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ABSTRACT. The affine Weyl group (ém S) can be realized as the fixed point
set, of the affine Weyl group (Agn 1, S) under a certain group automorphism
o with a(S) S. Let ¢ be the length function of Agn 1. We study the cells
of the weighted Coxeter group (Cn, Z) The main results of the paper are to
give an explicit description for all the cells of (C’n,f) corresponding to the
partitionss

60. Introduction.

The cells of a weighted Coxeter group (W, L) are discussed in [7]. A
particular interesting case is that W is the fixed point set of a finite or affine
Coxeter system (W, S ) under a group automorphism « with a(§ ) = S and
L is the restriction of the length function of W (see [7, Chapter 16], [5], [1],
[3]). In this paper we discuss the case that W is of type Agp_1 and W is of
type 5’n

For any i < j in the integer set Z, denote by [i, j] the set {i,i + 1,...,j}.
Denote [1, j] simply by [j]. There is a natural bijection between the set of
two-sided cells of Ag,_; and the set Ay, of partitions of 2n (see [8], [6]).
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Let Q, be the two-sided cell of Zgn_l corresponding to A € Ag,. We are
interested in the sets E\ = Q) N 5’n. We describe all the cells in the sets
Eyq2n-x (Theorem 4.9) and FEja120-n-2 (Theorem 5.1) for all & € [2n] and
h € [2,2n — 2] and also all the cells of the weighted Coxeter group (Ci, /)
(Theorem 6.1).

For all considered A € Ag,, we prove that all left (respectively, two-sided)
cells in Fy are left- (respectively, two-sided-) connected (see 2.15 and Theo-
rems 4.9, 5.1 and 6.1). I conjecture that this should be true for the left cells

and two-sided cells of any weighted Coxeter group.

The paper is organized as follows. Section 1 is devoted to collect some
basic concepts and known facts concerning cells of weighted Coxeter groups.
In Sections 2-3, we focus on the weighted Coxeter group (én,ZQn_l). Then
we discuss the sets Fyq2n-—x and Eypgq2n-n-2 for all k € [2n] and h € [2,2n—2]
in Sections 4 and 5, respectively. Finally, we discuss cells of the weighted

Coxeter group (63, Z5)

§1. Cells in Coxeter groups.

In this section, we collect some concepts and results concerning cells of a

weighted Coxeter group, all but Lemma 1.4 follow Lusztig in [7].

1.1. Let (W,S) be a Coxeter system with ¢ its length function and < the
Bruhat-Chevalley ordering on W. A weight function on W is a function
L : W — Z such that L(wu) = L(w) + L(u) if ¢(wu) = ¢(w) + ¢(u) for
w,u € W. Call (W, L) a weighted Coxeter group. Call (W, L) in the split
case if L = /.

When « is a group automorphism of W with «(S) = S, let W* = {w €
W | a(w) = w}. For any a-orbit J on S, let w; € W< be the longest element
in the subgroup W; of W generated by J. Let S, be the set of elements w s
with J ranging over all a-orbits on S. Then (W%,S,) is a Coxeter group
and the restriction to W of the length function ¢ is a weight function on

We. The weighted Coxeter group (W, /) is called in the quasi-split case.
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1.2. Let <, <, < be the preorders on (W, L) defined in [7, Chapter 8]. The
corresponiling elciﬁivalence classes in W are called left cells, right cells, two-
sided cells of W, respectively. For w € W, define L(w) = {s € S | sw < w}
and R(w) = {s € S | ws < w}. If yw € W satisfy y < w (respectively,
y < w), then R(y) 2 R(w) (respectively, L(y) 2 E(w))L In particular, if
Yy rgw (respectively, y ~ w), then R(y) = R(w) (respectively, L(y) = L(w))
(see [7, Lemma 8.6]).
1.3. In [7, Chapter 13], Lusztig defined a function a : W — N U {occ} for
a weighted Coxeter group (W, L), he proved the following results when W is
either a finite or an affine Coxeter group and when (W, L) is either in the
split case or in the quasi-split case.

(1) y LgR w in W implies a(w) < a(y). Hence y oW in W implies
a(w) = afy).

) If w,y € W satisfy a(w) = a(y) and y % w (respectively, y % w,

(2

< th ~ tively, y ~ w, y ~ w).
yLRw) enyLw(respeCNenyw yLRw)
For any X C W, write X 1 :={z7! |z € X}.

Lemma 1.4. Suppose that W is either a finite or an affine Cozeter group
and that (W, L) is either in the split case or in the quasi-split case.
Let E be a non-empty subset of W satisfying the following conditions:
(a) There ezists some k € N with a(z) = k for any x € E;
(b) E is a union of some left cells of W
(c) ET' =E.

Then E is a union of some two-sided cells of W.

Proof. By (b)-(c), E is also a union of some right cells of W. The set Wy :=
{w e W | a(w) = k} is a union of some two-sided cells of W by 1.3 (1). If
the result is false, then by (c), there must exist some 2 € £ and y € W) \ £
such that either x % Yy ory % x. In either case, we would have x 7Y by 1.3

(2), contradicting (b). This proves our result. [J
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§2. The affine Weyl groups ggn_l and 5’n.

From now on, we focus on the weighted Coxeter groups (ggn_l,Z) and
(6n, E), where ¢ is the length function of the affine Weyl group Zzn_l.
2.1. The affine Weyl group A/anl can be realized as the following permuta-
tion group on the set Z (see [4, Subsection 3.6] and [8, Subsection 4.1)]:

Z2n_1:{w;Z—>Z

2n 2n

(i + 2n)w = (Dw +2n, Y (Hw=> i } .
i=1 i=1

The Coxeter generator set S = {s; | i € [0,2n — 1]} of Ag,_, is given by

t, if t Zi,i+ 1 (mod 2n),

(t)s; =< t+1, ift=i (mod 2n),

t—1, ift=i+1 (mod 2n),
for t € Z and i € [0,2n — 1]. Any w € Zgn_l can be realized as a Z X Z
monomial matrix A,, = (a;;) jez, where a;; is 1 if j = (¢)w and 0 if otherwise.
The row (respectively, column) indices of A, are increasing from top to

bottom (respectively, from left to right).

Let a be the group automorphism of ggn_l determined by a(s;) = so,—;
for i € [0,2n —1]. Then the affine Weyl group én can be realized as the fixed

point set of A/anl under a. As a permutation group on Z, we have
Co={w:Z—7Z|(G+2n)w={w+2n (w+1—-i)w=1, VieZ}

with the Coxeter generator set S = {t; | ¢ € [0,n]}, where t; = s;89,,_; for
i € [n—1],tg = sp and t,, = s,. For the sake of convenience, we define s; and
t; for any ¢,7 € Z by setting sognyp = sy and topp+q = t, for any p,q € Z,
be0,2n—1], a €[0,n].

2.2. By a partition of an integer n > 0, we mean an r-tuple A := (A1, A2, ..., \;-)
of integers A\ > --- > A\, > 0 with 2221 A = n for some r > 1. Call \; a

part of \. We sometimes denote X in the form j¥1j52 ... jkm (boldfaced) with
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J1 > jJo > - > jm if j; is a part of A with multiplicity k; > 1 for ¢ > 1. Let
A, be the set of all partitions of n.

Fix w € Ag,_;. For any i # j in [2n], we write i <, j, if there exist some
p,q € 7 such that 2pn +1i > 2qn + j and (2pn + i)w < (2gn + j)w. In the
matrix of w, this means that the position (2gqn + j, (2gn + j)w) is located at
the northeastern of the position (2pn + i, (2pn + i)w). This defines a partial
order <,, on the set [2n].

A sequence ay, ag, ..., a, in [2n] is called a w-chain, if a1 <y a2 <4 -+ <

a,. Sometimes we identify a w-chain aq, as, ..., a,, with the corresponding set
{a1,a9,...,a,}. For any k > 1, a k-w-chain-family is by definition a disjoint
union X = UleXi of k w-chains Xj, ..., X}, in [2n]. Let di be the maximally
possible cardinal of a k-w-chain-family for any k& > 1. Then there exists some
r > 1 such that dy < ds < --- <d, =2n. Let A\ =dy and A1 = dpy1 — di
for k € [r —1]. Then A\y > Ay > --- > A, by a result of Greene in [2]. Hence
w — PY(w) == (A, ..., A,) defines a map ¥ : Agy_1 — Ao,
2.3. Let £, ¢ be the length functions on (ggn_l, §), (én, S), respectively. By
1.1, we see that the weighted Coxeter group (ﬁgn_l,Z) is in the split case,
while (Cp, ) is in the quasi-split case (see [7, Lemma 16.2]).

For any € Agp,_1 and k € Z, let my(z) = #{i € Z | i < k and (i)z >

(k)x}. Then the formulae for the functions ¢ and ¢ are as follows.

Proposition 2.4. For any w € Egn_l and x € én, we have

J)w — (2)w
(1) 1w = Srcrcyean | L5
(2) U(x) = F(Uz) + m (2) + M1 (2)),
where |a| is the largest integer not larger than a, and |a| is the absolute value

of a for any a € Q.

= iil mg (’LU),

Proof. The first equality of (1) is just [8, Lemma 4.2.2], while the sec-
ond equality of (1) follows by the facts that for any ¢ < j in [2n], at
most one of m;;(w) = #{k € Z | k = i (mod 2n);k < j;(k)w > (j)w}
and mj;(w) == #{k € Z | k = j (mod 2n);k < i;(k)w > (i)w} is pos-
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itive, that ‘ LMJ

2n
> icien)\ {k} Mik(w). (2) follows by the definition of ¢;’s in terms of s;’s. [

= max{m,;;(w),m;;(w)} and that my(w) =

2.5. Let <, <¢ be the Bruhat-Chevalley orders on (Av%_hg), (6’n75),
respectively. Since the condition x <¢ y is equivalent to x < y for any
T,y € én, we may use < for both < and <¢ from now on.

Let L(z)={s € S|sz<a}and R(z) ={s €S |zs <z} for x € Agp_4
and let L(y) ={t € S|ty <y}and R(y)={t € S |yt <y} for y € C,,.

Corollary 2.6. For any z € C,, and i € 0, n],

S; € Z($) < Son—i € Z(I) < t; € ﬁ(x)
— ({W)r>(i+1l)z <= 2n+1—-10z<(2n—1i)z,
si € R(z) <=  som_i € R(z) < t; € R(x)

1 —1

= x> (i+ )t 2n+1-d)z ' < (2n—i)z
Proof. The equivalent conditions involving the s;’s hold by [8, Lemma 4.2.4],
while those involving the ¢;’s hold by the expression of ¢; in terms of s;’s and

by Proposition 2.4. [

2.7. Any w € C,, is determined uniquely by the n-tuple ((1)w, (2)w, ..., (n)w).
Hence we may denote w by [(1)w, (2)w, ..., (n)w]. For any a € Z, denote by
(a) the unique integer in [2n| satisfying a = (a) (mod 2n). Let n be the
group automorphism of C,, determined by n(t;) = tn—; for any ¢ € [0,n].

The following results are related to the expression w = [ay, as, ..., ap] € CN'n.

Proposition 2.8. Let w = [a,aq, ...,a,] and w' = n(w) = [a},dh, ...,al] be
in Cy. Let k €[0,n]. Then

(1) ti € L(w) if and only if ap, > ap+1, with the convention that ag =1 and
Ant+1 = M.

(2) Let (a;),(a;) € {k,k+1,2n—k,2n+1—k} for some i # j in [n]. Then
tr € R(w) if one of the following conditions holds:
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(1) ((ai), (a;)) € {(k,k+1),(2n—k,2n+1—k)}. Either a; —a; > 2n, or
v> 7 and a; > a;.

(i1) ({ai), (a;)) = (k,2n — k) and a; + a; < 1.

(11i) ({a:),(a;)) = 2n+1—k,k+1) and a; +a; > 2n + 1.

(3) a, =n+1—any1-; for any i € [n].

Proof. (1)-(2) follow by Corollary 2.6. For (3), apply induction on ¢(w) > 0.
It is trivial when ¢(w) = 0. If {(w) > 0, write w = t;y for some t; € L(w),
then n(w) = t,—in(y). We have n(y) = [n+1—bp,n+1—by_1,...,n+1—b1]
for y = [b1,...,b,] by inductive hypothesis. So n(w) = [n+1—a,,n+1—
ap—_1,...,n+ 1 — aq] by the relations n(w) = t,_;n(y) and w = t;y. O

2.9. Forany i € [0,2n—1],let Dg(i) = {w € Aon_1 | [{5s, si41}NR(w)| = 1}.
When w € Dg(i), define w* by the condition w* € {ws;, wsi41} N Dg(i),
call the transformation w — w* a right {s;, s;1+1}-star operation (or a right
star operation in short) on w. For any w € Ag,_1, let M(w) be the set of
all y € Ay, which is either w or obtained from w by successively applying
right star operations. Define a graph M (w): its vertex set is M (w); each
x € M(w) is labeled by R(z); z,y € M(w) are joined by a solid edge if y
can be obtained from = by a right star operation. By a path in Mv(w), we
mean a sequence Tg, i, ..., L, in M(w) with some r > 0 such that z;_1 and
x; are joined by a solid edge for every i € [r]. Say w,y € Ag,_1 have the
same generalized T-invariants, if for any path w; = w,w,, ..., w, in M(w),
there exists a path y; = y,ya2,..., ¥, in /W(y) such that R(w;) = R(y;) for
every i € [r] and if this condition still holds when the roles of w and y are
interchanged.

For any i € [0,n — 1], let Dg(i) = {w € Cp | {ts,tiz1} N R(w)| = 1}.
Regarding CN'n as a subset of szn_l’ we have Dg(i) = én N ﬁR(i) = 5n N
Dr(2n —i—1). When w € Dg(i), we have |[{wt;, wt;y1} N Dp(i)| = 1
unless that i € {0,n — 1} and w € {zt;t;11,xt;1t;} for some x € C,, with

R(z) N {ti,tix1} = 0. In this excepted case, both wt; and wt;+1 are in
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Dpg(1). When [{wt;,wt;11} N Dr(i)| = 1, define w* by the condition w* €
{wt;, wt;+1} N DR(i), then w* can be obtained from w by a pair of right star
operations if i € [n—2] and, by a single right star operation if w* € {wtg, wt,}
with ¢ € {0,n — 1} and, by none of the above two ways if w* € {wty,wt,,_1}
with ¢ € {0,n — 1}. When {wt;,wt;11} C Dg(i), define w},w; by the
conditions {wj, w3} = {wt;, wt;11} and wi < w3, then x € {w},wi} can be
obtained from w by one right star operation if = € {wtg, wt,} and, not by
one or two right star operation if x € {wty, wt,,—1}.

In the remaining part of the paper, when we mention a right star operation

and the generalized T-invariants on w € 5’n, we always regard w as an element
of ZQn—l-
2.10. For any w € C,, define M(w) to be the set of all y € C,, where
there exists o = w,x1,...,x, = y with some r > 0 such that for every
i € [r], xi_lxi,l € S and x; can be obtained from xz; _; by one or two right
star operations. Define a graph M(w): its vertex set is M (w); label each
xr € M(w) by R(x); join z,y € M(w) by a solid edge if 271y € S and = can
be obtained from y by one or two right star operations.

It is easy to see that if y,w € C,, have the same generalized T-invariants,
then for any path wy; = w,ws,...,w, in M(w), there exists a path y; =
Y, Y2, ..., Yr in M(y) such that R(w;) = R(y;) for every i € [r| and the above
condition still holds when interchanging the roles of w, y. In Section 6, the
graphs M(w) with w € Cs will be used to confirm that two elements of Cj
have different generalized 7-invariants.
2.11. For any A = (A1, A2, ..., Ar) and p = (p1, p2, .., i) in Agy,, we write
AL pif Ay 4+ -4+ X < pg 4o+ pg for any 1 < k& < min{r,¢t}. This
defines a partial order on Ag,. If x € Ao, 1 and s € E(x) and t € ﬁ(aj)
then ¥(sx),y(xt) < ¥(z) (see [8, Lemma 5.5 and Corollary 5.6]). This
implies by Corollary 2.6 that if z € C,, and s € £(x) and ¢ € R(x) then
U(sz), ¥(at) < Y(x).

Let a, a be the a-functions of the weighted Coxeter groups (szn_hg),

) ot
k
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(Cn, L), respectively (see 2.3 and 1.3).
Lemma 2.12. (see [7, Lemma 16.5]) a(z) = a(z) for any z € C,,.

Lemma 2.13. (sce [7, Lemma 16.14]) Let z,y € Cy,. Then x ~Y (respec-

tively, x ~ y) in C.,, if and only if x Y (respectively, x ~ y) in Aoy

By Lemma 2.13, we can just use the notation x > y (respectively, z ~ Y)
for x,y € (), without indicating whether the relation refers to the group
Agpy or C.

For any A = (A1,...,\r) € Aoy, define p = (pg, ..., ue) € Aoy, by setting
pj =7{k €[r]| A\ = j} for any j > 1, call u the dual partition of .

Lemma 2.14. Let z,y € ggn_l.

(1) x ~Y if and only if x,y have the same generalized T-invariants (see
[8, Theorem 16.1.2]).

(2) x LgR y if and only if Y(y) < (x). The set Y~1(\) forms a two-sided
cell of Agp_1 for any A € Agy, (see [6, Theorem 6] and [8, Theorem 17.4] and
[10, Theorem B]).

(3) a(z) = Zle(i — D)py, where (py, ..., pe) is the dual partition of ¥ (x)
(see [9, Subsection 6.27]).

2.15. A non-empty subset E of a Coxeter group W = (W, 5) is said left-
connected, (respectively, right-connected) if for any z,y € E, there exists a
sequence rg = ,x1,...,L, = y in E such that xi,lxi_l € S (respectively,
z; 'z € S) for every i € [r]. E is said two-sided-connected if for any
xz,y € F, there exists a sequence z¢g = x,x1,...,x,, = y in E such that either
xi,lxi_l or xi_l

Let F C Ein W. Call F a left-connected component (or lcc in short) of

x;—1 is in S for every i € [r].

E, if F is a maximal left-connected subset of F. One can define a right-
connected component and a two-sided-connected component (or rcc and tee
in short) of E similarly.

For any \ € As,, denote E) := C,, Ny~L(N).
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Lemma 2.16. Let A € Asy,.

(1) Any lcc (respectively, rcc, tee) of ¥~1(\) is contained in some left
(respectively, right, two-sided) cell of Agp_1.

(2) Any lec (respectively, rcc, tee) of Ey is contained in some left (respec-
tively, right, two-sided) cell of C,.

(3) The set Ey is either empty or a union of some two-sided cells of 6n

Proof. (1)-(2) follow by 1.3 (1)-(2), Lemmas 2.12 and 2.14. By Lemmas 2.13-
2.14, we see that E) is either empty or a union of some left cells of 5n with

E' = E, for any A € Ag,. So (3) follows by Lemmas 2.12 and 1.4. [

Corollary 2.17. Let z,y € As,_q satisfy z,y € Y=Y(\) for some X € Ay,

(1) If £(y) = £(x) + €(yz~1) then x,y are in the same lcc of v~1(\) and

hence x ~ y.
Ly

(2) If U(y) = £(z) + £(x ™ y) then z,y are in the same rcc of Y~ 1(\) and
hence x Y )

Let x,y € C,, be in E\ for some X € As,,.

(3) If L(y) = £(x) + L(yz~1) then x,y are in the same lcc of E and hence
T~y

(4) If £(y) = £(z) + £(z~y) then x,y are in the same rcc of Ex and hence

T ~y.
»Y

Proof. By symmetry, we need only to show (1) and (3).
(1) Let yx=! = s;, 8, _, 8,8, be a reduced expression of yr~! with

si; € S. Let xp = 54,8i,_, " Si,si, ¢ for k € [0,7], where we stipulate

xg = x. Then l(xy) = l(zr—1) + 1 for any k € [r]. Hence ¥(x) = ¥(xg) <
P(xy) < - < Y(x,) = Y(y) = ¢¥(x) by 2.11. This implies that z,y are in
the same lcc of 1»~1()\). Hence x ~Y by Lemma 2.16.

(3) Let yz=1t =t; ¢

i, -+~ t;, be areduced expression of yzr~! with ti, €85,
Let x = t; t;,_,---t;;x for k € [0,r], where we stipulate xy = x. Then

l(zy) = l(xp—1) + 1 for any k € [r]. Hence ¥(x) = ¢¥(xg) < ¢P(z1) < -+ <
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Y(x,) = ¥(y) = ¥(x) by 2.11. This implies that x,y are in the same lcc of
E. Hence x Y by Lemmas 2.13 and 2.16. [

§3. Partial order <, on [2n] determined by an element w.

In this section, we introduce two technical tools. One is a transformation
on an element in 3.3, which is a crucial step in proving the left-connectedness
of a left cell and in finding a representative set for the left cells of C,inE bV
A € Ag,,. The other is a generalized tabloid in 3.5, by which we can check if
two elements of én are in the same left cell.
3.1. 4,j € [2n] are said 2n-dual, if i + j = 2n + 1; in this case, denote j = i.
Further, denote E := {i | i € E} for E C [2n]. Recall the relation <,, on [2n]
defined in 2.2 for w € Av%_l and that 6’n is regarded as a subset of ggn_l
(see 2.1). Fix w € Ag,_1. Say i # j in [2n] w-comparable if either i <y, j or
J <w 1, and w-uncomparable if otherwise. When w € 6,“ say i € [2n] w-wild
if 4, i are w-comparable and w-tame if otherwise. Say i € [2n] a w-wild
head (respectively, a w-tame head), if i is w-wild (respectively, w-tame) with
(w < (i)w.

i < j in [2n] are w-uncomparable if and only if (i)w < (j)w < (i)w + 2n.

Call E C [2n] a w-chain, if E = {iy,ia,...,%5,} and i1 <y G2 <o+ < Op-

Lemma 3.2. Fizw € C,,. Leti,j,k € [2n].
(i) j <w k if and only if k < j;
Now suppose that j # k are w-wild heads and i is w-tame.
(ii) j < k if and only if j,k are w-comparable.
(iii) If j, k are w-uncomparable then so are j, k (respectively, j,k);
(v) i and k are w-comparable if and only if i <4, k.
(v) {j,i,7} is a w-chain if and only if j is w-comparable with both i and i;
(vi) {j,k,j,k} is a w-chain if and only if j, k are w-comparable.

Proof. (i)-(iv) can be checked directly. Then (v) follows by (i) and (iv).

Finally, (vi) is a simple consequence of (i)-(iii). O

3.3. Let
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(3.3.1) tij = tigj—1liyj—2- - tip1ls,

dij =ti—jt1ti—jyoa- - ti—1li.
for any 4,5 € Z with 7 > 0. Suppose that x € C,and i € Z satisfy
(i)x —2n > (j)x for any ¢ < j < i+ a with some a € [2n — 1]. Let 2’ = ¢; 4.
Then ¢(z') = ¢(x) — a and ¥(z) = ¢¥(a’). Moreover, if (i)z — 2n > (j)z for
any 1 < j < i+ 2n, let " =t; 2z, then

(k)x —2n, if k=1 (mod 2n),
(k)" =< (k)x+2n, if k=2n—1 (mod 2n),

(k)x, if otherwise.

for any k € Z, where 2"/ satisfies £(z") = ¢(x) — 2n and ¢ (x) = 1 (z").

Fix w € 5’n Suppose that Ey = {iy,i9,...,i,} and Eo = {j1, jo, ..., jo} are
two subsets of [2n] satisfying that

(i) i1 <ig < -+ <igand j; < jo < -+- < jp with a > 0 and b > 0 and
a+b=mn;

(ii) the elements of E; U Ey are pairwise not 2n-dual;

(iii) (k)w < (k)w for any k € Ey U E»;

(iv) If b > 0 then (i)w — (j)w > 2In for any i € E; and j € Fo; if b =0
then (i)w > (20 4+ 1)n for any i € Eq, where [ is some positive integer.

By repeatedly left multiplying various elements of the form ¢; ; on w, we
can obtain some w’ € 5n such that there are some 1 < k1 < kg < -+ < kp <
2b (the latter is an empty condition if b = 0) satisfying that

(1) L(w') = L(w) = Llww'™);

(2) If b > 0 then [2b] = {k1, ko, ..., kp,2b+1—k1,2b+1— ko, ..., 20+ 1—kp}
and the map ¢ : {j1, jo, .-, Jb, J1, 725 -, Jbo ) — [2b] given by ¢(j,) = ky,, and
&(jm) = 2b+1 — k,, for m € [b] is an order-preserving bijection.

(3) (p)w’" = (ip)w—2'n and (a+kq)w’ = (j,)w for any p € [a] and ¢ € [b],
where I’ € Z and I’ > [;

(4) ({¢))w" < ({¢))w’ for any ¢ € [a] U {a + kn, | m € [b]};
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(5) If b > 0 then 0 < min{(c)w’ — (a + kp)w' | ¢ € [a],m € [b]} < 2n; if
b =0 then n < min{(c)w’ | c € [n]} < 3n.

We see by Lemma 3.2 that ¢ (w’) = ¢(w) (denoted by ) and by Corollary

2.17 that w,w’ are in the same lcc of E).
Example 3.4. (a) Let w = [8,30,4,—11,27,2] € Cs. Then E; = {2,5,9}
and Fy = {1,7,10} satisfy 3.3 (i)-(iv) with n = 6 and (a,b,1) = (3,3,1). Let
w' =ty 9t58tg.aw. Then w' = [18,15,12,8,4,2] € Cs. Hence w' satisfies 3.3
(1)-(5) with b > 0 and ¥ (w") = ¥ (w) = 93.

(b) Let w = [20,30, -8, —11,27,—10] € Cg. Then E; = {1,2,5,7,9,10}
and FEy = () satisfy 3.3 (i)-(iv) with n = 6 and (a,b,l) = (6,0,1). Let
w' = tg 7te 7t6,7t7 6t at10,3w. Then w' = [8,18,15,11,12,9] € Cs. Hence w'’
satisfies 3.3 (1)-(5) with b = 0 and ¢ (w’) = ¥ (w) = 822.

3.5. By a composition of 2n, we mean an r-tuple (a1, as, ..., a,) of positive
integers ay, ..., a, with some r > 1 such that > ., a; = 2n. Let Ay, be the
set of all compositions of 2n. Clearly, As, C 1~X2n.

A generalized tabloid of rank 2n is, by definition, an r-tuple T = (T3, T3, ..., T}.)
with some r € N such that [2n] is a disjoint union of some non-empty subsets
Ty, j € [r]. We have £(T) := (|T1|, | T, ..., |T|) € Agp, where |T}| denotes the
cardinal of the set T;. Let i1, 4o, ...,4, be a permutation of 1,2, ..., r such that
T, | = |Ti,| = -+ = |T;.|. Then ¢(T) := (|T3,|,|Ti,ls -5 |T5.|) € Aoy Let Cop
be the set of all generalized tabloids of rank 2n. Then both & : Cy,, — 1~\2n
and ( : Ca,, — Ao, are surjective maps.

Let Q be theset of all w € ggn,l such that there is some T = (T, 15, ..., T}) €
Cop, satisfying:

(i) If i < j in [r] then ((a)w™!) <4, ((b)w™!) for any a € T; and b € T};

(ii) {(a)w™Y), ((b)w™!) are w-uncomparable if a # b in T;, i € [r].

Clearly, T is determined entirely by w € Q, denote T by T'(w). The map
T : Q — Cyy, is surjective by [8, Proposition 19.1.2]. By a result of Greene
in [2], {(T'(w)) is the dual partition of ¥ (w).

The following known result will be crucial in subsequent discussion.
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Lemma 3.6. (sec [8, Lemma 19.4.6]) Let y, w € Agn_1 be in Q with £(T(y)) =
&(T(w)). Theny ~w if and only if T(y) = T'(w).

¢4. The set Fyi2n-—x.

Fix A € As,,. Recall the set E defined in 2.15. We have E;l = E). The
group automorphism 7 of C, (see 2.7) stabilizes each Ej.

In the present section, we shall describe all the cells of C,, in the set
Eyq2n-x for all k € [2n]. Ej2n consists of the identity element of Cn. In the
subsequent discussion, we shall always assume k > 1.

4.1. First assume k = 2m + 1 € [2n] odd. Let | = n — m. By Lemma 3.2,
w € C, is in Eyq2n-x if and only if w satisfies the condition (4.1.1) below.
(4.1.1) There exist some pairwise not 2n-dual i1, i, ..., i, j1, J2, -y jm D [27]
such that (i) i1,42,...,49; are all w-tame heads with iy < is < -+ < 4; and
(i1)w < (2w < --- < (ip)w; (i) j1,72,.., jm are all w-wild heads with
J1 <w Jo <w -+ <w jm and with either 41,41 <4 J1 OF 7,9 <uw J1-

Let F? (respectively, Fi9) be the set of all w € C,, satisfying the condition
(4.1.2) below.

(4.1.2) There exist some pairwise not 2n-dual i1, i, ..., i, j1, J2, -y jm D [27]
such that (i) i1,12,...,49; are all w-tame heads with iy < is < -+ < 4; and
(iw < (9w < -+ < (iyw; (ii) j1,72,...,Jm are all w-wild heads with
0 < (Jar1)w — (Jo)w < 2n for any a € [m — 1]; (iii) (i1)w < (j1)w <
(i)w + 2n and (47,91, ...y 02, Jms Gm—1s -+ J1,01) = (1,2,...,n) (respectively,
(i)w + 2n < (J1)w < (i1)w + 2n and (41,92, -, 5115 Jrms Jm—1s -y J1,81) =
(n+1,n+2,..,2n)).

4.2. Next assume k = 2m € [2n] even. Let [ = n — m. By Lemma 3.2,
w € C, is in Eyq2n-x if and only if w satisfies the condition (4.2.1) below.
(4.2.1) There exist some pairwise not 2n-dual i1, iz, ..., 7, J1, J2, -y Jm i1 [27]
such that (i) ¢1,149,...,4; are all w-tame heads with i1 < is < .-+ < i; and
(i1)w < (ix)w < -+ < (ipw; (i) j1,J2,. jm are all w-wild heads with
J1 =<w J2 <w ** =<w Jm; (iil) j1 is w-uncomparable with i,, i, for all a € [I].

If m = n then (4.2.1) (iii) is an empty condition. Now assume m < n.
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Under the assumption of (4.2.1) (i)-(ii), the condition (4.2.1) (iii) is equivalent
to that either iy < j; < i1 and (i1)w < (j1)w < (i1)w, or i; < ji1 < i+ 2n
and (i))w < (j1)w < (i))w + 2n. Since j; is a w-wild head, this is also
equivalent to that either 71 < j; < n and n < (j1)w < (i1)w, or i; < j1 < 2n
and 2n < (j1)w < (i)w + 2n. Let B} 5. 1 (vespectively, E)/ 5. i) be the
set of all w € Ejq2n-x such that iy < j; < n and n < (j1)w < (iy)w
(respectively, 4; < j1 < 2n and 2n < (j1)w < (i))w + 2n). Then Eyjzn-x =
E} 201 UEY 201 (disjoint union).

Let Ff (respectively, F¥) be the set of all w € C,, satisfying the condition
(4.2.2) below.
(4.2.2) There exist some pairwise not 2n-dual iy, i, ..., i, j1, J2, -+, Jm D [27]
such that (i) ¢1,142,...,4; are all w-tame heads with i1 < is < --- < i; and
(i1)w < (ix)w < -+ < (ipw; (i) j1,72,. jm are all w-wild heads with
0 < (Jar1)w — (Jo)w < 2n for any a € [m — 1]; (iii)) n < (j1)w < (i1)w
and (47,511, -y 01, Jms Jm—1s - J1) = (1,2, ...,n) (respectively, 2n < (j1)w <
(i)w + 2n and (i1,42, .., i1, Jms Jm1, - J1) = (R + 1,n + 2, ..., 2n)).

When m = n, the sets E] . i and E}/ . . (respectively, FT and Fy) can
also be defined by the condition (4.2.1) (respectively, (4.2.2)) if we stipulate
ir = (in)w=2n+1,14; = (iy)w =0, i; = (iy)w =n and i; = (i))w =n + 1.

Clearly, Ff C By 20w and F5 C E}/ 2, .

Lemma 4.3. F{UF5 C Eyq2a-x, where € is o if k is odd and e if k is even.
For any w € Eyq2n-x, there exists some w' € Ff U F§ such that w',w are in

the same lcc of Fyq2n-x.
Proof. 1t is a direct consequence of 3.3 and 4.1-4.2. [

Lemma 4.4. Let € be given as in Lemma 4.3.

(1) The map n (see 2.7) interchanges the sets Ff and Fs.

(2) If k € [2n—2] is even, then El’;in_k: E} 2nw and E1/<I1_211—k = B ok
The map n interchanges the sets E, j2n_i and B} 2n .

(8) Each of Ff and F§ is contained in an rcc of Eyqzn—k.
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Proof. (1)-(2) follow by 4.1-4.2 and Proposition 2.8 (3). For (3), we need
only to show that FY is contained in an rcc of Eyq2n-x.
(I) First assume € being o. For J = {t;,t;41,....tn}, w® = tw; =
1,2,..,01—1,2n+1—1,2n —I,...,n + 2,n] is the unique shortest element
in FY. Take any w € FY. Keep the notation in (4.1.2).

(a) First assume (j,)w — (ja—1)w = 1 for any a € [2,m]. Since (i;)w <
(j1)w < (i)w+2n, there exists the largest b € [I] with (ip)w < (j1)w. If b =1
then w € {wy,ws} withwy = [n+1-0,n+2—1,...n—1,2n,2n—1,...,n+1+
1,n] and wy = [n+1-1,n+2—1,....,n—1,3n—1,3n—1—1,....2n+1,n]. Let J =
{t1,to, eestn_o}, J1 = I\ {tn_i}, I1 = {t1,t2,...;tn_y—1} and I = I; U {to}.
Then wy = wywy, wy, wy = wwywy, satisfy f(ws) = L(wy) + Llwr, wr),
l(w1) = £(w'®) + ¢(wywy,) by Proposition 2.8 (2). Hence wi, wa, w(®
are in the same rcc of Eyj2n—x by Corollary 2.17. Now assume b < [. Since
(i1)w < (j1)w < (i))w+2n, we have w = [1,2,...,l—b,n+1—b,n+2—b,....n—
L,2n+b—10,2n+b—1—1,...n+b+1,n]. Let J = {tix1-p,tizo—p, s tn_2},
Ji = J\ {tn_p}. Then w = ww wy, and L(w) = L(w ) 4+ L(wywy,) by
Proposition 2.8 (2). So w, w(®) are in the same rcc of Eyqz2n-x by Corollary
2.17.

(b) Next assume (jo)w — (jo—1)w > 1 for some a € [2,m]. Take a the
largest with such a property. Then d := (j,)w—1 = (k)w (mod 2n) for some
k € {Jb,Jbsicyicsja | b € [a—1],c € [I]}. When d # (j,)w (mod 2n), let

Y1 = wigtgy1 - tmtd—a. Then for any t € Z, we have

( (Hw — 1, if t = (jp)w (mod 2n) for some h € [a, m],
(tw + 1, if t = (jp)w (mod 2n) for some h € [a, m],
Byr =< Ww+ (m+1—a), ift=(k)w(mod 2n),
tw—(m+1—a), ift=(k)w(mod 2n),
\ (Hw, if otherwise.

We see that either (j,)w — (k)w > 2n for all h € [a,m], or k = iy with
(jo)w = (if)w + 1 for some f € [I] (hence j, < k for any h € [a,m] in the
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latter case) by the condition (4.1.2) on w € FY and by the choice of a. We see
by Corollary 2.6 and Proposition 2.8 (2) that ¢(y1) = ¢(w) — (m+1—a) and
y1 € FP. When d = (j,)w (mod 2n), we have d = n,0 (mod 2n) and (j,)w —
(jo)w > 2n. In this case, let y; = wwy,wy with J = {tn, tn 1, tnia—m}
and J; = J\ {t,} if d = n (mod 2n) and J = {to,t1,....tm—a} and J; =
J\{to} if d = 0 (mod 2n). By Corollary 2.6 and Proposition 2.8 (2), we have
((y1) = £(w) — (wy,wy) and y; € FP. By induction on p := £(w) > £(w(?)),
we see that there exists a sequence yo = w, y1, ..., Yy, in FY with some r > 0
such that £(yn) = £(yn—1) — £(y, 1yn) and (ja)yr — (Ja—1)yr = 1 for any
h € [r] and a € [2,m]. This implies by Corollary 2.17 that yo,y1, ..., y, are
in the same rcc of Eyyzn-x. Since y, and w(®) are in the same rcc of Fyqz2n-x
by (a), FY is contained in an rcc of Eyq2n-k.

(IT) Next assume € being e. Then w(®) := w; = [1,2,...,1,2n — 1,2n — [ —
1,...,n + 1] is the unique shortest element in Fy with J = {t;41,t142, ..., tn }.
Take any w € Ff \ {w(®}. There exists some a € [2,m] with (j,)w —
(ja—1)w > 1. Take a the largest with such a property. By the same argument
as that in (I) (b), we can find yo = w, y1, ..., ¥ = w'® in F¢ with some r > 0
such that €(yp) = £(yn_1) — £(y;,* yn) for every h € [r]. By Corollary 2.17,

we see that FY is contained in an rcc of Eyqan-x. [

Lemma 4.5. For k € [2,2n], € € {o0,e} and i = 1,2, let Ff C Eyq2n-x be
defined as in 4.1-4.2. Then |F¢| = |F§| = 2l31=nl/(n — BB

Proof. We have |Ff| = |Fs| by Lemma 4.4 (1).

First we enumerate the set F'° := FYUF3. Let G° be the set of all w € Ch
satisfying (4.1.2) but with (iii) replaced by (iii)’ below:

(i) (i)w < (J1)w < (1)w+2n and (ig, 511, - 52, Jrms Jre1s ooy J1591) =
(1,2,...,n).

Then FY C G°. There exists a bijection A, : G°\ FY — Fj given
by Ay (w) = zw, where, when | > 1, let * = wywpwywyt, with J =

{tlatl—i-l: "'7tn}7 Jl — J\ {tn—latn}a I = {t27t37 -'-7tn—2} and Il == I\{tl—l}a
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when [ =1, let z = wywydp—1,-1 (see (3.3.1)) with J = {t2, 13, ...,t,} and
Jp=J\{tn}.

Note that in either case, we have ¢(zw) = ¢(w) — {(x) and P (w) = P (zw),
hence rw YW by Corollary 2.17 and Lemma 2.16.

Now we enumerate the set G°. Any w € G° is determined entirely by the
integers (i1)w, (i2)w, ..., (i))w, (j1)w, (j2)w, ..., (jm)w under the conditions
(4.1.2) (i)-(ii) and (iii)’. There are () n

T M(n—1)
integers (i1)w, (iz)w, ..., (i;)w by the condition n < (i1)w < (ix)w < -+ <

different choices for the

(i1)w < 2n. Once they are fixed, the numbers of different choices for (j;)w,
(jo)w, ..., (jm)w are 2m,2(m — 1),...,2 in turn by the conditions (4.1.2) (i)-
(ii), (iii)" and the facts that m +1 = n and b # ¢, ¢ (mod 2n) for any b # ¢
in {(i1)w, ..., (i)w, (j1)w, ..., (jm)w}. So |G°| = (})2™m!. The assertion is
proved for € being o by the facts |[F?| = |F§| = 1|G°| and m + | = n.

Next we compute |Ff|. Any w € Ff is determined entirely by the in-
tegers (i1)w, (i2)w, ..., (i)w, (j1)w, (j2)w, ..., (jm)w under the condi-
tion (4.2.2). There are (lil) different choices for the integers (ji)w, (i1)w,
(i2)w, ..., (i;)w by the condition n < (j1)w < (i1)w < (iJw < -+ <
(i1)w < 2n. Once they are fixed, the numbers of different choices for (j3)w,
(J3)w, <oy (Jm)w are 2(m —1),2(m — 2),...,2 in turn by the condition (4.2.2)
and the facts that m +1 = n and b # c¢,¢(mod 2n) for any b # c in
{(i1)w, ..., (ip)w, (j1)w, ..., (Jm)w}. So |Ff| = (lﬁl)Qm_l(m — 1)I. The as-
sertion is proved for € being e by the fact m+1=n. O

Lemma 4.6. No two elements of Ff U F5 are in the same left cell of én.

Proof. Let w € FY be as in (4.1.2). If [ = 1 then let v’ = w; if [ > 1
then let w' = wy w s, thw s, w wiwy,wy wy,w, where J; = {t1,ta,...,t,_2},
Jy = i\ {ti—1}, J3 = {to.t1,erstm—1}, Jo = J3\ {to}, J5 = J1 \ {tm},
Jo = {ti, ti41,....tn} and J7 = Jg \ {tn, tn_1} (see Figure 1). Regarding w’ as
an element of As,_1, we have w' € (see 3.5), which satisfies ¥ (w) = 1 (w’)
and £(w') = {(w) + (w'w™1), hence w ~ w’ by Corollary 2.17.
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Let « = (1,...,1,21,1,...,1) € As, with 21 the (m + 1)-th component. We
see that T'(w') = (T1,Ts, ..., Toms1) € £ 1(a) with T, = ({jmi1_c)w) for
¢ € [m], Tnp1 = {{(ia)w), ((ia)w) | a € [I]} and Ty = {((ja—m-1)w)} for
d € [m+2,2m + 1] (see 2.7 for the notation (g)).

Similarly, for w € Fg as in (4.1.2), we can find some w’ € C, satisfy-
ing w ~ w' and w' € Q as an element of Ay, ;. We again get T(w') =
(T1, To, ..., Toms1) € E1(a) with T, = ((jmy1_c)w) for ¢ € [m], T =
{(iq)w), ((ig)w) | a € [[]} and Ty = {{(ja—m—1)w)} for d € [m + 2,2m + 1].

1stcolumn  (n+1)th column
‘" () | tsteolumn  (n+1)h column
|

1 1 \ \

-~ -~
~L ~-1
~ ~
[ —— 1strow—— [
~ <

-
- ~ - - ~
~ ~

Figure 1

Figure 1 displays the corresponding parts for the matrix forms of w and w’
if I > 1, where the symbol =~~~ (respectively, - ) stands for a rectangular
submatrix A with p rows each row has a unique non-zero entry 1, the entries
1 of A are going down to the right (respectively, to the left).

We see that the above T'(w') with w’ ~w and w’ € Q depends only on
w € FYUFY and a but not on the choice of w’ in 2. So we can denote T'(w")
by T, (w). We claim that T, (w) should be pairwise different in £é~!(a) as
w ranges over FY U Fy. For, recall that in the proof of Lemma 4.5, there
is a bijective map 7 from G° to Fy U Fy which satisfies w > 7(w) for any
w € G° We see that T, (w) = (T1,T5, ..., Toms1) with Te = ((Jmt1—c)w)
for ¢ € [m], Tp41 = {{(ia)w), ((ia)w) | a € [I]} and Ty = {{(ja—m—1)w)} for
d € [m + 2,2m + 1] should be pairwise different as w ranges over G°. This
proves our assertion by Lemma 3.6 when € is o.

If m = n, then Ff UF§ C Q. The set {T'(w) | w € Ff U F§} is equal
o {({a1},....{az2n}) | {a1,...,a2n} = [2n];@; = asnt1-i, V i € [n]}. So our
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result in this case follows by Lemmas 3.6 and 2.13. Now assume m < n. Let
B=(1,..,1,21+1,1,...,1) € Ay, with 2/ +1 the (m + 1)th component. Let
w € Ff be as in (4.2.2). When m = 1, let w’ = wywy,w with J = S\ {s,,}
and J1 = J \ {sp+1}; when m > 1, let v’ = wrwr,wn,wr,w with I; =
S\ {sn_1,5n}, Io = L\ {si}, Is = S\ {snsm—1} and Iy = I3\ {spiam_1}
(see Figure 2 if m > 1). Then ' is in Ag,_1, but not in C,,. We have w’ € €,
which satisfies 1(w) = 1 (w') and £(w') = {(w) + {(w'w™"), hence w ~ w’ by
Corollary 2.17.

n+1)th column
1st chumn (n+2) | Asteolumn  (n43)th column

1 1 I I \
-~
~ ~
~
~ =~ - I
—— 1st —— ~
S strow <
~ m-ly, - 1 mg -
- -
1 1
—— (n+1)th ow = e
my - 1 -
- - ~ U
~I ~ ~
~
w w

Figure 2

We have T'(w') = (Th, T2y ..., Tom) € £ H(B) with T, = ({jmt1-c)w) for
¢ € [m], Tmsr = {{(1)w), ((ia)w), ((ia)w) | a € [I]} and Ty = {{(ja-m)w)}
for d € [m + 2,2m).

Similarly, for w € F¢ as in (4.2.2), we can find some w’ € Ay, _1 satisfying
w w’ and w’' € Q. We again get T(w') = (T1,T3, ..., Ton,) with T, =
(Grsr_e)w) for ¢ € [m], Tryr = {G)w), (Ga)w), (Ga)w) | @ € [} and
Ty = {{(jag—m)w)} for d € [m + 2,2m)].

Again, the above T'(w’) with w’ ~w and w’ € Q depends only on w € FYU
Fs and 8 but not on the choice of w’ in 2. So we can denote T'(w") by Tjs(w).
Then Tj(w) are pairwise different in ¢ ~1(3) as w ranges over Ff (respectively,
F3) by the proof of Lemma 4.5. We claim that Tg(w) = (11, ..., Toy) for
w € Ff is different from that for w € F§. For, T;, = {{(j1)w)} satisfies
((j1)w) < nif w € Ff and ((j1)w) > ((i7)w) > n if w € F5. The claim is

proved. So our assertion follows by Lemmas 3.6 and 2.13 when € is e. [J
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Lemma 4.7. The set Eyq2n-x forms a single two-sided cell of C, if either
k € [2n] is odd or k = 2n. In particular, Eay is the lowest two-sided cell of

CN'n under the relation <.
LR

Proof. First assume k = 2m+1 € [2n] odd. Let w(® = t,w; and 3(©) = tow;
with J = {t;,t141,....tn} and I = {tg,t1,...,tn—1}, where | = n —m. Then
y©) = n(w). By (4.1.1)-(4.1.2) and the proof of Lemma 4.4, we see that
any w € Eyyzn-x is in a tcc of Fjq2a—k containing either w(®) or y(©). Thus
by Lemma 2.16, in order to show our result, we need only to show that w(®)
and y(°) are contained in the same tcc of Ejqzn-k.

When | = 1, let I1 = S\ {tn_1,tn}, Io = I \ {to}, Is = S\ {to,t1}
and Iy = I3\ {t,} and let yp = w®), y; = WLWLY0, Y2 = dp—1n—1Y1,
Y3 = Yol p—1 and ys = yswr,wr,; when | > 1, let J; = {t1,t2,....;tnh—2},
Jo = Ji \ {ti_1}, J3 = {to,t1, s tm}, Jo = J3\ {to}, Js = {ti,tix1,-- tn},
Jo = Js\{tn-1,tn}, Jz = {ta,t3, ... tn_2} and Jg = J\{t;—1}. Let yo = w(®,
Y1 = W WY, Y2 = bows, Wiy, Y3 = Yetawiswy, and y4 = yzwgws,. In

either case, we have y; = y(°).

1st column (n+2)h column 1st column (n+2)th column 1st column (+2yh column

1 \ \ 1 I \ 1 I |
e N X
1
&1 ——1st row—— y ——1st row—+— " 1
J AN 4 \
1 1 1
1 —(n+1)th row—— 1 Q(ml)mm — 1 kz
4 AN J
1
=w® A ¥
Yo
lsrcT\um" (n+1)th‘co\umn ls!m‘)lumw (n+2)th coum
1 *2 I I \’1 I I
1 y 1 y
1 —— 1st row—— y 1
m,
/ &2 ‘1
1
1 —1 (n+1)th roW)—— -1
o
1 1
Y v - y(u)

Figure 3
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In Figure 3, we display the corresponding parts of the matrix forms of
Yo, ---, Y4 for I > 1, the notation N\ stands for the I x identity submatrix,
while /" stands for the m x m anti-diagonal submatrix with all the anti-
diagonal entries being 1.

We have y; € Eyqzn-x for any i € [0,4]. Also, £(y1) = £(yo) + L(y1y5 ),
Uy2) = £(y2)+0(y2y1 "), Lys) = €(y2) —L(ys 'ys) and £(ya) = €(ys)—L(y5 'ya)
(see Figure 3 for I > 1). This implies by Corollary 2.17 that w(®) and y(°)
are contained in the same tcc of Eyq2n-k.

Next assume k = 2n. By the part (II) in the proof of Lemma 4.4, we
see that any w € Fay is in the tcc of Fa, containing either w; or w; with
J=8\{to} and I = S\{t,,}. Let K = S\{to,t,} and let y = wxw;w;. Then
Yy = wrwjwg € Fay satisfies {(y) = l(wy) + L(wgwr) = L(wr) + L(wyjwk).
So wy,wy are contained in the same tcc of Fa, by Corollary 2.17. Hence
FE5,, is two-sided-connected and forms a two-sided cell of én by Lemma 2.16,

which is the lowest one under the relation < by Lemmas 2.13-2.14. [J
LR

In the proof of Lemma 4.7, we actually show that if k£ € [2n] is either odd
or 2n then the set Eyq2n-x is two-sided-connected. By 3.3, 4.2 and Lemmas
4.3-4.4, we see that if k = 2m < 2n is even then each of the sets E1/<12n—k and

El’{’lzn,k is contained in some tcc of Eyq2a-x. Now we have

Lemma 4.8. If k = 2m € [2n — 2| is even, then the set Eyq2a—x has two

/ 1
tees By qan-i and By o .

Proof. Keep the notation in (4.2.1) for w € Eypq2a-x. Denote the integers
Jas Jarby @ DY Jos Jar Ty » TSPy oy Jasiys 1y for a € [m] and b € [I], ac-

cording to w being w’" € E} i, resp., w” € B}/ Observe the follow-

Kk12n-k-
ing facts: If w” is obtained from w’ by left multiplying some ¢t € S, then
Ji = ((41)t) (see 2.7) and (ji)w"” = (j})w'. If w” is obtained from w’ by
right multiplying some ¢ € S, then ji = j; and (j{)w” = (j1)w't.

We see that w' € Ej .- satisfies i} < ji < n and n < (j))w' < (i)',

and that w” € B}/ ., satisfies i) < j{' < 2nand 2n < (j1)w” < (i )w"” +2n.
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Since i) > n+ 1 and ¢} > 1, we have j| € [2,n] and j{ € [n + 2,2n], hence
Ji # ((41)t) for any ¢t € S. So no element of E;’,.,_. could be obtained from

an element of E! by left multiplying some ¢ € S. Since (i}))w’ < 2n,

K12n—k
we have (j1)w’ < 2n—1 and 2n+ 1 < (j)w”, hence (j1)w” # (j7)w't for
any t € S. So no element of El/</12“—k could be obtained from an element
of Ej | an_x
different tces of Eyq2n-x by the fact Eyqzn-x = B} 20 UE) 20 . O

by right multiplying some ¢t € S. So E1/<12n—k’ E1/</12n—k form two

Theorem 4.9. (1) If k =2m+1 € [2n] is odd, then Eyq2n-x is a two-sided
cell of C,, containing 2™n!/(n — m)! left cells.

(2) Ean is the lowest two-sided cell of C,, consists of 2™n! left cells.

(3) If k = 2m € [2n — 2] is even, then Eyq2a-x is a union of two
two-sided cells B j2n_i, ) j20-1 Of 6n, each of By jon_i, B 2n_i contains

2m=Inl/(n — m + 1)! left cells. The group automorphism n interchanges
(4) FEach left (respectively, two-sided) cell of C, in Eyq2n-x is left- (re-
spectively, two-sided-) connected.

(5) The set Eyq2n—x is infinite unless k = 1,2.

Proof. By Lemma 2.16, we see that E) is either empty or a union of some
two-sided cells of én for any A € Ag,. Hence (1)-(2) follow by Lemmas 4.3
and 4.5-4.7. For (3), we see by Lemmas 4.3-4.4 and 4.6 that each of E |2,
and B}/ 2, i« contains 2™~ 1n!/(n—m+1)! left cells. By Lemmas 1.4, 4.4 and
2.12, we see that each of E] ;. and E}/ .., is a union of some two-sided
cells of 5n. On the other hand, each of Ej 2, i« and B} .. i is a tec of
Eyq2n-x by Lemma 4.8, which should be contained in some two-sided cell
of én by Lemma 2.16. So each of E ., .\ and E}/ ., , forms a single two-
sided cell of C,,. The last assertion of (3) follows by Lemma 4.4. This proves
(3). (4) follows by (1)-(3) and Lemmas 4.3, 4.6. Finally, Fi2n = {1} and
Egqi2n-2 = {to,t,}. When k =2m >4 or k = 2m+ 1 > 3, the number of the
choices for (j,,)w in (4.1.1) or (4.2.1) is infinite. This proves (5). O
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§5. The set E(k,2,1,...,1) with (k,2, 1, ceey 1) S Agn.
In this section, we describe cells of 5’n intheset E; 21, 1) with (k,2,1,...,1) €

As,,. The main result is as follows.

Theorem 5.1. Let A = (2m,2,1,...,) and p = (2m+1,2,1,...,1) be in Ay,.
(1) The set Ey forms a single two-sided cell of Chifm=n—1 andis a
union of two two-sided cells (say E)\ and EY) of C, if m <n—1. The set
E,, is a union of two two-sided cells (say E,, and E}/) of C.
(2) Let n(v) be the number of left cells of Cy in E, for v = A\, pu. Then
n(\) = 2m7(7lfiﬁf)7m) and n(p) = %
Let n'(v) and n”(v) be the numbers of left cells in E!, and E!' respec-

tiwely for v = X\, u. Then {n/(A),n”"(N\)} = { 2™ n! 2m_1n!(n+2—m)} and

(n+1—m)!? (n+1—m)!
n' (i) =" (n) = Lt
(3) Any left (respectively, two-sided) cell ofén in EAUE, is left- (respectively,
two-sided-) connected.

(4) |Exg12n-x-2| = 0o unless k = 2, 3.

We shall prove Theorem 5.1 in the remaining part of the section.
5.2. Let Il =n—m—1. Then w € én is in E) if and only if one of the
conditions (a)-(c) on w holds:
(a) There are some pairwise not 2n-dual ji, jo, ..., jm, k, i1,42,...,9 in [2n]
with 71, J2, ..., Jm, k w-wild heads and 41, 72, ..., 4; w-tame heads such that
(al) j1 <w J2 <w *** =w Jm}
(a2) i1 <ig < --- <y and (i))w < (i2)w < -+ < (4;)w;
(a3) j1 (respectively, k) is w-comparable with none of iy, i, for h € [I];
(a4) k is w-uncomparable with j, for some p € [m].
Both (a2) and (a3) become empty condition if m =n — 1.
(b) There are some pairwise not 2n-dual j1, jo, ..., Jm, 01,92, ..., 97, {141 in [2n]
with ji, jo, ..., jm w-wild heads and 4,19, ..., %, 741 w-tame heads such that
(b1) J1 <w J2 =w ** <w Jms
(b2) i1 < ig < -+ < i < dy4q and (ip)w < (i2)w < -+ < (i)w < (i141)w;
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(b3) j1 is w-comparable with at least one of i1,41, 441,411, but not with
in, in simultaneously for any h € {1,1+ 1}.
(c) There are some pairwise not 2n-dual j1, jo, ..., Jm—1, 01,92, ..., 442 in [2n]
with ji, Jo, ..., jm—1 w-wild heads and i1, 42, ..., 712 w-tame heads such that

(cl) 1 <w Gg <w ip <w J1 =<w J2 =<w =" <w Jjm—1 for some p,q € [l + 2]
with I+ 2 € {p,q};

(€2) i1 <idg < -+ < iy <idpy1 and (i1)w < (i2)w < -+ < (i)w < (ij41)w.

For any w; € E) satisfying (c), there exists some wy € E) satisfying (b)
such that w; and wsy are in the same lcc of E.
5.3. Let EY be the set of all w € E) satisfying 5.2 (a) with one additional
requirement that k and j; are w-uncomparable, that is, at least one of the
following two cases occurs:

(ab) iy < j1 < j1 < iy and (ip)w < (j1)w < (j1)w < (iy)w and 4 — 2n <
k—2n<k<i;and (ij))w —2n < (k)w < (k)w — 2n < (i) w;

(a6) i1 < k < k < iy and (i))w < (K)w < (k)w < (i)w and 4; — 2n <
J1—2n < j1 < i and (i))w — 2n < (j1)w < (j1)w — 2n < (i))w.

Let EY = E\ \ EX.

Lemma 5.4. E;\_l = F) and E'A’_1 = EY for A= (2m,2,1,...,1) € Ay, with

m<n-—1.

Proof. From the matrix forms of elements, we see that if w is in E) and
satisfies (al)-(ab) (respectively, (al)-(a4) and (a6)), then so does w~'. Hence
Eg\_l = EY. We also have E’A’_1 = EY by the fact E;' = E,. O

5.5. Let F} be the set of all w’ € C,, satisfying the condition (a’) below.
(a’) Let j1,..., jm, k be w’-wild heads and i1, ..., 4; w’-tame heads such that
(a’l) either
(@'11) (B, i1, 8015 ey i1 s Gty s j1) = (1,2, ..., n) with 0 < (k)w’ —
2n < (' < (i—1)w’ < - < (i)w' < (j1)w' < (i)w' if m <n —1 and
with 0 < (k)w’ —2n < n < (j1)w' <2nif m=n—1,

or
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(@'12) (K, i1,92, ooy i1, Jms St s J1) = (n 4+ 1,n 4+ 2, ..., 2n) with n <
(k)w' < (i)w" < (ig)w" < -+ < (ipw' < (1w < (@)w' +2nifm <n—1
and with 0 < (j1)w' —2n < n < (k)w' < 2nif m=n—1;

(a'2) 0 < (Jpt1)w' — (Jn)w' < 2n for any h € [m — 1].

Let FY be the set of all w’ € C,, satisfying one of (b'), (¢/) below.
(b") Let j1, ..., jm, k be w'-wild heads and 11, ...,4; w'-tame heads such that

(b'1) either that (i;, 611, i1 Jims Jm—1, - 31, k) = (1,2,...,n) with n <
(j)w' < (B)w" < (iy)w’ if m < n —1 and with n < (j1)w' < (k)w’ < 2n if
m=n-—1,

or that (1,42, ..., i1, Jms Jm—1,-J1,k) = (n+ 1,n + 2,...,2n) with 2n <
()w" < (k)w' < (i)w' +2n if m <n —1 and 2n < (j1)w' < (k)w’ < 3n if
m=mn—1;

(b’2) 0 < (Jp+1)w — (ju)w' < 2n for any h € [m — 1J;

(b'3) (i1)w" < (ig)w’ < -+ < (i))w'.
(¢)) Let j1,..., jm be w’-wild heads and i1, ...,73;11 w’-tame heads with m <
n — 1 such that

(c'1) either

(/11) (Gg1,90, ooy 03 Jims Jrne1y -5 31) = (1,2, ...y ) and (i1)w'< (j1)w’ <2n,

or

(c/12) (i1, 82, coes 541, Jims Jrne1s s 1) = (R+1,n+2,...,2n) and (3,41 )w’+
2n < (j1)w' < 3n;

(c'2) 0 < (Jp+1)w' — (Jn)w' < 2n for any h € [m — 1J;

(¢’3) (i1)w" < (ig)w' < -+ < (ip)w" < (igg1)w’.
5.6. F{ C F} and FY C EY by 5.2-5.3 and 5.5. Any lcc of EY (respectively,
EY) contains some element of Fy (respectively, FY') by 3.3 and Lemma 3.2.

Let « = (1,...,1,2,2(n — m),1,...,1) € Asp, with 2 its m-th component.
Let Fy := F{ U FY{. By the argument for Lemma 4.6, there is some y € Q
with y ~ w' and T(y) € € Y(a) for any w’ € Fy. Now we describe T'(y).

(1) If w’ satisfies (a’) or (b’) in 5.5, then T'(y) is equal to
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{{Gm)w)}s o (G2 1 LG '), ((R)w')
{{G)w’), ((R)w'), (En)w'), {@n)w’) | 1€ [} {(G2)w) s o {{m)w)})

where (i) 0 < (k)w’ — 2n < (i;))w’ and n < (j1)w’ < (i1)w’
i (ky iy, 01y ey 01, Gy Jnets s J1) = (1,2, ..0,1);
(ii) n < (k)w' < (i1)w’ and 2n < (j1)w' < (i;)w’ + 2n
if (kyi1, 09, .o i1y Jins a1, s j1) = (N 4+ 1,n 4+ 2, ..., 2n);
(iii) n < (j1)w' < (k)w' < (i1)w’
i (30,501, oes 815 Jrms Jrn—1s ooy J1, k) = (1,2, ...,m);
(iv) 2n < (j1)w' < (k)w' < (i))w’ + 2n
S (31,02, oo s s Gt eoes 1, k) = (0 + 1,10 + 2, ..., 20).
Here we stipulate (i;)w’ =n + 1 and (i1)w’ =2n+ 1 if [ = 0.
(2) If w' satisfies 5.5 (¢/) with (ij41, .+, 1, Jms 1) = (1,2,...,n) and
(ip)w" < (j1)w' < (ipg1)w’ for some p € [l + 1] with the convention that
(t142)w’ = 2n + 1, then T'(y) is equal to

{Gm)w)}, s {LG2)w") ) L)), (Gp)w') )
{{Gw), (Gn)w'), ((@n)w’) | b€ [+ 13\ A{{(Ep)w")}, {{G2)w") s o {{(m)w")}) -

(3) If w’ satisfies 5.5 (¢/) with (i1, ..., 4141, Jmy--nJ1) = (n+1,n+2,...,2n)
and (ip)w’ + 2n < (j1)w' < (ip—1)w’ + 2n for some p € [l + 1] with the

convention that (ig)w’ = n + 1, then T'(y) is equal to
{{CGm)w")}, - {{G2)w) b LG W), ((ip)w') )
{{Gw’), (n)w'), (En)w’) | 7€ [T+ 1IN\ {{(Ep)w)} {(G2)w')}s s {(Gm)w')})
5.7. By Lemma 3.6, we see that T'(y) € £ () given in 5.6 only depends on
w’ € Fy and a but not on the choice of y € Q. We can denote T'(y) by T, (w’).
This defines a map Ty, : Fy — ¢ 1(a). By 5.5-5.6, T = (T1,Ts, ..., Tom) €

¢ Y(a) is in the image of the map T, if and only if T satisfies the following

conditions:
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(1) T; = Tam1—: for any i € [2m] \ {m,m + 1} (see 3.1).

(2) T, U Tm—l—l = {Cjn—i—l—m?CIn—m)"'a(jlvqb"'aqn—maqn-‘rl—m} for some

@1 <q1 <q2<-<{qpyi—m in [2n], and
(6.7.1) T € a1, Gnr1-m 1 {0, @1 {Gn—ms y1—-m }> {01, @i} | © € [n—m]}.

When the equivalent conditions hold, we have |T,;1(T)| = 1 if T}, €
Ha, @}, {gn-—m>nr1-m}} (e, 5.5 (b)) and |T; 1 (T)| = 2 if otherwise.

1st c‘olumn (n+1)|‘h column 1st c‘olumn (n+1)l‘h column
[ I I I

<
~

—— (n+1)th row——

m_l <

Figure 4

Suppose m < n—1. By 5.6, we see that T, (w") # T, (w") for any w’ € F}
and any w” € FY. This implies by 5.6 and Lemmas 3.6, 2.13-2.14 that each
of EY and EY is a union of some left cells of én

First consider the case 5.5 (a’). Let F) be the set of all w’ € F{ satisfying
(a’li) and (a'2) for ¢ = 1,2. Then F§ = F{UF}. Use the notation in 5.6 and
in (2) above, w' € F| (respectively, w’ € Fj) means that ((k)w’), ((j1)w')
(respectively, ((j1)w'), ((k)w')) in 5.6 are ¢,41-m, 1 in (2), respectively.
Take any w’ € F| with the notation as in 5.5 (a’). Let Jy = {t1,to,...,tn_2},
Jo = Ji\{tis1}, J3 = {to, t1, - tm—2}, Jo = {t1,t2, .., tm—1}. Let J; = n(J;)
for j € [4]. If (jo)w' < (k)w', let w"’ = wy,wy,wwyw, then w” € F) with
L(w") =L(w') +l(wywrwywy,) (see Figure 4). If (jo)w’ > (k)w', let w”’ =

wpwpwywyw, then w” € Fy with (w”) = {(w') — l(wywywpwy). In



The cells of the affine Weyl group 5’n 29

either case, w”,w’ are in the same lcc of E by Corollary 2.17. So w” > w’

and T, (w") = T, (w") by Lemma 3.6. w’ — w"” is a bijection from FY to Fj.

1st c‘olumn (n+1)t‘h column 1st c‘Ulumn (n+1)t‘h column 1st column (n+1)th column
|
[ I | I N p-1 I I
~ p-1 ~
~ E 1 1
~ p1 < p 3
~ 1 ~
~ ‘\-P m- < 'm—,l -
I~ -p = 1st row — —— 1strow—
1 b
N i~ -p
m - I~ p-l 1
. ~ 1 <p1
1 1 .
1 —— (n+1)th row—— 1 —— (n+1)th row— I~ Rfl
-1
m-} - M e
< p-1 1o P
~ ~ ~
1 ~ I-p
ml - ma <
XFW X, X3
1st column (n+1)t‘h column 1st c‘olumn (n+1)th column
~ o [ I ~ o I I
N Nip
~ ~
1 mf -
m-1 ~ .
1
F—1strow—TF 1
Kip 1 ~ I
1opt 1opt
~ ~
Kot —— (n+1)th row—— S ot
' I I-p
I~ \P I~ P
1
m-1 -
T m-1 - 1
X, XEW
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Next consider the case 5.5 (¢’). Let F;” be the set of all w' € FY sat-
isfying (c’li) and (c’2)-(¢’3) for i« = 1,2. Then F{ N Fy = (. Use the
notation in 5.6 and in (2) above, w’ € F}’ (respectively, w’ € F}') means
that ((j1)w’), ((ip)w’) (respectively, {(ip)w’), ((j1)w')) in 5.6 are Gpt+1, gp
in (2), respectively. Take any w’ € F{'. Let J; = {t1,to,....,tn_2}, Jo =
Ji\A{ti}, J3 = {to,t1, ..., tm—2}, Jo = Js\{to}, J5 = {tn—1,tn—2, s tnt1-p},
Jo = J5 \ {tn-1}, J7 = {tm, tmt1, s tn—2—p}, Js = J7 \ {tn—2—p} and Jy =
{t1,t2, .cstm—1}. Let 1 = W', 29 = wywjwpwx1, T3 = WiWtnT2,

gy = towjwywywixs. Let w” = x4. Then z; € EY for i € [4] and
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w"” € Fj with £(z2) = (1) +H(wwr,wywy, ), €(x3) = (x2) —L(w s, wysts)
and l(x4) = €(x3) + L(tows,wy,wr,wy,) (see Figure 5). w’, w” are in the
same lcc of EY by Corollary 2.17. So v’ ~ w’ and hence T, (w') = T, (w")

by Lemma 3.6. w’ — w” is a bijection from F{' to F .

From 5.6 and the above discussion, we conclude that

Lemma 5.8. Let A = (2m,2,1,...,1) € Ag,.
(1) Each of E\ and EY is a union of some left cells of Cifm<mn-—1.
(2) Any left cell of C, in Ey is left-connected.

Now consider the two-sided cells of 5’n in Fy.

Lemma 5.9. Let A = (2m,2,1,...,1) € Ag,.
(1) If m < n—1, then each of EY and EY is two-sided-connected and is a
two-sided cell of C,.

(2) E(2n—2,2) is two-sided-connected and is a single two-sided cell of 5n.

Proof. By 1.3 (1)-(2), Lemmas 1.4, 5.4 and 5.8, to show our result, we need
only to prove that each of E} and EY is two-sided-connected if m < n —1

and that F(2,_ ) is two-sided-connected.

(I) First assume m < n — 1.
(Ia) F) is two-sided-connected.

Let wy = [0,2,3,...n—m,n+m,n+m—1,...n+2n+ 1] and wy =
0,-1,-2,..,—m+1,m+1,m+2,...,n—1,n+1] be in C, (see Figure 6).
Then wy,wy € Fy. Let Fy, F; be defined as in 5.7. Then

(5.9.1) n(E\)=E\; w; €F,, n(w;) =ws_4, n(F,)=F;_, fori=1,2.

by Proposition 2.8 (3). By 5.6, to show (Ia), we need only to prove that
(a) Any = € F! is in the rcc of EY containing w; for i = 1,2;

(b) wy and ws are in the same tcc of EX.
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lsta‘ﬂumn (n+1th column 1szlumn (r+2)h column 1stchumn (n+2)th column
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For (a), we need only to deal with the case of ¢ = 1 by the fact (5.9.1),
while the argument for this part is similar to that for Lemma 4.4 (3) (hence
leaving it to the readers). Now consider (b). Let J; = {t2,t3,...,tn—2}, Jo =
JI\{tn-m}, J3 = {to, t1, .., tm—-1}, Ja = Js\{t1}, J5 = {tn,tn—1, s tnti-m},
Jo = J5 \ {tn-1} and y = w,wy,wy,wywi. Then y = wowy, wy,w ,wy;,
which is in Ef and satisfies {(y) = {(w1) + Hwpwiwswy,) = L(ws) +
l(wywrwiwy,) (see Figure 6). This proves (b) by Corollary 2.17.

(Ib) EY is two-sided-connected.

Let wy = [1,2,...n—m—1,n+mmn+m—1,..,n+1,n+m+ 1] and
wy = [-m,0,—1,-2,....—m+1,m+2 m+3,...,n] be in C, (see Figure 7).
Let F{', F} be defined as in 5.7. Then

(5.9.2) w; € F!', n(w;) =ws—;, n(F]")=Fy_, fori=1,2.

by Proposition 2.8 (3). By 5.6, to show (Ib), we need only to prove that

(a) Any = € F} is in the rcc of EY containing w; for i = 1,2;

(b) wy and ws are in the same tcc of EY.

By (5.9.2), to prove (a), we need only to deal with the case of i = 1,
the latter can be proved by the argument similar to that for Lemma 4.4 (3)

(hence leaving it to the readers). Next consider (b).
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Let Jy = {t1,t2,....tn—2}, Jo = J1\{tn—m—1}, J3 = {to, t1, .cstm-1}, Ja =
J3\A{to}, J5 = {tn,tn—1, s tn—ms1}, Jo = J5 \ {tn}, J7 = {t2,t3, ..., tn_1},
Js = Jr \ {tn—m} and Jg = Jy \ {t1}. Let zy = wy, 1 = tpx0, T2 =
W W g, W, W T1, T3 = TaW oW W Wy, Ty = T3toW Wy, and Ts = W W 5, T4a.
Then x5 = wy. We have z; € EY for any i € [0,5] and ¢(z1) = {(z) — 1,
Uzo) = l(x1) +Ho(wwr,wpwy,), l(zs) = l(x) —Lwiwiwiwy, ), £(xg) =

U(xs) + U(towgywy, ), l(xs) = b(xg) — L(wy,wy,) (see Figure 7).
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By Corollary 2.17, we see that x;_1,x; are contained in the same tcc of
EY for any i € [5]. This proves (b) and hence EY is two-sided connected.
(II) E(2,—2,2) is two-sided-connected.

Denote A = (2n — 2,2). Let wy = [2n — 1,2n — 2,....,n 4+ 1,2n], wy =
0,-1,....,—n+2,n+1], ws =1[0,2n—1,2n—2,....n+ 1] and wy = [-n +
1,0,—1,...,—n + 2] be in C, (see Figure 8). Then w; € F\ := F{ U FY for
i € [4]. By the argument similar to that for Lemma 4.4 (3), we can show that
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any element of F) is in the rcc of F) containing w; for some i € [4] (hence
leaving it to the readers). Note that n(w;) = ws_; for ¢ € [4] by Proposition
2.8 (3). Thus to show that E is two-sided-connected, we need only to prove
that wy,wo (respectively, wy,ws3) are in the same tcc of E).
Let x1 = wy, 9 = wy,wy,T1, T3 = ToW Wy, Ty = W3, Th = Lyw g, wp,w Wy, T,

xh = xhw g wy tow s, wy,, where J; = {to,ts,...,tn_1}, Jo = {t1,t2, ..., tn_2},
J3 = JoU{tn_1}, Jus = J2U{to}, J5 = J1 U {t,}. Then x3 = 2% = wy and
x;,x; € By fori € [3] and {(x2) = (1) +l(wy,wy,) = (x3) +l(wwy,) and
0(xh)=L(z)H(thw s, wpwiwy, ) =L(xh)+Hwwy tows,wy,) (see Figure 8).
We see by Corollary 2.17 that wq, ws, (respectively, ws, ws) are in the same

tcec of Ey. So E) is two-sided-connected. [
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Recall the notation n(\), n’(\), n/(A\) in Theorem 5.1 (2).

Lemma 5.10. n(\) = 228050 for X = (2m,2,1,...,1) € Aoy In this

case, if m <n—1, then n'(\) = (jrl;i;‘;), and n''(\) = zmz;ﬁgifim).
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Proof. Consider T = (T1, ..., Tom) € £ () satisfying 5.7 (1)-(2). The num-
ber of the choices is (n+f_m) for E .= T, UT+1 = {Gnt1—ms Grnms - @1, q1,
ooy Qs Qn+1—m } With @1 < q1 < g2 < -+ < @nt1—m 1n [2n]. Once E is fixed,
the number of the choices is n + 3 — m for T}, satisfying (5.7.1), while that
is 21 (m — 1)! for (T1, ..., Tpn—1). We know that w’ is in E} (respectively,
EY) if and only if the m-th component of T'(w’) is {1, gn+1-m } (respectively,
satisfies (5.7.1) but is not {G1, ¢n+1—m}). This proves our result. [

If m > 1, then the number of the choices is infinite for the integer (j,,)w
in the case 5.2 (a), hence |E2p,2,1,....1)| = 00. On the other hand, the set
Eazyzn-a = {totn, titis1 -ty titj_1 -t | 0 <i <j < n}\ {to,tn} is finite.

So far we have proved all the assertions of Theorem 5.1 involving the
partition A = (2m,2,1,...,1) € Ay,

5.11. Let u=(2m+1,2,1,....,1) € Ay, and I =n—m — 1. Then w € C, is
in E,, if and only if w satisfies the condition (5.11.1) below.

(5.11.1) There are some pairwise not 2n-dual ji, j2, ..., jm, k, 91,42, ...,7; in
[2n] with j1,J2, ..., jm, k w-wild heads and iy,1s,...,4; w-tame heads such
that (i) j1 <w J2 <w *** <w jm; (ii) either 41,41 <4 J1, Or 47,4 <4 J1; (iii)
i1 < idg < -+ < and (i1)w < (ix)w < -+ < (iy)w; (iv) k is w-comparable
with none of i, ip, j, for any h € [I] and some g € [m].

According to (i)-(ii) and (iv), if k is w-comparable with j,, for some p € [m],
then k <, jp, and p > 1 by Lemma 3.2. Thus under the assumption of (i)-
(ii), the condition (iv) is equivalent to that k is w-comparable with none of
ih,in,j1 for any h € [I].

5.12. Under the condition (5.11.1) on w € E,,, there are two possible cases:

(a) 41,91 < j1- Then j; < iy < i; < j; and (j1)w < (i1)w < (i1)w <
(j1)w and i;—2n < k—2n < k < 4; and (i;))w—2n < (k)w < (k)w—2n < (i;)w;

(b) 47,4 <w j1- Then j1 —2n < i;—2n < 4; < 71 and (j1)w < (i))w —2n <
(i)w < (j1)w —2n and iy <k < k < iy and (ip)w < (k)w < (k)w < (i1)w.

Let E}, (respectively, E}/) be the set of all w € E, in the case (a) (respec-
tively, (b)).
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From the matrix forms of elements, we see that w € E,, is in the case (a)

(respectively, (b)) if and only if so does w™!. So by 5.11, we get

Lemma 5.13. Let p= (2m+1,2,1,...,1) € Ag,,. Then
(1) E,”' =E, and E!"" = EI.
(2) The group automorphism n of én interchanges the sets E;L and EZ
(3) E, = E,UE].

5.14. Let F}, (respectively, F})) be the set of all w’ € C, satisfying (a’)
(respectively, (b")) below.

(a’) There exist w’-wild heads j1, jo, ..., jm, k and w’-tame heads i1, is, ...,

such that
) (k Zlvzl 1y -2 g27.7.’1717‘7.771*17"'717'1751) ( 7n)7
i) 0 < (Jp+1)w' — (Jn)w' < 2n for any h € [ —1J;

i) (ip)w’ < (ig)w’ < -+ < (i))w' < (k)w' + 2n < 2n;

iv) (ip)w’ < (j1)w" < (ip+1)w’ for some p € [l] with the convention that
ip)w’ = (k)w'.

b’) There exist w’-wild heads j1, jo, ..., jm, k and w'-tame heads i1, iz, ..., i

(i
(
(
(
(i
(

such that

(1) (kyi1, i, oy 811, ms Jme1s s J1,81) = (n 4+ 1,n 4+ 2, ..., 2n);

(i) 0 < (Jpy1)w' — (Jr)w’' < 2n for any h € [m — 1];

(iii) n < (k)w' < (i1)w" < (ig)w’ < -+ < (i)w';

(iv) (ip)w'+2n < (j1)w' < (ip—1)w’ +2n for some p € [I] with the convention
that (ig)w’ = (k)w'.

5.15. By 5.11-5.12 and 5.14, we have F), C E}, and F}] C E}/. Also, by 3.3
and Lemma 3.2, any lcc of Ej, (respectively, E}/) contains some element of
F, (respectively,F}/).

Let 5 =(1,...,1,2,2l+1,1,...,1) € Ay, with 2 the (m + 1)-th component.
Let F), := F}, U F/. By the argument for Lemma 4.6, there is some z € Q
with z ~ w' and T(z) € £71(B) for any w’ € F,,. Now we describe T'(z). If
w' € F, is as in 5.14 (a’), then
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(5.15.1)  T(2) = ({{(m)w")}, -, {{G)w") b L (R)w'), ((ip)w')},
{(B)w"), (GO)w'), {(En)w'), {(En)w') | b€ [\ A{{(ip)w’)},
{{G2)w")} o {{(Gm)w")})

(Fw < (iw', 1< (jw' < (k)w' = 2n, (Hw' < (ji)w' <0.
If w' € F is as in 5.14 (b'), then

(5.15.2)  T(2) = ({{(m)w")}, .., LG} L R)w'), ((ip)w)},
{{(k)w"), ((F)w"), (Gn)w’), ((Gn)w’) | hoe [\ {(Gp)w)},
{<(j2)w/>}a ) {<(JM)wl>}) )

where (i) ((k)w') € [(i1)w’ + 1,n]; (ii) p € [I]. If p > 1 then (i,_1)w’ <
(j1)w'+2n < (ip)w'; if p =1 then (j;)w’ is in one of the three cases: (k)w’ <
(j1)w' +2n < (i)w', n < (j1)w' +2n < (B)w', (k)w' < (j1)w' +2n < n.
5.16. We see that T'(z) only depends on w’ € F, and 3, but not on the
choice of z € 2. We can denote T'(z) by Tz(w’). This defines a map T :
F, — £7Y(B). By 5.14-5.15, we see that T = (T, T%, ..., Tom+1) € £ 1(B)
is in the image of T} if and only if T satisfies the following conditions:

(1) T; = Tomio—i fori € 2m + 1]\ {m,m + 1,m + 2};

(2) UM Ty = {Gaemtts Grmms oos @15 Q15 G2, oos Grmet1 } With @ < @1 <
g2 <+ < qn_ma+1 in [2n] and (T}, Trna1) € E1 U Eo U E3U Ey, where Ey =
{{@i+1} Agn—m+1,a}) [ 7 € [n=m=1]}, B> = {({g; }. {@1, Gj1}) | € [2,n—
1}, By = {({@nms1}s {nms Gt 1) ({1}, {nms Gnm1})} and

Ey={({an}{% &}, (@}t {e, ah}
5.17. Keep the notation in 5.14-5.15. For w € F},, let T;(w) be the i-

th component of Tg(w) for i € [2m + 1]. Then w' € F} if and only if
(Tm(wl)va—H(w/)) € El UE?); w” € F,i/ if and Only if (Tm<w//)7Tm+1(w”)) €
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EyUEy. So (Tn(w'), Tmy1(w')) # (T (w"), Trpy1(w”)) (hence Ta(w') #
Ts(w")) for any w' € F}, and any w” € F}/. Each of E, and E}] is a union of
some left cells of C), by Lemmas 3.6 and 2.13. This further implies by Lemmas
2.12, 2.14, 5.13 and 1.4 that each of E}, and £} is a union of some two-sided
cells of C,,. Let w; = 0,2,3,....n—m—1,n+m+1,n+m,..,n+2,n| and
we =[1,-1,-2,....,—m,m+2,m+3,....,n—1,n+1] be in C, (see Figure 9).
Then w; € F, and wp € F}/. By the argument similar to that for Lemma 4.4
(3), we can prove that F, (respectively, F/) is in the rcc of B, (respectively,
E}}) containing wy (respectively, w) (the proof is left to the readers). So by
5.15 and Lemma 2.16, we conclude that

(5.17.1) Each of £, and E} is two-sided-connected and is a two-sided cell
of CN'n.

Let T = (11, Ty, ..., Tom41) € £ 1(B) satisfy 5.16 (1)-(2). If (Ton, Trny1) €
Ey U E3, then w' € F), with Tg(w’) = T is uniquely determined by 5.14
(/) and (5.15.1). This implies by 5.15 that any left cell of C,, in B, is left-
connected. Since Ej; = n(£,,) by Lemma 5.13, any left cell of C,, in Ey is
also left-connected. So we conclude that

(5.17.2)  All left cells of C,, in E,, are left-connected.
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5.18. Now we want to enumerate the left cells in £}, and Ej;. Since n(E},) =
E7, we need only deal with the set £/,. By 5.16 and Lemma 3.6, we need only
to enumerate T = (11,75, ..., Tom+1) in £1(B) satisfying 5.16 (1)-(2) but
with the condition (7}, Ty+1) € E1UFEsUEsU Ey replaced by (Th,, Tint1) €



38 Jian-yi Shi

Fi U E;s.

The number of the choices for E := U?:;f T = {Gn-m+1sTn-m, - q1,q1,
42y ooy Qn—m+1} 1S (n+?_m). Once F is fixed, the number of the choices for
(T, Trnt1, Trnt2) is |[Eqy U E3] = n+ 1 — m, while that for (T1, 7%, ..., Tyn—1)

is 2m~1(m — 1)!. Recall the notation n(u), n’(u), n” (@) in Theorem 5.1 (3).
1 2. n

!
(5.18.1) n’(M)=n"(M)=§n(M)=m for p=(2m+1,2,1,...,1) € Ag,,.

When m > 1, the number of the choices for (j,,)w in (5.11.1) is infinite.
(5.18.2)  [E2mt1,2,1,...,1)| = 0.

Denote p; j := titi—1---titotpts---tj_1t; for i,j € [n] and q; ; = n(pi ;).
Then Egpion-5 = {4i; | 4,J € [n]} and Efy 205 = {pi,; | i,J € [n]}.
(5.18.3) The set E3912n-5 = E:’3212n,5 U Eg212n,5 is finite.

By (5.17.1)-(5.17.2) and (5.18.1)-(5.18.3), it is proved for all the assertions
of Theorem 5.1 involving = (2m+1,2,1,...,1) € Ay,.

§6. The cells in the weighted Coxeter group (ég,Z).

As an application of Theorems 4.9 and 5.1, we shall describe all the cells
of the weighted Coxeter group (53, Z) in this section.

Recall the notation E) for A € Ag,, and 7 : 5n — 6’n defined before (see
2.15 and 2.7). Let n()\) be the number of left cells of C,, in Ey. When E)
is a union of two two-sided cells (say E), EY) of C, denote by n/(\), n” ()
the numbers of left cells of C,, in EY, EY, respectively.

The main result of the section is as follows.

Theorem 6.1. In the weighted Cozeter group (53,?), we have

(1) Ey is a single two-sided cell of Cs if A\ € {6,51,42,3% 313,23 16}
and is a union of two two-sided cells of Cs if \ € {412,321, 2212 214}, E,
is finite if A € {19,214 2212 321}, and infinite if otherwise.

(2) n stabilizes the two-sided cells E},2 and Eys 2, and interchanges the
following pairs of two-sided cells: E} 2, EY 2; F3a1, Eg21; Foja, EYa.

(8) The numbers n(\) for any A € Ag are listed as follows.
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A | 6|51]42]412 | 32 | 321 | 313 | 23| 2212 | 214 | 16
n(A) [ 48| 24| 24| 12 | 12 6 6 8 5 2 1

we have n/(412) = n”(412) = 6, n/(321) = n”(321) = 3, n'(2212) = 4,
n(2212) = n/(21%) = n"(21%) = 1.
(4) Each left (respectively, two-sided) cell of Cs is left- (respectively, two-

sided-) connected.

6.2. All the results in Theorem 6.1 follow by Theorems 4.9 and 5.1 except
for those involving the partitions 32 and 23.

The following equivalent conditions on w € C5 hold by Lemma 3.2:
(1) ¥(w) = 32 if and only if one of the conditions (1a)-(1c) holds for some
pairwise not 6-dual 4, j, k in [6]:

(1a) 4 is w-tame and j, k are w-wild heads such that i <, k, that i <., j
and that j, k are w-uncomparable;

(1b) k is a w-wild head and i, j are w-tame such that j <, i <, k and
that k is w-uncomparable with 7;

(1c) i, j, k are all w-tame with i <., j <, k.
(2) ¥(w) = 23 if and only if one of the conditions (2a)-(2c) holds for some
pairwise not 6-dual 4, j, k in [6]:

(2a) i, 7, k are all w-wild heads and pairwise w-uncomparable;

(2b) i is w-tame; j,k are w-wild heads and w-uncomparable; i is w-
comparable with some element in either {j, k} or {j, k} but not both;

(2¢) k is a w-wild head and i,j are w-tame heads such that j <, i and
that k is w-uncomparable with i, j.

Since {[6i — 1,64,3] | i € Z\ {0}} C Esz and {[3i + 1,3i +2,3i + 3] | i €
Z\ {0}} C Egs, we have
(6.2.1) |Egz2| = |Eqs| = 0.
6.3. Let F3, be the set of all w' € Cs satisfying (6.3.1) below.
(6.3.1) There exists some pairwise not 6-dual 7, j, k in [6] such that one of

the following conditions holds:
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(a) i is a w'-tame head and j,k are w’-wild heads such that (i) j < k
and (jw' < (k)w' < (j)w' +6; (i) j < i and k < 4; (iii) (2)w’ < (j)w’ and
(i)w" < (k)w'; (iv) either (k)w’ < (i)w’ + 6 or (j)w' < (3)w';

(b) k is a w-wild head and i, j are w-tame heads such that (i) i < j and
(D)w" > (j)w'; (i) either (k,i,7) = (4,5,6) and 6 < (4)w’ < (1)w’ + 6, or
(k,i,7) = (1,4,5) and 3 < (1)w’ < (4)w';

(c) w' =[3,2,1].

We see by 3.3 and 6.2 (1) that for any w € E3z2, there exists some w’ € Fy,
such that w,w’ are in the same lcc of Fj2.

6.4. Let Fy = {[4,2,0], 4,1, -1],[5,3,0],[5,1,~2], [5, 1, —3], 6,3, — 1], [7, 3, — 1],
[4,2,6],[5,3,6]}, Fo = {[3,2,0], 3,1, —1], [4,2,1], [5,3, 1]}, F5 = {[3,2,1]}.

Then w' € Fy, satisfies (6.3.1) (a) if and only if w’ is in the lcc of Es32
containing some w € Fy. w’' € Fy, satisfies (6.3.1) (b) (respectively, (6.3.1)
(c)) if and only if w’ € Fy (respectively, w’ € F3).

6.5. Let x1 = [4,2,6], x0 = [4,2,1], y1 = [5,3,6] and yo = [5,3,1]. Then
1,1 € F1, xa,y2 € Fy, xo = t3zq and yo = t3y1. So 1,2 (respectively,
y1,y2) are in the same lcc of Eg2. Let Fz2 = (F{UF,UF3)\{[4,2,6],[5,3,6]}.
We see from Figure 10 that all the elements of F32 are in the same rcc of

E32 and have pairwise different generalized 7-invariants (see 2.9 and 2.10).

[5.3.0] [6,3,-1] [7,3,-1]

02— 1—1o
1
I
B.1-1] [3,2,0] [4.2,0] [4,1,-1] [5.1,-2] [5,1,-3]
:E—fﬂ—@
[3,2.1] [4.2,1] 5,3,1]
Figure 10

So by Lemmas 2.13-2.14 and 2.16, we see that
(6.5.1) FEg32 is two-sided-connected and forms a two-sided cell of Cs with
n(82) = |Fs2| = 12, each left cell of Cj in Esz is left-connected.
6.6. Next consider Eqs. Let Fys be the set of all w’ € Cj satisfying (6.6.1)
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below.
(6.6.1) There exists some pairwise not 6-dual 7, j, k in [6] satisfying one of
the conditions (a)-(c) below:
(a) 1,7, k are all w’-wild heads satisfying: (i) i < j < k and 4 < ({)w’ <
(Hw' < (k)w’ < 9; (ii) ¢ € [3] unless (i)w’ > 6; (iii) k = 6 unless (k)w’ < 6;
(b) 7 is a w’-tame head and j, k are w’-wild heads such that (i) j < k and
(Hw' < (k)w' < (j)w' + 6; (ii) Assume j < i. If k < i then (k)w’ < (i)w';
if k> i then (j)w' < (i)w’ < (k)w'; (iii) Assume ¢ < j < i. If k < i then
(w" < (k)w" < (i)w’ + 6; if k > i then either (i)w' < (jlw' < (k)w' <
(i)w'+6, or (i)w < (j)w' < (I)w' and (i)w’ < (k)w'—6 < (i)w'; (iv) Ifi < j

then (i)w’ < (k)w' —6 < (i)w';

(c) k is a w’-wild head and 14, j are w’-tame heads with ¢ < j and (j)w' <

(1)w" such that (i) j < k and 3 < (k)w' < (j)w’' + 6; (ii) Either i < k, or
k <iand 3 < (k)w < (i)w'.

By 6.2 (2) and 3.3, we see that for any w € Eas, there exists some w’ € Fj,
such that w,w’ are in the same lcc of Fsps.
6.7. Let F{ = {[4,5,6],[0,4,5],[-1,4,6],[-2,5,6],[-2,—1,0],[-1,0,4],
[—2,0,5],[-2,—-1,6]}, Fy, = {[4,1,5],]0,4,2],[2,4,6],[3,5,6],[2,0,4],[0, 3, 5],
[—1,3,6],[-1,1,4], [-2,1,5],[1,3,0], [-2, —1,1],[=2,0,2]}, F} = {[2,1,4],
3,1,5],[0,3,2],[-1, 3,1]}.

We see by 3.3 that any x € Fys satisfying (a) (respectively, (b), (c)) in
(6.6.1) is in a lcc of Eas containing some element of FY (respectively, Fy, F3).

Let Fos = Iy U Fy, where Fy = {[0,4,2],[0,3,2],[-1,3,1],[-1,3,0]} and
F, =1{[2,0,4],(2,1,4],[3,1,5],[4,1,5]}.

Then any z € Ui:l Fj] is in a lcc of Eas containing some element of Fas.
6.8. We see from Figure 11 that no two elements of F5s have the same

generalized T-invariants (see 2.9-2.10).

[0,4,2) [0.32] [-1,3,1] [-1.3,0] [4,1,5] [3,1,5] [2,1,4] [2,0,4]

03 o2—1—Ad EF—~H i3—o3

Figure 11
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Since [0,4, 2] = tatots ~ totatsty ~ tits ~ titots = [2,0,4], the set Fas is
contained in a tcc of E3s. By Lemmas 2.13-2.14 and 2.16, we see that
(6.8.1) FEas is two-sided-connected and is a two-sided cell of C5 with n(23) =
|Fas| = 8, each left cell of Cs in Eas is left-connected.

So we complete the proof of Theorem 6.1 by Theorems 4.9, 5.1 and the
results (6,2,1), (6.5.1), (6.8.1).
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