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1. Introduction

This paper is a continuation of [6]. One of the main themes in [6] was to find a two-
sided cell, written W{v), of an affine Weyl group and to give an upper bound for the
number of left cells in WM. We shall describe all left cells of Wa in WM and give the
exact number of left cells of W{v).

Let G = {G, S) be a Coxeter group with S the set of simple reflections. Let
/ : ( / - • N be the usual length function of G.

Let ^ be the Bruhat order on G (see [7]). We associate to each WEG two subsets
of S:

£?(w) = {seS\sw < w} and M(w) = {seS\ ws < w}.

Let u be an indeterminate and let A = Z[u, u~1]. We define, following Lusztig (see
[3]), the Hecke algebra H of G over A, that is the free A-module with basis Tw,
weG, and multiplication defined by

Tw Tw. = Tww, if l(ww') =

Regarded as an A-module, H has also the basis (Cw)weG:

Cw= I ul^-^PytW(u-2)Tv, (2)

where the Py w(«)eZ[«] are known as the Kazhdan-Lusztig polynomials (see [1]),
which satisfy

if>;< wand PUiJu) = 1.
Let A+ = Z[w] and let A++ be the set of all polynomials of Z[u] which have non-

negative coefficients. It is known (see [2, (1.2.1.), (1.2.2.)]) that
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Throughout this paper, we shall assume that (G, S) is crystallographic. We shall
also assume that (G, S) satisfies the following property.

(A) There exists an integer « ^ 0 such that unfxyzeA+ for all x,y,zeG, or
equivalently, unhx y ze A+ for all x, y, zeG (see [2, 3.1]).

This includes Weyl groups and affine Weyl groups (see [2, Theorem 7.2]).
It is well known that for any x, y, zeG, hxyz has non-negative coefficients as a

Laurent polynomial in u (see [2, (3.1.1)]). Let £ = u~l — u and let Z+[£] be the set of all
polynomials of Z[£\ which have non-negative coefficients. Then, by (1), we see that
fx y z G Z+[£]. The degree offxyz satisfies the inequality

(z)} (7)

(see [2, Lemma 7.4]). It is also known that for each zeG, there is a well defined integer
a(z) ^ 0 such that

ua(z)hxyzeA+ f o r a l l x ^ e G , )
| (8)

ua{z)-1hxy<^A+ for some x,yeG.J

For any x, y,zeG, we define yx y zeZ by
a i z ) h A \ (9)

Let Wa = (Wa, S) be an irreducible affine Weyl group regarded as a Coxeter group:
S is the set of simple reflections. Let 0 be the root system whose type is determined
by Wa (see [5, §1]). Let O+ be a positive root system of O. Set v = |O+|. Then Lusztig
proved that

d / z , s , , e < v fo f any x,y,zeWa (10)

(see [2, Theorem 7.2]). He also proved that

a{z) ^ v for any zeWa (11)

(see [2, Corollary 7.3]). We define

Wiv) = {weWa\a(w) = v}. (12)

Kazhdan and Lusztig defined the preorders ^ t , ^ r on Wa (see [2] or [1]), and
the associated equivalence relations ~ i 9 ~ r on Wa; the equivalence classes for ~ L

(respectively ~ r) are called left (respectively two-sided) cells.
In [6], the author proved that the set W(v) is a two-sided cell of Wa, which is a union

of m left cells of Wa for some m ^ \W\, where W is the Weyl group on O (see [6,
Theorems 5.2 and 5.3]). It was conjectured that the equality m = \W\ should always
hold (see [6, Conjecture 5.4]).

In the present paper, we shall verify this conjecture.

THEOREM 1.1. The two-sided cell W(v) consists of exactly \W\ left cells of Wa.

The proof of Theorem 1.1 will be given in §6.
For any subset J a S, let W, be the standard parabolic subgroup of (Wa, S)

generated by J. Let w, be the longest element of Wj. Let S be the set of all subsets
J of S such that Wj is isomorphic to the Weyl group W on O. Let

W(S) = {we Wa\w = x-Wj- y with JeS}, (13)

where, for any x,y,zeWa, the notation z = x-y means that z = xy and
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In [6, Theorem 1.1], the author proved that W(S) = W{v). Now we define a subset
M of W{v) as follows:

M = {wyy\JeS, sWjy$ W(v) for any seJ( = Z{wjy))}. (14)

Recall that in [5, 6], the author introduced the sign types for the elements of
Wa. The elements of Wa having the same sign type form an equivalence class of Wa.
Let us call it an ST-class of Wa. Then it was proved that W(v) is a union of | W\ ST-
classes of Wa (see [6, §5]). It was proved that each ST-class of Wa in W(v) is contained
in some left cell of Wa (see [6, §5]). It was also proved that each ST-class of Wa

contains a unique shortest element and that M is the set of the shortest elements for
the ST-classes of Wa in W{v) (see [5, Proposition 7.3]). Thus we have \M\ = \W\. It is
known that the ST-class Y(y, J) containing the element Wj-yeM with / e S has the
form

Y(y, J) = {z = xWjy\xe Wa, z = x-wyy). (15)
Thus there is an immediate consequence of Theorem 1.1.

COROLLARY 1.2. Every left cell of Wa in W(v) is an ST-class of Wa which has the
form (15).

2. The elements k{x, y)

For any x, yeG, we define two subsets F(x,y) and H{x, y) of G as follows:

z*0}, (1)

z*0}, (2)

where the/,. y z, hx y zeA are defined as in §1 (5), (6). We shall prove that there exists
a unique maximal element in the set F(x, y) or H(x, y). The results of this section will
be used in the proof of Theorem 6.1.

LEMMA 2.1. Let x, yeG.

(a) Ifse@(x)n&(y), then
F(x, y) = F(xs, sy) U F(xs, y). (3)

(b) Ifse®{x) U &(y)-®{x) n S£{y\ then

F(x,y) = F(xs,sy). (4)

Proof We have Tx Ty = TJTg Ty) = Txs T8y + £TXS Ty in case (a) and Tx Ty = Txg Tsy

in case (b). Thus our results follow by the fact that the coefficients of the polynomials
faf)y in £ are positive.

The following result is well known (see [4, Proposition 3.2. and Corollary 3.3]).

LEMMA 2.2. Assume that x < y in G and seS.
(a) Ifsy^y, then sx ^ y.
(b) Ifys^y, then xs ^ y.
(c) Ifx4^ sx, then x ^ sy.
(d) Ifx^ xs, then x ^ ys.

For any x, yeG, we define

K(x, y) = {(*', /) | x' ^ x, y' ^ y). (5)
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PROPOSITION 2.3. Let x,yeG.

(a) There exists a unique element X(x, y) e F(x, y) such that for any (xf, y') e K{x, y)
and zeF(x', y'), we have X(x, y) ^ z.

(b) For any reduced form of x, say x = s1s2...sr,st€S, there exists a unique
subsequence iv i2, ..., ip of 1, 2, ..., r such that

st...st ...st ...sry < s,...st ..J, ...sry

for I, 1 < /«% p, and

^5j+1...54 ...Si ...sry > sj+1...st ...st ...s.y

/ory, im <j< im+1, 1 ̂ m^p, with the convention that ip+1 = r+ 1. We Ziaue

A(x,>>) = ^ . . . ^ . . . ^ . . . ^ . . . J ^ . (6)

(c) For any reduced form of y, say y — tlt2...tk, ^ e 5 , there exists a unique
subsequence jvj2, ...Jg of 1,2, ..., t such that •

xu...L ...L ...t, < xtx...i, ...L
for I, 1 < / < q, and

XU...L...L ...tt>xtl...i1...il ...*,_,

for i,jm_x < i <jm, 1 ̂  m ^ ^, WI7/I the convention that jQ = 0. We have

X(x,y) = xtl...ih...iiq...tk. (7)

(d) The integer p in (b) is equal to the integer q in (c). Let us denote this integer by
n(x, y). Then

n(x,y) = l(x) + l(y)-l(X(x,y)) (8)

and

/,,,.*.» = ̂ -ir*-"- w
Proof. First we shall prove (a) and (b) by induction on n = l(x) ^ 0. The result

is obviously true in the case when n = 0. In that case, we have p = 0 and A(x, y) = y.
Now assume that n > 0. Let (*', /) be any pair in K(x, y). If there exists some
se@(x) n @(x'), then we have

TxTy=TX8(TtTy) and Tx,Ty, = Tx.g(TsTy.).

In this case, there are the following two possibilities.
(i) If si <£(y), then we have F(s, y) = {sy} and F\s, y') £ {Sy\ / } . By Lemma 2.2,

we see that jy', y' ^ .sy and JC'S ^ xs. Thus it follows from Lemma 2.1 that

F{x, y) = F{xs, sy) and F(x', y') ^ F(x's,sy')U F(x's,/).

(ii) If 5 6 J§?0>), then we have i^s, y) = {sy, y) and F{s, y') s { j / , / } . We have
•s/. / ^ y a n d '̂-s ^ ^ by Lemma 2.2. Hence we obtain

F(x, y) = F(xs, sy) U F(xs, y) and F(x', /) £ /l(x'5, 53;') U F(x's, y')

by Lemma 2.1.
We have /(xs) < l(x). So by the inductive hypothesis, in the case (i), there exists

a unique element X{xs, sy) e F(xs, sy) such that X(xs, sy) ^ z for any

z e F(x's, sy') U F(x's, y')

and such that (b) is satisfied by xs and sy instead of x and y; in (ii), there exists a
unique element X(xs, y) E F(XS, y) such that A(xs, y)> z for any

z 6 F(x's, sy') U F(x'5, / )
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and such that (b) is satisfied by replacing x by xs. Let us take X{x, y) to be X(xs, sy)
in the case (i) or to be X(xs, y) in the case (ii). Then X(x, y) satisfies (b) and also
X(x, y)>z for any zeF(x, y) U F(x', y').

lf@(x) fl 0t{x') = 0, then there exists some se@(x)-@(xf). We have

T T = T (TT)
xx xy xxs\xs xy)%

We see that x' ^ xs by Lemma 2.2. Hence our result follows by Lemmas 2A, 2.2 and
the inductive hypothesis in the same way as above. Thus (a) and (b) are proved. Part
(c) can be proved by induction on n = l(y) ^ 0 in the similar way to (b). Finally, (d)
is an immediate consequence of (a) to (c) and §1 (1).

The following are some simple properties of the element X(x, y) for any x, yeG.
We leave the proofs to the reader.

COROLLARY 2.4. Let x, y, zeG.

(a) X(\,x) = X(x,\) = x.
(b) For any seS, we have

u ^ x
X(s, X) — <

[sx
and

\x ifsem{x),
xs

(c) If xy = x-y, then X(x, y) = xy..
(d) X(X(x, y), z) = X{x, X(y, z)). In particular, if x = x' • x", then

X(x, y) = X(x', X(x", y)) and X(y, x) = X(X(y, x'), x").

(e) X{y~x, x'1) = X(x, y)'1. In particular, X(x, x'1) is an involution of G.
(f) For any seM(x), we have

(X(xs,sy) if si&(y),A\x> y) — \I'{X(xs,y)

REMARK. Proposition 2.3 asserts that for any pair x, yeG, there is a unique
maximal element X(x, y) in the set F(x, y). We can also show that the element xy
is the unique minimal element in the set F(x, y) in the sense that xy ^ z for any
zeF(x,y).

PROPOSITION 2.5. Keep the notation of Proposition 2.3. Let x, y be two elements
ofG.

(a) For any (x', y')eK(x, y) and zeH(x', y'), we have X(x, y) ^ z.
(b) uMx'y)hx yMx y) is in A+, and its constant term is 1.

Proof. We can write

Cx = Tx+ £ azTz and Cy = Ty+ £ bwTw,
z < x w<y

with 0 7̂  az, bw e wA++ for all z < x, w < y. Hence we have

CxCy = TxTy+ £ azbwTzTw=Zdx<y>vTv, (10)
y

(z,w)eK'(x,y) v
JLM 37
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where K'{x, y) = K(x, y) — {(x, y)}, ax = by = 1, and the dx y v are Laurent polynomials
in u, the coefficients of whose lowest degree terms are positive integers whenever
dx,v,v # 0.

Let F\x,y) = {veG\dxyv ^ 0}. Then by Proposition 2.3 and Corollary 2.4, we
see that

F'{x,y)= (J F{z,w) = {veG\X(x,y)>v}. (11)
(z,w)eK(x,y)

By (10), (11) and §1 (4), we have that

X(x,y)eH(x,y)czF'(x,y). (12)

Thus (a) follows by (11) and (12).
By Proposition 2.3, we have

n(x, y) = deg^j,^) ^ teg(fzw^y) (13)

for any (z, w)eK'(x, y). We also have azbweuA++ for such a pair (z, w). Thus by (9)
and § 1 (4), we obtain (b).

3. The subset N of Wa

Recall the definition of the subset M of Wa (see §1 (14)). Now we define

N = {y-1wJy\JeS,wyyEM}. (1)

We shall prove that y'1 wd y = y'1 • Wj • y for any Je S and wd • y e M, which will imply
that N is a set of representatives for the ST-classes of Wa in W(v). The set iV will play
a crucial role in the proof of Theorem 1.1.

LEMMA 3.1. In the group (Wa, S), let J a S. Then for any ZEW,, we have

Proof. We see that for any ze W3, the equalities

l(wjZ-l
Wj) = l(z) and l(wJ) = l(zw

hold. So by §1 (1), we have

aU>j *t«j 2U>,/ VljZ Wj

Y, byTy, (2)
y^toj

where all the ax, by are in Z+[€\. Thus we have deg^/,,, w 2 ̂  /(z). Hence our result
follows by § 1 (7).

LEMMA 3.2. Let x, y e Wa and JE S. IfxWj = x • Wj and Wjy = Wj -y, then we have

Proof Suppose not. Then there exists a counterexample such that l(x) is the
minimum possible. Clearly, l(x) > 0. There must exist some se&(x) such that

= sx-Wj-y and 1{XWJ y) < l
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Hence we have

T T = T(T T )T
xwj Wjy ^xy^Wj xWj) *y

= ?TxTWjTy+ £ bwTxTwTy by (1)

„ y
^> 8 sxwjy ' L*t w x wy

= Iv+1 T +£VT +Y ( Y b f )T

where all the bw,fxwyz are in Z+[£|. This implies that

which contradicts §1 (10). Hence the result follows.

By Lemma 3.2 and §1 (15), we obtain the following result.

PROPOSITION 3.3. In the group {Wa, S), we have

y~lwjy = y^'Wj'y for any JeS and W

Hence N is a set of representatives for the ST-classes of Wa in W(v).

4. A geometric description of the affine Weyl groups

We shall give, following Lusztig (see [2, 7.5; 4]), a geometric description of the
affine Weyl group Wa = (Wa, S).

Let E be an affine euclidean space with a given set of hyperplanes SP'. Let Q be the
set of right affine motions in E generated by the orthogonal reflections in the various
hyperplanes P in #". We assume that Q is an infinite discrete group acting irreducibly
on the space of translations of E and leaving stable the set $F. The connected
components of the set E— \JPe^P are called alcoves of E. Let X be the set of all
alcoves of E. Then Q acts simply transitively on X. Let S1 be the set of Q-orbits in
the set of codimension 1 facets of alcoves. Each seS1 defines an involution A\->sA
of X, where, for an alcove A, sA is the alcove differing from A and having a common
facet of type s with A. The maps A \-*sA generate a group of permutations of A'. This
group, together with its subset Sx, is a Coxeter group. We call it an affine Weyl group.
We shall assume that (Wa, S) is this particular Coxeter group with S = Sv

We assume that Wa acts on the left on X. It acts simply transitively and commutes
with the action of Q on X. A special point in E is a 0-dimensional facet v of an alcove
such that the number n of hyperplanes Pe 3F passing through v is the maximum
possible. Let O be the root system determined by Wa. Then it is well known that
n = |<D+| = v. For such v, we denote by Wv the subgroup of Wa which is the stabilizer
of the set of alcoves containing v in their closure. Then Wv is a standard parabolic
subgroup of Wa isomorphic to the Weyl group of O. We denote by wv the longest
element of Wv. Then wv has the form wv = Wj for some JeS. Hence l(wv) = v.
Conversely, for any wd with JeS, there exists some special points v in E such that
WJ = wv We choose, for each special point v, a connected component Q of the
set

C = E- (J P

9-2
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in such a way that for any two special points v, v' in E, C£ is a translate of Q .
Let A^v be the unique alcove contained in Q and having v in its closure, and let
A~ = wvA+. We denote by C~ the connected component of the set C which contains
A;.

REMARK. Fix a special point v in E and let Aw = wA+. Then the above
description of (Wa, S) coincides with that in [5].

Let &* be the set of hyperplanes P e 2F such that P is a wall of Q for some special
point v. The connected components of E— {JPejr* P will be called boxes. Clearly, any
alcove is contained in a unique box. If v is a special point, we denote by nw the box
containing A+.

To any alcove A, we associate a subset S£\A) c S as follows. Let seS and let P
be the hyperplane in 2F supporting the common facet of type s of A and sA. We say
that 5 6 $£'(A) if A is in that half-space determined by P which meets Q for any special
point v.

Following [2, 7.6], we consider the free A-module M with basis corresponding to
the alcoves in X. It can be regarded as a left H-module. For seS and AeX,

TAJsA if seS-X\A),
8 \A ZA ]fST(A). 0)

Given a special point v in E, the following facts are well known:
TukA~v) = WW for any w ̂  wv, (2)

Ty(A
+

v) = y(A+
v) and T,-i(y(A;)) = A; for any ye Wa with ywv = ywv. (3)

The following result is due to Lusztig (see [4, the proof of Proposition 4.2 (b)]).

PROPOSITION 4.1. Let v be a special point, let AeX have v in its closure and let
y, weWa be such that y(A+) cz Q and wA = A*v. Then in the expression

TyA=YJMMB (4)
Bex

we have My A BeZ+[£]for any BeX. In particular, if l(w) > 0 and y(A*) <= ITV, then
vAB < l(w)for any BeX.

LEMMA 4.2. Let v, v' be two special points of E and let xeWa. Then we have the
following results:

(a) AX. c Q if and only if A; c Q ;
(b) x(AX) <= C* if and only if xwv = x- wv;
(c) x(A~) c C~ if and only if xwv = x- wv.

Proof Part (a) follows directly by the definitions of A+., A~, Q and C~.\ (b) was
proved by Lusztig (see [4, Lemma 3.6]). Finally, (c) is a simple consequence of (a)
and (b).

Recall that in §1 we defined a subset M of Wa. The following result gives a
geometric description of the set M.
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PROPOSITION 4.3. Let v be a special point in E and let zelVa be such that
wvz = wv-z. Then

wvzeM if and only if z~\A+)czYlv (5)

Proof (=>) By the condition that wvz = wv-z and by Lemma 4.2 (b), we have

A = z~\A+
v) e Q . (6)

Let C+ be the closure of Q in E. Then there exists a unique special point v' e Q such
that A c n,,. Let xe Wa be such that

A = x(Al). (7)
Then

xwv. = x-wv,. (8)
Since A+. c Q , by Lemma 4.2 (a), we have A~ a C~.. Let ye Wa be such that

Then, by Lemma 4.2 (c), we have

ywv. = ywv,. (10)

Thus by (7) and (9), we obtain

A = x(A+
v) = xwv.y-\A-). (11)

Comparing (6) with (11), we see that

z-1wv = xwv,y-1 = x-wv,-y-\ (12)

where the last equality holds by (8), (10) and Lemma 3.2. Thus y • wv. -x'1 eM. This
forces y = 1 and hence v' = v by (9), that is, A c Ilu.

(<=) Let V be a set of representatives for the Q-orbits of the special points in E.
We define

@ = {AeX\Acz Ilv for some ve V}. (13)

This is the fundamental region for the actions of all translations of Q on A'in the strict
sense that for every A' eX, there exists a unique Ae0!8 such that A = (A')x for some
translation T of Q on E. Hence we have

\@\ = \W\ = \M\. (14)

Now we define a map 0:M^-@l as follows. For any xeM, we may write
x = wv • z for some special point v in E and zeWa. Then by the above proof, we see that
z~\A+) c Tlv. Let T be the translation of Q such that A = {z-\A+))xe@. Then A is
uniquely determined by x. We define 6(x) = A. Clearly, the map 0 is well defined. To
reach our goal, it is enough to show that the map 0 is bijective.

Suppose that there exists some y e M such that 0(y) = 9(x). We write y = wv. • z' for
some special point v' and z' e Wa. Then z'~\A£) c nv-. By our assumption, there
exists some translation zeQ such that

z-\AX) = {z'-\AX))i. (15)

Thus
z~\AX) = z'~\{A+

v) i) = z'~\A+v,). (16)

This implies that v — (v') i and hence wv = wv.. This also implies that z = z', that is,
x = y. Thus the map 9 is injective and hence by (14), 6 must be bijective. The result
follows.
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PROPOSITION 4.4. Let x,yeWa and JeS be such that WjX^eM and
xWjy = x-Wj-y. Let w < Wj. Then for any zeWa the inequality

degc/,i lWif<v-i(w) (17)

holds.

Proof. There exists some special point v in E such that wd = wv. Let
A = y~\A~). Then by the assumption that wvy = wv-y and by Lemma 4.2 (c), it
follows that AeC~. Thus by (2), (3) and the fact that wy = w -y, we have

A' = TwyA = wyA, (18)

where A' contains v in its closure. Let w' = wvw~1. Then

/(w') = v - / ( w ) > 0

and w'(A') = A+. Since WV-X~1GM, we have x(A+) <= Tlv by Proposition 4.3. Hence, by
Proposition 4.1, this implies that

deg,M,i i e l M i B<v-/(M0 (19)

for any BeX. Thus we have

Tx TwyA = Tx(wyA) = Y,MxwyABB
B

B z

Hence Y.,swJx.un,.zM*.A,B = K.WA.B ^T any BeX. Since fx,m,zMzABeI+[^, it
follows from (19) that

deg{/ I j U ) ! / i ZMz y l i B<v-/(w) for any z e » ; and He JT. (20)

We take B = zA. Then MzAB # 0 (its value for £ = 0 is equal to 1). Thus, by (20),
we reach our goal.

5. The distinguished involutions

Recall that the group (G, S) is assumed to be crystallographic with property
(A) (p. 254).

Let d{z) = degPliC(u) for any zeG. In [3], Lusztig proved that

a(z) ^ l(z) - 2S(z) for all z e G (1)

[3, 1.3 (a)]. He defined the following subset 9 of G:

® = {zeG\a(z) = l(z)-2d(z)} (2)

[3, 1.3 (b)]. Then he proved the following results.

PROPOSITION 5.1. (a) All elements of Q) are involutions [3, Proposition 1.4 (a)].
(b) Any left cell L of G contains a unique element d of Si which satisfies

yx-\x,d = * f°r all xeL (see §1 (9) and [3, Theorem 1.10]).
(c) If zeG belongs to a standard parabolic subgroup Go ofG, then a(z) (respectively

3(z)) computed with respect to Go is equal to a(z) (respectively d(z)) computed with
respect to G [3, Corollary 1.9 (d)].



A TWO-SIDED CELL IN AN AFFINE WEYL GROUP, II 263

The elements of 3) are called the distinguished involutions of G [3, 1.4]. Some
results on the cells of the group (G, S) may be deduced by making use of the
properties of Q>.

For any J c S, we write
®J=WJ(\®. (3)

Then by Proposition 5.1 (c), we see that 9j is the set of all distinguished involutions
of Wj. Suppose that L is a left cell of G with Lf]Wj^0. Then L n W3 is a union of
m left cells of Wj for some m ^ 1. Thus by Proposition 5.1 (b), we have

But on the other hand, we have \9>C\L\ = \ and hence

U m = | ^ n ( i n wj)\ = |(0n FF,)n(£n ws)l = 1(

This forces w = 1. We obtain the following result.

PROPOSITION 5.2. Let Lbea left cell of(G, S) and let J a S. Then the intersection
Lft Wj is either empty or a left cell of Wd

6. The proof of Theorem 1.1

Now we consider the affine Weyl group Wa = (Wa, S). The following result is
crucial for the proof of Theorem 1.1.

Note that any ST-class Y of Wa in W(v) is a maximal set in W(v) with the property
that, for any x, ye Y, there exists a sequence of elements x0 = x, xv ..., xr = y in Y
such that for every /, 1 < i'^ r, x^x^eS (see [5, §8]).

THEOREM 6.1. @()W{V) = N.

Proof. For any xe@ n WM, we may write

x = ywyzeY(z,J) (1)

(see §1 (15)) for some JeS and y,zeWa. By §1 (15), we have x~LWj-z. So by
Proposition 5.1 (b), we have hz-iw w zx ^ 0. We see from Propositions 2.3 and 2.5
that

X ^ X{2TX Wj, Wj Z) = Z~X -Wj-Z. (2)

By (1) and (2), this implies that y ^ z"1. By Proposition 5.1 (a), we have

x = x'1 = z~x • Wj -y'1.

From (1) and the preceding remark, it follows that w / ^ e ^ z , / ) and hence
A» = /O"1) > l(z) = /(z"1). Thus ^ = z"1, that is, xeN. Thus the inclusion
@0W{v)£:Nis proved. Now let z'^-wyzsN with JeS. Then

•*Z~lWj *WjZ ^Z~X\^Wj •'•Wj) Z ^Z~X V Z j JU!J,WJ,W *W) Z
W ^ M)j

JWj,Wj,Wj Z~lWjZ' Z j JWJ,WJ,W Z~X WZ
W < Wj

JWJ,WJ,WJ*Z~1WJZ~' ZJ v ZJ Jwj,Wj,wJz~l,wz,y) *y
W
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This implies that for any ye\Va with y # z~xWjZ, we have

Jz~lWj,Wjz,y ZJ Jtvj,Wj,wJz~i,wz,y

W <Wj

By Lemma 3.1 and Proposition 4.4, we see that

teBtfu,J,wJ,u,fz-\m.y < l(w) + (v-l(w)) = v for any w < wy
Hence d e g ^ - i ^ WjZ y < v for any ye Wa with y ̂  z~lWjZ. We know from §1 (2)
that

Cz~lwj Cu,jz = Tz~lwj Twjz + E a*P T* TP> 0)

where the pair (a, /?) in the above sum ranges over K\z~lWj, Wjz) (see §2 (10)). The
aafj are all in uA++. Thus by the fact tha t / M i , eZ + K] , the inequality deg{/a ^ y ^ v, (3)
and § 1 (4), we have

+ f o r a11 yE w»with y * z~1Wj z-

That is, yt-iw tW zy = 0 for all such y. Thus by Proposition 5.1 (b), we have
^ ® . This implies that N<^<2) n W(v). Hence our result follows.

Proof of Theorem 1.1. We know from §1 that the set W(v) consists of \W\ ST-
classes of Wa. We also know from Proposition 3.3 that AT is a set of representatives
for the ST-classes of Wa in W{v). By Theorem 6.1, N consists of all distinguished
involutions of Wa in W{v) and so our result follows from Proposition 5.1 (b).
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