell})$,

 $(\widetilde{C}_n, \widetilde{\ell})$, respectively (see 2.3 and 1.3).

Lemma 2.12. (see [7, Lemma 16.5]) $a(z) = \widetilde{a}(z)$ for any $z \in \widetilde{C}_n$.

Lemma 2.13. (see [7, Lemma 16.14]) Let $x, y \in \widetilde{C}_n$. Then $x \underset{L}{\sim} y$ (respectively, $x \underset{R}{\sim} y$) in \widetilde{C}_n if and only if $x \underset{L}{\sim} y$ (respectively, $x \underset{R}{\sim} y$) in \widetilde{A}_{2n-1} .

By Lemma 2.13, we can just use the notation $x \sim y$ (respectively, $x \sim y$) for $x, y \in \widetilde{C}_n$ without indicating whether the relation refers to the group \widetilde{A}_{2n-1} or \widetilde{C}_n .

For any $\lambda = (\lambda_1, ..., \lambda_r) \in \Lambda_{2n}$, define $\mu = (\mu_1, ..., \mu_t) \in \Lambda_{2n}$ by setting $\mu_j = {}^{\#} \{k \in [r] \mid \lambda_k \geqslant j\}$ for any $j \geqslant 1$, call μ the dual partition of λ .

Lemma 2.14. Let $x, y \in \widetilde{A}_{2n-1}$.

- (1) $x \sim_L y$ if and only if x, y have the same generalized τ -invariants (see [8, Theorem 16.1.2]).
- (2) $x \leq y$ if and only if $\psi(y) \leq \psi(x)$. The set $\psi^{-1}(\lambda)$ forms a two-sided cell of \widetilde{A}_{2n-1} for any $\lambda \in \Lambda_{2n}$ (see [6, Theorem 6] and [8, Theorem 17.4] and [10, Theorem B]).
- (3) $\widetilde{a}(x) = \sum_{i=1}^{t} (i-1)\mu_i$, where $(\mu_1, ..., \mu_t)$ is the dual partition of $\psi(x)$ (see [9, Subsection 6.27]).
- **2.15.** A non-empty subset E of a Coxeter group W = (W, S) is said *left-connected*, (respectively, *right-connected*) if for any $x, y \in E$, there exists a sequence $x_0 = x, x_1, ..., x_r = y$ in E such that $x_{i-1}x_i^{-1} \in S$ (respectively, $x_i^{-1}x_{i-1} \in S$) for every $i \in [r]$. E is said *two-sided-connected* if for any $x, y \in E$, there exists a sequence $x_0 = x, x_1, ..., x_r = y$ in E such that either $x_{i-1}x_i^{-1}$ or $x_i^{-1}x_{i-1}$ is in S for every $i \in [r]$.

Let $F \subseteq E$ in W. Call F a left-connected component (or lcc in short) of E, if F is a maximal left-connected subset of E. One can define a right-connected component and a two-sided-connected component (or rcc and tcc in short) of E similarly.

For any $\lambda \in \Lambda_{2n}$, denote $E_{\lambda} := \widetilde{C}_n \cap \psi^{-1}(\lambda)$.

Lemma 2.16. Let $\lambda \in \Lambda_{2n}$.

- (1) Any lcc (respectively, rcc, tcc) of $\psi^{-1}(\lambda)$ is contained in some left (respectively, right, two-sided) cell of \widetilde{A}_{2n-1} .
- (2) Any lcc (respectively, rcc, tcc) of E_{λ} is contained in some left (respectively, right, two-sided) cell of \widetilde{C}_n .
 - (3) The set E_{λ} is either empty or a union of some two-sided cells of \widetilde{C}_n .

Proof. (1)-(2) follow by 1.3 (1)-(2), Lemmas 2.12 and 2.14. By Lemmas 2.13-2.14, we see that E_{λ} is either empty or a union of some left cells of \widetilde{C}_n with $E_{\lambda}^{-1} = E_{\lambda}$ for any $\lambda \in \Lambda_{2n}$. So (3) follows by Lemmas 2.12 and 1.4. \square

Corollary 2.17. Let $x, y \in \widetilde{A}_{2n-1}$ satisfy $x, y \in \psi^{-1}(\lambda)$ for some $\lambda \in \Lambda_{2n}$.

- (1) If $\widetilde{\ell}(y) = \widetilde{\ell}(x) + \widetilde{\ell}(yx^{-1})$ then x, y are in the same lcc of $\psi^{-1}(\lambda)$ and hence $x \underset{\iota}{\sim} y$.
- (2) If $\widetilde{\ell}(y) = \widetilde{\ell}(x) + \widetilde{\ell}(x^{-1}y)$ then x, y are in the same rcc of $\psi^{-1}(\lambda)$ and hence $x \sim y$.

Let $x, y \in \widetilde{C}_n$ be in E_{λ} for some $\lambda \in \Lambda_{2n}$.

- (3) If $\ell(y) = \ell(x) + \ell(yx^{-1})$ then x, y are in the same lcc of E_{λ} and hence $x \sim y$.
- (4) If $\ell(y) = \ell(x) + \ell(x^{-1}y)$ then x, y are in the same rcc of E_{λ} and hence $x \underset{R}{\sim} y$.

Proof. By symmetry, we need only to show (1) and (3).

- (1) Let $yx^{-1} = s_{i_r}s_{i_{r-1}} \cdots s_{i_2}s_{i_1}$ be a reduced expression of yx^{-1} with $s_{i_j} \in \widetilde{S}$. Let $x_k = s_{i_k}s_{i_{k-1}} \cdots s_{i_2}s_{i_1}x$ for $k \in [0, r]$, where we stipulate $x_0 = x$. Then $\widetilde{\ell}(x_k) = \widetilde{\ell}(x_{k-1}) + 1$ for any $k \in [r]$. Hence $\psi(x) = \psi(x_0) \leq \psi(x_1) \leq \cdots \leq \psi(x_r) = \psi(y) = \psi(x)$ by 2.11. This implies that x, y are in the same lcc of $\psi^{-1}(\lambda)$. Hence $x \sim y$ by Lemma 2.16.
- (3) Let $yx^{-1} = t_{i_r}t_{i_{r-1}}\cdots t_{i_1}$ be a reduced expression of yx^{-1} with $t_{i_j} \in S$. Let $x_k = t_{i_k}t_{i_{k-1}}\cdots t_{i_1}x$ for $k \in [0,r]$, where we stipulate $x_0 = x$. Then $\ell(x_k) = \ell(x_{k-1}) + 1$ for any $k \in [r]$. Hence $\psi(x) = \psi(x_0) \leqslant \psi(x_1) \leqslant \cdots \leqslant 1$

 $\psi(x_r) = \psi(y) = \psi(x)$ by 2.11. This implies that x, y are in the same lcc of E_{λ} . Hence $x \sim y$ by Lemmas 2.13 and 2.16. \square

§3. Partial order \leq_w on [2n] determined by an element w.

In this section, we introduce two technical tools. One is a transformation on an element in 3.3, which is a crucial step in proving the left-connectedness of a left cell and in finding a representative set for the left cells of \widetilde{C}_n in E_{λ} , $\lambda \in \Lambda_{2n}$. The other is a generalized tabloid in 3.5, by which we can check if two elements of \widetilde{C}_n are in the same left cell.

3.1. $i, j \in [2n]$ are said 2n-dual, if i + j = 2n + 1; in this case, denote $j = \overline{i}$. Further, denote $\overline{E} := \{\overline{i} \mid i \in E\}$ for $E \subseteq [2n]$. Recall the relation \preceq_w on [2n] defined in 2.2 for $w \in \widetilde{A}_{2n-1}$ and that \widetilde{C}_n is regarded as a subset of \widetilde{A}_{2n-1} (see 2.1). Fix $w \in \widetilde{A}_{2n-1}$. Say $i \neq j$ in [2n] w-comparable if either $i \prec_w j$ or $j \prec_w i$, and w-uncomparable if otherwise. When $w \in \widetilde{C}_n$, say $i \in [2n]$ w-wild if i, \overline{i} are w-comparable and w-tame if otherwise. Say $i \in [2n]$ a w-wild head (respectively, a w-tame head), if i is w-wild (respectively, w-tame) with $(\overline{i})w < (i)w$.

i < j in [2n] are w-uncomparable if and only if (i)w < (j)w < (i)w + 2n. Call $E \subseteq [2n]$ a w-chain, if $E = \{i_1, i_2, ..., i_r\}$ and $i_1 \prec_w i_2 \prec_w \cdots \prec_w i_r$.

Lemma 3.2. Fix $w \in \widetilde{C}_n$. Let $i, j, k \in [2n]$.

(i) $j \prec_w k$ if and only if $\bar{k} \prec_w \bar{j}$;

Now suppose that $j \neq k$ are w-wild heads and i is w-tame.

- (ii) $\bar{j} \prec_w k$ if and only if \bar{j}, k are w-comparable.
- (iii) If \bar{j} , k are w-uncomparable then so are j, k (respectively, \bar{j} , \bar{k});
- (iv) i and k are w-comparable if and only if $i \prec_w k$.
- (v) $\{j,i,\bar{j}\}$ is a w-chain if and only if j is w-comparable with both i and $\bar{i};$
- (vi) $\{j, k, \bar{j}, \bar{k}\}$ is a w-chain if and only if j, k are w-comparable.

Proof. (i)-(iv) can be checked directly. Then (v) follows by (i) and (iv). Finally, (vi) is a simple consequence of (i)-(iii). \Box

3.3. Let

(3.3.1)
$$t_{i,j} = t_{i+j-1}t_{i+j-2}\cdots t_{i+1}t_i,$$
$$d_{i,j} = t_{i-j+1}t_{i-j+2}\cdots t_{i-1}t_i.$$

for any $i, j \in \mathbb{Z}$ with j > 0. Suppose that $x \in \widetilde{C}_n$ and $i \in \mathbb{Z}$ satisfy (i)x - 2n > (j)x for any $i < j \le i + a$ with some $a \in [2n - 1]$. Let $x' = t_{i,a}x$. Then $\ell(x') = \ell(x) - a$ and $\psi(x) = \psi(x')$. Moreover, if (i)x - 2n > (j)x for any i < j < i + 2n, let $x'' = t_{i,2n}x$, then

$$(k)x'' = \begin{cases} (k)x - 2n, & \text{if } k \equiv i \pmod{2n}, \\ (k)x + 2n, & \text{if } k \equiv 2n - i \pmod{2n}, \\ (k)x, & \text{if otherwise.} \end{cases}$$

for any $k \in \mathbb{Z}$, where x'' satisfies $\ell(x'') = \ell(x) - 2n$ and $\psi(x) = \psi(x'')$.

Fix $w \in \widetilde{C}_n$. Suppose that $E_1 = \{i_1, i_2, ..., i_a\}$ and $E_2 = \{j_1, j_2, ..., j_b\}$ are two subsets of [2n] satisfying that

- (i) $i_1 < i_2 < \dots < i_a \text{ and } j_1 < j_2 < \dots < j_b \text{ with } a > 0 \text{ and } b \ge 0 \text{ and } a + b = n;$
 - (ii) the elements of $E_1 \cup E_2$ are pairwise not 2n-dual;
 - (iii) $(\bar{k})w < (k)w$ for any $k \in E_1 \cup E_2$;
- (iv) If b > 0 then (i)w (j)w > 2ln for any $i \in E_1$ and $j \in E_2$; if b = 0 then (i)w > (2l+1)n for any $i \in E_1$, where l is some positive integer.

By repeatedly left multiplying various elements of the form $t_{i,j}$ on w, we can obtain some $w' \in \widetilde{C}_n$ such that there are some $1 \leq k_1 < k_2 < \cdots < k_b \leq 2b$ (the latter is an empty condition if b = 0) satisfying that

- (1) $\ell(w') = \ell(w) \ell(ww'^{-1});$
- (2) If b > 0 then $[2b] = \{k_1, k_2, ..., k_b, 2b + 1 k_1, 2b + 1 k_2, ..., 2b + 1 k_b\}$ and the map $\phi : \{j_1, j_2, ..., j_b, \bar{j_1}, \bar{j_2}, ..., \bar{j_b}\} \longrightarrow [2b]$ given by $\phi(j_m) = k_m$ and $\phi(\bar{j}_m) = 2b + 1 k_m$ for $m \in [b]$ is an order-preserving bijection.
- (3) $(p)w' = (i_p)w 2l'n$ and $(a+k_q)w' = (j_q)w$ for any $p \in [a]$ and $q \in [b]$, where $l' \in \mathbb{Z}$ and $l' \geqslant l$;
 - (4) $(\overline{\langle c \rangle})w' < (\langle c \rangle)w'$ for any $c \in [a] \cup \{a + k_m \mid m \in [b]\};$

(5) If b > 0 then $0 < \min\{(c)w' - (a + k_m)w' \mid c \in [a], m \in [b]\} < 2n$; if b = 0 then $n < \min\{(c)w' \mid c \in [n]\} \leq 3n$.

We see by Lemma 3.2 that $\psi(w') = \psi(w)$ (denoted by λ) and by Corollary 2.17 that w, w' are in the same lcc of E_{λ} .

Example 3.4. (a) Let $w = [8, 30, 4, -11, 27, 2] \in \widetilde{C}_6$. Then $E_1 = \{2, 5, 9\}$ and $E_2 = \{1, 7, 10\}$ satisfy 3.3 (i)-(iv) with n = 6 and (a, b, l) = (3, 3, 1). Let $w' = t_{4,9}t_{5,8}t_{9,4}w$. Then $w' = [18, 15, 12, 8, 4, 2] \in \widetilde{C}_6$. Hence w' satisfies 3.3 (1)-(5) with b > 0 and $\psi(w') = \psi(w) = 93$.

- (b) Let $w = [20, 30, -8, -11, 27, -10] \in \widetilde{C}_6$. Then $E_1 = \{1, 2, 5, 7, 9, 10\}$ and $E_2 = \emptyset$ satisfy 3.3 (i)-(iv) with n = 6 and (a, b, l) = (6, 0, 1). Let $w' = t_{6,7}t_{6,7}t_{7,6}t_{9,4}t_{10,3}w$. Then $w' = [8, 18, 15, 11, 12, 9] \in \widetilde{C}_6$. Hence w' satisfies 3.3 (1)-(5) with b = 0 and $\psi(w') = \psi(w) = \mathbf{82^2}$.
- **3.5.** By a composition of 2n, we mean an r-tuple $(a_1, a_2, ..., a_r)$ of positive integers $a_1, ..., a_r$ with some $r \ge 1$ such that $\sum_{i=1}^r a_i = 2n$. Let $\widetilde{\Lambda}_{2n}$ be the set of all compositions of 2n. Clearly, $\Lambda_{2n} \subseteq \widetilde{\Lambda}_{2n}$.

A generalized tabloid of rank 2n is, by definition, an r-tuple $\mathbf{T}=(T_1,T_2,...,T_r)$ with some $r\in\mathbb{N}$ such that [2n] is a disjoint union of some non-empty subsets $T_j,\,j\in[r]$. We have $\xi(\mathbf{T}):=(|T_1|,|T_2|,...,|T_r|)\in\widetilde{\Lambda}_{2n}$, where $|T_i|$ denotes the cardinal of the set T_i . Let $i_1,i_2,...,i_r$ be a permutation of 1,2,...,r such that $|T_{i_1}|\geqslant |T_{i_2}|\geqslant \cdots \geqslant |T_{i_r}|$. Then $\zeta(\mathbf{T}):=(|T_{i_1}|,|T_{i_2}|,...,|T_{i_r}|)\in\Lambda_{2n}$. Let \mathcal{C}_{2n} be the set of all generalized tabloids of rank 2n. Then both $\xi:\mathcal{C}_{2n}\longrightarrow\widetilde{\Lambda}_{2n}$ and $\zeta:\mathcal{C}_{2n}\longrightarrow\Lambda_{2n}$ are surjective maps.

Let Ω be the set of all $w \in \widetilde{A}_{2n-1}$ such that there is some $\mathbf{T} = (T_1, T_2, ..., T_r) \in \mathcal{C}_{2n}$ satisfying:

- (i) If i < j in [r] then $\langle (a)w^{-1} \rangle \prec_w \langle (b)w^{-1} \rangle$ for any $a \in T_i$ and $b \in T_j$;
- (ii) $\langle (a)w^{-1} \rangle$, $\langle (b)w^{-1} \rangle$ are w-uncomparable if $a \neq b$ in T_i , $i \in [r]$.

Clearly, **T** is determined entirely by $w \in \Omega$, denote **T** by T(w). The map $T: \Omega \longrightarrow \mathcal{C}_{2n}$ is surjective by [8, Proposition 19.1.2]. By a result of Greene in [2], $\zeta(T(w))$ is the dual partition of $\psi(w)$.

The following known result will be crucial in subsequent discussion.

Lemma 3.6. (see [8, Lemma 19.4.6]) Let $y, w \in \widetilde{A}_{2n-1}$ be in Ω with $\xi(T(y)) = \xi(T(w))$. Then $y \sim w$ if and only if T(y) = T(w).

§4. The set $E_{k1^{2n-k}}$.

Fix $\lambda \in \Lambda_{2n}$. Recall the set E_{λ} defined in 2.15. We have $E_{\lambda}^{-1} = E_{\lambda}$. The group automorphism η of \widetilde{C}_n (see 2.7) stabilizes each E_{λ} .

In the present section, we shall describe all the cells of \widetilde{C}_n in the set $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}}$ for all $k \in [2n]$. $E_{\mathbf{1}^{2\mathbf{n}}}$ consists of the identity element of \widetilde{C}_n . In the subsequent discussion, we shall always assume k > 1.

- **4.1.** First assume $k = 2m + 1 \in [2n]$ odd. Let l = n m. By Lemma 3.2, $w \in \widetilde{C}_n$ is in $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ if and only if w satisfies the condition (4.1.1) below.
- (4.1.1) There exist some pairwise not 2n-dual $i_1, i_2, ..., i_l, j_1, j_2, ..., j_m$ in [2n] such that (i) $i_1, i_2, ..., i_l$ are all w-tame heads with $i_1 < i_2 < \cdots < i_l$ and $(i_1)w < (i_2)w < \cdots < (i_l)w$; (ii) $j_1, j_2, ..., j_m$ are all w-wild heads with $j_1 \prec_w j_2 \prec_w \cdots \prec_w j_m$ and with either $\bar{i}_1, i_1 \prec_w j_1$ or $\bar{i}_l, i_l \prec_w j_1$.

Let F_1^o (respectively, F_2^o) be the set of all $w \in \widetilde{C}_n$ satisfying the condition (4.1.2) below.

- (4.1.2) There exist some pairwise not 2n-dual $i_1, i_2, ..., i_l, j_1, j_2, ..., j_m$ in [2n] such that (i) $i_1, i_2, ..., i_l$ are all w-tame heads with $i_1 < i_2 < \cdots < i_l$ and $(i_1)w < (i_2)w < \cdots < (i_l)w$; (ii) $j_1, j_2, ..., j_m$ are all w-wild heads with $0 < (j_{a+1})w (j_a)w < 2n$ for any $a \in [m-1]$; (iii) $(i_1)w < (j_1)w < (\bar{i}_l)w + 2n$ and $(\bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_2, j_m, j_{m-1}, ..., j_1, \bar{i}_1) = (1, 2, ..., n)$ (respectively, $(\bar{i}_l)w + 2n < (j_1)w < (i_1)w + 2n$ and $(i_1, i_2, ..., i_{l-1}, j_m, j_{m-1}, ..., j_1, i_l) = (n+1, n+2, ..., 2n)$).
- **4.2.** Next assume $k = 2m \in [2n]$ even. Let l = n m. By Lemma 3.2, $w \in \widetilde{C}_n$ is in $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ if and only if w satisfies the condition (4.2.1) below.
- (4.2.1) There exist some pairwise not 2n-dual $i_1, i_2, ..., i_l, j_1, j_2, ..., j_m$ in [2n] such that (i) $i_1, i_2, ..., i_l$ are all w-tame heads with $i_1 < i_2 < \cdots < i_l$ and $(i_1)w < (i_2)w < \cdots < (i_l)w$; (ii) $j_1, j_2, ..., j_m$ are all w-wild heads with $j_1 \prec_w j_2 \prec_w \cdots \prec_w j_m$; (iii) j_1 is w-uncomparable with i_a, \bar{i}_a for all $a \in [l]$.

If m = n then (4.2.1) (iii) is an empty condition. Now assume m < n.

Under the assumption of (4.2.1) (i)-(ii), the condition (4.2.1) (iii) is equivalent to that either $\bar{i}_1 < j_1 < i_1$ and $(\bar{i}_1)w < (j_1)w < (i_1)w$, or $i_l < j_1 < \bar{i}_l + 2n$ and $(i_l)w < (j_1)w < (\bar{i}_l)w + 2n$. Since j_1 is a w-wild head, this is also equivalent to that either $\bar{i}_1 < j_1 \leqslant n$ and $n < (j_1)w < (i_1)w$, or $i_l < j_1 \leqslant 2n$ and $2n < (j_1)w < (\bar{i}_l)w + 2n$. Let $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ (respectively, $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$) be the set of all $w \in E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ such that $\bar{i}_1 < j_1 \leqslant n$ and $n < (j_1)w < (i_1)w$ (respectively, $i_l < j_1 \leqslant 2n$ and $2n < (j_1)w < (\bar{i}_l)w + 2n$). Then $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}} = E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ (disjoint union).

Let F_1^e (respectively, F_2^e) be the set of all $w \in \widetilde{C}_n$ satisfying the condition (4.2.2) below.

(4.2.2) There exist some pairwise not 2n-dual $i_1, i_2, ..., i_l, j_1, j_2, ..., j_m$ in [2n] such that (i) $i_1, i_2, ..., i_l$ are all w-tame heads with $i_1 < i_2 < \cdots < i_l$ and $(i_1)w < (i_2)w < \cdots < (i_l)w$; (ii) $j_1, j_2, ..., j_m$ are all w-wild heads with $0 < (j_{a+1})w - (j_a)w < 2n$ for any $a \in [m-1]$; (iii) $n < (j_1)w < (i_1)w$ and $(\bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_1, j_m, j_{m-1}, ..., j_1) = (1, 2, ..., n)$ (respectively, $2n < (j_1)w < (\bar{i}_l)w + 2n$ and $(i_1, i_2, ..., i_l, j_m, j_{m-1}, ..., j_1) = (n+1, n+2, ..., 2n)$).

When m=n, the sets $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ and $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ (respectively, F_1^e and F_2^e) can also be defined by the condition (4.2.1) (respectively, (4.2.2)) if we stipulate $i_1=(i_1)w=2n+1$, $\bar{i}_1=(\bar{i}_1)w=0$, $i_l=(i_l)w=n$ and $\bar{i}_l=(\bar{i}_l)w=n+1$. Clearly, $F_1^e\subset E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ and $F_2^e\subset E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$.

Lemma 4.3. $F_1^{\epsilon} \cup F_2^{\epsilon} \subset E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$, where ϵ is o if k is odd and e if k is even. For any $w \in E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$, there exists some $w' \in F_1^{\epsilon} \cup F_2^{\epsilon}$ such that w', w are in the same lcc of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$.

Proof. It is a direct consequence of 3.3 and 4.1-4.2. \square

Lemma 4.4. Let ϵ be given as in Lemma 4.3.

- (1) The map η (see 2.7) interchanges the sets F_1^{ϵ} and F_2^{ϵ} .
- (2) If $k \in [2n-2]$ is even, then $E'^{-1}_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}} = E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}}$ and $E''^{-1}_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}} = E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}}$. The map η interchanges the sets $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}}$ and $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}}$.
 - (3) Each of F_1^{ϵ} and F_2^{ϵ} is contained in an rcc of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$.

- *Proof.* (1)-(2) follow by 4.1-4.2 and Proposition 2.8 (3). For (3), we need only to show that F_1^{ϵ} is contained in an rcc of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}}-\mathbf{k}}$.
- (I) First assume ϵ being o. For $J=\{t_l,t_{l+1},...,t_n\},\ w^{(o)}:=t_nw_J=[1,2,...,l-1,2n+1-l,2n-l,...,n+2,n]$ is the unique shortest element in F_1^o . Take any $w\in F_1^o$. Keep the notation in (4.1.2).
- (a) First assume $(j_a)w (j_{a-1})w = 1$ for any $a \in [2, m]$. Since $(i_1)w < (j_1)w < (\bar{i}_l)w + 2n$, there exists the largest $b \in [l]$ with $(i_b)w < (j_1)w$. If b = l then $w \in \{w_1, w_2\}$ with $w_1 = [n+1-l, n+2-l, ..., n-1, 2n, 2n-1, ..., n+l+1, n]$ and $w_2 = [n+1-l, n+2-l, ..., n-1, 3n-l, 3n-l-1, ..., 2n+1, n]$. Let $J = \{t_1, t_2, ..., t_{n-2}\}$, $J_1 = J \setminus \{t_{n-l}\}$, $I_1 = \{t_1, t_2, ..., t_{n-l-1}\}$ and $I = I_1 \cup \{t_0\}$. Then $w_2 = w_1w_{I_1}w_{I}$, $w_1 = w^{(o)}w_Jw_{J_1}$ satisfy $\ell(w_2) = \ell(w_1) + \ell(w_{I_1}w_{I})$, $\ell(w_1) = \ell(w^{(o)}) + \ell(w_Jw_{J_1})$ by Proposition 2.8 (2). Hence $w_1, w_2, w^{(o)}$ are in the same rcc of $E_{\mathbf{k}1^{2n-k}}$ by Corollary 2.17. Now assume b < l. Since $(i_1)w < (j_1)w < (\bar{i}_l)w + 2n$, we have w = [1, 2, ..., l-b, n+1-b, n+2-b, ..., n-1, 2n+b-l, 2n+b-l-1, ..., n+b+1, n]. Let $J = \{t_{l+1-b}, t_{l+2-b}, ..., t_{n-2}\}$, $J_1 = J \setminus \{t_{n-b}\}$. Then $w = w^{(o)}w_Jw_{J_1}$ and $\ell(w) = \ell(w^{(o)}) + \ell(w_Jw_{J_1})$ by Proposition 2.8 (2). So $w, w^{(o)}$ are in the same rcc of $E_{\mathbf{k}1^{2n-k}}$ by Corollary 2.17.
- (b) Next assume $(j_a)w (j_{a-1})w > 1$ for some $a \in [2, m]$. Take a the largest with such a property. Then $d := (j_a)w 1 \equiv (k)w \pmod{2n}$ for some $k \in \{j_b, \bar{j}_b, i_c, \bar{i}_c, \bar{j}_a \mid b \in [a-1], c \in [l]\}$. When $d \not\equiv (\bar{j}_a)w \pmod{2n}$, let $y_1 = wt_dt_{d+1} \cdots t_{m+d-a}$. Then for any $t \in \mathbb{Z}$, we have

$$(t)y_1 = \begin{cases} (t)w - 1, & \text{if } t \equiv (j_h)w \pmod{2n} & \text{for some } h \in [a, m], \\ (t)w + 1, & \text{if } t \equiv (\bar{j}_h)w \pmod{2n} & \text{for some } h \in [a, m], \\ (t)w + (m+1-a), & \text{if } t \equiv (k)w \pmod{2n}, \\ (t)w - (m+1-a), & \text{if } t \equiv (\bar{k})w \pmod{2n}, \\ (t)w, & \text{if otherwise.} \end{cases}$$

We see that either $(j_h)w - (k)w > 2n$ for all $h \in [a, m]$, or $k = i_f$ with $(j_a)w = (i_f)w + 1$ for some $f \in [l]$ (hence $j_h < k$ for any $h \in [a, m]$ in the

latter case) by the condition (4.1.2) on $w \in F_1^o$ and by the choice of a. We see by Corollary 2.6 and Proposition 2.8 (2) that $\ell(y_1) = \ell(w) - (m+1-a)$ and $y_1 \in F_1^o$. When $d \equiv (\bar{j}_a)w \pmod{2n}$, we have $d \equiv n, 0 \pmod{2n}$ and $(j_a)w - (\bar{j}_a)w > 2n$. In this case, let $y_1 = ww_{J_1}w_J$ with $J = \{t_n, t_{n-1}, ..., t_{n+a-m}\}$ and $J_1 = J \setminus \{t_n\}$ if $d \equiv n \pmod{2n}$ and $J = \{t_0, t_1, ..., t_{m-a}\}$ and $J_1 = J \setminus \{t_0\}$ if $d \equiv 0 \pmod{2n}$. By Corollary 2.6 and Proposition 2.8 (2), we have $\ell(y_1) = \ell(w) - (w_{J_1}w_J)$ and $y_1 \in F_1^o$. By induction on $p := \ell(w) \geqslant \ell(w^{(o)})$, we see that there exists a sequence $y_0 = w, y_1, ..., y_r$ in F_1^o with some $r \geqslant 0$ such that $\ell(y_h) = \ell(y_{h-1}) - \ell(y_{h-1}^{-1}y_h)$ and $(j_a)y_r - (j_{a-1})y_r = 1$ for any $h \in [r]$ and $a \in [2, m]$. This implies by Corollary 2.17 that $y_0, y_1, ..., y_r$ are in the same rcc of $E_{\mathbf{k}1^{2n-k}}$. Since y_r and $w^{(o)}$ are in the same rcc of $E_{\mathbf{k}1^{2n-k}}$ by (a), F_1^o is contained in an rcc of $E_{\mathbf{k}1^{2n-k}}$.

(II) Next assume ϵ being e. Then $w^{(e)} := w_J = [1, 2, ..., l, 2n - l, 2n - l - 1, ..., n + 1]$ is the unique shortest element in F_1^e with $J = \{t_{l+1}, t_{l+2}, ..., t_n\}$. Take any $w \in F_1^e \setminus \{w^{(e)}\}$. There exists some $a \in [2, m]$ with $(j_a)w - (j_{a-1})w > 1$. Take a the largest with such a property. By the same argument as that in (I) (b), we can find $y_0 = w, y_1, ..., y_r = w^{(e)}$ in F_1^e with some $r \ge 0$ such that $\ell(y_h) = \ell(y_{h-1}) - \ell(y_{h-1}^{-1}y_h)$ for every $h \in [r]$. By Corollary 2.17, we see that F_1^e is contained in an rcc of $E_{\mathbf{k}1^{2n-k}}$. \square

Lemma 4.5. For $k \in [2, 2n]$, $\epsilon \in \{o, e\}$ and i = 1, 2, let $F_i^{\epsilon} \subset E_{\mathbf{k} \mathbf{1}^{2n-k}}$ be defined as in 4.1-4.2. Then $|F_1^{\epsilon}| = |F_2^{\epsilon}| = 2^{\lfloor \frac{k}{2} \rfloor - 1} n! / (n - \lfloor \frac{k-1}{2} \rfloor)!$.

Proof. We have $|F_1^{\epsilon}| = |F_2^{\epsilon}|$ by Lemma 4.4 (1).

First we enumerate the set $F^o := F_1^o \cup F_2^o$. Let G^o be the set of all $w \in \widetilde{C}_n$ satisfying (4.1.2) but with (iii) replaced by (iii)' below:

(iii)' $(i_1)w < (j_1)w < (i_1)w + 2n$ and $(\bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_2, j_m, j_{m-1}, ..., j_1, \bar{i}_1) = (1, 2, ..., n).$

Then $F_1^o \subset G^o$. There exists a bijection $\lambda_x : G^o \setminus F_1^o \longrightarrow F_2^o$ given by $\lambda_x(w) = xw$, where, when l > 1, let $x = w_I w_{I_1} w_J w_{J_1} t_n$ with $J = \{t_l, t_{l+1}, ..., t_n\}$, $J_1 = J \setminus \{t_{n-1}, t_n\}$, $I = \{t_2, t_3, ..., t_{n-2}\}$ and $I_1 = I \setminus \{t_{l-1}\}$;

when l = 1, let $x = w_{J_1} w_J d_{n-1,n-1}$ (see (3.3.1)) with $J = \{t_2, t_3, ..., t_n\}$ and $J_1 = J \setminus \{t_n\}$.

Note that in either case, we have $\ell(xw) = \ell(w) - \ell(x)$ and $\psi(w) = \psi(xw)$, hence $xw \sim w$ by Corollary 2.17 and Lemma 2.16.

Now we enumerate the set G^o . Any $w \in G^o$ is determined entirely by the integers $(i_1)w$, $(i_2)w$, ..., $(i_l)w$, $(j_1)w$, $(j_2)w$, ..., $(j_m)w$ under the conditions (4.1.2) (i)-(ii) and (iii)'. There are $\binom{n}{l} = \frac{n!}{l!(n-l)!}$ different choices for the integers $(i_1)w$, $(i_2)w$, ..., $(i_l)w$ by the condition $n < (i_1)w < (i_2)w < \cdots < (i_l)w \leqslant 2n$. Once they are fixed, the numbers of different choices for $(j_1)w$, $(j_2)w$, ..., $(j_m)w$ are 2m, 2(m-1), ..., 2 in turn by the conditions (4.1.2) (i)-(ii), (iii)' and the facts that m+l=n and $b \not\equiv c$, $\bar{c} \pmod{2n}$ for any $b \not\equiv c$ in $\{(i_1)w, ..., (i_l)w, (j_1)w, ..., (j_m)w\}$. So $|G^o| = \binom{n}{l}2^m m!$. The assertion is proved for ϵ being o by the facts $|F_1^o| = |F_2^o| = \frac{1}{2}|G^o|$ and m+l=n.

Next we compute $|F_1^e|$. Any $w \in F_1^e$ is determined entirely by the integers $(i_1)w$, $(i_2)w$, ..., $(i_l)w$, $(j_1)w$, $(j_2)w$, ..., $(j_m)w$ under the condition (4.2.2). There are $\binom{n}{l+1}$ different choices for the integers $(j_1)w$, $(i_1)w$, $(i_2)w$, ..., $(i_l)w$ by the condition $n < (j_1)w < (i_1)w < (i_2)w < \cdots < (i_l)w \leq 2n$. Once they are fixed, the numbers of different choices for $(j_2)w$, $(j_3)w$, ..., $(j_m)w$ are 2(m-1), 2(m-2), ..., 2 in turn by the condition (4.2.2) and the facts that m+l=n and $b \not\equiv c$, $\bar{c} \pmod{2n}$ for any $b \not\equiv c$ in $\{(i_1)w, ..., (i_l)w, (j_1)w, ..., (j_m)w\}$. So $|F_1^e| = \binom{n}{l+1}2^{m-1}(m-1)!$. The assertion is proved for ϵ being e by the fact m+l=n. \square

Lemma 4.6. No two elements of $F_1^{\epsilon} \cup F_2^{\epsilon}$ are in the same left cell of \widetilde{C}_n .

Proof. Let $w \in F_1^o$ be as in (4.1.2). If l = 1 then let w' = w; if l > 1 then let $w' = w_{J_6}w_{J_7}t_nw_{J_1}w_{J_5}w_{J_3}w_{J_4}w_{J_1}w_{J_2}w$, where $J_1 = \{t_1, t_2, ..., t_{n-2}\}$, $J_2 = J_1 \setminus \{t_{l-1}\}$, $J_3 = \{t_0, t_1, ..., t_{m-1}\}$, $J_4 = J_3 \setminus \{t_0\}$, $J_5 = J_1 \setminus \{t_m\}$, $J_6 = \{t_l, t_{l+1}, ..., t_n\}$ and $J_7 = J_6 \setminus \{t_n, t_{n-1}\}$ (see Figure 1). Regarding w' as an element of \widetilde{A}_{2n-1} , we have $w' \in \Omega$ (see 3.5), which satisfies $\psi(w) = \psi(w')$ and $\ell(w') = \ell(w) + \ell(w'w^{-1})$, hence $w \sim w'$ by Corollary 2.17.

Let $\alpha = (1, ..., 1, 2l, 1, ..., 1) \in \widetilde{\Lambda}_{2n}$ with 2l the (m+1)-th component. We see that $T(w') = (T_1, T_2, ..., T_{2m+1}) \in \xi^{-1}(\alpha)$ with $T_c = (\langle \overline{j}_{m+1-c})w \rangle$ for $c \in [m]$, $T_{m+1} = \{\langle (\overline{i}_a)w \rangle, \langle (i_a)w \rangle \mid a \in [l] \}$ and $T_d = \{\langle (j_{d-m-1})w \rangle \}$ for $d \in [m+2, 2m+1]$ (see 2.7 for the notation $\langle q \rangle$).

Similarly, for $w \in F_2^o$ as in (4.1.2), we can find some $w' \in \widetilde{C}_n$ satisfying $w \sim_L w'$ and $w' \in \Omega$ as an element of \widetilde{A}_{2n-1} . We again get $T(w') = (T_1, T_2, ..., T_{2m+1}) \in \xi^{-1}(\alpha)$ with $T_c = (\langle \overline{j}_{m+1-c})w \rangle$ for $c \in [m]$, $T_{m+1} = \{\langle (\overline{i}_a)w \rangle, \langle (i_a)w \rangle \mid a \in [l]\}$ and $T_d = \{\langle (j_{d-m-1})w \rangle\}$ for $d \in [m+2, 2m+1]$.

Figure 1

Figure 1 displays the corresponding parts for the matrix forms of w and w' if l > 1, where the symbol \sim (respectively, \sim) stands for a rectangular submatrix A with p rows each row has a unique non-zero entry 1, the entries 1 of A are going down to the right (respectively, to the left).

We see that the above T(w') with $w' \underset{L}{\sim} w$ and $w' \in \Omega$ depends only on $w \in F_1^o \cup F_2^o$ and α but not on the choice of w' in Ω . So we can denote T(w') by $T_{\alpha}(w)$. We claim that $T_{\alpha}(w)$ should be pairwise different in $\xi^{-1}(\alpha)$ as w ranges over $F_1^o \cup F_2^o$. For, recall that in the proof of Lemma 4.5, there is a bijective map τ from G^o to $F_1^o \cup F_2^o$ which satisfies $w \underset{L}{\sim} \tau(w)$ for any $w \in G^o$. We see that $T_{\alpha}(w) = (T_1, T_2, ..., T_{2m+1})$ with $T_c = (\langle \overline{j}_{m+1-c})w \rangle$ for $c \in [m]$, $T_{m+1} = \{\langle (\overline{i}_a)w \rangle, \langle (i_a)w \rangle \mid a \in [l]\}$ and $T_d = \{\langle (\overline{j}_{d-m-1})w \rangle\}$ for $d \in [m+2, 2m+1]$ should be pairwise different as w ranges over G^o . This proves our assertion by Lemma 3.6 when ϵ is o.

If m = n, then $F_1^e \cup F_2^e \subseteq \Omega$. The set $\{T(w) \mid w \in F_1^e \cup F_2^e\}$ is equal to $\{(\{a_1\}, ..., \{a_{2n}\}) \mid \{a_1, ..., a_{2n}\} = [2n]; \overline{a_i} = a_{2n+1-i}, \forall i \in [n]\}$. So our

result in this case follows by Lemmas 3.6 and 2.13. Now assume m < n. Let $\beta = (1, ..., 1, 2l+1, 1, ..., 1) \in \widetilde{\Lambda}_{2n}$ with 2l+1 the (m+1)th component. Let $w \in F_1^e$ be as in (4.2.2). When m=1, let $w'=w_Jw_{J_1}w$ with $J=\widetilde{S}\setminus\{s_n\}$ and $J_1=J\setminus\{s_{n+1}\}$; when m>1, let $w'=w_{I_3}w_{I_4}w_{I_1}w_{I_2}w$ with $I_1=\widetilde{S}\setminus\{s_{n-1},s_n\},\ I_2=I_1\setminus\{s_l\},\ I_3=\widetilde{S}\setminus\{s_{n+m-1}\}$ and $I_4=I_3\setminus\{s_{n+2m-1}\}$ (see Figure 2 if m>1). Then w' is in \widetilde{A}_{2n-1} , but not in \widetilde{C}_n . We have $w'\in\Omega$, which satisfies $\psi(w)=\psi(w')$ and $\widetilde{\ell}(w')=\widetilde{\ell}(w)+\widetilde{\ell}(w'w^{-1})$, hence $w\succeq w'$ by Corollary 2.17.

Figure 2

We have $T(w') = (T_1, T_2, ..., T_{2m}) \in \xi^{-1}(\beta)$ with $T_c = (\langle \bar{j}_{m+1-c})w \rangle$ for $c \in [m]$, $T_{m+1} = \{\langle (j_1)w \rangle, \langle (\bar{i}_a)w \rangle, \langle (i_a)w \rangle \mid a \in [l] \}$ and $T_d = \{\langle (j_{d-m})w \rangle \}$ for $d \in [m+2, 2m]$.

Similarly, for $w \in F_2^e$ as in (4.2.2), we can find some $w' \in \widetilde{A}_{2n-1}$ satisfying $w \sim w'$ and $w' \in \Omega$. We again get $T(w') = (T_1, T_2, ..., T_{2m})$ with $T_c = (\langle \overline{j}_{m+1-c})w \rangle$ for $c \in [m]$, $T_{m+1} = \{\langle (j_1)w \rangle, \langle (\overline{i}_a)w \rangle, \langle (i_a)w \rangle \mid a \in [l]\}$ and $T_d = \{\langle (j_{d-m})w \rangle\}$ for $d \in [m+2, 2m]$.

Again, the above T(w') with $w' \sim w$ and $w' \in \Omega$ depends only on $w \in F_1^e \cup F_2^e$ and β but not on the choice of w' in Ω . So we can denote T(w') by $T_{\beta}(w)$. Then $T_{\beta}(w)$ are pairwise different in $\xi^{-1}(\beta)$ as w ranges over F_1^e (respectively, F_2^e) by the proof of Lemma 4.5. We claim that $T_{\beta}(w) = (T_1, ..., T_{2m})$ for $w \in F_1^e$ is different from that for $w \in F_2^e$. For, $T_m = \{\langle (\bar{j}_1)w \rangle\}$ satisfies $\langle (\bar{j}_1)w \rangle \leqslant n$ if $w \in F_1^e$ and $\langle (\bar{j}_1)w \rangle > \langle (i_l)w \rangle > n$ if $w \in F_2^e$. The claim is proved. So our assertion follows by Lemmas 3.6 and 2.13 when ϵ is e. \square

Lemma 4.7. The set $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ forms a single two-sided cell of \widetilde{C}_n if either $k \in [2n]$ is odd or k = 2n. In particular, $E_{\mathbf{2n}}$ is the lowest two-sided cell of \widetilde{C}_n under the relation \lesssim .

Proof. First assume $k = 2m+1 \in [2n]$ odd. Let $w^{(o)} = t_n w_J$ and $y^{(o)} = t_0 w_I$ with $J = \{t_l, t_{l+1}, ..., t_n\}$ and $I = \{t_0, t_1, ..., t_{n-l}\}$, where l = n - m. Then $y^{(o)} = \eta(w^{(o)})$. By (4.1.1)-(4.1.2) and the proof of Lemma 4.4, we see that any $w \in E_{\mathbf{k}\mathbf{1}^{2n-k}}$ is in a tcc of $E_{\mathbf{k}\mathbf{1}^{2n-k}}$ containing either $w^{(o)}$ or $y^{(o)}$. Thus by Lemma 2.16, in order to show our result, we need only to show that $w^{(o)}$ and $y^{(o)}$ are contained in the same tcc of $E_{\mathbf{k}\mathbf{1}^{2n-k}}$.

When l = 1, let $I_1 = S \setminus \{t_{n-1}, t_n\}$, $I_2 = I_1 \setminus \{t_0\}$, $I_3 = S \setminus \{t_0, t_1\}$ and $I_4 = I_3 \setminus \{t_n\}$ and let $y_0 = w^{(o)}$, $y_1 = w_{I_2}w_{I_1}y_0$, $y_2 = d_{n-1,n-1}y_1$, $y_3 = y_2t_{1,n-1}$ and $y_4 = y_3w_{I_4}w_{I_3}$; when l > 1, let $J_1 = \{t_1, t_2, ..., t_{n-2}\}$, $J_2 = J_1 \setminus \{t_{l-1}\}$, $J_3 = \{t_0, t_1, ..., t_m\}$, $J_4 = J_3 \setminus \{t_0\}$, $J_5 = \{t_l, t_{l+1}, ..., t_n\}$, $J_6 = J_5 \setminus \{t_{n-1}, t_n\}$, $J_7 = \{t_2, t_3, ..., t_{n-2}\}$ and $J_8 = J_7 \setminus \{t_{l-1}\}$. Let $y_0 = w^{(o)}$, $y_1 = w_{J_1}w_{J_2}y_0$, $y_2 = t_0w_{J_3}w_{J_4}y_1$, $y_3 = y_2t_nw_{J_6}w_{J_5}$ and $y_4 = y_3w_{J_8}w_{J_7}$. In either case, we have $y_4 = y^{(o)}$.

Figure 3

In Figure 3, we display the corresponding parts of the matrix forms of $y_0, ..., y_4$ for l > 1, the notation \searrow stands for the $l \times l$ identity submatrix, while \nearrow stands for the $m \times m$ anti-diagonal submatrix with all the anti-diagonal entries being 1.

We have $y_i \in E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ for any $i \in [0,4]$. Also, $\ell(y_1) = \ell(y_0) + \ell(y_1y_0^{-1})$, $\ell(y_2) = \ell(y_1) + \ell(y_2y_1^{-1})$, $\ell(y_3) = \ell(y_2) - \ell(y_2^{-1}y_3)$ and $\ell(y_4) = \ell(y_3) - \ell(y_3^{-1}y_4)$ (see Figure 3 for l > 1). This implies by Corollary 2.17 that $w^{(o)}$ and $y^{(o)}$ are contained in the same tcc of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$.

Next assume k = 2n. By the part (II) in the proof of Lemma 4.4, we see that any $w \in E_{2n}$ is in the tcc of E_{2n} containing either w_J or w_I with $J = S \setminus \{t_0\}$ and $I = S \setminus \{t_n\}$. Let $K = S \setminus \{t_0, t_n\}$ and let $y = w_K w_I w_J$. Then $y = w_I w_J w_K \in E_{2n}$ satisfies $\ell(y) = \ell(w_J) + \ell(w_K w_I) = \ell(w_I) + \ell(w_J w_K)$. So w_J, w_I are contained in the same tcc of E_{2n} by Corollary 2.17. Hence E_{2n} is two-sided-connected and forms a two-sided cell of \widetilde{C}_n by Lemma 2.16, which is the lowest one under the relation \leq by Lemmas 2.13-2.14. \square

In the proof of Lemma 4.7, we actually show that if $k \in [2n]$ is either odd or 2n then the set $E_{\mathbf{k}\mathbf{1}^{2n-k}}$ is two-sided-connected. By 3.3, 4.2 and Lemmas 4.3-4.4, we see that if k = 2m < 2n is even then each of the sets $E'_{\mathbf{k}\mathbf{1}^{2n-k}}$ and $E''_{\mathbf{k}\mathbf{1}^{2n-k}}$ is contained in some tcc of $E_{\mathbf{k}\mathbf{1}^{2n-k}}$. Now we have

Lemma 4.8. If $k = 2m \in [2n-2]$ is even, then the set $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ has two $tccs\ E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ and $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$.

Proof. Keep the notation in (4.2.1) for $w \in E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$. Denote the integers $j_a, \bar{j}_a, i_b, \bar{i}_b$ by $j'_a, \bar{j}'_a, i'_b, \bar{i}'_b$, resp., $j''_a, \bar{j}''_a, i''_b, \bar{i}''_b$ for $a \in [m]$ and $b \in [l]$, according to w being $w' \in E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$, resp., $w'' \in E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$. Observe the following facts: If w'' is obtained from w' by left multiplying some $t \in S$, then $j''_1 = \langle (j'_1)t \rangle$ (see 2.7) and $(j''_1)w'' = (j'_1)w'$. If w'' is obtained from w' by right multiplying some $t \in S$, then $j''_1 = j'_1$ and $(j''_1)w'' = (j'_1)w't$.

We see that $w' \in E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ satisfies $\bar{i}'_1 < j'_1 \leqslant n$ and $n < (j'_1)w' < (i'_1)w'$, and that $w'' \in E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ satisfies $i''_l < j''_1 \leqslant 2n$ and $2n < (j''_1)w'' < (\bar{i}''_l)w'' + 2n$.

Since $i_l'' \geqslant n+1$ and $\bar{i}_1' \geqslant 1$, we have $j_1' \in [2,n]$ and $j_1'' \in [n+2,2n]$, hence $j_1'' \neq \langle (j_1')t \rangle$ for any $t \in S$. So no element of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}''$ could be obtained from an element of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}'$ by left multiplying some $t \in S$. Since $(i_1')w' \leqslant 2n$, we have $(j_1')w' \leqslant 2n-1$ and $2n+1 \leqslant (j_1'')w''$, hence $(j_1'')w'' \neq (j_1')w't$ for any $t \in S$. So no element of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}'$ could be obtained from an element of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}'$ by right multiplying some $t \in S$. So $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}'$, $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}''$ form two different tecs of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}'$ by the fact $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}} = E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}' \cup E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}''$.

Theorem 4.9. (1) If $k = 2m + 1 \in [2n]$ is odd, then $E_{\mathbf{k}\mathbf{1}^{2n-k}}$ is a two-sided cell of \widetilde{C}_n containing $2^m n!/(n-m)!$ left cells.

- (2) E_{2n} is the lowest two-sided cell of \widetilde{C}_n consists of $2^n n!$ left cells.
- (3) If $k = 2m \in [2n-2]$ is even, then $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ is a union of two two-sided cells $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$, $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ of \widetilde{C}_n , each of $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$, $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ contains $2^{m-1}n!/(n-m+1)!$ left cells. The group automorphism η interchanges $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$, $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$.
- (4) Each left (respectively, two-sided) cell of \widetilde{C}_n in $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ is left- (respectively, two-sided-) connected.
 - (5) The set $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ is infinite unless k=1,2.

Proof. By Lemma 2.16, we see that E_{λ} is either empty or a union of some two-sided cells of \widetilde{C}_n for any $\lambda \in \Lambda_{2n}$. Hence (1)-(2) follow by Lemmas 4.3 and 4.5-4.7. For (3), we see by Lemmas 4.3-4.4 and 4.6 that each of $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ and $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ contains $2^{m-1}n!/(n-m+1)!$ left cells. By Lemmas 1.4, 4.4 and 2.12, we see that each of $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ and $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ is a union of some two-sided cells of \widetilde{C}_n . On the other hand, each of $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ and $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ is a tcc of $E_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ by Lemma 4.8, which should be contained in some two-sided cell of \widetilde{C}_n by Lemma 2.16. So each of $E'_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ and $E''_{\mathbf{k}\mathbf{1}^{2\mathbf{n}-\mathbf{k}}}$ forms a single two-sided cell of \widetilde{C}_n . The last assertion of (3) follows by Lemma 4.4. This proves (3). (4) follows by (1)-(3) and Lemmas 4.3, 4.6. Finally, $E_{\mathbf{1}^{2\mathbf{n}}} = \{1\}$ and $E_{\mathbf{2}\mathbf{1}^{2\mathbf{n}-2}} = \{t_0, t_n\}$. When $k = 2m \geqslant 4$ or $k = 2m+1 \geqslant 3$, the number of the choices for $(j_m)w$ in (4.1.1) or (4.2.1) is infinite. This proves (5).

§5. The set $E_{(k,2,1,...,1)}$ with $(k,2,1,...,1) \in \Lambda_{2n}$.

In this section, we describe cells of \widetilde{C}_n in the set $E_{(k,2,1,...,1)}$ with $(k,2,1,...,1) \in \Lambda_{2n}$. The main result is as follows.

Theorem 5.1. Let $\lambda = (2m, 2, 1, ...,)$ and $\mu = (2m+1, 2, 1, ..., 1)$ be in Λ_{2n} .

- (1) The set E_{λ} forms a single two-sided cell of \widetilde{C}_n if m = n 1 and is a union of two two-sided cells (say E'_{λ} and E''_{λ}) of \widetilde{C}_n if m < n 1. The set E_{μ} is a union of two two-sided cells (say E'_{μ} and E''_{μ}) of \widetilde{C}_n .
- (2) Let $n(\nu)$ be the number of left cells of \widetilde{C}_n in E_{ν} for $\nu = \lambda, \mu$. Then $n(\lambda) = \frac{2^{m-1}n!(n+3-m)}{(n+1-m)!}$ and $n(\mu) = \frac{2^m \cdot n!}{(n-m)!}$.

Let $n'(\nu)$ and $n''(\nu)$ be the numbers of left cells in E'_{ν} and E''_{ν} respectively for $\nu = \lambda, \mu$. Then $\{n'(\lambda), n''(\lambda)\} = \left\{\frac{2^{m-1}n!}{(n+1-m)!}, \frac{2^{m-1}n!(n+2-m)}{(n+1-m)!}\right\}$ and $n'(\mu) = n''(\mu) = \frac{2^{m-1} \cdot n!}{(n-m)!}$.

- (3) Any left (respectively, two-sided) cell of \widetilde{C}_n in $E_{\lambda} \cup E_{\mu}$ is left- (respectively, two-sided-) connected.
- (4) $|E_{\mathbf{k21^{2n-k-2}}}| = \infty \text{ unless } k = 2, 3.$

We shall prove Theorem 5.1 in the remaining part of the section.

- **5.2.** Let l = n m 1. Then $w \in \widetilde{C}_n$ is in E_{λ} if and only if one of the conditions (a)-(c) on w holds:
- (a) There are some pairwise not 2n-dual $j_1, j_2, ..., j_m, k, i_1, i_2, ..., i_l$ in [2n] with $j_1, j_2, ..., j_m, k$ w-wild heads and $i_1, i_2, ..., i_l$ w-tame heads such that
 - (a1) $j_1 \prec_w j_2 \prec_w \cdots \prec_w j_m$;
 - (a2) $i_1 < i_2 < \dots < i_l$ and $(i_1)w < (i_2)w < \dots < (i_l)w$;
 - (a3) j_1 (respectively, k) is w-comparable with none of i_h, \bar{i}_h for $h \in [l]$;
 - (a4) k is w-uncomparable with j_p for some $p \in [m]$.

Both (a2) and (a3) become empty condition if m = n - 1.

- (b) There are some pairwise not 2n-dual $j_1, j_2, ..., j_m, i_1, i_2, ..., i_l, i_{l+1}$ in [2n] with $j_1, j_2, ..., j_m$ w-wild heads and $i_1, i_2, ..., i_l, i_{l+1}$ w-tame heads such that
 - (b1) $j_1 \prec_w j_2 \prec_w \cdots \prec_w j_m$;
 - (b2) $i_1 < i_2 < \dots < i_l < i_{l+1}$ and $(i_1)w < (i_2)w < \dots < (i_l)w < (i_{l+1})w$;

- (b3) j_1 is w-comparable with at least one of $i_1, \bar{i}_1, i_{l+1}, \bar{i}_{l+1}$, but not with i_h, \bar{i}_h simultaneously for any $h \in \{1, l+1\}$.
- (c) There are some pairwise not 2n-dual $j_1, j_2, ..., j_{m-1}, i_1, i_2, ..., i_{l+2}$ in [2n] with $j_1, j_2, ..., j_{m-1}$ w-wild heads and $i_1, i_2, ..., i_{l+2}$ w-tame heads such that
- (c1) $\bar{j}_1 \prec_w i_q \prec_w i_p \prec_w j_1 \prec_w j_2 \prec_w \cdots \prec_w j_{m-1}$ for some $p, q \in [l+2]$ with $l+2 \in \{p,q\}$;
 - (c2) $i_1 < i_2 < \dots < i_l < i_{l+1}$ and $(i_1)w < (i_2)w < \dots < (i_l)w < (i_{l+1})w$.

For any $w_1 \in E_{\lambda}$ satisfying (c), there exists some $w_2 \in E_{\lambda}$ satisfying (b) such that w_1 and w_2 are in the same lcc of E_{λ} .

- **5.3.** Let E'_{λ} be the set of all $w \in E_{\lambda}$ satisfying 5.2 (a) with one additional requirement that \bar{k} and j_1 are w-uncomparable, that is, at least one of the following two cases occurs:
- (a5) $\bar{i}_1 < j_1 < \bar{j}_1 < i_1$ and $(\bar{i}_1)w < (\bar{j}_1)w < (j_1)w < (i_1)w$ and $i_l 2n < k 2n < \bar{k} < \bar{i}_l$ and $(i_l)w 2n < (\bar{k})w < (k)w 2n < (\bar{i}_l)w$;
- (a6) $\bar{i}_1 < k < \bar{k} < i_1$ and $(\bar{i}_1)w < (\bar{k})w < (k)w < (i_1)w$ and $i_l 2n < j_1 2n < \bar{j}_1 < \bar{i}_l$ and $(i_l)w 2n < (\bar{j}_1)w < (j_1)w 2n < (\bar{i}_l)w$. Let $E''_{\lambda} = E_{\lambda} \setminus E'_{\lambda}$.

Lemma 5.4. $E'^{-1}_{\lambda} = E'_{\lambda}$ and $E''^{-1}_{\lambda} = E''_{\lambda}$ for $\lambda = (2m, 2, 1, ..., 1) \in \Lambda_{2n}$ with m < n - 1.

Proof. From the matrix forms of elements, we see that if w is in E_{λ} and satisfies (a1)-(a5) (respectively, (a1)-(a4) and (a6)), then so does w^{-1} . Hence $E'^{-1}_{\lambda} = E'_{\lambda}$. We also have $E''^{-1}_{\lambda} = E''_{\lambda}$ by the fact $E^{-1}_{\lambda} = E_{\lambda}$. \square

- **5.5.** Let F'_{λ} be the set of all $w' \in \widetilde{C}_n$ satisfying the condition (a') below.
- (a') Let $j_1, ..., j_m, k$ be w'-wild heads and $i_1, ..., i_l$ w'-tame heads such that (a'1) either
- (a'11) $(\bar{k}, \bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_1, j_m, j_{m-1}, ..., j_1) = (1, 2, ..., n)$ with $0 < (k)w' 2n < (\bar{i}_l)w' < (\bar{i}_{l-1})w' < \cdots < (\bar{i}_1)w' < (j_1)w' < (i_1)w'$ if m < n-1 and with $0 < (k)w' 2n \le n < (j_1)w' \le 2n$ if m = n-1,

(a'12)
$$(\bar{k}, i_1, i_2, ..., i_l, j_m, j_{m-1}, ..., j_1) = (n+1, n+2, ..., 2n)$$
 with $n < (k)w' < (i_1)w' < (i_2)w' < \cdots < (i_l)w' < (j_1)w' < (\bar{i}_l)w' + 2n$ if $m < n-1$ and with $0 < (j_1)w' - 2n \le n < (k)w' \le 2n$ if $m = n-1$;

(a'2)
$$0 < (j_{h+1})w' - (j_h)w' < 2n$$
 for any $h \in [m-1]$.

Let $F_{\lambda}^{"}$ be the set of all $w' \in \widetilde{C}_n$ satisfying one of (b'), (c') below.

(b') Let $j_1, ..., j_m, k$ be w'-wild heads and $i_1, ..., i_l$ w'-tame heads such that (b'1) either that $(\bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_1, j_m, j_{m-1}, ..., j_1, k) = (1, 2, ..., n)$ with $n < (j_1)w' < (k)w' < (i_1)w'$ if m < n-1 and with $n < (j_1)w' < (k)w' \le 2n$ if m = n-1,

or that $(i_1, i_2, ..., i_l, j_m, j_{m-1}, ..., j_1, k) = (n + 1, n + 2, ..., 2n)$ with $2n < (j_1)w' < (k)w' < (\bar{i}_l)w' + 2n$ if m < n - 1 and $2n < (j_1)w' < (k)w' \le 3n$ if m = n - 1;

- (b'2) $0 < (j_{h+1})w' (j_h)w' < 2n \text{ for any } h \in [m-1];$
- (b'3) $(i_1)w' < (i_2)w' < \cdots < (i_l)w'$.
- (c') Let $j_1, ..., j_m$ be w'-wild heads and $i_1, ..., i_{l+1}$ w'-tame heads with m < n-1 such that
 - (c'1) either

(c'11)
$$(\bar{i}_{l+1}, \bar{i}_l, ..., \bar{i}_1, j_m, j_{m-1}, ..., j_1) = (1, 2, ..., n)$$
 and $(i_1)w' < (j_1)w' \le 2n$,

- (c'12) $(i_1, i_2, ..., i_{l+1}, j_m, j_{m-1}, ..., j_1) = (n+1, n+2, ..., 2n)$ and $(\bar{i}_{l+1})w' + 2n < (j_1)w' \le 3n;$
 - $(c'2) \ 0 < (j_{h+1})w' (j_h)w' < 2n \text{ for any } h \in [m-1];$
 - $(c'3) (i_1)w' < (i_2)w' < \cdots < (i_l)w' < (i_{l+1})w'.$
- **5.6.** $F'_{\lambda} \subseteq E'_{\lambda}$ and $F''_{\lambda} \subseteq E''_{\lambda}$ by 5.2-5.3 and 5.5. Any lcc of E'_{λ} (respectively, E''_{λ}) contains some element of F'_{λ} (respectively, F''_{λ}) by 3.3 and Lemma 3.2.

Let $\alpha = (1, ..., 1, 2, 2(n-m), 1, ..., 1) \in \widetilde{\Lambda}_{2n}$ with 2 its m-th component. Let $F_{\lambda} := F'_{\lambda} \cup F''_{\lambda}$. By the argument for Lemma 4.6, there is some $y \in \Omega$ with $y \sim w'$ and $T(y) \in \xi^{-1}(\alpha)$ for any $w' \in F_{\lambda}$. Now we describe T(y).

(1) If w' satisfies (a') or (b') in 5.5, then T(y) is equal to

$$\left(\left\{ \left\langle (\bar{j}_{m})w' \right\rangle \right\}, ..., \left\{ \left\langle (\bar{j}_{2})w' \right\rangle \right\}, \left\{ \left\langle (\bar{j}_{1})w' \right\rangle, \left\langle (\bar{k})w' \right\rangle \right\},$$

$$\left\{ \left\langle (j_{1})w' \right\rangle, \left\langle (k)w' \right\rangle, \left\langle (\bar{i}_{h})w' \right\rangle, \left\langle (i_{h})w' \right\rangle \mid h \in [l] \right\}, \left\{ \left\langle (j_{2})w' \right\rangle \right\}, ..., \left\{ \left\langle (j_{m})w' \right\rangle \right\},$$
where (i) $0 < (k)w' - 2n < (\bar{i}_{l})w'$ and $n < (j_{1})w' < (i_{1})w'$

where (i)
$$0 < (k)w' - 2n < (\bar{i}_l)w'$$
 and $n < (j_1)w' < (i_1)w'$
if $(\bar{k}, \bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_1, j_m, j_{m-1}, ..., j_1) = (1, 2, ..., n);$

(ii)
$$n < (k)w' < (i_1)w'$$
 and $2n < (j_1)w' < (\bar{i}_l)w' + 2n$
if $(\bar{k}, i_1, i_2, ..., i_l, j_m, j_{m-1}, ..., j_1) = (n+1, n+2, ..., 2n);$

(iii)
$$n < (j_1)w' < (k)w' < (i_1)w'$$

if $(\bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_1, j_m, j_{m-1}, ..., j_1, k) = (1, 2, ..., n);$

(iv)
$$2n < (j_1)w' < (k)w' < (\bar{i}_l)w' + 2n$$

if $(i_1, i_2, ..., i_l, j_m, j_{m-1}, ..., j_1, k) = (n+1, n+2, ..., 2n)$.

Here we stipulate $(\bar{i}_l)w' = n+1$ and $(i_1)w' = 2n+1$ if l=0.

(2) If w' satisfies 5.5 (c') with $(\bar{i}_{l+1},...,\bar{i}_1,j_m,...,j_1)=(1,2,...,n)$ and $(i_p)w'<(j_1)w'<(i_{p+1})w'$ for some $p\in[l+1]$ with the convention that $(i_{l+2})w'=2n+1$, then T(y) is equal to

$$(\{\langle (\bar{j}_m)w'\rangle\}, ..., \{\langle (\bar{j}_2)w'\rangle\}, \{\langle (\bar{j}_1)w'\rangle, \langle (i_p)w'\rangle\}, \{\langle (j_1)w'\rangle, \langle (\bar{i}_h)w'\rangle, \langle (\bar{i}_h)w'\rangle, \langle (i_h)w'\rangle \mid h \in [l+1]\} \setminus \{\langle (i_p)w'\rangle\}, \{\langle (j_2)w'\rangle\}, ..., \{\langle (j_m)w'\rangle\}).$$

(3) If w' satisfies 5.5 (c') with $(i_1, ..., i_{l+1}, j_m, ..., j_1) = (n+1, n+2, ..., 2n)$ and $(\bar{i}_p)w' + 2n < (j_1)w' < (\bar{i}_{p-1})w' + 2n$ for some $p \in [l+1]$ with the convention that $(\bar{i}_0)w' = n+1$, then T(y) is equal to

$$(\{\langle (\bar{j}_m)w'\rangle\}, ..., \{\langle (\bar{j}_2)w'\rangle\}, \{\langle (\bar{j}_1)w'\rangle, \langle (\bar{i}_p)w'\rangle\},$$

$$\{\langle (j_1)w'\rangle, \langle (\bar{i}_h)w'\rangle, \langle (i_h)w'\rangle \mid h \in [l+1]\} \setminus \{\langle (\bar{i}_p)w'\rangle\}, \{\langle (j_2)w'\rangle\}, ..., \{\langle (j_m)w'\rangle\}).$$

5.7. By Lemma 3.6, we see that $T(y) \in \xi^{-1}(\alpha)$ given in 5.6 only depends on $w' \in F_{\lambda}$ and α but not on the choice of $y \in \Omega$. We can denote T(y) by $T_{\alpha}(w')$. This defines a map $T_{\alpha} : F_{\lambda} \longrightarrow \xi^{-1}(\alpha)$. By 5.5-5.6, $\mathbf{T} = (T_1, T_2, ..., T_{2m}) \in \xi^{-1}(\alpha)$ is in the image of the map T_{α} if and only if \mathbf{T} satisfies the following conditions:

- (1) $\overline{T_i} = T_{2m+1-i}$ for any $i \in [2m] \setminus \{m, m+1\}$ (see 3.1).
- (2) $T_m \cup T_{m+1} = \{\bar{q}_{n+1-m}, \bar{q}_{n-m}, ..., \bar{q}_1, q_1, ..., q_{n-m}, q_{n+1-m}\}$ for some $\bar{q}_1 < q_1 < q_2 < \cdots < q_{n+1-m}$ in [2n], and

$$(5.7.1) \quad T_m \in \{\{\bar{q}_1, q_{n+1-m}\}, \{\bar{q}_1, \bar{q}_2\}, \{q_{n-m}, q_{n+1-m}\}, \{\bar{q}_{i+1}, q_i\} \mid i \in [n-m]\}.$$

When the equivalent conditions hold, we have $|T_{\alpha}^{-1}(\mathbf{T})| = 1$ if $T_m \in \{\{\bar{q}_1, \bar{q}_2\}, \{q_{n-m}, q_{n+1-m}\}\}$ (i.e., 5.5 (b')) and $|T_{\alpha}^{-1}(\mathbf{T})| = 2$ if otherwise.

Figure 4

Suppose m < n-1. By 5.6, we see that $T_{\alpha}(w') \neq T_{\alpha}(w'')$ for any $w' \in F'_{\lambda}$ and any $w'' \in F''_{\lambda}$. This implies by 5.6 and Lemmas 3.6, 2.13-2.14 that each of E'_{λ} and E''_{λ} is a union of some left cells of \widetilde{C}_n .

First consider the case 5.5 (a'). Let F'_i be the set of all $w' \in F'_{\lambda}$ satisfying (a'1i) and (a'2) for i=1,2. Then $F'_{\lambda}=F'_1\dot{\cup} F'_2$. Use the notation in 5.6 and in (2) above, $w' \in F'_1$ (respectively, $w' \in F'_2$) means that $\langle (\bar{k})w' \rangle$, $\langle (\bar{j}_1)w' \rangle$ (respectively, $\langle (\bar{j}_1)w' \rangle$, $\langle (\bar{k})w' \rangle$) in 5.6 are q_{n+1-m} , \bar{q}_1 in (2), respectively. Take any $w' \in F'_1$ with the notation as in 5.5 (a'). Let $J_1 = \{t_1, t_2, ..., t_{n-2}\}$, $J_2 = J_1 \setminus \{t_{l+1}\}$, $J_3 = \{t_0, t_1, ..., t_{m-2}\}$, $J_4 = \{t_1, t_2, ..., t_{m-1}\}$. Let $J'_j = \eta(J_j)$ for $j \in [4]$. If $(j_2)w' < (k)w'$, let $w'' = w_{J_4}w_{J_3}w_{J_1}w_{J_2}w'$, then $w'' \in F'_2$ with $\ell(w'') = \ell(w') + \ell(w_{J_4}w_{J_3}w_{J_1}w_{J_2})$ (see Figure 4). If $(j_2)w' > (k)w'$, let $w'' = w_{J'_2}w_{J'_1}w_{J'_3}w_{J'_4}w'$, then $w'' \in F'_2$ with $\ell(w'') = \ell(w') - \ell(w_{J'_2}w_{J'_1}w_{J'_3}w_{J'_4})$. In

either case, w'', w' are in the same lcc of E'_{λ} by Corollary 2.17. So $w'' \sim w'$ and $T_{\alpha}(w') = T_{\alpha}(w'')$ by Lemma 3.6. $w' \mapsto w''$ is a bijection from F'_{1} to F'_{2} .

Figure 5

Next consider the case 5.5 (c'). Let F_i'' be the set of all $w' \in F_\lambda''$ satisfying (c'1i) and (c'2)-(c'3) for i=1,2. Then $F_1'' \cap F_2'' = \emptyset$. Use the notation in 5.6 and in (2) above, $w' \in F_1''$ (respectively, $w' \in F_2''$) means that $\langle (\bar{j}_1)w' \rangle$, $\langle (i_p)w' \rangle$ (respectively, $\langle (\bar{i}_p)w' \rangle$, $\langle (\bar{j}_1)w' \rangle$) in 5.6 are \bar{q}_{p+1} , q_p in (2), respectively. Take any $w' \in F_1''$. Let $J_1 = \{t_1, t_2, ..., t_{n-2}\}$, $J_2 = J_1 \setminus \{t_l\}$, $J_3 = \{t_0, t_1, ..., t_{m-2}\}$, $J_4 = J_3 \setminus \{t_0\}$, $J_5 = \{t_{n-1}, t_{n-2}, ..., t_{n+1-p}\}$, $J_6 = J_5 \setminus \{t_{n-1}\}$, $J_7 = \{t_m, t_{m+1}, ..., t_{n-2-p}\}$, $J_8 = J_7 \setminus \{t_{n-2-p}\}$ and $J_9 = \{t_1, t_2, ..., t_{m-1}\}$. Let $x_1 = w'$, $x_2 = w_{J_3}w_{J_4}w_{J_1}w_{J_2}x_1$, $x_3 = w_{J_5}w_{J_6}t_nx_2$, $x_4 = t_0w_{J_9}w_{J_4}w_{J_7}w_{J_8}x_3$. Let $w'' = x_4$. Then $x_i \in E_\lambda''$ for $i \in [4]$ and

 $w'' \in F_2''$ with $\ell(x_2) = \ell(x_1) + \ell(w_{J_3}w_{J_4}w_{J_1}w_{J_2})$, $\ell(x_3) = \ell(x_2) - \ell(w_{J_5}w_{J_6}t_n)$ and $\ell(x_4) = \ell(x_3) + \ell(t_0w_{J_9}w_{J_4}w_{J_7}w_{J_8})$ (see Figure 5). w', w'' are in the same lcc of E_{λ}'' by Corollary 2.17. So $w' \sim w''$ and hence $T_{\alpha}(w') = T_{\alpha}(w'')$ by Lemma 3.6. $w' \mapsto w''$ is a bijection from F_1'' to F_2'' .

From 5.6 and the above discussion, we conclude that

Lemma 5.8. Let $\lambda = (2m, 2, 1, ..., 1) \in \Lambda_{2n}$.

- (1) Each of E'_{λ} and E''_{λ} is a union of some left cells of \widetilde{C}_n if m < n 1.
- (2) Any left cell of \widetilde{C}_n in E_{λ} is left-connected.

Now consider the two-sided cells of \widetilde{C}_n in E_{λ} .

Lemma 5.9. Let $\lambda = (2m, 2, 1, ..., 1) \in \Lambda_{2n}$.

- (1) If m < n-1, then each of E'_{λ} and E''_{λ} is two-sided-connected and is a two-sided cell of \widetilde{C}_n .
 - (2) $E_{(2n-2,2)}$ is two-sided-connected and is a single two-sided cell of \widetilde{C}_n .

Proof. By 1.3 (1)-(2), Lemmas 1.4, 5.4 and 5.8, to show our result, we need only to prove that each of E'_{λ} and E''_{λ} is two-sided-connected if m < n - 1 and that $E_{(2n-2,2)}$ is two-sided-connected.

- (I) First assume m < n 1.
 - (Ia) E'_{λ} is two-sided-connected.

Let $w_1 = [0, 2, 3, ..., n - m, n + m, n + m - 1, ..., n + 2, n + 1]$ and $w_2 = [0, -1, -2, ..., -m + 1, m + 1, m + 2, ..., n - 1, n + 1]$ be in \widetilde{C}_n (see Figure 6). Then $w_1, w_2 \in F'_{\lambda}$. Let F'_1, F'_2 be defined as in 5.7. Then

$$(5.9.1) \quad \eta(E'_{\lambda}) = E'_{\lambda}; \quad w_i \in F'_i, \ \eta(w_i) = w_{3-i}, \ \eta(F'_i) = F'_{3-i} \ \text{for } i = 1, 2.$$

by Proposition 2.8 (3). By 5.6, to show (Ia), we need only to prove that

- (a) Any $x \in F'_i$ is in the rcc of E'_{λ} containing w_i for i = 1, 2;
- (b) w_1 and w_2 are in the same tcc of E'_{λ} .

Figure 6

For (a), we need only to deal with the case of i=1 by the fact (5.9.1), while the argument for this part is similar to that for Lemma 4.4 (3) (hence leaving it to the readers). Now consider (b). Let $J_1 = \{t_2, t_3, ..., t_{n-2}\}$, $J_2 = J_1 \setminus \{t_{n-m}\}$, $J_3 = \{t_0, t_1, ..., t_{m-1}\}$, $J_4 = J_3 \setminus \{t_1\}$, $J_5 = \{t_n, t_{n-1}, ..., t_{n+1-m}\}$, $J_6 = J_5 \setminus \{t_{n-1}\}$ and $y = w_{J_3}w_{J_4}w_{J_1}w_{J_2}w_1$. Then $y = w_2w_{J_1}w_{J_2}w_{J_6}w_{J_5}$, which is in E'_{λ} and satisfies $\ell(y) = \ell(w_1) + \ell(w_{J_3}w_{J_4}w_{J_1}w_{J_2}) = \ell(w_2) + \ell(w_{J_1}w_{J_2}w_{J_6}w_{J_5})$ (see Figure 6). This proves (b) by Corollary 2.17.

(Ib) $E_{\lambda}^{"}$ is two-sided-connected.

Let $w_1 = [1, 2, ..., n - m - 1, n + m, n + m - 1, ..., n + 1, n + m + 1]$ and $w_2 = [-m, 0, -1, -2, ..., -m + 1, m + 2, m + 3, ..., n]$ be in \widetilde{C}_n (see Figure 7). Let F_1'' , F_2'' be defined as in 5.7. Then

(5.9.2)
$$w_i \in F_i'', \quad \eta(w_i) = w_{3-i}, \quad \eta(F_i'') = F_{3-i}'' \quad \text{for } i = 1, 2.$$

by Proposition 2.8 (3). By 5.6, to show (Ib), we need only to prove that

- (a) Any $x \in F_i''$ is in the rcc of E_{λ}'' containing w_i for i = 1, 2;
- (b) w_1 and w_2 are in the same tcc of E''_{λ} .

By (5.9.2), to prove (a), we need only to deal with the case of i = 1, the latter can be proved by the argument similar to that for Lemma 4.4 (3) (hence leaving it to the readers). Next consider (b).

Let $J_1 = \{t_1, t_2, ..., t_{n-2}\}, J_2 = J_1 \setminus \{t_{n-m-1}\}, J_3 = \{t_0, t_1, ..., t_{m-1}\}, J_4 = J_3 \setminus \{t_0\}, J_5 = \{t_n, t_{n-1}, ..., t_{n-m+1}\}, J_6 = J_5 \setminus \{t_n\}, J_7 = \{t_2, t_3, ..., t_{n-1}\}, J_8 = J_7 \setminus \{t_{n-m}\} \text{ and } J_9 = J_4 \setminus \{t_1\}. \text{ Let } x_0 = w_1, x_1 = t_n x_0, x_2 = w_{J_3} w_{J_4} w_{J_1} w_{J_2} x_1, x_3 = x_2 w_{J_6} w_{J_5} w_{J_8} w_{J_7}, x_4 = x_3 t_0 w_{J_9} w_{J_4} \text{ and } x_5 = w_{J_9} w_{J_4} x_4.$ Then $x_5 = w_2$. We have $x_i \in E_\lambda''$ for any $i \in [0, 5]$ and $\ell(x_1) = \ell(x_0) - 1$, $\ell(x_2) = \ell(x_1) + \ell(w_{J_3} w_{J_4} w_{J_1} w_{J_2}), \ell(x_3) = \ell(x_2) - \ell(w_{J_6} w_{J_5} w_{J_8} w_{J_7}), \ell(x_4) = \ell(x_3) + \ell(t_0 w_{J_9} w_{J_4}), \ell(x_5) = \ell(x_4) - \ell(w_{J_9} w_{J_4}) \text{ (see Figure 7)}.$

Figure 7

By Corollary 2.17, we see that x_{i-1}, x_i are contained in the same tcc of E''_{λ} for any $i \in [5]$. This proves (b) and hence E''_{λ} is two-sided connected.

(II) $E_{(2n-2,2)}$ is two-sided-connected.

Denote $\lambda = (2n-2,2)$. Let $w_1 = [2n-1,2n-2,...,n+1,2n], w_2 = [0,-1,...,-n+2,n+1], w_3 = [0,2n-1,2n-2,...,n+1]$ and $w_4 = [-n+1,0,-1,...,-n+2]$ be in \widetilde{C}_n (see Figure 8). Then $w_i \in F_{\lambda} := F'_{\lambda} \cup F''_{\lambda}$ for $i \in [4]$. By the argument similar to that for Lemma 4.4 (3), we can show that

any element of F_{λ} is in the rcc of E_{λ} containing w_i for some $i \in [4]$ (hence leaving it to the readers). Note that $\eta(w_i) = w_{5-i}$ for $i \in [4]$ by Proposition 2.8 (3). Thus to show that E_{λ} is two-sided-connected, we need only to prove that w_1, w_2 (respectively, w_2, w_3) are in the same tcc of E_{λ} .

Let $x_1 = w_1$, $x_2 = w_{J_4}w_{J_2}x_1$, $x_3 = x_2w_{J_5}w_{J_3}$, $x_1' = w_3$, $x_2' = t_nw_{J_4}w_{J_2}w_{J_3}w_{J_1}x_1'$, $x_3' = x_2'w_{J_1}w_{J_5}t_0w_{J_1}w_{J_3}$, where $J_1 = \{t_2, t_3, ..., t_{n-1}\}$, $J_2 = \{t_1, t_2, ..., t_{n-2}\}$, $J_3 = J_2 \cup \{t_{n-1}\}$, $J_4 = J_2 \cup \{t_0\}$, $J_5 = J_1 \cup \{t_n\}$. Then $x_3 = x_3' = w_2$ and $x_i, x_i' \in E_{\lambda}$ for $i \in [3]$ and $\ell(x_2) = \ell(x_1) + \ell(w_{J_4}w_{J_2}) = \ell(x_3) + \ell(w_{J_3}w_{J_5})$ and $\ell(x_2') = \ell(x_1') + \ell(t_nw_{J_4}w_{J_2}w_{J_3}w_{J_1}) = \ell(x_3') + \ell(w_{J_3}w_{J_1}t_0w_{J_5}w_{J_1})$ (see Figure 8). We see by Corollary 2.17 that w_1, w_2 , (respectively, w_2, w_3) are in the same tcc of E_{λ} . So E_{λ} is two-sided-connected. \square

Figure 8

Recall the notation $n(\lambda)$, $n'(\lambda)$, $n''(\lambda)$ in Theorem 5.1 (2).

Lemma 5.10. $n(\lambda) = \frac{2^{m-1}n!(n+3-m)}{(n+1-m)!}$ for $\lambda = (2m, 2, 1, ..., 1) \in \Lambda_{2n}$. In this case, if m < n-1, then $n'(\lambda) = \frac{2^{m-1}n!}{(n+1-m)!}$ and $n''(\lambda) = \frac{2^{m-1}n!(n+2-m)}{(n+1-m)!}$.

Proof. Consider $\mathbf{T} = (T_1, ..., T_{2m}) \in \xi^{-1}(\alpha)$ satisfying 5.7 (1)-(2). The number of the choices is $\binom{n}{n+1-m}$ for $E := T_m \cup T_{m+1} = \{\bar{q}_{n+1-m}, \bar{q}_{n-m}, ..., \bar{q}_1, q_1, ..., q_{n-m}, q_{n+1-m}\}$ with $\bar{q}_1 < q_1 < q_2 < \cdots < q_{n+1-m}$ in [2n]. Once E is fixed, the number of the choices is n+3-m for T_m satisfying (5.7.1), while that is $2^{m-1}(m-1)!$ for $(T_1, ..., T_{m-1})$. We know that w' is in E'_{λ} (respectively, E''_{λ}) if and only if the m-th component of T(w') is $\{\bar{q}_1, q_{n+1-m}\}$ (respectively, satisfies (5.7.1) but is not $\{\bar{q}_1, q_{n+1-m}\}$). This proves our result. \square

If m > 1, then the number of the choices is infinite for the integer $(j_m)w$ in the case 5.2 (a), hence $|E_{(2m,2,1,\ldots,1)}| = \infty$. On the other hand, the set $E_{\mathbf{2^{2}1^{2n-4}}} = \{t_0t_n, t_it_{i+1} \cdots t_j, t_jt_{j-1} \cdots t_i \mid 0 \leq i \leq j \leq n\} \setminus \{t_0, t_n\}$ is finite.

So far we have proved all the assertions of Theorem 5.1 involving the partition $\lambda = (2m, 2, 1, ..., 1) \in \Lambda_{2n}$.

- **5.11.** Let $\mu = (2m+1, 2, 1, ..., 1) \in \Lambda_{2n}$ and l = n m 1. Then $w \in \widetilde{C}_n$ is in E_{μ} if and only if w satisfies the condition (5.11.1) below.
- (5.11.1) There are some pairwise not 2n-dual $j_1, j_2, ..., j_m, k, i_1, i_2, ..., i_l$ in [2n] with $j_1, j_2, ..., j_m, k$ w-wild heads and $i_1, i_2, ..., i_l$ w-tame heads such that (i) $j_1 \prec_w j_2 \prec_w \cdots \prec_w j_m$; (ii) either $\bar{i}_1, i_1 \prec_w j_1$, or $\bar{i}_l, i_l \prec_w j_1$; (iii) $i_1 < i_2 < \cdots < i_l$ and $(i_1)w < (i_2)w < \cdots < (i_l)w$; (iv) k is w-comparable with none of \bar{i}_h, i_h, j_q for any $h \in [l]$ and some $q \in [m]$.

According to (i)-(ii) and (iv), if k is w-comparable with j_p for some $p \in [m]$, then $k \prec_w j_p$ and p > 1 by Lemma 3.2. Thus under the assumption of (i)-(ii), the condition (iv) is equivalent to that k is w-comparable with none of \bar{i}_h, i_h, j_1 for any $h \in [l]$.

- **5.12.** Under the condition (5.11.1) on $w \in E_{\mu}$, there are two possible cases:
 - (a) $\bar{i}_1, i_1 \prec_w j_1$. Then $j_1 < \bar{i}_1 < i_1 < \bar{j}_1$ and $(\bar{j}_1)w < (\bar{i}_1)w < (i_1)w < (i_2)w < (i_3)w < ($
- $(j_1)w$ and $i_l-2n < k-2n < \bar{k} < \bar{i}_l$ and $(i_l)w-2n < (\bar{k})w < (k)w-2n < (\bar{i}_l)w$;
 - (b) $\bar{i}_l, i_l \prec_w j_1$. Then $j_1 2n < i_l 2n < \bar{i}_l < \bar{j}_1$ and $(\bar{j}_1)w < (i_l)w 2n < \bar{j}_1$
- $(\bar{i}_l)w < (j_1)w 2n \text{ and } \bar{i}_1 < k < \bar{k} < i_1 \text{ and } (\bar{i}_1)w < (\bar{k})w < (k)w < (i_1)w.$

Let E'_{μ} (respectively, E''_{μ}) be the set of all $w \in E_{\mu}$ in the case (a) (respectively, (b)).

From the matrix forms of elements, we see that $w \in E_{\mu}$ is in the case (a) (respectively, (b)) if and only if so does w^{-1} . So by 5.11, we get

Lemma 5.13. Let $\mu = (2m + 1, 2, 1, ..., 1) \in \Lambda_{2n}$. Then

- (1) $E'_{\mu}^{-1} = E'_{\mu}$ and $E''_{\mu}^{-1} = E''_{\mu}$.
- (2) The group automorphism η of \widetilde{C}_n interchanges the sets E'_{μ} and E''_{μ} .
- (3) $E_{\mu} = E'_{\mu} \dot{\cup} E''_{\mu}$.
- **5.14.** Let F'_{μ} (respectively, F''_{μ}) be the set of all $w' \in \widetilde{C}_n$ satisfying (a') (respectively, (b')) below.
- (a') There exist w'-wild heads $j_1, j_2, ..., j_m, k$ and w'-tame heads $i_1, i_2, ..., i_l$ such that
- (i) $(\bar{k}, \bar{i}_l, \bar{i}_{l-1}, ..., \bar{i}_2, j_m, j_{m-1}, ..., j_1, \bar{i}_1) = (1, 2, ..., n);$
- (ii) $0 < (j_{h+1})w' (j_h)w' < 2n$ for any $h \in [m-1]$;
- (iii) $(i_1)w' < (i_2)w' < \dots < (i_l)w' < (\bar{k})w' + 2n \leq 2n;$
- (iv) $(i_p)w' < (j_1)w' < (i_{p+1})w'$ for some $p \in [l]$ with the convention that $(i_{l+1})w' = (k)w'$.
- (b') There exist w'-wild heads $j_1, j_2, ..., j_m, k$ and w'-tame heads $i_1, i_2, ..., i_l$ such that
- (i) $(\bar{k}, i_1, i_2, ..., i_{l-1}, j_m, j_{m-1}, ..., j_1, i_l) = (n+1, n+2, ..., 2n);$
- (ii) $0 < (j_{h+1})w' (j_h)w' < 2n$ for any $h \in [m-1]$;
- (iii) $n < (k)w' < (i_1)w' < (i_2)w' < \dots < (i_l)w';$
- (iv) $(\bar{i}_p)w' + 2n < (j_1)w' < (\bar{i}_{p-1})w' + 2n$ for some $p \in [l]$ with the convention that $(\bar{i}_0)w' = (k)w'$.
- **5.15.** By 5.11-5.12 and 5.14, we have $F'_{\mu} \subseteq E'_{\mu}$ and $F''_{\mu} \subseteq E''_{\mu}$. Also, by 3.3 and Lemma 3.2, any lcc of E'_{μ} (respectively, E''_{μ}) contains some element of F'_{μ} (respectively, F''_{μ}).
- Let $\beta=(1,...,1,2,2l+1,1,...,1)\in\widetilde{\Lambda}_{2n}$ with 2 the (m+1)-th component. Let $F_{\mu}:=F'_{\mu}\cup F''_{\mu}$. By the argument for Lemma 4.6, there is some $z\in\Omega$ with $z\sim w'$ and $T(z)\in\xi^{-1}(\beta)$ for any $w'\in F_{\mu}$. Now we describe T(z). If $w'\in F'_{\mu}$ is as in 5.14 (a'), then

$$(5.15.1) \quad T(z) = \left(\left\{ \langle (\bar{j}_m)w' \rangle \right\}, \dots, \left\{ \langle (\bar{j}_1)w' \rangle \right\}, \left\{ \langle (\bar{k})w' \rangle, \langle (i_p)w' \rangle \right\}, \\ \left\{ \langle (k)w' \rangle, \langle (j_1)w' \rangle, \langle (\bar{i}_h)w' \rangle, \langle (i_h)w' \rangle \mid h \in [l] \right\} \setminus \left\{ \langle (i_p)w' \rangle \right\}, \\ \left\{ \langle (j_2)w' \rangle \right\}, \dots, \left\{ \langle (j_m)w' \rangle \right\},$$

where (i) $\langle (\bar{k})w' \rangle \in [(i_l)w' + 1, 2n];$ (ii) $p \in [l]$. If p < l, then $(\bar{i}_{p+1})w' < (\bar{j}_1)w' < (\bar{i}_p)w';$ if p = l then $(\bar{j}_1)w'$ is in one of the three cases: $(k)w' - 2n < (\bar{j}_1)w' < (\bar{i}_l)w', 1 \leq (\bar{j}_1)w' < (k)w' - 2n, (\bar{k})w' < (\bar{j}_1)w' \leq 0.$ If $w' \in F''_{\mu}$ is as in 5.14 (b'), then

$$(5.15.2) \quad T(z) = \left(\{ \langle (\bar{j}_m)w' \rangle \}, ..., \{ \langle (\bar{j}_1)w' \rangle \}, \{ \langle (\bar{k})w' \rangle, \langle (\bar{i}_p)w' \rangle \}, \\ \{ \langle (k)w' \rangle, \langle (j_1)w' \rangle, \langle (\bar{i}_h)w' \rangle, \langle (i_h)w' \rangle \mid h \in [l] \} \setminus \{ \langle (\bar{i}_p)w' \rangle \}, \\ \{ \langle (j_2)w' \rangle \}, ..., \{ \langle (j_m)w' \rangle \} \right),$$

where (i) $\langle (\bar{k})w' \rangle \in [(\bar{i}_1)w' + 1, n];$ (ii) $p \in [l]$. If p > 1 then $(i_{p-1})w' < (\bar{j}_1)w' + 2n < (i_p)w';$ if p = 1 then $(\bar{j}_1)w'$ is in one of the three cases: $(k)w' < (\bar{j}_1)w' + 2n < (i_1)w', n < (\bar{j}_1)w' + 2n < (k)w', (\bar{k})w' < (\bar{j}_1)w' + 2n \leq n.$

- **5.16.** We see that T(z) only depends on $w' \in F_{\mu}$ and β , but not on the choice of $z \in \Omega$. We can denote T(z) by $T_{\beta}(w')$. This defines a map T_{β} : $F_{\mu} \longrightarrow \xi^{-1}(\beta)$. By 5.14-5.15, we see that $\mathbf{T} = (T_1, T_2, ..., T_{2m+1}) \in \xi^{-1}(\beta)$ is in the image of T_{β} if and only if \mathbf{T} satisfies the following conditions:
 - (1) $\overline{T_i} = T_{2m+2-i}$ for $i \in [2m+1] \setminus \{m, m+1, m+2\}$;
- $(2) \bigcup_{i=m}^{m+2} T_i = \{\bar{q}_{n-m+1}, \bar{q}_{n-m}, ..., \bar{q}_1, q_1, q_2, ..., q_{n-m+1}\} \text{ with } \bar{q}_1 < q_1 < q_2 < \cdots < q_{n-m+1} \text{ in } [2n] \text{ and } (T_m, T_{m+1}) \in E_1 \cup E_2 \cup E_3 \cup E_4, \text{ where } E_1 = \{(\{\bar{q}_{i+1}\}, \{q_{n-m+1}, q_i\}) \mid i \in [n-m-1]\}, E_2 = \{(\{q_j\}, \{\bar{q}_1, \bar{q}_{j+1}\}) \mid j \in [2, n-m]\}, E_3 = \{(\{\bar{q}_{n-m+1}\}, \{q_{n-m}, q_{n-m-1}\}), (\{q_{n-m+1}\}, \{q_{n-m}, q_{n-m-1}\})\} \text{ and } E_4 = \{(\{q_1\}, \{\bar{q}_2, \bar{q}_3\}), (\{\bar{q}_1\}, \{\bar{q}_2, \bar{q}_3\})\}.$
- **5.17.** Keep the notation in 5.14-5.15. For $w \in F_{\mu}$, let $T_i(w)$ be the i-th component of $T_{\beta}(w)$ for $i \in [2m+1]$. Then $w' \in F'_{\mu}$ if and only if $(T_m(w'), T_{m+1}(w')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if $(T_m(w''), T_{m+1}(w'')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if $(T_m(w''), T_{m+1}(w'')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if $(T_m(w''), T_{m+1}(w'')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if $(T_m(w''), T_{m+1}(w'')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if $(T_m(w''), T_{m+1}(w'')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if $(T_m(w''), T_{m+1}(w'')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if $(T_m(w''), T_{m+1}(w'')) \in E_1 \cup E_3$; $w'' \in F''_{\mu}$ if and only if

 $E_2 \cup E_4$. So $(T_m(w'), T_{m+1}(w')) \neq (T_m(w''), T_{m+1}(w''))$ (hence $T_\beta(w') \neq T_\beta(w'')$) for any $w' \in F'_\mu$ and any $w'' \in F''_\mu$. Each of E'_μ and E''_μ is a union of some left cells of \widetilde{C}_n by Lemmas 3.6 and 2.13. This further implies by Lemmas 2.12, 2.14, 5.13 and 1.4 that each of E'_μ and E''_μ is a union of some two-sided cells of \widetilde{C}_n . Let $w_1 = [0, 2, 3, ..., n - m - 1, n + m + 1, n + m, ..., n + 2, n]$ and $w_2 = [1, -1, -2, ..., -m, m + 2, m + 3, ..., n - 1, n + 1]$ be in \widetilde{C}_n (see Figure 9). Then $w_1 \in F'_\mu$ and $w_2 \in F''_\mu$. By the argument similar to that for Lemma 4.4 (3), we can prove that F'_μ (respectively, F''_μ) is in the rcc of E'_μ (respectively, E''_μ) containing w_1 (respectively, w_2) (the proof is left to the readers). So by 5.15 and Lemma 2.16, we conclude that

(5.17.1) Each of E'_{μ} and E''_{μ} is two-sided-connected and is a two-sided cell of \widetilde{C}_n .

Let $\mathbf{T} = (T_1, T_2, ..., T_{2m+1}) \in \xi^{-1}(\beta)$ satisfy 5.16 (1)-(2). If $(T_m, T_{m+1}) \in E_1 \cup E_3$, then $w' \in F'_{\mu}$ with $T_{\beta}(w') = \mathbf{T}$ is uniquely determined by 5.14 (a') and (5.15.1). This implies by 5.15 that any left cell of \widetilde{C}_n in E'_{μ} is left-connected. Since $E''_{\mu} = \eta(E'_{\mu})$ by Lemma 5.13, any left cell of \widetilde{C}_n in E''_{μ} is also left-connected. So we conclude that

(5.17.2) All left cells of \widetilde{C}_n in E_μ are left-connected.

Figure 9

5.18. Now we want to enumerate the left cells in E'_{μ} and E''_{μ} . Since $\eta(E'_{\mu}) = E''_{\mu}$, we need only deal with the set E'_{μ} . By 5.16 and Lemma 3.6, we need only to enumerate $\mathbf{T} = (T_1, T_2, ..., T_{2m+1})$ in $\xi^{-1}(\beta)$ satisfying 5.16 (1)-(2) but with the condition $(T_m, T_{m+1}) \in E_1 \cup E_2 \cup E_3 \cup E_4$ replaced by $(T_m, T_{m+1}) \in E_1 \cup E_2 \cup E_3 \cup E_4$

 $E_1 \cup E_3$.

The number of the choices for $E := \bigcup_{i=m}^{m+2} T_i = \{\bar{q}_{n-m+1}, \bar{q}_{n-m}, ..., \bar{q}_1, q_1, q_2, ..., q_{n-m+1}\}$ is $\binom{n}{n+1-m}$. Once E is fixed, the number of the choices for (T_m, T_{m+1}, T_{m+2}) is $|E_1 \cup E_3| = n+1-m$, while that for $(T_1, T_2, ..., T_{m-1})$ is $2^{m-1}(m-1)!$. Recall the notation $n(\mu), n'(\mu), n''(\mu)$ in Theorem 5.1 (3). (5.18.1) $n'(\mu) = n''(\mu) = \frac{1}{2}n(\mu) = \frac{2^{m-1} \cdot n!}{(n-m)!}$ for $\mu = (2m+1, 2, 1, ..., 1) \in \Lambda_{2n}$. When m > 1, the number of the choices for $(j_m)w$ in (5.11.1) is infinite.

$$(5.18.2) \quad |E_{(2m+1,2,1,\ldots,1)}| = \infty.$$

Denote $p_{i,j} := t_i t_{i-1} \cdots t_1 t_0 t_n t_1 \cdots t_{j-1} t_j$ for $i, j \in [n]$ and $q_{i,j} = \eta(p_{i,j})$. Then $E'_{\mathbf{321^{2n-5}}} = \{q_{i,j} \mid i, j \in [n]\}$ and $E''_{\mathbf{321^{2n-5}}} = \{p_{i,j} \mid i, j \in [n]\}$.

(5.18.3) The set $E_{321^{2n-5}} = E'_{321^{2n-5}} \cup E''_{321^{2n-5}}$ is finite.

By (5.17.1)-(5.17.2) and (5.18.1)-(5.18.3), it is proved for all the assertions of Theorem 5.1 involving $\mu = (2m + 1, 2, 1, ..., 1) \in \Lambda_{2n}$.

§6. The cells in the weighted Coxeter group $(\widetilde{C}_3,\widetilde{\ell})$.

As an application of Theorems 4.9 and 5.1, we shall describe all the cells of the weighted Coxeter group $(\widetilde{C}_3, \widetilde{\ell})$ in this section.

Recall the notation E_{λ} for $\lambda \in \Lambda_{2n}$ and $\eta : \widetilde{C}_n \longrightarrow \widetilde{C}_n$ defined before (see 2.15 and 2.7). Let $n(\lambda)$ be the number of left cells of \widetilde{C}_n in E_{λ} . When E_{λ} is a union of two two-sided cells (say E'_{λ} , E''_{λ}) of \widetilde{C}_n , denote by $n'(\lambda)$, $n''(\lambda)$ the numbers of left cells of \widetilde{C}_n in E'_{λ} , E''_{λ} , respectively.

The main result of the section is as follows.

Theorem 6.1. In the weighted Coxeter group $(\widetilde{C}_3, \widetilde{\ell})$, we have

- (1) E_{λ} is a single two-sided cell of \widetilde{C}_3 if $\lambda \in \{6, 51, 42, 3^2, 31^3, 2^3, 1^6\}$ and is a union of two two-sided cells of \widetilde{C}_3 if $\lambda \in \{41^2, 321, 2^21^2, 21^4\}$. E_{λ} is finite if $\lambda \in \{1^6, 21^4, 2^21^2, 321\}$, and infinite if otherwise.
- (2) η stabilizes the two-sided cells $E'_{\mathbf{2^{2}1^{2}}}$ and $E''_{\mathbf{2^{2}1^{2}}}$, and interchanges the following pairs of two-sided cells: $E'_{\mathbf{41^{2}}}$, $E''_{\mathbf{41^{2}}}$; $E'_{\mathbf{321}}$, $E''_{\mathbf{321}}$, $E''_{\mathbf{21^{4}}}$.
 - (3) The numbers $n(\lambda)$ for any $\lambda \in \Lambda_6$ are listed as follows.

λ	6	51	42	41^2	3^2	321	31^3	2^3	2^21^2	21^4	1^6
$n(\lambda)$	48	24	24	12	12	6	6	8	5	2	1

we have $n'(41^2) = n''(41^2) = 6$, n'(321) = n''(321) = 3, $n'(2^21^2) = 4$, $n''(2^21^2) = n'(21^4) = n''(21^4) = 1$.

- (4) Each left (respectively, two-sided) cell of \widetilde{C}_3 is left- (respectively, two-sided-) connected.
- **6.2.** All the results in Theorem 6.1 follow by Theorems 4.9 and 5.1 except for those involving the partitions 3^2 and 2^3 .

The following equivalent conditions on $w \in \widetilde{C}_3$ hold by Lemma 3.2:

- (1) $\psi(w) = \mathbf{3^2}$ if and only if one of the conditions (1a)-(1c) holds for some pairwise not 6-dual i, j, k in [6]:
- (1a) i is w-tame and j, k are w-wild heads such that $i \prec_w k$, that $\bar{i} \prec_w j$ and that j, k are w-uncomparable;
- (1b) k is a w-wild head and i, j are w-tame such that $j \prec_w i \prec_w k$ and that \bar{k} is w-uncomparable with j;
 - (1c) i, j, k are all w-tame with $i \prec_w j \prec_w k$.
- (2) $\psi(w) = \mathbf{2^3}$ if and only if one of the conditions (2a)-(2c) holds for some pairwise not 6-dual i, j, k in [6]:
 - (2a) i, j, k are all w-wild heads and pairwise w-uncomparable;
- (2b) i is w-tame; j,k are w-wild heads and w-uncomparable; i is w-comparable with some element in either $\{j,k\}$ or $\{\bar{j},\bar{k}\}$ but not both;
- (2c) k is a w-wild head and i, j are w-tame heads such that $j \prec_w i$ and that k is w-uncomparable with i, \bar{j} .

Since $\{[6i-1,6i,3] \mid i \in \mathbb{Z} \setminus \{0\}\} \subset E_{\mathbf{3^2}}$ and $\{[3i+1,3i+2,3i+3] \mid i \in \mathbb{Z} \setminus \{0\}\} \subset E_{\mathbf{2^3}}$, we have

- $(6.2.1) \quad |E_{\mathbf{3^2}}| = |E_{\mathbf{2^3}}| = \infty.$
- **6.3.** Let F'_{32} be the set of all $w' \in \widetilde{C}_3$ satisfying (6.3.1) below.
- (6.3.1) There exists some pairwise not 6-dual i, j, k in [6] such that one of the following conditions holds:

- (a) i is a w'-tame head and j, k are w'-wild heads such that (i) j < k and (j)w' < (k)w' < (j)w' + 6; (ii) $j < \overline{i}$ and k < i; (iii) $(\overline{i})w' < (j)w'$ and (i)w' < (k)w'; (iv) either $(k)w' < (\overline{i})w' + 6$ or (j)w' < (i)w';
- (b) k is a w-wild head and i, j are w-tame heads such that (i) i < j and (i)w' > (j)w'; (ii) either (k, i, j) = (4, 5, 6) and 6 < (4)w' < (1)w' + 6, or (k, i, j) = (1, 4, 5) and 3 < (1)w' < (4)w';

(c)
$$w' = [3, 2, 1].$$

We see by 3.3 and 6.2 (1) that for any $w \in E_{3^2}$, there exists some $w' \in F'_{3^2}$ such that w, w' are in the same lcc of E_{3^2} .

6.4. Let $F_1 = \{[4, 2, 0], [4, 1, -1], [5, 3, 0], [5, 1, -2], [5, 1, -3], [6, 3, -1], [7, 3, -1], [4, 2, 6], [5, 3, 6]\}, F_2 = \{[3, 2, 0], [3, 1, -1], [4, 2, 1], [5, 3, 1]\}, F_3 = \{[3, 2, 1]\}.$

Then $w' \in F'_{\mathbf{3^2}}$ satisfies (6.3.1) (a) if and only if w' is in the lcc of $E_{\mathbf{3^2}}$ containing some $w \in F_1$. $w' \in F'_{\mathbf{3^2}}$ satisfies (6.3.1) (b) (respectively, (6.3.1) (c)) if and only if $w' \in F_2$ (respectively, $w' \in F_3$).

6.5. Let $x_1 = [4, 2, 6]$, $x_2 = [4, 2, 1]$, $y_1 = [5, 3, 6]$ and $y_2 = [5, 3, 1]$. Then $x_1, y_1 \in F_1$, $x_2, y_2 \in F_2$, $x_2 = t_3x_1$ and $y_2 = t_3y_1$. So x_1, x_2 (respectively, y_1, y_2) are in the same lcc of E_{3^2} . Let $F_{3^2} = (F_1 \cup F_2 \cup F_3) \setminus \{[4, 2, 6], [5, 3, 6]\}$. We see from Figure 10 that all the elements of F_{3^2} are in the same rcc of E_{3^2} and have pairwise different generalized τ -invariants (see 2.9 and 2.10).

Figure 10

So by Lemmas 2.13-2.14 and 2.16, we see that

- (6.5.1) $E_{\mathbf{3^2}}$ is two-sided-connected and forms a two-sided cell of \widetilde{C}_3 with $n(\mathbf{3^2}) = |F_{\mathbf{3^2}}| = 12$, each left cell of \widetilde{C}_3 in $E_{\mathbf{3^2}}$ is left-connected.
- **6.6.** Next consider $E_{\mathbf{2}^3}$. Let $F'_{\mathbf{2}^3}$ be the set of all $w' \in \widetilde{C}_3$ satisfying (6.6.1)

below.

- (6.6.1) There exists some pairwise not 6-dual i, j, k in [6] satisfying one of the conditions (a)-(c) below:
- (a) i, j, k are all w'-wild heads satisfying: (i) i < j < k and $4 \le (i)w' < (j)w' < (k)w' \le 9$; (ii) $i \in [3]$ unless (i)w' > 6; (iii) k = 6 unless $(k)w' \le 6$;
- (b) i is a w'-tame head and j,k are w'-wild heads such that (i) j < k and (j)w' < (k)w' < (j)w' + 6; (ii) Assume $j < \overline{i}$. If k < i then (k)w' < (i)w'; if k > i then (j)w' < (i)w' < (k)w'; (iii) Assume $\overline{i} < j < i$. If k < i then $(i)w' < (k)w' < (\overline{i})w' + 6$; if k > i then either $(i)w' < (j)w' < (k)w' < (\overline{i})w' + 6$, or $(\overline{i})w' < (j)w' < (i)w'$ and $(\overline{i})w' < (k)w' 6 < (i)w'$; (iv) If i < j then $(\overline{i})w' < (k)w' 6 < (i)w'$;
- (c) k is a w'-wild head and i, j are w'-tame heads with i < j and (j)w' < (i)w' such that (i) $\bar{j} < k$ and $3 < (k)w' < (\bar{j})w' + 6$; (ii) Either i < k, or k < i and 3 < (k)w' < (i)w'.
- By 6.2 (2) and 3.3, we see that for any $w \in E_{2^3}$, there exists some $w' \in F'_{2^3}$ such that w, w' are in the same lcc of E_{2^3} .
- **6.7.** Let $F'_1 = \{[4,5,6], [0,4,5], [-1,4,6], [-2,5,6], [-2,-1,0], [-1,0,4], [-2,0,5], [-2,-1,6]\}, F'_2 = \{[4,1,5], [0,4,2], [2,4,6], [3,5,6], [2,0,4], [0,3,5], [-1,3,6], [-1,1,4], [-2,1,5], [-1,3,0], [-2,-1,1], [-2,0,2]\}, F'_3 = \{[2,1,4], [3,1,5], [0,3,2], [-1,3,1]\}.$

We see by 3.3 that any $x \in F'_{\mathbf{23}}$ satisfying (a) (respectively, (b), (c)) in (6.6.1) is in a lcc of $E_{\mathbf{23}}$ containing some element of F'_1 (respectively, F'_2 , F'_3).

Let $F_{2^3} = F_1 \cup F_2$, where $F_1 = \{[0,4,2], [0,3,2], [-1,3,1], [-1,3,0]\}$ and $F_2 = \{[2,0,4], [2,1,4], [3,1,5], [4,1,5]\}.$

Then any $x \in \bigcup_{k=1}^3 F'_k$ is in a lcc of $E_{\mathbf{2}^3}$ containing some element of $F_{\mathbf{2}^3}$. **6.8.** We see from Figure 11 that no two elements of $F_{\mathbf{2}^3}$ have the same generalized τ -invariants (see 2.9-2.10).

Figure 11

Since $[0,4,2] = t_2t_0t_3 \sim_R t_0t_2t_3t_1 \sim_L t_1t_3 \sim_R t_1t_0t_3 = [2,0,4]$, the set $F_{\mathbf{2}^3}$ is contained in a tcc of $E_{\mathbf{2}^3}$. By Lemmas 2.13-2.14 and 2.16, we see that

(6.8.1) $E_{\mathbf{2}^3}$ is two-sided-connected and is a two-sided cell of \widetilde{C}_3 with $n(\mathbf{2}^3) = |F_{\mathbf{2}^3}| = 8$, each left cell of \widetilde{C}_3 in $E_{\mathbf{2}^3}$ is left-connected.

So we complete the proof of Theorem 6.1 by Theorems 4.9, 5.1 and the results (6,2,1), (6.5.1), (6.8.1).

References

- 1. K. Bremke, On generalized cells in affine Weyl groups, J. Algebra 191 (1997), 149-173.
- 2. C. Greene, Some partitions associated with a partially ordered set, J. Comb. Theory (A) **20** (1976), 69–79.
- 3. J. Guilhot, Kazhdan-Lusztig cells in the affine Weyl groups of rank 2, International Mathematics Research Notices 17 (2010), 3422-3462.
- 4. G. Lusztig, Some examples in square integrable representations of semisimple p-adic groups, Trans. of the AMS 277 (1983), 623–653.
- 5. G. Lusztig, Left cells in Weyl groups, In "Lie Group Representation I", LNM 1024, Springer-Verlag, Berlin, 1984, pp. 99-111.
- 6. G. Lusztig, The two-sided cells of the affine Weyl group of type \widetilde{A}_n , in "Infinite Dimensional Groups with Applications", (V. Kac, ed.), MSRI. Publications 4, Springer-Verlag, (1985), 275–283.
- 7. G. Lusztig, *Hecke algebras with unequal parameters*, CRM Monograph Series, vol. 18, AMS, USA, 2003.
- 8. J. Y. Shi, *The Kazhdan-Lusztig cells in certain affine Weyl groups*, Lecture Notes in Math. vol. 1179, Springer-Verlag, Germany, 1986.
- 9. J. Y. Shi, A survey on the cell theory of affine Weyl groups, Advances in Science of China, Math. 3 (1990), 79–98.
- 10. J. Y. Shi, The partial order on two-sided cells of certain affine Weyl groups, J. Algebra. 179(2) (1996), 607–621.