
A TWO-SIDED CELL IN AN AFFINE WEYL GROUP

JIAN-YI SHI

1. Introduction

Let G = (G, S) be a Coxeter group with S its distinguished generator set. We
define, following Lusztig [4], the corresponding Hecke algebra H over A = Z[u, u'1],
where u is an indeterminate, as follows. The set H has basis elements Tw, w e G as a free
A -module and multiplication is defined by the rules

= Tww. if l(ww') = l
-u-x) = Q if seS.

As an ^-module, H also has the basis (CJweG:

Cw= T

where / is the length function on G. The Pyw(x) are known as the Kazhdan-Lusztig
polynomials [2].

We define for any x,y,zeG, elements hx y zeA such that

Let A+ = Z[u]. Given ze G, if there exists an integer N^O such that uNhx y zeA+

for all x,yeG then we define a(z) to be the smallest integer satisfying ua{z)hxy zeA+

for all x,yeG; if there is no such integer then we define a(z) = oo.
From now on, we assume G to be an indecomposable aflfine Weyl group, denoted

by Wa. Let O be the root system whose type is determined by Wa. Let <X>+ be a positive
root system of O with A its simple root system. Set v = |O+|. Then in [3], Lusztig
proved that a(z) ^ v for all ze Wa. Let W(v) = {we Wa\a(w) = v}.

For any subset / cz S, let W, be the subgroup of Wa generated by J, which is
isomorphic to some Weyl group. Let vv, be the longest element in Wj.

Let S be the set of all subsets / of S such that W3 is isomorphic to the Weyl group
on <D. Let ^ § ) ^eWjWss x.wyy with JeS},

where the notation z = x-y means that z = xy and l(z) = l(x) + l(y) for any
x,y,zeWa.

Lusztig proved that W(S) £ W(v) [3]. In the present paper, we shall prove the
following theorem.

THEOREM 1.1. For any indecomposable affine Weyl group Wa = (Wa, S), we have
W(S) = W(v).

This result will be used in §5 to deduce a new result on cells of Wa.
We shall prove Theorem 1.1 in §§2 to 4. In the case when the rank of Wa is less than
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or equal to 2, Theorem 1.1 can be deduced easily from Lusztig's results on cells of
Wa [3]. Thus, in §§2 to 4, we always assume that the rank of Wa is greater than 2.

2. The coordinate form ofweWa

Let E be the euclidean space spanned by O with inner product <, > such that
|a|2 = <a,a> = 1 for any short root a eO . Then the affine Weyl group Wa can be
regarded as a group of right isometric transformations on E. More precisely, let W
be the Weyl group of O generated by the reflections sa on E for a e O ; sa sends XEE
to x — <JC, av> a, where av = 2a/<a,a>. Let Q denote the root lattice ZO. Let N denote
the group consisting of all translations Tx, Xe Q, on E; Tx sends x to x + X. Then Wa can
be regarded as the semi-direct product Afxr W. There is a canonical homomorphism
from Wa to W:wi->vi>.

Let — <x0 be the highest short root of O. We define so = so^T.<h and ^ = 5^,
1 < i ^ /, where A = {al5 ... ,a,}. Then the generator set S of Wa can be taken as
S = {sQ,sv ..., st}. The Dynkin diagram of Wa has one of the following figures. (Recall
that we assume that the rank of Wa is greater than 2.)

B,
2 3 1-2 / - I /

0 1 2 /-2 /-I /

1 3 4 5 6

/ - I

0 1 3 4 5 6 7
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2<

In [7], the author defined a set £(Q) of <X>-tuples k = {k^^ which satisfy

(1) A;a = -A:_aeZforae<I>.
(2) For any a,/?e<I>+ with a+/?eO+, the inequality

^ p p (2.0.1)

holds. It was proved that there exists a bijection between Wa and £"(0) such that if
weWa corresponds to kw = (k(w, a ) ) ^ then

k{w, a) = <X, av> + k(w, a) for a e 0 , (2.0.2)

where u> = w7^ for WE W and Ae (?, and for any ae<t>+ and xeW^, the integer k(x,a)
is defined as follows:

fO i f ( a ) x e O , ^ x

, -c) i i ^ (2-0-3)
- 1 if(a)x"'6O".

f

We call k"1 the coordinate form of w. We shall identify kw with w.
For w6Wfl, we define

if(vv) = {seS|.sw< w}, m{w) = {seS\ ws < w),

where the relation ^ is the Bruhat order on Wa [8].

PROPOSITION 2.1. The coordinate form kw ofw has the following properties.

(1) l(w) = Z^*\Kwta)\.
(2) Let x = wst and y — stw, 0 < t ^ /. Then for a e O ,

k(x, a) = k(w, (<x)st) + k(st, a) and k(y, a) = k(w, a) + k(st, (a)^"1),
where

fO if*±±aLt,
k(st,oc)=\l ifoL = -Qtti (2.1.1)

I - 1 //a = a,.

(3) jSP(w) = {5, | A:(w,(a» > 0, 0 < i < /}.
(4) 0t{w) = {5, | A:(w, a,) < 0, 0 ^ / ^ /}.

The proof of the above results can be found in [6].
Given Sls S2eS, there always exists an automorphism q> of Wa which preserves S

and sends Ŝ  to S2. Conversely, let <p be an automorphism of Wa which preserves S
and sends sf to J4,, 0 ^ / ^ /, where i•->/' is a permutation on the set {0,1,2,..., /}. Then
(p induces a permutation on the set of subsets of S which preserves the set S. The
automorphism cp also gives rise to an automorphism of the root system O, which
we shall also denote by <j>, so that ^(a4) = at', 0 < / < /. If w = (kj^ e Wa and
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w' = <p(w) = (k'J^ then k'9(a) = ka for all ae<X>. Thus by the formulae (2.0.2) and
(2.0.3) and Proposition 2.1, it is easily seen that we have the following.

LEMMA 2.2. Let w = wJ} / a S. Then \k(w, a)| = 1 for all a e O . Thus when JES,

we have \k(w,a)| = 1 for all a eO . In particular, when J = {s1,s2)...,sl}, we have
k(w, a) = - 1 for all aed>+.

We define W = {WE Wa\ k(w,a) # 0, for aeO}. We state the following two results
whose proof will be given in subsequent sections.

THEOREM 2.3. W = W(S).

THEOREM 2.4. W = W(v).

Clearly, Theorem 1.1 is a direct consequence of these two theorems. From these
two theorems, we get three equivalent descriptions of the set W{v).

Let us conclude this section by recording an empirical result on the set S which
will be used-in §3.

Put -(to^tli^i-

PROPOSITION 2.5. JES if and only ifJ = S—{s{}, where either i = 0 or <xtE A is a
short root with ai = 1.

3. Proof of Theorem 2.3

In this section we prove Theorem 2.3.
For any aeQ, set Aa = {yeA|y < a}.

LEMMA 3.1. Let a,y?eC>+ with ft < a. Then there exists a sequence

in O+ such that yt = ^—^^EA^for every i, 1 ̂  / < r.

Proof The proof is by induction on m = ht(a) — ht(yS) > 0, where ht(a) denotes
the height of the root a e O . It is obvious when m = 1. Now assume that m > 1. Put
n = a—fi (note that rj is not necessarily in O). We claim that there exists some yeAn

with <y,y9v> < 0, for otherwise

<y,Av>^0 foryeA,. (3.1.1)

Hence <n,pv)^0 which implies that <a,0v> = <//,0v> + <AAv> ^ 2. Thus
<a,/?v> = 2 since we have assumed that the rank of O is greater than 2. Then
P' = CL — 2PEQ>+ and </?',/?v> = — 2. Clearly, A^ c A, and there exists some <5e A^ such
that <<5,jffv> < 0, which contradicts (3.1.1).

By the above claim, we have C = /?+ye<I>+ and £ < a. By the inductive hypothesis,
there exists a sequence y0 = (, yl9..., yt = a in <I>+ with y4 — y(-16 Aa for / = 1,...,/. Thus
/?, y0, y15 ...,yt = a is the required sequence.
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Let A = A U {a0}.

LEMMA 3.2. Let weW be such that either k(w, a) ^ 1 or k(w,<x) = — 1 for any
a e A. Ifk(w, y) ^ 1 for some ye A then k(w,p) ^ 1 for all /?eO+ with y ^ /?.

Proof. We know from Lemma 3.1 that for any /?eO+ with y ^ ft there exists a
sequence of roots /?0 = y,/^, ...,/?t = /? in <D+ such that y( = / ^ - / f ^ e A, / = 1,..., r.
We shall show that k(w,pt) ^ 1 for all / ^ 0. Suppose not, then there exists some
j ^ 1 such that k(w,fit) ^ 1 for all /, 0 ^ / <j, and kiw,^) < 0. The inequality

0 (3.2.1)

implies that y,, is a long root and /^_x is a short root. This implies that fii is a short
root. That is, | y / = 2|ft_1|

a = 2 |^ | 2 = 2. Again by the inequality (3.2.1) we have
k(w>y))=k(w>P)) = -l and / ^ w , / ^ ) = 1. In this case, (, = / ? i +$_ 1 eO + and
0 < 2(k(w, Q +1) < 4 by (2.0.1). Hence k(w, Q = 0 which contradicts our assumption
that weW. Now we have shown that k(w,fit)^ 1 for all / ^ 0. In particular,

LEMMA 3.3. Put -<x0 = £<x6A
aaa-

(1) If aa> 1 /or some a e O //ie« //iere exist y, (5eO+ 5«c/i //ia/ — a0 = y + S and
< x ^ y , S .

(2)If<x^p in A then there exist y , < 5 e O + such that -<xo = y + S, a < y and ft < 8.

Proof This can be verified case by case.

LEMMA 3.4. Let weW be such that either k(w,<x) ^ 1 or k(w,<x) = — 1 for any
aeA. Suppose that there exists some /?eA such that k(w,f$)^. 1. If ye A and
— a0 + y € O+ then y is a short root and k(w, y) ^ 1.

Proof By Lemma 3.2 and our assumption, we have k(w, — a0) = 1. Suppose that
k(w,y) ^ 1. Then k(w,y) = — 1. Since 3 = — a0 + yeO+, and since — a,, is the highest
short root of O, we see that y is a short root and that 3 is a long one. Thus we have
0<2(fc(w, 3)+ 1) < 4. This forces /c(w, <5) = 0 which contradicts our assumption.
Hence the result follows.

LEMMA 3.5. Let weW. Suppose that either k(w,cc) ^ 1 or k(w, a) = — 1 for any
aeA. Then the following cases cannot occur.

(1) k(w,p) $s 1 for some /?e A vWf/i aA > 1.
(2) fc(w, a), k(w,p) ^ 1 /or some oc^ 0 in A.
(3) k{w,f$) ^ 1 /or some long root fie A when <D contains two roots of different

lengths.

Proof. By Lemma 3.3, there exist y,3e<fr+ with — a0 = y + 8 such that /? < y, 8 in
case (1), or a < y and /? < 3 in (2). Then by Lemma 3.2, we have k{w, y), k(w, 8) ^ 1.
By the inequality

k{w, - a o ) + 1 > \y\2k(w,y) + \8\*k(w,8) > 2,

we obtain k{w, — <x0) ^ 2, which contradicts our assumption.
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In the case when O contains roots of two different lengths, — a0 is not the highest
root of O. Thus there must exist some ye A such that — a0 + yeO+. By Lemma 3.4 and
its proof, we see that y is a short root and k(w, y) ^ 1. Hence we are back in case (2).

PROPOSITION 3.6. Let weW be such that either k(w,ct) ^ 1 or k(w,oC) = — 1 for
any aeA. Then ^

Proof. If k(w,a) = - 1 for all aeA then by Proposition 2.1(4),

If there exists some aeA with k(w,<x) ^ 1 then, by Lemmas 3.2 and 3.5, we have that
k{w,f$) = — 1 for all /?e A with /? # a and that a is a short root with aa = 1. Thus by
Propositions 2.1(4) and 2.5, we also have $2

Recall that for x,yeWa, the notation w = x-y means w = xy and l(w) = l(x) + l(y).
Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. By Proposition 2.1, we see that if w = x-ye Wa and if
either x or y is in W, then w is in W. By Lemma 2.2, we see that the elements wJt

JES, are all in W. This implies that W(S) c W.
Conversely, let weW. Then there must exist x e W and yeWa with w = x-y

such that for any se(%(x), xs^W. By Proposition 2.1(2), (4), we see that either
k(x, a) ^ 1 or k(x, a) = — 1 for any aeA. Hence by Proposition 3.6, we have ^ ( x ) e S ,
that is, x = x'• Wj for some JeS. This implies that w = x'• Wj-y. Thus we W(S) and
hence W £ W(S) and Theorem 2.3 is proved.

4. Proof of Theorem 2.4

In this section, we shall prove Theorem 2.4. To do this, we need some results.

LEMMA 4.1. If x,yeWa and seS are such that x = s-y and @(x) ^ 3%(y) then
a(x) > a(y).

Proof. We have &(x) £ £f{y) since s e £f (x) - S£{y). On the other hand, we have
9t(x) 2 &{y) in general. Thus 0t{x) ^ @(y) implies that 0t{x) <j: @(y). Hence our result
is a special case of a result of Lusztig [3].

In [7], the author defined sign types of type O.
A <D-tuple X = (X^Q is called a sign type of type O (or briefly, a sign type), if the

set {Xa, X_J is either {O, O} or { + , —} for any aeO . Since Xis determined uniquely
by the <D+-tuple (XJ^, we shall identify (X^+ with X. Let S? = ^ (O) be the set
of all sign types of type O. Let

+.+O,+ - , + -,+ -.O + , OO.OO, O-.O-,

+ O - O - - 1
-+ , -+ , -+ , -O, -O, - -J
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and

G, =
O O O - - - + O O O

O O + O + O O O - O - O + O O - O - + -
o, o, +, o, o, -, +, o, -, o,

O + + - + + + - -
- - O - + +-+-O+O +
- , - , o, - , - , - , +, o, +,

- o - - - +

o, +, +, +, - , +

For any subsystem <J>' of O, O/+ = <D+ n O' is a positive subsystem of <&.
Given an indecomposable positive subsystem <D'+ of O of rank 2, we say that a

sign type (XJ^.* is admissible if we have one of the following cases.
(1) <fr'+ has type A2, say O/+ = {a,^,a+^}. Then

belongs to Gv

(2) O/+ has type B2, say O'+ = { a , # a + # 2 a + # . Then

X,

belongs to G2.
We say that a sign type ( A ^ ^ is admissible if for any indecomposable positive

subsystem O/+ of <X> of rank 2, the sign type (XJae<l>.+ is admissible. Let $f — y (O)
be the set of all admissible sign types of S?.

We know from [7] that there exists a surjective map (: Wa^-Sf which maps
x = (k(x, a ) ) ^ to X=(X0)ae<t> such that, for any ae<D,

k(x, a) > 0 if and only if Xa = + ,

k(x, a) = 0 if and only if Xa = O ,

k(x, a) < 0 if and only if Xa = — .

We call X the sign type of x. We usually denote the sign types of elements x,y,... of
Wa by the corresponding capital letters X, Y,....

The following results can be deduced easily from Proposition 2.1.

LEMMA 4.1. Let X be the sign type ofx e Wa. Then 0t{x) = {st \ 0 ^ / ^ /, X^ = -}.

In a Coxeter group G, we say that two elements x,yeG have the same right
extension property (r.e.p.) if, for any weG, xw = x-w if and only if yw = yw.
Clearly, if x, y have the same r.e.p. and xw = x-w then M{xw) = ffl(yw). In particular,
0t(x) = 0t{y).
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If G is a finite Coxeter group then it is easily shown that x,yeG have the same
r.e.p. if and only if x = y.

Now we return to the case where G = Wa.

PROPOSITION 4.2. If x,y, e Wa have the same sign type then x,y have the same
r.e.p.

Proof. This follows from Proposition 2.1 (2), (4).

The converse of the above proposition is not true in general. For example, let
Wa have type B2. Then the elements s0s2 and s ^ a have the same r.e.p. but different
sign types. However, in certain circumstances, such a converse is true. This is just
what we shall consider next.

LEMMA 4.3. Ifx,yeWa have the sign types X = (X^^ and Y = (YJ^ such that
for some £e<D+, Xa = YJor a e O + - { # and Xp # Yp, {Xp, Yp) n { + , 0 } # 0 -

(1) There exists we Wa satisfying
(a) xw = x • w and yw = y • w.
(b) Let X = 0(X^ and Y = (Y^ be the sign types of xw and yw,

respectively. Then there exists some ye A such that Xa = Yafor a e O + —A,
X« = Y« = -for ateA-{y} and Xy = Xp % = Yp.

(2) If— €{Xp, Yp} then x and y have different r.e.p.

Proof.
<xeA-{0}}. Then define m = m(X) = m(Y). If m = 0 we claim that fie A. For
otherwise, fi$A. Then Xa = Ya = - f o r all aeA. Hence Xa= Ya = - f o r all ae<D+ and
in particular, Xp = Yfi = -which contradicts {Xp, Yp} n {+, 0 } ^ 0 - Therefore w = 1
satisfies the required conditions. Now assume that m > 0. Say yeA-{/?} satisfying
Xy = 1;G{ + , 0} . Let x1 = xs, and / = ysr Let X1 = (XIU and Y1 = ( 7 J U be the
sign types of JC1, / , respectively. Since p1 = (jS)^eO+, we have X\ = yj for
a e O + - { ^ } and Xp\ = Xp Yfr = Yp. If m 1 ^ m(A^) = miY1) = 0 then by the above
argument, the element w = sy satisfies the required conditions. If m1 > 0 then there
exists S6 A — {fix} satisfying X] = Yle{ + ,O}. Let x2 = x1^ andy* = y^^Sg. In this way,
we get two sequences of elements: JC° = x,xl,x2,... and y° = y,yl,y2,... in Wa. We
also get the corresponding two sequences of sign types X° = X^,^,... and
y° = Y, Y1, Y2,.... Here for every i^l,x* = x*-\ with yt e A - (0)sy sy... sY{ and
m(Ant-1) = w ( r - 1 ) > 0 . Let

and

M{T) = *{ra\ n y i

Then m(A") = M( Y*) for all / and M(X°) > MiX1) > .... Since M(X°) < oo, there must
exist some j ^ 0 such that M(X}) = M ( F ) = 0. Thus w = sy^...Sy satisfies the
required conditions and we have proved (1).

(2) If— e{Xp, Yp) then &{xw) ^ f%(yw) and so JC,^ have different r.e.p. and we
obtain (2).
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LEMMA 4.4. Assume that x,y,weWa, ye A, fieQ>+ and X, Y, X, YeS? are as in
Lemma 4.3 (1). Assume that Oe{Xp, Y^ and that one of the following conditions is
satisfied:

(1) O has type At, / ^ 1,
(2) {x,y}O

Then Xa = f a e { - , O } for ae<D+ -A,X< = Y< = -for a ' e A - f r } and Xy = Xp,
Y = Y

Proof By Lemma 4.3 (1), it is enough to show that Xa - Yae{ — ,O} for
a e O + —A. We may assume without loss of generality that Xp = O- If condition (1)
holds then by the admissibility of the sign type X, our result follows. Now assume that
condition (2) holds. Then Xa= Yae{ + , - } for a e O + - A . Suppose that there is some
8e<S>+ — A with Xs= Y5 = +. We can choose 3 such that ht(3) is as small as possible.
Thus by the admissibility of X, there must exist some aeO + -{y} such that S = y + <x
and a' = a + <5eO+. Clearly, {0L,y,8,Cf./] forms a positive subsystem of <D+ of type B2

with y, a' long roots and a, 8 short roots. Let x = xw and y = yw. Then by the fact that
k(x, y) = 0, k(x, a) < 0 and k(x, S) > 0, we get k(x, a) = — 1 and k(x, 3) = 1 from the
inequality (2.0.1). Again by (2.0.1) we get k(x,a') = 0 and hence k(y,<xf) = 0. Thus
{x,y} n W = 0 . Since x = xw and y = y w, we have {x,y} f] W = 0 by Proposition
2.1, which contradicts our condition. Hence the result follows.

LEMMA 4.5. Assume that x,yeWa have the sign types X = ( A ^ ^ and Y =
such that for some o^eA, we have Xa = Yafor a e O + - { a J and {X^, Y^} = { + , O},
where S—{sJeS. Then x,y have different r.e.p.

Proof There exists an automorphism q> of Wa which preserves S and sends st to
sQ. Let x = <p(x) and y = (p{y). Clearly, sti^{x) U M{y) implies that so$@(x) U 0t{y).
Then x,y have different r.e.p. if and only if x,y have different r.e.p. Let X = (A^J^
and Y= (YJ^Q be the sign types of x,y, respectively. Then we have Xa= % for
ae<D + -{-a 0 } and {X_^,Y_^ = {-,O} by Lemma 4.1 and the fact that

4&() U ^(y). Thus by Lemma 4.3(2), Jc, y have different r.e.p. and hence so do x,y.

LEMMA 4.6. Assume that x,yeWa have the sign types X = (XJ^ and
Y = (JQaea, such that, for some a teA with <ai5 ( — ao)

v> # 0 , we have Xa= Y^ for
ae<D+-{a() - a 0 } , X_^ = y ^ e j - , O} and{X^ Y^ = { + , O}. Then x,yhave different
r.e.p.

Proof Let x' = xs0 and / = ys0. Let X = ( A ^ ^ and Y' = ( t ^ be the sign
types of x',y', respectively. Note that (<x4)5oe<I>~ by our condition. Let y = — ( a j ^ .
Then by Proposition 2.1(2), X*a = Ya for aeO + -{y} and {X'y, Yy) = {-, O}. Then by
Lemma 4.3(2). x',y' have different r.e.p. But x' = x-s0 and y' = y -s0. Hence x,y have
different r.e.p.
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By Lemmas 4.5 and 4.6, we obtain the following.

COROLLARY 4.7. Let x,yeWa, X,YeSf and /?eO+ be as in Lemma 4.4. In
addition, suppose that ft = at e A and that we have one of the following cases :

(1) O has type At, / ^ 1;
(2) <D has type Bt, I ^ 3, i = 1, 2;
(3) O has type Ct,l^2,i=\, I;
(4) O has type Dt, / ^ 4, i=\, 2, / - 1, I;
(5) O has type E6, i = 1, 2, 6 ;
(6) d> tow 0>/>e £ 7 , / = 1, 7 ;

(7) <D /ww fy/re £ 8 , / = 8 ;
(8) <D has type F^, i = 1 ;

(9) ® has type G2, i=\.

Then x,y have different r.e.p.

Proposition 4.8. Assume that x,yeWa have the sign types X = (XJ^ and
Y = TO«« such that for some <xteA,Xa= Ya = -,for aeO+-{a<} and X^ # Y^. Then
x,y have different r.e.p.

Proof. If- e{Xv YJ then by X^ # 3^, we have 0t(x) # ^(y) and hence JC, j ; have
different r.e.p. Now assume that - i{X^ Y^}. Then {Xv ^ } = { + ,O} . We may
assume without loss of generality that X^ = O and 1^ = + . We shall prove our result
by a case-by-case argument.

(1) O has type Av The result follows from Corollary 4.7(1).

In each of the remaining cases, except for cases (6a, c), we shall find an element
we Wa with xw = x-w, yw = yw such that for some ye<£>+, Xa = Ya, for a e O + — {y}

d {X Y} { } h X (X^ d Y ( Y ^ i f dand {Xy, Yy} = {-, O}, where X = (X^ and Y = ( Y ^ are sign types of xw and yw,
respectively. In either of cases (6a) and (6c), we shall find w€\Va which satisfies the
following conditions:

(1) xw = xw and yw = yw;
(ii) if X = (X'^Q and T = (Y'J^ are the sign types of xw and yw, respectively,

then X'a = Y'a for all aeO-{«,} , and {*;, r y = { + , O}, where S-{Si}eS.
Once we have done this, our result follows immediately from Lemmas 4.3(2) and
4.5.

(2) <J> has type Bt or Dt. By Corollary 4.7(2), (4) we may assume that / > 2.
Moreover, in the case when <I> has type Dt, we may further assume that
i < I— 1. Let at = s0s2s3... st and b} = s1 s2... s}, i ^ 2, j ^ 1.

(a) If i < / is even, let u> = a(^<_1 a(_2bt_3 ...aib3s0.
(b) If / < / is odd, let w = aift<_1fl<_2^{-3-" a$b2a1l.

The following two cases only occur for O of type i?j.
(c) If / = / is even, let w = al_1 bt_2at_z6,_4 ...a3b2s0.
(d) If / = / is odd, let w = a^bt_2at_3bt_^ ...a2b1 a^1.

(3) <I> has type Cv By Corollary 4.7, we may assume that 1 < / < /. Let
a{ = s0s1 s2... su i ^ 0, and let w = atat_x ...a2a0.
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(4) O has type F^ By Corollary 4.7, we may assume that / # 1. Let ax - sxs2,

^2 = ^2 ^3 ' ^1 = "̂ 0 *̂ 1 ^2' ^2 = ^1 "̂ 2 "̂ 3» ^ = "̂ 0 "̂ 1 "̂ 2 "̂ 3 a.nG U = SQSX S2 S3 ^4.

(a) If / = 2, let w = db\x c~l b? a;1 d~\
(b) I f / = 3 , let w = da-1

1c~1.
(c) If / = 4, let u> = c^"1.

(5) <D has type £6. By Corollary 4.7, we may assume that / = 3,4,5. Let

0, = S3Si, Ox = 535452, D2 = 53^4J5, Cj = SQS^S^S^, C2 = SXS3S^S&, C3 = 5354J250,

"1 = ^0^2 "̂ 4 ̂ 5 ̂ 6' ^2 = ^1^3 ̂ 4 ̂ 2^0' ^3 = ^1^3 ̂ 4 ̂ 5 ̂ 6"

(a) If i = 3, let w = d1b2b~x
xc2d^1 c"1.

(b) lfi = 4,\etw = d1b2d2.
(c) If / = 5, let w = d1 bx d3 a'1 d1 c3.

(6) O has type Ev By Corollary 4.7, we may assume that 1 < / < 7. Let a = s2,

D\ = -̂ 2 "̂ 4 ^5' ^2 = = "̂ 3 ^4 ^2' ^3 = = ^3 "̂ 4 ^5' ^4 = = ^i^5^%> ^1 = *̂ 1 *̂ 3 "̂ 4 ^2» ^2 = = *̂ 1 ^3 "̂ 4 ^5'

•̂3 = ^2 ^4 ^5 ^6' Ci = ^3 ^4 "̂ 5 ^6» ®\ = S0 ^1 ^3 "̂ 4 ^2 ' ^2 = ^0 ^1 ^3 ^4 ^5' ^3 = ^1 *̂ 3 "̂ 4 ^5 ^6»

e \ = ^0 ^1 ^3 ^4 ^5 ^6 J e2 = ^1 ^3 ^4 ^5 ^6 ^7 &nQ- / = = ^0 ^1 ^3 ^4 *̂ 5 ^6 ^7 •

(a) If i = 2, let w=fc3.
(b) If i = 3, let w=fczbzdl1.
(c) If / = 4, let w = fcz b2 e2 ex bx b2 e2 b^ bjcz d3 dlfbz adz.
(d) If i = 5, let w = fcz bz cxfcx c2 dx b^ bz cxfb2 d^1.
(e) If/ = 6, let w = d2d[\

(7) <X> has type E8. By Corollary 4.7, we may assume that / < 8. Let a = s2,
u = ^2^4, Cx = ^^3^4, C2 = S2SiSh, Cz = SzSiS2, C4 = SzSiSb, C5 = SAS5S6,

CG = 5 5 5 g 5 7 , Ux =SXSZS±S2, U2 = S1SZS4S5, U3 = S2SiS5S6, Ui = SzSiS$S6,

"5 = ^4 ^5 -̂ 6 *̂ 7J ^1 = = "̂ 1 ^3 ^4 ^5 ^6' ^2 ^ ^2 "̂ 4 ^5 "̂ 6 " 7̂' ^3 = = ^3 "̂ 4 "̂ 5 ^6 " 7̂'

e4 = sbs6s7s8s0, j x = s1szsis5s6s7, J2 = s2sis5s6s1s8, j z = szsis^s6s1ss,
Si = $1 $3 ^i ^5 "̂ 6 "̂ 7 ^8» &2 = = ^2 "̂ 4 "̂ 5 "̂ 6 "̂ 7 ^8 ^0> ^ 3 = = "̂ 3 ^4 "̂ 5 ^6 *̂ 7 *̂ 8 ^0 < m d

n = sxsz 54 55 56 57 58 5Q.

(a) If / = 1, let w = h~1g2.
(b) If i = 2, let w = /I"1 g2 c3 ^

1 ^ J a/r1/,1 g2.
(c) If / = 3, let w = / r 1 c2 cz c? c~x d;1 e^ g2 ez d3 hf2 e3 bgx d? c~xg2.
(d) If i = 4, let w = h-V2e3d1-

lc2-
1e-1

lb-l
C?g-2ig3g1d2-

ld?g2c3d2c-1
l

c3
1d3

1gzg1e2did2e2dic2d1d2
1jz-

1g2
1g1

1g3
1g2.

(e) If i = 5, let w = A"1 g2/3 e2 dA c2 hd3 c4 A/a e3 d2 af3 ex g2 gx d3 dx c'1 e\x h.
(0 If / = 6, let w = h~l g2fz d3 e3 d2 g2f3 ejx c2 c3 h.
(g) If / = 7, let w = h'1 e2 d^ c2 c3 h.

COROLLARY 4.9. Assume that x,yeWa have sign types X = (XJ^^ and
Y = ( y j ^ respectively such that Xa= Yae{-, O) for all a e O + - A, Xp = Yp = -for

— {y} and Xy = O, Yy = +, where ye A. Then x,y have different r.e.p.

Proof. Define X = (X^ and Y = (Y^ by Xa = Ya = - for <xe®+-{y},
Xy = O and Yy = + . Then X and Y are two admissible sign types. Thus there exist
Jc e C,~l{X) and y e C~x( Y). By Proposition 4.8, Jc and y have different r.e.p. Hence we can
find WE Wa such that xw = x-w, yw = y-w and !%(xw) ^ @(yw). But this implies from
Proposition 2.1 (2), (4) that xw = x-w, yw = y-w and <%(xw) ^ M(yw). That is, x,^
have different r.e.p.

14 JLM 36
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The following result gives a necessary and sufficient condition for two elements of
Wa to have the same r.e.p. in certain circumstance. This result will be crucial in the
proof of Theorem 2.4.

THEOREM 4.10. Assume that x,ye Wa have sign types X = (XJ^, Y=
respectively. Assume that one of the following conditions is satisfied.

(1) <D has type A^l^l.
(2) {*,>>} n w # 0 .

Then X = Y if and only ifx,y have the same r.e.p.

Proof. (=>) This follows from Proposition 4.2.
(<=) We must show that if X ^ Y then x,y have different r.e.p. Suppose to the

contrary that X # Y and x,y have the same r.e.p. We can find a sequence of elements
x(0) = x,x(\), ...,x(r) such that x(i—l)-1x(i)eS—{J0}, *(/-1) < x(i), for every i,
1 < i < r, and x(r) has the sign type whose entries are all - . Since y has the same r.e.p.
as x, there also exists a sequence of elements j;(0) = y, y(\), ...,y(r) such that for every
i, 1 < i"^ r,y(i-1)-1^) = * 0 ~ I)"1 Jf(O» andy(r) has the same sign type as x(r). We
see that for eachy, O^j ^r, x(J) and y(j) have the same r.e.p. Let X(j), Y(j) be the
sign types of x(J), y(j), respectively. Since X(0) # 7(0) and X(r) = Y(r), there must
exist some /, 0 ̂  / < r, such that X{1\ = Y{1\ for all aeO>+-A, X(l)p = Y(l)p = -
for £eA-{y} and X(l)y # Y{1\, where yeA. Since M(x(l)) = #(?(/)), we have
{X(l)y, Y(l)Y} = { + , O}. We may assume without loss of generality that X(l\ = O and
r(/)y = +. Then by Lemmas 4.3 and 4.4, we have X{1\= r ( / ) a e { - , 0 } for all
aeO+ —A. Hence it follows from Corollary 4.9 that x{l) and y{l) have different r.e.p.,
which is a contradiction. This implies that x and y have different r.e.p. and our result
follows.

We need the following result which is a special case of Lusztig's result [3].

LEMMA 4.11. For xe Wa, letseS-&(w), teS-0t{w). Then a(sx), a(xt) ^ a(x).

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Since W = W(S) c W{v), it suffices to show that if x$ W
then a{x) < v.

There exists a sequence of elements x0 = x,x1} ...,xr in Wa such that for every /,
l < / < r , JC,x(~_\eS, x^KXf, xr_x^W and xreW. By Lemma 4.11, we have
a(xr) ^ aix^) ^ ... ^ a(x0). To prove that a(x) < v, it suffices to show that
aix^ < v. Let st = xrx~lx, z = xr_x and z' = xr. Let Z and Z' be the sign types of z
and z', respectively. Then Z # Z'. By Theorem 4.10, z and z' have different r.e.p. Thus
there is zoe Wa such that zz0 = z-zQ, z'z0 = z'-z0 and 0t{zz^ # .^(z'zo). This implies
that 0e(z'zo)^0l(zzo) since st-zz0 = z'z0. On the other hand, ste <£(z'z0) — &(zzo)
implies that J?(z'z0) <£ £f(zz0). By Lemma 4.1, we have a(zz0) < a(z'z0) ^ v. But
a(x) ^ a(z) ̂  a(zz0). This implies that a(x) < v.
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5. The two-sided cell W(v) of Wa

For the time being, we consider an arbitrary Coxeter group (G, S).
It is known that the Kazhdan-Lusztig polynomial Py w(x), y,weG, has degree no

greater than %(l(w) — l(y) — 1) if y < w. We write y <w if y < w and degPv w(x) is
exactly ffl(w) — l(y)—l)- We write y — w if either y -< w or w -< y.

We write y ^ £ w if there exists a sequence y0 = y, ylf..., yt in 0^ such that for every
i, 1 ^ / < t, yt_x —yt and J&POvi) + -^GO- We define y~Lwify^Lw^Ly.Vfe write
y < ft w if j r 1 ^ L w"1, and y ~ fl w ify'1 ~ ^ w"1. Finally, we write y < r w if there exists
a sequence ;>„ = j ^ , ...,yr in Ŵ  such that either yt_x ^Ly{ or ^ . j ^ft^< for every /,
1 < i < r; we define j> ~ r w if _y ^ rvv ^ry.

The relation ~ L (respectively ~ fi, ~ r) is an equivalence relation on Wa. We call
the corresponding equivalence classes left (respectively right, two-sided) cells. Clearly,
any two-sided cell of G is a union of left (respectively right) cells of G. These cells play
an important role in the representation theory of Coxeter groups and Hecke
algebras.

The following results are well known [3].

THEOREM 5.

(1) X
(2) x
(3) x
(4) w

~ry

^Ry
= x-

1. Let x,

=>a(x) = t
and a(x) =
and a(x) =
y=>w ^R,

yeG.

i(y).
- a{y) => x "
- a(y) => x "
x and w ^L

"Ly-
~Ry-
y.

Now we can prove the main result of this paper.

THEOREM 5.2. The set W(v) is a two-sided cell of Wa.

Proof Let D = {wd \ JeS}. Then by Lemma 2.5, D c= W(v). By Theorems 1.1 and
5.1 we have that for any xe W{v) there exists some yeD satisfying x ~ry. To prove
our result, it suffices to show that for any /, / e S , we have vv7 ~rWj. There exists a
unique expression wt = xy such that y e Wj and x is the shortest element in the coset
Wj Wj. Thus Wj = x-y. Let z = y~lWj and w = xyz. Then w = x-y z = w7-z = x- wd

and, in particular, WE W(V). By Theorem 5.1, we get w7 ~ r w ~ r ^ and hence the
result follows.

Let & be the set of all sign types X = (XJ^ of Sf such that Xa # O for all
. Then we know from [7] that $P is in one-one correspondence with the Weyl

chambers of the euclidean space E. Hence the cardinal of Sf is equal to the order of
the Weyl group W on O. On the other hand, for any XeSf, the fibre C - 1 W is a left
connected set of Wa in the sense that, for any x,yeC,~l(X), there exists a sequence
x0 = x, xlt..., xr = y in (^(X) such that x{-1 x;1 e 5. Since C,~\X) c W^, from Theorem
5.1 we have the following theorem.

THEOREM 5.3. For any Xe&, the fibre C\X) is contained in some left cell of
Wa in W(v). Thus W{v) is a union of m left cells of Wa with m < \W|.

Finally, we conclude our paper with a conjecture.

14-2
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CONJECTURE 5.4. For any Xe&, the fibre Cr\X) is a left cell of Wa. Thus W{v) is
a union of \w\ left cells of Wa.

The above conjecture is supported by computation in the following cases:

(1) Wa has type Altl>\ [5];
(2) Wa has type B3 [1];
(3) Wa has rank at most 2 [3].
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