A TWO-SIDED CELL IN AN AFFINE WEYL GROUP

JIAN-YI SHI

1. Introduction

Let G = (G, S) be a Coxeter group with S its distinguished generator set. We
define, following Lusztig [4), the corresponding Hecke algebra H over 4 = Z[u, u™],
where u is an indeterminate, as follows. The set H has basis elements T,,, we G as a free
A-module and multiplication is defined by the rules

T.T, =T, iflww)=Iw)+Iw),

T+uw)(T,—u)=0 ifseS.
As an A-module, H also has the basis (C,),c:
C,= Y v VP WT,

ysw
where / is the length function on G. The F, ,(x) are known as the Kazhdan-Lusztig
polynomials [2].

We define for any x, y,z€G, elements &, , € A such that

c,C,=3h,,.C.

Let A* = Z[u]. Given z€G, if there exists an integer N > 0 such that u"h, , ,e 4*
for all x,yeG then we define a(z) to be the smallest integer satisfying u*®@h, , e A*
for all x, yeG; if there is no such integer then we define a(z) = oo.

From now on, we assume G to be an indecomposable affine Weyl group, denoted
by W,. Let @ be the root system whose type is determined by W,. Let ®* be a positive
root system of @ with A its simple root system. Set v = |®*|. Then in [3], Lusztig
proved that a(z) < v for all ze W,. Let W, = {we W,|a(w) = v}.

For any subset J = S, let W, be the subgroup of W, generated by J, which is
isomorphic to some Weyl group. Let w, be the longest element in W,.

Let S be the set of all subsets J of S such that W, is isomorphic to the Weyl group

on @. Let W(s)={we[,Va|w=x-wJ'yWithJES},

where the notation z = x'y means that z=xy and Kz) =I(x)+Iy) for any
x,y,zeW,.

Lusztig proved that W(S) = W,, [3]. In the present paper, we shall prove the
following theorem.

THEOREM 1.1. For any indecomposable affine Weyl group W, = (W,, S), we have
wW(S) = W,,.

This result will be used in §5 to deduce a new result on cells of W,.
We shall prove Theorem 1.1 in §§2 to 4. In the case when the rank of W, is less than
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or equal to 2, Theorem 1.1 can be deduced easily from Lusztig’s results on cells of
W, [3]. Thus, in §§2 to 4, we always assume that the rank of W, is greater than 2.

2. The coordinate form of we W,

Let E be the euclidean space spanned by ® with inner product ¢, ) such that
lof?* = {a,&) =1 for any short root ae®. Then the affine Weyl group W, can be
regarded as a group of right isometric transformations on E. More precisely, let W
be the Weyl group of ® generated by the reflections s, on E for ae®; s, sends xe £
to x—{x, &) a, where o = 2a/{a,a). Let Q denote the root lattice Z®. Let N denote
the group consisting of all translations T;, A€ Q, on E; T, sends x to x + 4. Then W, can
be regarded as the semi-direct product N>< W. There is a canonical homomorphism
from W, to W.wi—w.

Let —o, be the highest short root of ®. We define 5, =5, T, and s, =s,,
1 <i</, where A ={a,,...,o}. Then the generator set S of W, can be taken as
S = {8y, 5;, ..., 8,}. The Dynkin diagram of W, has one of the following figures. (Recall
that we assume that the rank of W, is greater than 2.)

‘Zl oo —0 l 123
1

_ 0\20 3 -2 I-1 I

B, o + —O——0—0 1>3

61 o + ¢ —O——C=0 1>3
N 1 2 3 -3 1= QI-1
D, O- >4
0 !
0
E, 2
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In [7), the author defined a set E(®) of ®-tuples k = (k,),, Which satisfy

(1) k,=—k_,eZ for ae®.
(2) For any a,fe®* with a+fe®", the inequality

lod*k, + BIPky <l + B(kprp+ 1) < lol®k,+ |BIPkg+lof® + B+ + A2 (2.0.1)
holds. It was proved that there exists a bijection between W, and E(®) such that if
we W, corresponds to k¥ = (k(w, a)),.o then

k(w,0) = (A, 0> +k(w,x) for aecd, (2.0.2)

where w = wT, for we W and Ae Q, and for any ae ®* and xe W, the integer k(x, o)
is defined as follows:

if (a)x'e @Y,
if (a)xed.

We call k* the coordinate form of w. We shall identify k¥ with w.
For we W,, we define

L(w) ={seS|sw < w}, R(w) = {seS|ws < w},

where the relation < is the Bruhat order on W, [8].

k(x, o) ={ (_)_ 1 (2.0.3)

PROPOSITION 2.1. The coordinate form K* of w has the following properties.

(1) Iw) = Y o+ Ik(w, ).

(2) Let x=ws,and y = s,w, 0 <t < l. Then for ae®,

k(x, ®) = k(w, (2)5,)+k(s,, ) and  k(y,®) = k(w, 0)+k(s,, ()w™"),
where

0 fa#+a,
k(st,(x)={1 ifao=—a, 2.1.1)
-1 fa=aq,.

(3) Lw) = {s;1k(w,(2)w) >0, 0 < i<}
4 Zw) = {s,|k(w,a) < 0,0 < i<}

The proof of the above results can be found in [6)].

Given S, S, €S, there always exists an automorphism ¢ of W, which preserves S
and sends S, to S,. Conversely, let ¢ be an automorphism of W, which preserves S
and sends s, to 5., 0 < i < [, where i+ i’ is a permutation on the set {0, 1,2, ...,/}. Then
¢ induces a permutation on the set of subsets of S which preserves the set S. The
automorphism ¢ also gives rise to an automorphism of the root system ®, which
we shall also denote by ¢, so that ¢(a) =, 0<i<l If w=(k), o€ W, and
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w = p(w) = (k) then k,, =k, for all xe®. Thus by the formulae (2.0.2) and
(2.0.3) and Proposition 2.1, it is easily seen that we have the following.

LeMMA 2.2. Let w=w,, J = S. Then |k(w, )| = 1 for all ae ®. Thus when JeS,
we have |k(w,0)| =1 for all ae®. In particular, when J = {s,,5,, ...,5,}, we have
k(w,a) = —1 for all xe ®*.

We define W = {we W, | k(w, &) # 0, for ae ®}. We state the following two results
whose proof will be given in subsequent sections.

THEOREM 2.3. W = W(S).

THEOREM 2.4. W = W,,,.

Clearly, Theorem 1.1 is a direct consequence of these two theorems. From these
two theorems, we get three equivalent descriptions of the set W/,

Let us conclude this section by recording an empirical result on the set S which
will be used-in §3.

Put —a, = Z:-l a, ;.

PROPOSITION 2.5.  J€S if and only if J = S—{s;}, where either i =0 or a,€A is a
short root with a, = 1.

3. Proof of Theorem 2.3

In this section we prove Theorem 2.3.
For any aeQ, set A, = {yeA|y < a}.

LeMMA 3.1. Let a, fe ®* with B < a. Then there exists a sequence

ﬂo =ﬁ:ﬂls "”ﬁr =

in ®* such that y, = p,—PB,_ €A, for every i, 1 <i<r.

Proof. The proof is by induction on m = ht(a) —ht(f) > 0, where ht(a) denotes
the height of the root ae®. It is obvious when m = 1. Now assume that m > 1. Put
n = a—f (note that 5 is not necessarily in ®). We claim that there exists some ye A,
with <{y,B") < 0, for otherwise

{y,8") 20 foryeA,. (3.1.1)

Hence <{n,6'> =0 which implies that d{(a,fY) =<{n,B")+<B,fY> =2. Thus
{a,BY> =2 since we have assumed that the rank of @ is greater than 2. Then
f = a—2fe®* and (f,B") = —2. Clearly, A, = A, and there exists some d € A, such
that {d,8") < 0, which contradicts (3.1.1).

By the above claim, we have { = f+ye®* and { < a. By the inductive hypothesis,
there exists a sequence y, = {, 7y, ..., ¥, = in ®* with y,—y,_ €A, fori=1,...,¢ Thus
B, Vo 715 ---» ¥, = @ is the required sequence.
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Let A = AU {o,}.

LEMMA 3.2, Let weW be such that either k(w,a) 2 1 or k(w,a) = —1 for any
aeA. If k(w,y) = 1 for some yeA then k(w,f) = 1 for all fe ®* with y < B.

Proof. We know from Lemma 3.1 that for any fe ®* with y < f there exists a
sequence of roots B, = ,8,,...,8, = B in ®* such that y,=B,—f,_,€h, i=1,...,1.
We shall show that k(w,f) = 1 for all i > 0. Suppose not, then there exists some
J = 1 such that k(w,8,) > 1 for all i, 0 < i <, and k(w, §;) < 0. The inequality

=1 < |B P = Iy® < 1Byl k(w, By_) + )2 k(w, 7)) < B (k(w, B)+1) <O (3.2.1)

implies that y, is a long root and f,_, is a short root. This implies that g, is a short
root. That is, |y|* = 2|B,_,|* = 2|f|* = 2. Again by the inequality (3.2.1) we have
k(w,y,) =k(w,f)=—1 and k(w,,,)=1. In this case, {,=pf,+pf,_,e®* and
0 < 2(k(w,{)+1) < 4 by (2.0.1). Hence k(w, {,) = 0 which contradicts our assumption
that weW. Now we have shown that k(w,$)>1 for all i> 0. In particular,
k(w,p) = 1.

LEMMA 3.3, Put —otg = ). 4,0

(1) If a,> 1 for some ac® then there exist y, e ®* such that —a, = y+J and
a<y,d.
() If a # B in A then there exist y,0€ ®* such that —oy = y+5, a <y and f < 6.

Proof. This can be verified case by case.

LemMa 3.4, Let weW be such that either k(w,a) > 1 or k(w,a) = —1 for any
aeA. Suppose that there exists some BeA such that k(w,f)= 1. If yeA and
— oy +ye®* then y is a short root and k(w,y) > 1.

Proof. By Lemma 3.2 and our assumption, we have k(w, —a,) = 1. Suppose that
k(w,y) # 1. Then k(w,y) = — 1. Since § = —a,+ye®*, and since —a, is the highest
short root of @, we see that y is a short root and that ¢ is a long one. Thus we have
0<2(k(w,d)+1) < 4. This forces k(w,d) =0 which contradicts our assumption.
Hence the result follows.

LeMMA 3.5. Let weW. Suppose that either k(w,a) > 1 or k(w,a) = —1 for any
aeA. Then the following cases cannot occur.

(1) k(w,B) =1 for some fe A with ag> 1.

2) k(w,a), k(w,p) = 1 for some a # B in A.

(3) k(w,pB) = 1 for some long root f€ A when ® contains two roots of different
lengths.

Proof. By Lemma 3.3, there exist y,6e ®* with —a, = y+J such that § < »,din
case (1), or a < y and f < d in (2). Then by Lemma 3.2, we have k(w, ), k(w,d) = 1.
By the inequality

k(w, —ap)+1 > [yI°k(w,y) +10|*%k(w, 6) > 2,

we obtain k(w, —a,) > 2, which contradicts our assumption.
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In the case when @ contains roots of two different lengths, —a, is not the highest
root of @. Thus there must exist some y € A such that —a, +ye ®*. By Lemma 3.4 and
its proof, we see that y is a short root and k(w, y) > 1. Hence we are back in case (2).

PROPOSITION 3.6. Let we W be such that either k(w,) = 1 or k(w,a) =—1 for
any acA. Then &(w)eS.

Proof. If k(w,a) = —1 for all ac A then by Proposition 2.1(4),
R(W) = {8,,55, ..., 5} ES.

If there exists some aeA~ with k(w, ®) = 1 then, by Lemmas 3.2 and 3.5, we have that
k(w,f) = —1 for all e A with f # « and that « is a short root with a, = 1. Thus by
Propositions 2.1(4) and 2.5, we also have Z(w)eS.

Recall that for x, ye W,, the notation w = x-y means w = xy and (w) = I(x) + i(y).
Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. By Proposition 2.1, we see that if w= x-ye W, and if
either x or y is in W, then w is in W. By Lemma 2.2, we see that the elements w,,
JeS, are all in W. This implies that W(S) € W.

Conversely, let weW. Then there must exist xeW and ye W, with w=x-y
such that for any se(x), xs¢ W. By Proposition 2.1(2), (4), we see that either
k(x,a) = 1 or k(x,a) = — 1 for any ae A. Hence by Proposition 3.6, we have %(x)€S,
that is, x = x"-w, for some JeS. This implies that w = x"-w, - y. Thus we W(S) and
hence W = W(S) and Theorem 2.3 is proved.

4. Proof of Theorem 2.4

In this section, we shall prove Theorem 2.4. To do this, we need some results.

LemMA 4.1. If x,ye W, and s€S are such that x = sy and R(x) # %(y) then
a(x) > a(y).

Proof. We have #(x) ¢ L () since s€ L(x)— £ (»). On the other hand, we have
R(x) 2 R(y) in general. Thus #(x) # Z(y) implies that Z(x) ¢ %(y). Hence our result
is a special case of a result of Lusztig [3].

In [7], the author defined sign types of type .

A @-tuple X = (X)), is called a sign type of type @ (or briefly, a sign type), if the
set {X,, X_,} is either {O, O} or {+, —} for any ae ®. Since X is determined uniquely
by the ®*-tuple (X,)_o+, We shall identify (X,),o+ With X. Let & = P(®) be the set
of all sign types of type ®. Let

_{+++O-++OO—
4+, +0, 4=+ =, +—,0+,00,00,0-,0—,

+ 0O - 0 - -
-+, —-+,—-+,-0,-0.—-
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and
o oo - - -+ 0 0 O
G,=1{00+0+000-0-0+00-0—+-
o, O, + O, 0, -, +, O, =, O,
o + + - + + + - -
-—0-+-=-=--- +-+-0+0+
- = 0, = - = +, O, +,
- 0 - - - +
—+++ ++ -+ -+ ++}-
O, + +, +, —, +

For any subsystem @’ of ®, ®"* = ®* n ' is a positive subsystem of ®.
Given an indecomposable positive subsystem ®* of ® of rank 2, we say that a
sign type (X,),.o+ is admissible if we have one of the following cases.
(1) @* has type A4,, say ®* = {a,f,a+f}. Then
X,

a+f

X, X,

belongs to G,.
(2) @ has type B,, say @"* = {a,f,a+f,20+ f}. Then

Xa+ﬁ Xa
X2a+/3
belongs to G,.

We say that a sign type (X,),. i admissible if for any indecomposable positive
subsystem @'* of @ of rank 2, the sign type (X,).o+ is admissible. Let & = #(®)
be the set of all admissible sign types of 2.

We know from [7] that there exists a surjective map {: W,— % which maps
x = (k(x,0))e0 10 X = (X))o Such that, for any ae®,

k(x, o) > 0 if and only if X, = +,
k(x,) =0 if and only if X, = O,
k(x,a) < 0 if and only if X, = —.

We call X the sign type of x. We usually denote the sign types of elements x, y, ... of
W, by the corresponding capital letters X, Y, ....
The following results can be deduced easily from Proposition 2.1.

LemMMA 4.1, Let X be the sign type of xe W,. Then &(x) = {s,|0 < i<, X,=-1}

In a Coxeter group G, we say that two elements x,yeG have the same right
extension property (r.e.p.) if, for any weG, xw = x-w if and only if yw = y-w.
Clearly, if x, y have the same r.e.p. and xw = x-w then Z(xw) = Z(yw). In particular,
R(x) = ().
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If G is a finite Coxeter group then it is easily shown that x, ye G have the same
r.e.p. if and only if x = y.
Now we return to the case where G = W,.

ProposSITION 4.2. If x,y,€ W, have the same sign type then x,y have the same
r.e.p.

Proof. This follows from Proposition 2.1 (2), (4).

The converse of the above proposition is not true in general. For example, let
W, have type B,. Then the elements s,5, and s,5,5, have the same r.e.p. but different
sign types. However, in certain circumstances, such a converse is true. This is just
what we shall consider next.

LemMA 4.3.  If x,ye W, have the sign types X = (X))o and Y = (X) o Such that
for some Be®*, X, =Y, for ae®* —{f} and X, # Y}, {X,, Y0 {+,0} # J.

(1) There exists we W, satisfying
@ xw=x-wand yw=yw,
(b) Let X =0(X),, and Y= (fi)m be the sign types of xw and yw,
respectively. Then there exists some y€ A such that X =Y forae®*—A,
X, Y —for e A—{y} andX X5 Y Y,
(2) If—e{Xy, Yg} then x and y have di ﬁ”erent r.e.p.

Proof. (1) Letm(X) = *{X,| X,e{+,0O},ae A—{B}} and m(Y) = {¥,| Y,e{+, O},
acA—{f}}. Then define m=m(X)=m(Y). If m=0 we claim that feA. For
otherwise, f¢A. Then X, = Y, = —for all ae A. Hence X, = Y, = —for all xe ®* and
in particular, X; = ¥; = —which contradicts {Xj, ¥} n {+ O} # . Therefore w = 1
satisfies the required conditions. Now assume that m > 0. Say ye A—{f} satisfying
X,=Ye{+,0}. Let x! = x5, and y* = ys,. Let X' = (X}),.o and Y* = (¥}),, be the
sign types of x',y', respectively. Since f'=(f)s,€e®*, we have X;=1Y; for
ae®@*—{f'} and Xp = X, Yp = ¥ If m':=m(X") = m(Y") = 0 then by the above
argument, the element w = s, satisfies the required conditions. If m' > 0 then there
exists d e A —{ '} satisfying X; = Y;e{+, O}. Let x* = x's;and y* = y's;. In this way,
we get two sequences of elements: x® = x,x!, x%, ... and »° = y,y',)% ... in W,. We
also get the corresponding two sequences of sign types X°= X, X, X* ... and
Y'=7Y,Y,Y?.... Here for every i > 1,x' = x“‘sn with y,eA—(/?)shs,....sn_l and
m(X* 1) = m(Y") > 0. Let

m(X*) = ¥ X | X.e{+, O}, aed)*——(ﬂ)sh...sn}
and

M(Y") = {Y;| Y;e{+, O}, ae®* —(f)s, ...s,}.

Then m(X*) = M(Y") for all iand M(X°) > M(X*) > .... Since M(X?®) < oo, there must
exist some j=> 0 such that M(X’) = M(Y’) =0. Thus W=S5,5,..5, satisfies the
required conditions and we have proved (1).

(2) f—€e{X,, Y3} then R(xw) # Z(yw) and so x,y have different r.e.p. and we
obtain (2).
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LEMMA 4.4. Assume that x,y,we W,, yeA, fe®* and X, ¥, X Ye& areasin
Lemma 4.3 (1). Assume that O €{X,, Y;} and that one of the following conditions is
satisfied:

(1) © has type A, 121,
@ (.} nW#g.

~

en X,=Y.e{—,0} for ac®* —A X, = f";,= — for a’eA—{y} and A77=Xﬂ,
=Y,
i

-~ ‘;

Proof. By Lemma 4.3 (1), it is enough to show that X,= Y.e{—, O} for
ac®*—A. We may assume without loss of generality that X; = O. If condition (1)
holds then by the adm1551bx]ity of the sign type X, our result follows. Now assume that
condition (2) holds. Then X, = ¥ e{+, —} for xe ®*— A. Suppose that there is some
de®*—A with X; = ¥; = +. We can choose d such that ht(d) is as small as possible.
Thus by the admissibility of X, there must exist some ae ®*—{y} such that § = y+a
and o’ = a+de®*. Clearly, {a,y,0, 2’} forms a positive subsystem of ®* of type B,
with y, &’ long roots and «, d short roots. Let £ = xw and j = yw. Then by the fact that
k(%,7) = 0, k(%,a) < 0 and k(X, ) > 0, we get k(%,a) = —1 and k(%,J) = 1 from the
inequality (2.0.1). Again by (2.0.1) we get k(%,a’) = 0 and hence k(y,a’) = 0. Thus
{%£, 7} n' W = . Since £ = x-w and y = y-w, we have {x, y} N W = (& by Proposition
2.1, which contradicts our condition. Hence the result follows.

LEMMA 4.5. Assume that x,y€ W, have the sign types X = (X0 and Y = () oo
such that for some a,€A, we have X, =Y, for ae®* —{a;} and {qu’ );‘} ={+, 0},
where S—{s,}€S. Then x,y have different r.e.p.

Proof. There exists an automorphism ¢ of W, which preserves S and sends s, to
so- Let X = ¢(x) and j = ¢(y). Clearly, s,¢ %(x) U Z(y) implies that s,¢ Z(X) U Z(J).
Then x, y have different r.e.p. if and only if %, § have different r.e.p. Let X = (Xa)m
and ¥ = ()., be the _sign_types of X, j, respectively. Then we have X, =7 for
aed®*—{—a,} and {X_%, o ={—>,O} by Lemma 4.1 and the fact that
So ¢ A(X) U Z(9). Thus by Lcmma 4.3(2), %, y have different r.e.p. and hence so do x, y.

LEMMA 4.6. Assume that x,ye W, have the sign types X =(X).o and
Y = (Y)o Such that, for some o,e A with {o,(—0,)") # 0, we have X, =Y, for
ae @ —{a,, —o}, X_% = Y_%e{—, O} and{Xa‘, Ya‘} = {4+, O}. Then x,y have different
r.e.p.

Proof. Let x' = xs, and y’ = ys,. Let X’ = (X),p and Y’ = (Y.),.o be the sign
types of x’,y’, respectively. Note that («,)5,€®~ by our condition. Let y = —(a,)3,.
Then by Proposition 2.1(2), X, = Y, for ae ®*—{y} and {X], Y}} = {—, O}. Then by
Lemma 4.3(2). x',y” have different r.e.p. But x’ = x-s, and y’ = y-s,. Hence x, y have
different r.e.p.
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By Lemmas 4.5 and 4.6, we obtain the following.

COROLLARY 4.7. Let x,yeW,, X,Ye% and e ®@" be as in Lemma 4.4. In
addition, suppose that = a,€ A and that we have one of the following cases:

(1) ® has type A, 121,

(2) © hastype B, 1>23,i=1,2;

(B) @hastype C,, 122,i=1,1;

4 Ohastype D, 124,i=1,2,1-1,1;
(5) ©® has type E;, i=1,2,6;

6) ® hastype E,,i=1,17;

(7) @ has type E, i =8;

(8) ® has type F,i=1;

(9) @ has type G,, i=1.

Then x,y have different r.e.p.

Proposition 4.8. Assume that x,ye W, have the sign types X = (X))o and
Y = (Y),c0 Such that for some a,e A, X, = Y, = —, for ae ®* —{a,} and X, # Y. Then
x,y have different r.e.p.

Proof. If—e€{X,,Y,}thenby X, # X, , we have #(x) # #(y) and hence x, y have
different r.e.p. Now assume that — ¢{Xa‘, Y,i}. Then {Xa‘, Ym‘} ={+,0}. We may
assume without loss of generality that X, = O and ¥, = +. We shall prove our result
by a case-by-case argument.

(1) @ has type A,. The result follows from Corollary 4.7(1).

In each of the remaining cases, except for cases (6a, c), we shall find an element
we W, with xw = x*w, yw = y-w such that for some ye®", X, = ¥,, for ae ®*—{y}
and {X,, ¥} = {—, O}, where X = (X,),.o and ¥ = (¥),., are sign types of xw and yw,
respectively. In either of cases (6a) and (6¢c), we shall find we W, which satisfies the
following conditions:

(i) xsw=x-wand yw =y w;
(i) if X" = (X))o and Y’ = (Y)), ., are the sign types of xw and yw, respectively,
then X, = Y, for all ae ®—{a,}, and {X, Y;‘} ={+, O}, where S—{s}€eS.
Once we have done this, our result follows immediately from Lemmas 4.3(2) and
4.5.

(2) ®© has type B, or D,. By Corollary 4.7(2), (4) we may assume that i > 2.
Moreover, in the case when ® has type D,, we may further assume that
i<l-1. Leta =s5,5,5;5...5,and b, = s5,5,...5,i=2,j> 1

(@) Ifi<liseven, let w=a,b,_ a, ,b, ,...a,b,s,.

(b) If i< /lis odd, let w=a,;b,_,a, ,b, 5...a,b,a;".
The following two cases only occur for @ of type B,.

(o Ifi=liseven, let w=a,  b,_,a, b, ,...a,b,5,.

d) Ifi=lisodd, let w=a, ,b_,a, ,b_,...a,b,a".

(3) @ has type C,. By Corollary 4.7, we may assume that 1 <i</ Let
a, = 5¢5,855...8, i=20,and let w=aq,q,_, ... a,a,
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(4) @ has type F,. By Corollary 4.7, we may assume that i # 1. Let a, = s, 5,,
Ay = S, 85, by = 5,8, S5, by = 8,5,85, € = 5,5, 5,5, and d = 55,5, 5,5,.
(@ Ifi=2,let w=db;'c b, a; d™".
(b) Ifi=3,let w= da‘1 -1
(c) Ifi=4,let w=cbi.

(5) @ has type E,. By Corollary 4.7, we may assume that i=3,4,5. Let
=838, by = 55,85 by = 558,55, €, = 5485, 85, Co = 8§, 535,55, C3 = 535,55,
dy = 5,855, 858g, Ay = §1558,55 0, dy = 5, 535,55 8.
(@) Ifi=3,let w=d, b, b c,dy" ci".
(b) Ifi=4,let w=d, b,d,.
(¢ fi=S5, letw=d b d,a"d c,

(6) @ has type E,. By Corollary 4.7, we may assume that 1 <i < 7. Let a = s,,

by = 5,5,85, b, = 535,55, by = 835,55, by = 5,55 8¢, €, = 5535455, C3 = 5,535, 55,
Cg = S35, 85 g, Cq = S38,55 8¢, Ay = S8, 538489, ty = 835,558, S5, dy = 8§, 555,55 g,
€1 = Sy8, 535, 85S¢, €3 = 81 535485565, and f = 5,5, 555,55 8¢5,

(a) Ifi=2, let w=fc,.

(b) Ifi=3, let w=fc,b,d;".

(c) Ifi=4,let w=fc,b,e,e,b,b,e,b,b,fc,d,d, fb,ad,.

(d) Ifi=5,let w=feyb,c, fe,cod by by, fb,d3

(e) Ifi=6,let w=d,d"

(7) @ has type E;. By Corollary 4.7, we may assume that i < 8. Let a = s,,
b= S2S4, C; =888, C= s2s4s5, Cg = 3334S2, Cy = 835,85, C5 = S4S5S6,
Co =S558, Gy =5,555,85, dy=25,535,855 y=25,5,558¢, y= 555,555,
ds = 5,556, €; = 81 535455 s €y = 85254555657, €3 = 5354555657,
€4 = 5554575450 S1 = 51535455568 Sy = S354555657 g5 Sy = S35,55565; g
il = 81 8354 555657 5g> 82 = 535455565755 S0 83 = 5354555657585 and

= 8, 835455865788 Sg-

(@ Ifi=1,letw=h1g,.

) Ifi=2,let w=nh1g,c,d;* d* af(* f3' g,

() Ifi=3letw=h" 1czcac1 c‘,la”e4 g2e3d3hf2e3bgld[1c;‘g2.

d) If i=4, let w=h"fe,di c; el b c;' 87 8,8,d; d" gy cady it
¢;'d; 8.8 6, dyeydycodidy £ 82 871 85" 8,

(e) Ifi=S,let w="h""g,f,e,d,c,hd;c, hf,e,d,af e 8,8, d,d c; e;* h.

O Ifi=6,letw="h""g,f,d,e,d,g,f,e,f, c.c3h.

(g Ifi=7,let w=h"e,d,c,c,h.

COROLLARY 4.9. Assume that x,yeW, have sign types X = (X)), and
Y = (X))o respectively such that X, = Y,e{—, O} for all ae ®*—A, X; = Y; = — for
BeA—{y} and X, = O, Y, =+, where yeA. Then x, y have different r.e.p.

Proof. Define X =(X),, and ¥ =(¥),o by X,=¥,=— for ae®" —{3},
X QO and Y +. Then X and ¥ are two admissible sign types. Thus there exist
xeC 1(X) and j€e{"(¥). By Proposition 4.8, % and j have different r.e.p. Hence we can
find we W, such that £w = X-w, jw = j-w and Z(Xw) # Z(w). But this implies from
Proposition 2.1 (2), (4) that xw = x-w, yw = y-w and #(xw) # Z(yw). That is, x, y
have different r.e.p.

14 JLM 36
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The following result gives a necessary and sufficient condition for two elements of
W, to have the same r.e.p. in certain circumstance. This result will be crucial in the
proof of Theorem 2.4,

THEOREM 4.10. Assume that x,ye€ W, have sign types X = (X)wos ¥ = (Yo
respectively. Assume that one of the following conditions is satisfied.

(1) @ has type A4, /> 1.
@ . }nW#g.

Then X =Y if and only if x,y have the same r.e.p.

Proof. (=) This follows from Proposition 4.2.

(=) We must show that if X # Y then x, y have different r.e.p. Suppose to the
contrary that X # Y and x, y have the same r.e.p. We can find a sequence of elements
x(0) = x,x(1), ..., x(r) such that x(i—1)"'x(i)e S—{s,}, x(i—1) < x(i), for every i,
1 < i < r,and x(r) has the sign type whose entries are all —. Since y has the same r.e.p.
as x, there also exists a sequence of elements y(0) = y, y(1), ..., y(r) such that for every
i, 1 <i<r,y(i—1)"y(@) = x(i—1)"* x(i), and y(r) has the same sign type as x(r). We
see that for each j, 0 <j < r, x(j) and y(j) have the same r.e.p. Let X(}), Y()) be the
sign types of x(}), y()), respectively. Since X(0) # Y(0) and X(r) = Y{(r), there must
exist some /, 0 < /<, such that X(/), = Y(J), for all ae®*—A, X(/);= Y(I);=—
for BeA—{y} and X(I), # Y(I),, where yeA. Since R(x(])) = Z(y(!)), we have
{X(),, Y(),} = {+, O}. We may assume without loss of generality that X(/), = O and
Y(/),=+. Then by Lemmas 4.3 and 4.4, we have X(/),= Y(/),e{—,Q} for all
e ®*—A. Hence it follows from Corollary 4.9 that x(/) and y(/) have different r.e.p.,
which is a contradiction. This implies that x and y have different r.e.p. and our result
follows.

We need the following result which is a special case of Lusztig’s result [3].

LemMA 4.11. For xe W,, let se S— L(w), te S—R(w). Then a(sx), a(xt) = a(x).

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Since W = W(S) c W,,, it suffices to show that if x¢ W
then a(x) < v.

There exists a sequence of elements x, = x, x,, ..., X, in W, such that for every i,
1<i<r, x,xY €8, x_, <x, x,_,¢W and x,eW. By Lemma 4.11, we have
a(x,) = a(x,_,) = ... 2 a(x,). To prove that a(x) <v, it suffices to show that
a(x,_,) <v.Lets,=x,x;},z=x,, and z’ = x,. Let Z and Z’ be the sign types of z
and z’, respectively. Then Z # Z’. By Theorem 4.10, z and z’ have different r.e.p. Thus
there is z,e W, such that zz, = z-z,, z'z, = 2’ -z, and #(zz,) # #(z’ z,). This implies
that #(z'z,) 2 #(zz,) since s,°zz, = z'z,. On the other hand, s,e £(2'z,) — L(zz,)
implies that #(z'z,) ¢ £(zz,). By Lemma 4.1, we have a(zz,) < a(z’z,) < v. But
a(x) < a(z) < a(zz,). This implies that a(x) < v.
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5. The two-sided cell W, of W,

For the time being, we consider an arbitrary Coxeter group (G, S).

It is known that the Kazhdan-Lusztig polynomial P, , (x), y, we G, has degree no
greater than ({(w)—I(y)—1) if y <w. We write y<w if y <w and degP, ,(x) is
exactly 3(/(w)—I(y)—1). We write y—w if either y <w or w < y.

We write y <, wif there exists a sequence y, = ¥, y,, ..., », in W, such that for every
Ll<ig<ty_,—yand L(y,,) ¢ L(,). Wedefine y ~, wif y <, w <, y. We write
yLpwify <, wland y ~,wif y* ~, wl. Finally, we write y < w if there exists
a sequence y, = y,¥,, ..., ¥, in W, such that either y,_; <, y, or y,_, <p¥, for every i,
I1<i<r;wedefiney~wif y<rw<y.

The relation ~, (respectively ~ ,, ~) is an equivalence relation on W,. We call
the corresponding equivalence classes left (respectively right, two-sided) cells. Clearly,
any two-sided cell of G is a union of left (respectively right) cells of G. These cells play
an important role in the representation theory of Coxeter groups and Hecke
algebras.

The following results are well known [3].

THEOREM 5.1. Let x,y€G.

(1) x~ry=a(x) = ay).

(@) x<, yand a(x) = a(y)=>x ~_y.
(3) x<pyandalx) =a(y)=>x~py.
@) w=xy=wpxand w<, ).

Now we can prove the main result of this paper.
THEOREM 5.2. The set W, is a two-sided cell of W,.

Proof. Let D ={w,|JeS}. Then by Lemma 2.5, D = W,,,. By Theorems 1.1 and
5.1 we have that for any xe W, there exists some ye D satisfying x ~.y. To prove
our result, it suffices to show that for any I, JeS, we have w, ~.w,. There exists a
unique expression w, = xy such that ye W, and x is the shortest element in the coset
w, W,. Thus w,=x-y. Let z=y'w,and w=xyz. Thenw=x"y-z=w,"z=x"w,
and, in particular, we W,,,. By Theorem 5.1, we get w, ~-w ~.w, and hence the
result follows.

Let & be the set of all sign types X = (X,),.o of & such that X, # O for all
ae®. Then we know from [7] that & is in one-one correspondence with the Weyl
chambers of the euclidean space E. Hence the cardinal of & is equal to the order of
the Weyl group W on ®. On the other hand, for any Xe &, the fibre {7}(X) is a left
connected set of W, in the sense that, for any x, ye{ *(X), there exists a sequence
Xy = X, Xy,...,X, = yin{"(X)such that x,_, x;* € S. Since {(X) = W, from Theorem
5.1 we have the following theorem.

THEOREM 5.3. For any Xe %P, the fibre {(X) is contained in some left cell of
W, in W,,,. Thus W, is a union of m left cells of W, with m < |W|.

Finally, we conclude our paper with a conjecture.

14-2
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CoNJECTURE 5.4. For any Xe &, the fibre {"}(X) is a left cell of W,. Thus W, is
a union of |w| left cells of W..

The above conjecture is supported by computation in the following cases:

(1) W, has type 4,, 1> 1[5];
(2) W, has type By [1];
(3) W, has rank at most 2 [3].
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